
A Parallel Repetition Theorem for Leakage Resilience

Zvika Brakerski∗ Yael Tauman Kalai†

Abstract

A leakage resilient encryption scheme is one which stays secure even against an attacker that
obtains a bounded amount of side information on the secret key (say λ bits of “leakage”). A
fundamental question is whether parallel repetition amplifies leakage resilience. Namely, if we
secret share our message, and encrypt the shares under two independent keys, will the resulting
scheme be resilient to 2λ bits of leakage?

Surprisingly, Lewko and Waters (FOCS 2010) showed that this is false. They gave an
example of a public-key encryption scheme that is (CPA) resilient to λ bits of leakage, and yet
its 2-repetition is not resilient to even (1 + ε)λ bits of leakage. In their counter-example, the
repeated schemes share secretly generated public parameters.

In this work, we show that under a reasonable strengthening of the definition of leakage
resilience (one that captures known proof techniques for achieving non-trivial leakage resilience),
parallel repetition does in fact amplify leakage (for CPA security). In particular, if fresh public
parameters are used for each copy of the Lewko-Waters scheme, then their negative result does
not hold, and leakage is amplified by parallel repetition.

More generally, we show that given t schemes that are resilient to λ1, . . . , λt bits of leakage,
respectfully, their direct product is resilient to

∑
(λi − 1) bits. We present our amplification

theorem in a general framework that applies other cryptographic primitives as well.

∗Stanford University, zvika@stanford.edu.
†Microsoft Research, yael@microsoft.com.

1 Introduction

In recent years, motivated by a large variety of real-world physical attacks, there has been a
major effort by the cryptographic community to construct schemes that are resilient to leakage
from the secret keys. This successful line of work gave rise to many constructions of leakage-
resilient cryptographic primitives, including stream ciphers [DP08, Pie09], signature schemes [KV09,
FKPR10], symmetric and public-key encryption schemes [AGV09, NS09, DKL09, DGK+10], as well
as more complicated primitives.

A natural question to ask is: Does parallel repetition amplify leakage? More concretely, suppose
we are given a public-key encryption scheme E that remains secure even if λ bits about the secret
key are leaked. Is it possible to amplify the leakage-resilience to tλ by taking t copies of E , and
encrypting a message m by secret sharing it, and encrypting the ith share using Ei (we denote the
resulting scheme by E t)? Using an appropriate definition of parallel repetition, a similar question
can be asked for signatures.

Alwen, Dodis, and Wichs [ADW09] and Alwen, Dodis, Naor, Segev, Walfish and Wichs [ADN+10]
were able to amplify leakage resilience for particular schemes, using the specific properties of these
schemes. They raised the fundamental question of whether leakage resilience can always be am-
plified by parallel repetition. They predicted that such a result will be hard or even impossible to
prove under the known definitions.

Recently, Lewko and Waters [LW10] gave a striking negative result, giving an example of a
public-key encryption scheme that is resilient to λ bits of leakage but whose 2 repetition is not
resilient to even (1 + ε)λ bits. This was followed by a work of Jain and Pietrzak [JP11] who
presented a signature scheme where increasing the number of repetitions does not improve the
leakage resilience at all. We elaborate on these negative results (and on how they go hand-in-hand
with our positive results) in Section 1.2.

1.1 Our Results

We give positive results, by proving direct product theorems for leakage resilience. In particular,
we show that parallel repetition does amplify the leakage resilience (almost) as expected.

The leakage model we consider is based on the “noisy leakage” model of Naor and Segev [NS09].1

In this model, “legal” leakage functions are poly-size circuits that reduce the min-entropy of the
secret key by at most λ. A scheme is said to be λ-leakage resilient if every ppt adversary, that asks
for a “legal” leakage function, breaks the scheme with only negligible probability.

In this work, we consider a slightly relaxed leakage model. Instead of requiring the leakage
function to always reduce the min-entropy of sk by at most λ, we require that it should be hard to
break the scheme on those leakage values that do reduce the min-entropy by at most λ. In other
words, we consider a point-wise definition: We say that a scheme is point-wise λ-leakage resilient if
for any ppt adversary, that asks for a poly-size leakage function L, the probability that both the
leakage value y ← L(pk, sk) reduces the min-entropy of sk by at most λ, and that A(pk, y) breaks
the scheme, is negligible.

We believe that this leakage model is of independent interest, as it captures our “intent” better:
As long as the secret key is left with enough min-entropy, the scheme is secure. Moreover, we

1While “entropic leakage” may be a more suitable name for this model, we stick with the terminology of [NS09]
for historic reasons.

1

note that all known constructions that are λ-leakage resilient are also point-wise λ-leakage resilient
(including [NS09, KV09, DGK+10, BG10]). We elaborate on this in Section 4.

At first it may seem that point-wise leakage is equivalent to noisy leakage. However, the
difficulty is that it may be hard to determine whether a leakage value y ← L(pk, sk) indeed reduces
the min-entropy of sk by at most λ. If this was efficiently determined, then indeed we would have
a reduction between the two models.

For technical reasons (see Section 1.3), we need to further relax our leakage model for our results
to go through. We consider two (incomparable) relaxations.

First Relaxation: Almost λ-Leakage. In the first relaxation, instead of requiring that sk has
high min-entropy (given pk, y), we require that it is statistically close to a random variable with
high min-entropy. A scheme that is secure in this model is said to be point-wise almost λ-leakage
resilient. We can prove a direct product theorem of any constant number of repetitions under this
definition.

Theorem 1. Let c ∈ N be a constant, and for every i ∈ [c], let Ei be a point-wise almost λi-leakage-
resilient public-key encryption scheme. Then, E1× . . .×Ec is point-wise almost λ-leakage-resilient,
where λ =

∑c
i=1(λi − 1).

We refer the reader to Section 1.3 and Section 5 for an overview of the proof, and to Appendix C
for the formal proof.

Second Relaxation: Leakage with Small Advice. In the second relaxation, we give the
adversary an additional logarithmic (in the security parameter) number of bits of (possibly hard
to compute) advice (quite surprisingly, we were unable to reduce this model to the point-wise λ-
leakage model). A scheme that is secure in this model is said to be point-wise λ-leakage resilient
with logarithmic advice. We can prove a direct product theorem of any polynomial number of
repetitions under this definition.

We note that it is not clear what it means to have t different leakage resilient schemes when t is
super constant, since there is a different number of schemes for each value of the security parameter.
While one can come up with a proper definition (involving a generation algorithm that, for every
value of the security parameter, gets i and implements Ei), for the sake of clarity, we choose to
state the theorem below only for parallel repetition of the same scheme.

Theorem 2. Let t = t(k) be a polynomial in the security parameter. Let E be a public-key encryp-
tion scheme that is point-wise λ-leakage resilient with logarithmic advice. Then E t is point-wise
t(λ− 1)-leakage resilient with logarithmic advice.

We refer the reader to Section 1.3 for an overview of the proof, and to Section 6 and Appendix D
for the formal proof.

The Relation Between our Models. Interestingly, we are not able to show that our relaxations
are equivalent to one another, nor to show that they are implied by (plain) point-wise leakage
resilience. This is surprising since in the bounded leakage model,2 a negligible change in the secret-
key distribution, or adding a logarithmic number of hard to compute bits, does not change the

2Where the leakage function’s output is required to be bounded by λ bits, as opposed to our requirement that the
secret key has high residual entropy.

2

model. In a nutshell, the reason that this does not carry to our models, is that having high min-
entropy is not an efficiently verifiable condition, and that statistical indistinguishability does not
preserve min-entropy.

We are able to show, however, that point-wise λ-leakage resilience implies λ-bounded leakage
resilience (for the same value of λ), and thus in particular, our relaxed models also imply bounded
leakage resilience. We note that proving the above is somewhat nontrivial since we do not want
to suffer a degradation in λ. We refer the reader to Section 3.3 for a formal presentation, and to
Appendix B for the proof.

Our Models and Current Proof Techniques. We show that for essentially all known schemes
that are resilient to non-trivial leakage (i.e. super-logarithmic in the hardness of the underlying
problem), amplification of leakage resilience via parallel repetition works. Specifically, this includes
the Lewko-Waters counterexample, if the public parameters are chosen independently for each copy
of the scheme. In order to do this, we identify a proof template that is used in all leakage resilience
proofs, and show that this template is strong enough to prove point-wise leakage resilience, as well
as our relaxed notions. See Section 4 for the full details.

The Lewko-Waters counterexample uses its public parameters in a very particular way that
makes the argument not go through (see below).

1.2 Prior Work

As we claimed above, all known leakage resilient schemes are proved using the same proof template,
and remain secure under our leakage models. This implies that parallel repetition should amplify
security for all known schemes, which does not seem to coincide with the negative results of [LW10,
JP11]. We explain this alleged discrepancy below.

The Lewko-Waters Counterexample. Lewko and Waters [LW10] construct a public key en-
cryption scheme that is resilient to non-trivial length-bounded leakage, and prove that parallel
repetition does not amplify its leakage resilience. However, the copies of their encryption scheme
share public parameters: They are all using the same bilinear group. Their scheme, like all other
schemes we are aware of, is (computationally indistinguishable from) point-wise leakage resilient
and our theorems imply that parallel repetition does amplify its resilience to leakage. This is true
so long as the public parameters are generated anew for each copy of the scheme: In our proof, we
need to be able to sample key pairs for the scheme in question. Lewko and Waters use the public
parameters in an extremely pathological (and clever!) way: The public parameters enable to gen-
erate keys for their actual scheme, but not for the computationally indistinguishable scheme where
leakage resilience is actually proven. However, if we consider the generation of public parameters
as a part of the key generation process, then new key pairs can always be generated, and parallel
repetition works.

The Jain-Pietrzak Counterexample. Jain and Pietrzak [JP11] give a negative result for sig-
nature schemes. They take any secure signature scheme and change it so that if the message to
be signed belongs to a set H, then the signature algorithm simply outputs the entire secret key.
The set H is computationally hard to hit (given only the public key), and thus the scheme remains
secure. It follows that the scheme remains secure also given leakage of length O(log k), where k is

3

the security parameter (more generally, if the underlying problem is 2λ hard, then the scheme is
resilient to ∼ λ bits of leakage).

They prove that parallel repetition fails, by proving that if the scheme is repeated t times, for
some large enough t, then the leakage can in fact give enough information to find a message m that
belongs to all the sets Hi, and thus break security completely. They start with a result that relies
on common public parameters: a common (seeded) hash function. Then, they suggest to remove
this public parameter by replacing the seeded hash function with an explicit hash function, such
as SHA256. However, this explicit hash function is also, in some sense, a joint non-uniform public
parameter.

This counterexample heavily relies on the “help” of the signing oracle when breaking the re-
peated scheme. The paper also presents a construction of a CCA encryption scheme, where they
use the decryption oracle to break the parallel repetition system.

In general, signature schemes are not covered by our amplification theorems. Our theorems
(and proofs) only cover public key primitives where the challenger in the security game does not
need to know the secret key (beyond providing the adversary with the leakage value). Our results
do extend to schemes such as signature schemes or CCA encryption schemes, if they have the
property that the challenger (i.e., the signing oracle or the decryption oracle) can be efficiently
simulated given only the public key (or given very little information about the secret key), in a
way that is computationally indistinguishable even given the leakage. For example, the signature
scheme of Katz and Vaikuntanathan [KV09] has this property, and thus its leakage resilience is
amplified by parallel repetition. Whether our techniques can be applied to other leakage resilient
signature schemes (e.g. [BSW11, MTVY11, GJS11]) is an interesting question that we leave for
further research.

1.3 Overview of Our Techniques

In what follows we give a high-level overview of our proofs. For the sake of simplicity, we focus on
the case of two-fold parallel repetition. Let E be any λ-leakage resilient encryption scheme. Our
goal is to prove that the scheme E2 is 2λ-leakage resilient. For technical reasons, in our actual
proof, we manage to show that E2 is (2λ− 1)-leakage resilient (in both our leakage models).

Our proof is by reduction: Suppose there exists an adversary B for the parallel repetition scheme
E2 that leaks L(pk1, pk2, sk1, sk2), where L reduces the min-entropy of (sk1, sk2) by at most 2λ−1.
We construct an adversary A, that uses B to break security of E , and uses a leakage function L′

that reduces the min-entropy of the secret key by at most λ.
Intuitively (and, as we will show, falsely), it does not seem too hard to show such a reduction.

It only makes sense that when the pair (sk1, sk2) looses 2λ bits of entropy, then at least one of
the secret keys sk1, sk2 “loses” at most λ bits (otherwise the total loss should be more than 2λ).
Therefore the adversary A can sample a key pair by itself and “plant” it either as (pk1, sk1) or
as (pk2, sk2) (at random). Namely, A will sample a random i ∈ {1, 2}, and uniformly sample
(pki, ski), the key pair of the scheme we actually wish to attack will play the role of (pk3−i, sk3−i).
Upon receiving a leakage function L(·) from B, the adversary A will plug the known (pki, ski) into
the function and thus obtain L′ to be sent to the challenger. Upon receiving a response from the
challenger, it is forwarded back to B, which can then break security with noticeable probability.
Notice that B’s view in the game is identical to its view in the repeated game against E2, and thus
it still breaks the security with the same probability. The only worry is whether the function L′

only reduces the key entropy by the allowed amount, which is unfortunately not the case. Assume

4

that L leaks some 2λ bits on the bit-wise XOR sk1⊕ sk2. Then when plugging in a known ski, the
resulting L′ still leaks 2λ bits on sk3−i.

To solve this problem, we must prevent A from knowing ski. This is achieved by having the
key pair (pki, ski) sampled by the leakage function L′, rather than by A. Namely, L′(pk, sk)
is now defined as follows: First, sample (pki, ski) and set (pk3−i, sk3−i) = (pk, sk). Then run
y←L(pk1, pk2, sk1, sk2) to obtain the leakage value. Lastly, output (y, pk1, pk2). Given the output
of L′, the adversary A can forward the value y to B, that uses it to break the scheme, all without
ever being exposed to the value of ski.

This seems to give A the least amount of information possible, so we should hope that now we
can prove that the entropy of sk is reduced by at most λ. However, again, this is not true. Suppose
that with probability 1/2, the leakage function L outputs 2λ bits about sk1 and with probability
1/2 it outputs 2λ bits about sk2. In this case, L indeed reduces the min-entropy of (sk1, sk2) by
2λ, and yet for every i ∈ {1, 2} the leakage function L′(pk, sk) reduces the min-entropy of sk by
essentially 2λ as well, and thus is not a valid leakage function for the one shot game.

This abnormality results, to some extent, from using min-entropy (as opposed to Shannon
entropy) as our entropy measure: If L′(pk, sk) outputs both y = L(pk1, pk2, sk1, sk2) and sk3−i,
then it would indeed leak at most λ bits on sk (with probability 1/2). The fact that we have less
information, namely ski is not known, might actually decrease the min-entropy of the key.

We arrive at a conflict: On one hand, knowing ski is a problem, but on the other, not knowing
it seems to also be a problem. We show that revealing ski only in some cases, enables to prove
parallel repetition. We use a simple lemma (Lemma A.1), which essentially shows how to “split-up”
the joint min-entropy of two random variables. More precisely, it says that there is a subset S of
all possible secret keys sk1, such that for every sk1 ∈ S, the the random variable sk2|sk1 has high
min-entropy. Moreover, given the additional bit of information that sk1 /∈ S, causes sk1 to have
high min-entropy (which decreases as the size of S shrinks).

We proceed by a specific analysis for each of our two relaxed models. For explanatory reasons,
we first discuss leakage with advice (our second relaxation) and then go back to the almost leakage
resilience model (our first relaxation).

Point-Wise λ-Leakage with Advice. In this model, the adversary A will leak L′(pk, sk), which
is a randomized leakage function, defined by choosing a random τ ∈ {1, 2}, setting (skτ , pkτ) =
(sk, pk), choosing a new fresh key pair (ski, pki), where i = 3−τ , and outputting L(pk1, pk2, sk1, sk2).
In addition, it will use one bit of advice which is whether ski ∈ S. If so, the leakage func-
tion L′(pk, sk) outputs ski in addition to L(pk1, pk2, sk1, sk2), and otherwise it outputs only
L(pk1, pk2, sk1, sk2). Now we can prove that indeed, for many pairs (pk, sk), the leakage L′(pk, sk)
leaks at most λ bits about sk (and B breaks E2 on the corresponding keys).

Note that the leakage function L′ sometimes leaks more than it should. Namely, in some cases
the value y ← L′(pk, sk) reduces the min-entropy of sk by λ; but in other cases it reduces the
min-entropy of sk by more than λ,3 and in these cases it is an invalid leakage function. For this
reason, we need to consider the point-wise λ-leakage definition. In addition, note that L′ used only
one bit of additional advice. Therefore when going from E to E t the reduction uses log t bits of
advice.

3This happens when the set S is very small, yet skτ ∈ S.

5

Point-Wise Almost λ-Leakage. In this model, the idea of the reduction is the following: The
adversary A will leak L′(sk, pk), which is a randomized leakage function, defined by choosing a
random τ ∈ {1, 2}, setting (skτ , pkτ) = (sk, pk), choosing a new fresh key pair (ski, pki), where
i = 3−τ , and outputting L(pk1, pk2, sk1, sk2), and in addition with probability 1/2 outputting ski.

As in the model with advice, the leakage function L′ might leak more than λ bits about sk,
and thus we use the point-wise definition. In the analysis, we distinguish between the case that the
set S is noticeable and the case that it is negligible. In the former, with non-negligible probability
the leakage function L′ will sample ski ∈ S and will output it. In this case the leakage function
is legal. If the set S is negligible, we claim the distribution of the secret key skτ is statistically
close to the distribution of skτ conditioned on the event that ski /∈ S (as this event happens only
with negligible probability). Therefore, if L′ did not output the secret key ski, the secret key skτ
is statistically close to a distribution with high enough min-entropy. Due to this analysis, we need
to relax our leakage model almost λ-leakage resilient.

Since the analysis in this model is asymptotic, we are not able to extend it beyond a constant
number of repetitions. See discussion in Section 5.

1.4 Paper Organization

We define our generalized notion of public-key primitives in Section 2, where we also define parallel
repetition and leakage attacks on such primitives. Our model of point-wise leakage resilience is
presented in Section 3. In Section 4 we explain why all known leakage resilient schemes are also
point-wise leakage-resilient.

Our parallel repetition theorems for a constant number of repetitions and for a polynomial
number of repetitions are presented in Sections 5 and 6, respectively. The proofs are deferred to
Appendices C and D, respectively. In Section 7 we discuss what our theorems imply for schemes
that are only computationally indistinguishable from being secure in our model.

Appendix A contains the min-entropy splitting lemma that is used for all our proofs.

2 Public-Key Primitives, Parallel-Repetition, Leakage Attacks

In this section we give a definition of a public key primitive which generalizes one-way relations and
public-key encryption under chosen plaintext attack (CPA). We then show how to define parallel
repetition with respect to public-key primitives in a way that, again, generalizes the intuitive notions
of parallel repetition for either one-way relations or public-key encryption.

2.1 A Unified Framework for Public-Key Primitives

We use the following formalization that generalizes both one-way relations and public-key encryp-
tion.

Definition 2.1 (public-key primitive). A public-key primitive E = (G,V) is a pair of ppt algorithms
such that

• The key generator G generates a pair of secret and public keys: (sk, pk)←G(1k).

• The verifier V is an oracle machine such that V O(pk)(pk) either accepts or rejects.

6

Definition 2.2 (secure public-key primitive). A public-key primitive E = (G,V) is secure if for
any ppt oracle break, it holds that

Pr
(sk,pk)←G(1k)

[V break(pk)(pk)] = negl(k) .

To be concrete, for one-way relations, the breaker needs to send a candidate secret key sk
(= inversion of the public key), and the verifier runs the relation’s verification procedure. To see
why public key encryption can be stated in these terms, requires some work. The reason it is
not immediate is that typically, we would consider the interaction between the verifier and the
breaker, to be the following: The verifier gives the breaker a challenge ciphertext Encpk(b), and he
accepts if the breaker succeeds in guessing b. However, the breaker can clearly cause the verifier to
accept with probability 1/2, where we need to ensure that the breaker succeeds only with negligible
probability. This technical annoyance can be fixed by considering the game where the verifier sends
poly(k) challenge ciphertexts to the breaker, each encrypting a random bit. The breaker succeeds
if it succeeded in guessing significantly more than 1/2 of the bits encrypted. The formal definition
and precise analysis are much more cumbersome. In order not to break the flow of the presentation,
we defer it to Appendix E.

Note that our verifier (which corresponds to the challenger in “security game” based definitions)
only gets the public key as input and not the secret key. If the secret key was also given, then all
public-key encryption schemes, signature schemes, and one-way relations, would trivially fit into
this framework. However, in this work, we only consider primitives where the verifier V does not
use the secret key sk to verify, but uses only the public key pk. An example of such a primitive is
public-key encryption (under CPA). However, signature schemes or CCA secure encryption schemes
do not fall into this category, since for these primitives the verifier in the definition above does need
to know the secret key sk in order to simulate the signing oracle, in the case of signature schemes,
and to simulate the decryption oracle, in the case of CCA encryption schemes.

2.2 Parallel Repetition

Definition 2.3 (t-parallel repetition). For any public-key primitive E = (G,V) and any t ∈ N, its
t-parallel repetition, denoted E t = (Gt, V t), is in itself a public-key primitive defined as follows

• The key generator (skt, pkt)←Gt(1k) generates (ski, pki)←G(1k) for all i ∈ [t] and outputs
skt , (sk1, . . . , skt), pk

t , (pk1, . . . , pkt).

• The verifier
(
V t
)O(pkt)

(pkt), runs V O(pk
t,i)(pki) for all i ∈ [t], and accepts if and only if they

all accept.

A direct product of t schemes E1 × · · · × Et is defined similarly.
While it is straightforward that our definition captures the notion of parallel repetition for one-

way relations (where the goal is to find legal pre-images for all input public-keys), let us be a little
more explicit about how the above captures parallel repetition for public-key encryption.

Lemma 2.1. Let E = (G,V) be a public-key primitive that represents a public-key encryption
scheme and let t ∈ N. Then there exists a public key encryption scheme that is represented by E t.

Moreover, this scheme is obtained by secret sharing the message into t shares and encrypting
share i with pki. To decrypt, decrypt all shares and restore the message.

The proof is straightforward and is omitted.

7

2.3 Leakage Attacks

In this section, we generalize the notion of leakage attacks to our public-key primitive framework.
Note that we do not define what it means for a scheme to be secure, only present a model for an
attack.

Definition 2.4 (leakage attack). We consider adversaries of the form A = (leakA, breakA), where
leakA, breakA are (possibly randomized) functions. We refer to leakA as the leakage function and
to breakA as the breaker.

A leakage attack (with security parameter k) of an adversary A = (leakA, breakA) on a public-key
primitive E = (G,V) is the following process.

• Initialize: Generate a key pair (sk, pk)
$← G(1k).

• Leak: Apply the leakage function on the key pair to obtain the leakage value y←leakA(pk, sk).

• Break: A succeeds if V break(pk,y)(pk) accepts.

3 Point-Wise Leakage Resilience

In this work, we consider “noisy leakage” functions, which are only allowed to reduce the (average)
min-entropy of the secret key by a bounded amount. However, we relax the min-entropy restriction,
and consider a point-wise definition, where we require that the specific leakage value is legal (as
opposed to requiring that the leakage function is always legal).

We define our new model below. Then, in Sections 3.1, 3.2, we present two relaxed versions of
point-wise leakage resilience that we need in order to prove our parallel repetition theorems. Finally,
in Section 3.3 we show that all of these notions are strictly stronger than the old bounded-leakage
model of [AGV09]. Namely, security w.r.t. to our definitions imply, as a special case, security w.r.t.
bounded leakage.

Definition 3.1 (point-wise λ-leakage). Let E = (G,V) be a public key primitive. A possibly
randomized leakage function leak is λ-leaky at point (pk, y), where pk is a public key and y is a
leakage value (in the image of leak), if

H∞(Spk,y) ≥ H∞(Spk)− λ ,

where Spk is the distribution of secret keys conditioned on the public key being pk, and Spk,y is the
distribution of secret keys conditioned on both the public key being pk and on leak(pk, sk) = y.

Definition 3.2 (point-wise λ-leakage resilience). A public-key primitive E = (G,V) is point-wise
λ-leakage-resilient if for any ppt adversary A = (leakA, breakA) it holds that

AdvE,λ[A] , Pr [(leakA is λ-leaky at (pk, y)) ∧ (A(pk, y) succeeds)] = negl(k) ,

where the probability is taken over (sk, pk)← G(1k), over the random coin tosses of A = (leakA, breakA),
and over the random coin tosses of the verifier in the verification game.

In order to obtain our direct product theorems for leakage resilience, we relax the point-wise
leakage resilience definition in two (incomparable) ways.

8

3.1 First Relaxation: Almost Leakage Resilience

In this relaxation, instead of requiring that sk has high min-entropy conditioned on pk and y =
leak(pk, sk), we require that the distribution of sk (conditioned on pk, y) is statistically close to one
that has high min-entropy.

Definition 3.3 (close to λ-leaky). A leakage function leak is µ-close to λ-leaky at point (pk, y) if
there exists a distribution S̃pk,y that is µ-close to Spk,y and

H∞(S̃pk,y) ≥ H∞(Spk)− λ .

Definition 3.4 (resilience to almost λ-leakage). E = (G,V) is point-wise almost λ-leakage-resilient
if for any ppt adversary A = (leakA, breakA) and for any negligible function µ, it holds that

AdvE,λ,µ[A] , Pr [(leakA is µ-close to λ-leaky at (pk, y)) ∧ (A(pk, y) succeeds)] = negl(k) .

where the probability is taken over (sk, pk)← G(1k), over the random coin tosses of A = (leakA, breakA),
and over the random coin tosses of the verifier in the verification game.

Under this definition we obtain a direct-product theorem for constant number of repetitions.

3.2 Second Relaxation: Leakage Resilience with Advice

To obtain a direct-product theorem for a super-constant number of repetitions, we use a slightly
different (and incomparable) model, where we do not allow statistical closeness, but rather allow
the attacker to get a logarithmic number of bits of (possibly inefficient) advice.

Definition 3.5 (ppt-a). We say that a function f is ppt-a computable if the function f-a, defined
below, is ppt computable. The function f-a is identical to f , except that the last a bits of its output
are truncated.

We say that an adversary A = (leakA, breakA) is a ppt-a adversary if leakA is ppt-a computable
and breakA is ppt computable.

Definition 3.6 (point-wise λ-leakage with advice). A public-key primitive E = (G,V) is resilient
to point-wise λ-leakage and logarithmic advice if for any ppt-O(log k) adversary A = (leakA, breakA)
it holds that

AdvE,λ[A] , Pr [(leakA is λ-leaky at (pk, y)) ∧ (A(pk, y) succeeds)] = negl(k) ,

where the probability is taken over (sk, pk)← G(1k), over the random coin tosses of A = (leakA, breakA),
and over the random coin tosses of the verifier in the verification game.

3.3 Relation to Bounded Leakage

To conclude, we prove that point-wise λ-leakage resilience implies the basic form of λ-bounded
leakage.

Definition 3.7 ([AGV09]). A public-key primitive E = (G,V) is λ-bounded leakage resilient if any
ppt adversary A = (leakA, breakA) for which the output of leakA is at most λ bits, succeeds with
negligible probability.

9

Lemma 3.1. If E = (G,V) is point-wise λ-leakage resilient then it is also λ-bounded leakage
resilient.

We note that point-wise almost λ-leakage resilience, and λ-leakage resilience with logarithmic
advice, are stronger notions of security (they give the adversary more power) and thus the above
immediately applies to these notions as well.

Since this is not the main focus of this work, we only sketch the proof in Appendix B.

4 Why Known Schemes are Point-Wise Leakage Resilient

In this section, we show that leakage resilience is amplified by parallel repetition for, essentially,
all known schemes that are resilient to non-trivial (i.e. super-logarithmic) leakage. To show this,
we sketch a proof template that is shared among all (non trivial) leakage resilient results, and we
show that this proof template proves security also w.r.t. our leakage models (the point-wise almost
λ-leakage model, and the point-wise λ-leakage with logarithmic advice model).

The Proof Template. The proof template for proving leakage resilience is very simple, and
works in two hybrid steps. Recall that the adversary first gets a pair (pk, y = L(pk, sk)), where L
is a poly-size leakage function chosen by A. Then it chooses messages m0,m1 and gets a challenge
ciphertext cb ← Encpk(mb). The adversary wins if it guesses the bit b correctly.

The first step in the template is to replace the challenge cb with an “illegally” generated cipher-

text c∗b , such that (sk, pk, cb)
c
≈ (sk, pk, c∗b) (and it is efficient to generate c∗b given sk, pk, b). Due to

computational indistinguishability, the adversary’s success probability should remain unchanged.
We note that there is no entropy involved in this part, only a requirement that L is efficiently
computable.

The second step is completely information theoretic: It is proven that if the distribution of
the secret key conditioned on pk, y, which we denote by Spk,y, has sufficient min-entropy, then c∗b
carries no information on b (or, more precisely, that conditioned on the view of the adversary, b
is statistically close to uniform). Therefore, no adversary can guess its value with non-negligible
advantage.

Point-Wise Leakage Resilience. The above proof template also proves point-wise leakage re-
silience. The second step of the hybrid works in a point-wise manner and therefore we only need to
worry about the first step. In the first step, clearly computational indistinguishability still holds,
but proving that the point-wise advantage remains unchanged is a bit harder, since we cannot
efficiently check the point-wise advantage. Nevertheless, we argue that if the advantage of A is
non-negligible, then it drops by a factor of at most two. Such a claim is sufficient for the next level
of the template.

To see why this is the case, consider an adversary A that has non-negligible point-wise advan-
tage ε when given (pk, y, cb), but less than ε/2 when given (pk, y, c∗b). Recall that the advantage
measures the probability of both A succeeding (in the verification game) and pk, y being point-wise
λ-leaky. It follows that with non-negligible probability over pk, y, the conditional success probabil-
ity of A, conditioned on pk, y, drops by at least ε/4 (otherwise the advantage, which measures over
a subset of the pk, y, couldn’t have dropped).

10

A distinguisher B(sk, pk, cb/c
∗
b) is defined as follows: First, compute the leakage y:=L(sk, pk).

Then generate many samples of cb/c
∗
b and use them to evaluate the success probability of A condi-

tioned on pk, y in the two cases. If indeed pk, y are such that the success probability drops, use A
to distinguish between the two cases. If no noticeable change in the success probability was noticed,
then output a random guess. Putting it all together, we get a polynomial distinguisher between
(pk, y, cb) and (pk, y, c∗b), in contradiction to the hardness assumption.

We note that this is true even if y is not fully known to the distinguisher: say O(log k) bits of
y are not known, the distinguisher can still try all options and check if for either one the success
probability changes by ε/4.

Our Relaxed Models of Point-Wise Leakage Resilience. Our first relaxation, of allowing
the secret key to be statistically close to λ-leakage resilient, only effects the second step of the
template. We can still argue that b is statistically close to uniform by adding another hybrid where
the conditional distribution Spk,y is replaced with a statistically indistinguishable S̃pk,y that has
high min-entropy.

Our second relaxation, of allowing logarithmic advice, goes into the first step (this is the only
step where we care about the complexity of L). As we explained above, our argument works even
if a logarithmic part of the leakage value is not known. Therefore we will use only the efficient part
of the leakage function and computational indistinguishability will still hold.

Computationally Indistinguishable Schemes. For some schemes, such as [AGV09, LW10],
leakage resilient is proven by showing that they are computationally indistinguishable from another
scheme which, in turn, is proven leakage resilient using the template. We show in Section 7 that
this still implies that parallel repetition amplifies leakage.

5 Direct-Product Theorem for a Constant Number of Repetitions

In this section, we prove a direct-product theorem for a constant number of repetitions, w.r.t.
point-wise almost leakage-resilience as defined in Section 3.1.

Theorem 5.1. Let c ∈ N be a constant, and for every i ∈ [c], let Ei = (Gi, Vi) be a point-wise almost
λi-leakage-resilient public-key primitive. Then, E1× . . .×Ec is point-wise almost λ-leakage-resilient,
where λ =

∑c
i=1(λi − 1).

It suffices to prove this theorem for c = 2, and apply it successively. In order to simplify
notation, we prove it for the case of parallel repetition, where E1 = E2, the proof extends readily to
the case of direct product.

Lemma 5.2. Let E = (G,V) be a point-wise almost λ-leakage-resilient public-key primitive. Then
E2 is point-wise almost (2λ− 1)-leakage-resilient.

Before we present the outline of the proof, let us make a few remarks.

1. Note that there is a loss of one bit in the amplification. Namely, we go from λ to (2λ − 1)
instead of just 2λ. While some loss in the parameters is implied by our techniques, more
detailed analysis can show that the composed scheme is in fact (2λ− δ)-leakage resilient for
any δ(k) = 1/poly(k). Thus the loss incurred is less than a single bit. As our result is
qualitative in nature, we chose not to overload with the additional complication.

11

2. While at first glance one could imagine that Theorem 5.1 should extend beyond constant c,
we were unable to prove such an argument. The reason is that super-constant repetition gives
a different scheme for each value of the security parameter. This means that we cannot use
Theorem 5.1 as black-box. More importantly, our proof techniques rely on the asymptotic
behavior of the scheme so we were not able to even change the proof to apply for a super-
constant number of repetitions.

A result for the more general case of any polynomial number of repetitions is presented, in
the slightly different and incomparable “advice” model, in Section 6.

Finally, we remark that known negative results for security of parallel repetition are already
effective for a constant number of repetitions. Thus our result contrasts them even for this
case.

Proof overview of Lemma 5.2. We consider an adversary B that succeeds in the parallel
repetition game, and construct an adversary A that succeeds in the single instance game. The
straightforward proof strategy would be to “plant” the “real” key pair, that is given as input to A,
as one of the key pairs that are input to B, and sample the other pair uniformly.4 In such case,
the input to B is distributed identically to the parallel repetition case and indeed B will succeed
with noticeable probability. However, we may no longer be able to claim that our leakage leaves
sufficient entropy in the secret key. We are guaranteed by the functionality of B that the key pair
(sk1, sk2) is left with sufficient min-entropy but it is still possible that neither sk1 nor sk2 have any
min-entropy by themselves.

To solve the above we use Lemma A.1, which essentially says how to split-up the joint entropy of
two random variables. Specifically it says that either sk1 or sk2|sk1 will have sufficient min-entropy,
depending on whether sk1 belongs to a hard-to-recognize set R, and conditioned on the knowledge
of whether sk1 ∈ R. Namely, either sk1|1sk1∈R or sk2|(sk1,1sk1∈R) have high min-entropy. If we
could compute the bit 1sk1∈R, we would have been done (and indeed if we are allowed one bit of
inefficient leakage, an easier proof follows, see Section 6). Since this is impossible, we turn to case
analysis:

Obviously, if Pr[sk1 ∈ R] = negl(k), then we can always guess that 1sk1∈R = 0 and be right
almost always. This implies that in such case sk2|sk1 is statistically indistinguishable from having
high min-entropy, as we wanted.

For the second case, if Pr[sk1 ∈ R] ≥ 1/poly(k), then sk2|(sk1,1sk1∈R) will have high min-
entropy for a noticeable part of the time. To complete the analysis here, we notice that

H∞(sk2|(sk1,1sk1∈R)) = H∞(sk2|sk1).

This is because R is a well defined set and thus 1sk1∈R is a deterministic (though hard to compute)
function of sk1. It follows that sk2|sk1 will have high min-entropy for a noticeable fraction of the
time, which completes the proof.

For the formal proof, see Appendix C.

4We note that even this step is impossible when relying on “secretly generated” public parameters as in the
scheme presented in [LW10] (or rather, the scheme that is computationally indistinguishable to theirs and actually
has entropic leakage resilient).

12

6 Direct-Product Theorem for Polynomially Many Repetitions

In this section we present a direct product theorem that applies to any polynomial number of
repetitions. This theorem is relative to the advice model defined in Section 3.2. For the sake
of simplicity, we will assume that the number of repetitions is a power of 2, although the same
techniques can be used for any number.

Theorem 6.1. Let E = (G,V) be a public-key primitive that is resilient to point-wise λ-leakage and
logarithmic advice. Let t = t(k) be a polynomially bounded function of the security parameter such
that t(k) is always a power of 2. Then E t is resilient to point-wise t(λ− 1)-leakage and logarithmic
adivce.

Towards proving the theorem, we present the following lemma, which is a parameterized special
case of the above theorem, and will imply the theorem by successive applications.

Lemma 6.2. For any public-key primitive E = (G,V) and any ppt-a adversary B = (leakB, breakB)
for E2, there exists a ppt-(a+1) adversary A = (leakA, breakA) for E, such that for all k,

AdvE,λ[A] ≥ (1/4) ·AdvE2,(2λ−1)[B] . (1)

In what follows, we prove the theorem given the lemma. The proof of the lemma appears in
Appendix D.

Proof of Theorem 6.1. Let B0 be a ppt-a adversary for E t. Then by Lemma 6.2, there exists a
ppt-(a+1) adversary A for E t/2, that satisfies Equation (1). We denote this adversary by

B1 , A(B0, E t/2).

More generally, we consider a series of adversaries B1, . . . ,Blog t, defined by

Bi , A(Bi−1, E t·2
−i

) .

Lemma 6.2 implies that Blog t is a ppt-(a+log t) adversary and that

AdvE,λ[Blog t] ≥ (1/t2) ·AdvEt,t(λ−1)[B0] ,

and the theorem follows.

7 Leakage from Computationally Indistinguishable Schemes

Our definition of point-wise leakage resilience is based on the residual min-entropy of the secret
key, conditioned on the leakage value. In the literature, starting with [NS09], this is referred to as
“resilience to noisy leakage”. It is self evident that schemes where the public key is an injective
function of the secret key cannot be proven leakage resilient in this respect. This is because even
leaking the secret key in its entirety, which obviously breaks security, does not reduce its min entropy
conditioned on the public key (the conditional min-entropy is 0 to begin with, and it stays 0 after
the leakage). We do know, however, of such injective public-key encryption schemes that are proven
to be leakage resilient with respect to the weaker notion of “length bounded leakage”. There, the

13

restriction on the leakage function is that it has bounded length. Notable examples are the scheme
of [AGV09] and the scheme of [LW10] (which was introduced as a counterexample for parallel
repetition of length-bounded leakage resilience, see Section 1.2). While at first glance it may seem
that our result is completely powerless with regards to such schemes, we show in this section that
for all known schemes, and specifically for the schemes of [AGV09, LW10], our theorem in fact does
imply parallel repetition.

The key observation upon revisiting the proofs of security of [AGV09, LW10], is that in both
cases, the proof is by presenting a second scheme in which the key distribution is computationally
indistinguishable from the original scheme (but may have undesired features such as worse efficiency
of key generation), and proving that this second scheme is resilient to leakage of bounded length.
This implies that the original scheme is resilient to bounded leakage as well (since otherwise one
can distinguish the key generation processes). The second scheme, in these two cases, is in fact
resilient to noisy leakage. Furthermore, the second scheme in the two cases adheres to our notion
of point-wise leakage resilience.

In light of the above, we put forth the following corollary of Theorems 5.1 and 6.1.

Corollary 7.1. Let E = (G,V) be a public-key primitive, and let G′ be such that G(1k)
c
≈ G′(1k).

Then:

1. If E ′ = (G′, V) is point-wise almost λ-leakage resilient, then E t is t · (λ− 1)-bounded leakage
resilient for any constant t ∈ N.

2. If E ′ = (G′, V) is point-wise λ-leakage resilient with logarithmic advice, then E t is t · (λ− 1)-
bounded leakage resilient for any polynomial t = t(k).

Proof. The proof of the two parts is almost identical: We use either Theorem 5.1 or Theorem 6.1
to show that (E ′)t is point-wise almost t · (λ− 1)-leakage resilient, or, respectively, leakage resilient
with logarithmic advice. By Lemma 3.1, this means that (E ′)t is t·(λ−1)-bounded leakage resilient.

By a hybrid argument (G′)t(1k)
c
≈ Gt(1k).5 Therefore, it must be that E t is also t · (λ − 1)-

bounded leakage resilient (otherwise there is a distinguisher between the key generators). This
completes the proof.

Using Corollary 7.1, we can show that t-parallel repetition of the schemes of [AGV09, LW10]
indeed amplifies their leakage resilience.

References

[ADN+10] Joël Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, and Daniel Wichs.
Public-key encryption in the bounded-retrieval model. In Henri Gilbert, editor, EURO-
CRYPT, volume 6110 of Lecture Notes in Computer Science, pages 113–134. Springer,
2010.

[ADW09] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryptog-
raphy in the bounded-retrieval model. In Halevi [Hal09], pages 36–54.

5It is important to note that this will not be necessarily true if either G or G′ relies on secret parameters. This
relates to our discussion of the result of [LW10] in Section 1.2.

14

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits
and cryptography against memory attacks. In Omer Reingold, editor, TCC, volume
5444 of Lecture Notes in Computer Science, pages 474–495. Springer, 2009.

[BG10] Zvika Brakerski and Shafi Goldwasser. Circular and leakage resilient public-key en-
cryption under subgroup indistinguishability - (or: Quadratic residuosity strikes back).
In Tal Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in Computer Science,
pages 1–20. Springer, 2010.

[BS09] Zvika Brakerski and Gil Segev. Personal communication, 2009.

[BSW11] Elette Boyle, Gil Segev, and Daniel Wichs. Fully leakage-resilient signatures. In Ken-
neth G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes in Computer
Science, pages 89–108. Springer, 2011.

[DFR+07] Ivan B. Damg̊ard, Serge Fehr, Renato Renner, Louis Salvail, and Christian Schaffner.
A tight high-order entropic quantum uncertainty relation with applications. In Proceed-
ings of the 27th annual international cryptology conference on Advances in cryptology,
CRYPTO’07, pages 360–378, Berlin, Heidelberg, 2007. Springer-Verlag.

[DGK+10] Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod
Vaikuntanathan. Public-key encryption schemes with auxiliary inputs. In Miccian-
cio [Mic10], pages 361–381.

[DKL09] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with aux-
iliary input. In Michael Mitzenmacher, editor, STOC, pages 621–630. ACM, 2009.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. SIAM J. Comput.,
38(1):97–139, 2008.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In FOCS,
pages 293–302. IEEE Computer Society, 2008.

[FKPR10] Sebastian Faust, Eike Kiltz, Krzysztof Pietrzak, and Guy N. Rothblum. Leakage-
resilient signatures. In Micciancio [Mic10], pages 343–360.

[GJS11] Sanjam Garg, Abhishek Jain, and Amit Sahai. Leakage-resilient zero knowledge. In
Phillip Rogaway, editor, CRYPTO, volume 6841 of Lecture Notes in Computer Science,
pages 297–315. Springer, 2011.

[Hal09] Shai Halevi, editor. Advances in Cryptology - CRYPTO 2009, 29th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceed-
ings, volume 5677 of Lecture Notes in Computer Science. Springer, 2009.

[JP11] Abhishek Jain and Krzysztof Pietrzak. Parallel repetition for leakage resilience am-
plification revisited. In Yuval Ishai, editor, TCC, volume 6597 of Lecture Notes in
Computer Science, pages 58–69. Springer, 2011.

15

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded leakage
resilience. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of Lecture Notes in
Computer Science, pages 703–720. Springer, 2009.

[LW10] Allison B. Lewko and Brent Waters. On the insecurity of parallel repetition for leakage
resilience. In Trevisan [Tre10], pages 521–530.

[Mic10] Daniele Micciancio, editor. Theory of Cryptography, 7th Theory of Cryptography Con-
ference, TCC 2010, Zurich, Switzerland, February 9-11, 2010. Proceedings, volume
5978 of Lecture Notes in Computer Science. Springer, 2010.

[MTVY11] Tal Malkin, Isamu Teranishi, Yevgeniy Vahlis, and Moti Yung. Signatures resilient to
continual leakage on memory and computation. In Yuval Ishai, editor, TCC, volume
6597 of Lecture Notes in Computer Science, pages 89–106. Springer, 2011.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In Halevi
[Hal09], pages 18–35.

[Pie09] Krzysztof Pietrzak. A leakage-resilient mode of operation. In Antoine Joux, editor,
EUROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages 462–482.
Springer, 2009.

[Tre10] Luca Trevisan, editor. 51th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA. IEEE Computer
Society, 2010.

[Wul07] Jürg Wullschleger. Oblivious-transfer amplification. In Moni Naor, editor, EURO-
CRYPT, volume 4515 of Lecture Notes in Computer Science, pages 555–572. Springer,
2007.

A How to Split Min-Entropy

We present a lemma that shows that the joint min-entropy of two random variables can be split
between them under some condition. Variants of this lemma appeared in previous works (e.g.
[DFR+07, Wul07]), this formulation is from [BS09].

Lemma A.1 (min-entropy split). Let X,Y be such that H∞(X,Y) ≥ a + b, for a, b > 0. Then
there exists a set RX , which is a subset of the support of X such that both:

1. For all x ∈ RX , it holds that H∞(Y |X = x) ≥ b.

2. H∞(X|X 6∈ RX) ≥ a− log(1/ε), where ε , Pr[X 6∈ RX].

Proof. Define
RX , {x : Pr[X = x] ≥ 2−a} .

Then for all x ∈ RX and for all y, it holds that Pr[Y = y|X = x] ≤ 2−b, and thus H∞(Y |X = x) ≥ b.
In addition, H∞(X|X 6∈ RX) ≥ a+ log Pr[X 6∈ RX], i.e. H∞(X|X 6∈ RX) ≥ a− log(1/ε).

16

B Proof Sketch of Lemma 3.1

Let E be as above, and let B be a λ-bounded adversary for E that succeeds with probability 1/q(k)
for some polynomial q(k).

We first show that for any polynomial r(k), there exists an adversary A that is (λ− log r(k))-
bounded and succeeds with probability 1/(2q(k)). The adversary A will will have leakA be iden-
tical to leakB, except the last log r(k) bits be truncated. The breaker breakA(pk, y) will simulate
breakB(pk, y‖a) with all possible suffixes a ∈ {0, 1}log r(k). For each of the r(k) possible values of
a, it will estimate ηa , Pr[V breakB(pk,y‖a)(pk)] by simulating the verifier with fresh randomness a
polynomial number of times. It will choose a∗ to be the value with the highest ηa∗ . It will then
interface with the real verifier by simulating breakB(pk, y‖a∗). It is clear that A would achieve at
least as good performance as B if it always estimated ηa correctly. One can choose the parameters
so that the Chernoff bound implies that with probability 1/(4q) the estimation error for either
value of a is at most 1/(8q). This is sufficient to achieve the required success probability.

Once we have A, we show that its point-wise λ-leakage advantage is at least 1/2q − 1/r. To
do this, we will prove that leakA is λ-leaky with all but 1/r probability and use the union bound.
Choosing r = 4q will then finish the proof of the lemma.

We prove an even stronger version of this last claim. We will show that the above holds true
for every value of pk. From now on let us fix some value for pk. Then by conditional min-entropy
arguments [DORS08]

− logE[2−H∞(Spk,y)] ≥ H∞(Spk)− (λ− log r) ,

and therefore

E[2H∞(Spk)−H∞(Spk,y)] ≤ 2λ/r .

It follows from Markov that

Pr[2H∞(Spk)−H∞(Spk,y) ≥ 2λ] ≤ 1/r ,

or stated differently
Pr[H∞(Spk)−H∞(Spk,y) ≥ λ] ≤ 1/r ,

which shows that with all but 1/r probability, A is λ-leaky as required.

C Proof of Lemma 5.2

Suppose for the sake of contradiction that E2 is not point-wise (2λ− 1)-leakage-resilient. Namely,
suppose that there exists a ppt adversary B, a negligible function µ, and a non-negligible function ε,
such that

AdvE2,2λ−1,µ[B] = Pr [(leakB is µ-close to (2λ− 1)-leaky at (pk1, pk2, yB)) ∧ (breakB succeeds)]

= Pr
[(
∃S̃2

pk1,pk2,yB
s.t. H∞(S̃2

pk1,pk2,yB
) ≥ H∞(S2

pk1,pk2
)− (2λ− 1)

)
∧

(breakB succeeds)
]

≥ ε(k) ,

where S̃2
pk1,pk2,yB

can be any distribution that is µ-close to S2
pk1,pk2,yB

, and where the probabilities

are over (sk1, pk1), (sk2, pk2)← G(1k), and over the random coin tosses of B = (leakB, breakB).

17

The fact that ε is non-negligible implies that there exists an infinite set K ⊆ N and a polyno-
mial q such that ε(k) ≥ 1/q(k). Throughout the proof, we focus our attention on k’s in K.

Define an adversary A = (leakA, breakA) for E as follows.

• The function leakA(sk, pk) is defined as follows:

1. Sample τ
$← [2] and define (skτ , pkτ) , (sk, pk).

2. For i = 3− τ , sample (ski, pki)←G(1k).

3. Compute yB←leakB((sk1, sk2), (pk1, pk2)).

4. Output yA = (pk1, pk2, yB,1τ=2 · sk1).
Where the value 1τ=2 ·sk1 means that if τ = 2 then we output sk1 as part of our leakage,
and otherwise this part is null.6

• The function breakA(pk, yA) emulates breakB(pk1, pk2, yB) by playing the role of the verifica-
tion oracle for i 6= τ and using the actual verification oracle for i = τ .

It immediately follows that A is a ppt adversary. It remains to analyze its success probability.
By definition, for any negligible function ν,

AdvE,λ,ν [A] = Pr [(leakA is ν-close to λ-leaky at (pk, yA)) ∧ (A succeeds)] .

Let ρ denote the random tape of breakA and the random tape of the verifier in the verification
game (we emphasize that ρ does not include the random tape of leakA). Then, it holds that for
any negligible function ν,

AdvE,λ,ν [A] = Pr [(leakA is ν-close to λ-leaky at (pk, yA)) ∧ (A succeeds)] =

E
pk1,pk2,yB,ρ

[
Pr
[
(leakA is ν-close to λ-leaky at (pk, yA)) ∧ (A succeeds)

∣∣pk1, pk2, yB, ρ]] .
Note that conditioning on (pk1, pk2, yB, ρ), the latter probability is only over τ ← [2] and over
ski|pk1, pk2, yB.

We prove the following claim.

Claim C.0.1. There exists a polynomial p and a negligible function ν such that for infinitely many
k’s in K, and for all (pk1, pk2, yB, ρ) (corresponding to the security parameter k), it holds that

Pr
[
(leakA is ν-close to λ-leaky at (pk, yA)) ∧ (A succeeds)

∣∣pk1, pk2, yB, ρ] ≥
1

p(k)
· Pr

[
(leakB is µ-close to (2λ− 1)-leaky at (pk1, pk2, yB)) ∧ (B succeeds)

∣∣pk1, pk2, yB, ρ] ,
where we envision an invocation of B that runs in the same probability space as A: Namely, its
key pair is ((sk1, sk2), (pk1, pk2)), its leakage value is yB and its verification game uses the same
random tape ρ.

6Assume w.l.o.g that this null value cannot be a legal secret key and thus this serves as an indication that τ = 1.

18

Note that Claim C.0.1 completes the proof of the theorem as it implies that for infinitely
many k’s in K,

AdvE,λ,ν [A] ≥ 1

p
·AdvE2,2λ−1,µ[B] .

Proof of Claim C.0.1. Let us fix values for (pk1, pk2, yB, ρ) and keep them fixed throughout the
proof (thus omitting the conditioning in the probability brackets). Notice that conditioned on
these values,

Pr [(leakB is µ-close to (2λ− 1)-leaky at (pk1, pk2, yB)) ∧ (B succeeds)] ∈ {0, 1}.

Namely, the values (pk1, pk2, yB, ρ) completely determine whether leakB is µ-close to (2λ− 1)-leaky
and whether B succeeds. Moreover, notice that if the above probability is 0 then the claim holds
trivially (since the right-hand side is zero). Thus, we assume that for our fixed values (pk1, pk2, yB, ρ)
the above probability is 1; i.e., B succeeds and leakB is µ-close to (2λ− 1)-leaky at (pk1, pk2, yB).

Since the verification game of A simulates that of B using the same randomness, it follows that
if B succeeds in the game then so does A. Therefore all that is left to prove is that there exists a
polynomial p and a negligible function ν such that

Pr [leakA is ν-close to λ-leaky at (pk, yA)] ≥ 1

p
, (2)

for some polynomial p and negligible function ν.
The fact that leakB is µ-close to (2λ − 1)-leaky at (pk1, pk2, yB) implies that there exists a

distribution S̃2
pk1,pk2,yB

that is µ-close to S2
pk1,pk2,yB

such that

H∞(S̃2
pk1,pk2,yB

) ≥ H∞(S2
pk1,pk2

)− (2λ− 1).

The fact that
H∞(S2

pk1,pk2
) = H∞(Spk1) + H∞(Spk2),

together with the equation above, implies that

H∞(S̃2
pk1,pk2,yB

) ≥ H∞(Spk1) + H∞(Spk2)− (2λ− 1) .

Consider the distribution
(s̃k1, s̃k2)← S̃2

pk1,pk2,yB
.

By Lemma A.1 it holds that there exists a set R such that for all s1 ∈ R,

H∞(s̃k2|pk1, pk2, yB, s̃k1 = s1) ≥ H∞(Spk2)− λ , (3)

and also that if Pr[s̃k1 ∈ R] ≤ 1/2 then

H∞(s̃k1|pk1, pk2, yB, s̃k1 6∈ R) ≥ H∞(Spk1)− λ . (4)

We proceed with a case analysis, where we distinguish between the case that Pr[s̃k1 ∈ R] is
noticeable and the case that it is negligible.

19

• Case 1. There exists a polynomial p such that for infinitely many k’s in K,

Pr[s̃k1 ∈ R] ≥ 1

p(k)
.

In this case, we prove that with probability 1
6p (over the random coin tosses of leakA), leakA

is 4pµ-close to λ-leaky on (pk, yA).

To this end, assume that both τ = 2 and sk1 ∈ R. Note that this happens with probability at

least 1
2

(
1

p(k) − µ
)
≥ 1

3p(k) . This is the case, since these two events are independent, where one

which occurs with probability 1/2 and the other which occurs with probability at least 1
p(k)−µ.

(The latter follows from the fact that sk1 and s̃k1 are µ-close.) Under this assumption,

yA = (pk1, pk2, yB,1τ=2 · sk1) = (pk1, pk2, yB, sk1) .

Thus, Equation (3) implies that to prove that A is statistically close to λ-leaky at (pk, yA)
it suffices to prove that the distribution of sk2|(pk1, pk2, yB, sk1) is statistically close to the

distribution s̃k2|(pk1, pk2, yB, s̃k1 = sk1). We cannot prove this for every sk1, however we

prove that with probability at least 1
2 over s1

$← sk1|(pk1, pk2, yB), the distribution

s̃k2|(pk1, pk2, yB, s̃k1 = s1) ,

which we take to be the distribution s̃k|pk, yA, is 4pµ-close to the distribution

sk2|(pk1, pk2, yB, sk1 = s1) ,

which is identical to the distribution sk|pk, yA.

To this end, let

B ,
{
s1 ∈ R : s̃k2|(pk1, pk2, yB, s̃k1 = s1) is not 4pµ-close to sk2|(pk1, pk2, yB, sk1 = s1)

}
We next prove that

Pr [sk1 ∈ B] ≤ 1

2p
. (5)

20

This follows from the following calculation.

µ ≥1

2

∑
s1,s2

∣∣∣Pr [(sk1, sk2) = (s1, s2)]− Pr
[
(s̃k1, s̃k2) = (s1, s2)

] ∣∣∣ ≥
1

2

∑
s1∈B

∑
s2

∣∣∣Pr [(sk1, sk2) = (s1, s2)]− Pr
[
(s̃k1, s̃k2) = (s1, s2)

] ∣∣∣ =

1

2

∑
s1∈B

∑
s2

∣∣∣Pr [sk1 = s1] · Pr
[
sk2 = s2

∣∣ sk1 = s1
]
− Pr

[
s̃k1 = s1

]
· Pr

[
s̃k2 = s2

∣∣ s̃k1 = s1

] ∣∣∣ ≥
1

2

∑
s1∈B

∑
s2

∣∣∣Pr [sk1 = s1] · Pr
[
sk2 = s2

∣∣ sk1 = s1
]
− Pr [sk1 = s1] · Pr

[
s̃k2 = s2

∣∣ s̃k1 = s1

] ∣∣∣−
1

2

∑
s1∈B

∑
s2

∣∣∣Pr
[
s̃k1 = s1

]
· Pr

[
s̃k2 = s2

∣∣ s̃k1 = s1

]
− Pr [sk1 = s1] · Pr

[
s̃k2 = s2

∣∣ s̃k1 = s1

] ∣∣∣ ≥
1

2

∑
s1∈B

Pr [sk1 = s1] ·
∑
s2

∣∣∣Pr
[
sk2 = s2

∣∣ sk1 = s1
]
− Pr

[
s̃k2 = s2

∣∣ s̃k1 = s1

] ∣∣∣−
1

2

∑
s1∈B

∣∣∣Pr
[
s̃k1 = s1

]
− Pr [sk1 = s1]

∣∣∣ ·∑
s2

Pr
[
s̃k2 = s2

∣∣ s̃k1 = s1

]
≥

1

2

∑
s1∈B

Pr [sk1 = s1] ·
∑
s2

∣∣∣Pr
[
sk2 = s2

∣∣ sk1 = s1
]
− Pr

[
s̃k2 = s2

∣∣ s̃k1 = s1

] ∣∣∣− µ ≥∑
s1∈B

Pr [sk1 = s1] · 4pµ− µ.

This implies that

Pr[sk1 ∈ B] =
∑
s1∈B

Pr [sk1 = s1] ≤
2µ

4pµ
=

1

2p
,

as desired. Equation (5) implies that

Pr[sk1 ∈ B
∣∣sk1 ∈ R] =

Pr[(sk1 ∈ B) ∧ (sk1 ∈ R)]

Pr[sk1 ∈ R]
≤ p

2p
=

1

2
.

All in all, we get that with probability at least 1
6p(k) (which is the probability that τ = 2 and

sk1 ∈ R, and sk1 6∈ B), leakA is 4pµ-close to λ-leaky. Namely,

Pr [leakA is 4pµ-close to λ-leaky at (pk, yA)] ≥ 1

6p(k)
.

This completes Case 1.

• Case 2. Pr[s̃k1 ∈ R] = negl(k). This, together with the fact that sk1 and s̃k1 are statistically
indistinguishable, implies that Pr[sk1 ∈ R] = negl(k). Assume that τ = 1, which occurs with
probability 1/2. In this case,

yA = (pk1, pk2, yB,1τ=2 · sk1) = (pk1, pk2, yB, 0) .

21

The fact that Pr[s̃k1 ∈ R] = negl(k), together with Equation (4), implies that

H∞(s̃k1|pk1, pk2, yB, s̃k1 6∈ R) ≥ H∞(Spk1)− λ .

Thus, it remains to prove that s̃k1|(pk1, pk2, yB, s̃k1 6∈ R) is statistically close to sk1|(pk1, pk2, yB).

This follows from the fact that s̃k1|(pk1, pk2, yB, s̃k1 6∈ R) is statistically close to s̃k1|(pk1, pk2, yB)

(which follows from the fact that Pr[s̃k1 ∈ R] = negl(k)), and from the fact that s̃k1|(pk1, pk2, yB)
is statistically close to sk1|(pk1, pk2, yB).

Therefore, in this case, with probability 1/2 (which is the probability that τ = 1), leakA is
statistically close to being λ-leaky.

We conclude that in both cases, for infinitely many k’s in K, with probability 1/poly, leakA is
statistically close to being λ-leaky at (pk, yA), as desired. �

The proof of the claim concludes the proof of the lemma.

D Proof of Lemma 6.2

Let B = (leakB, breakB) be a ppt-a adversary for E2. We define a ppt-(a+1) adversary A =
(leakA, breakA) for E .

• The function leakA(sk, pk) is defined as follows:

1. Sample τ
$← [2] and define (skτ , pkτ) , (sk, pk).

2. For i = 3− τ , sample (ski, pki)←G(1k).

3. Compute yB←leakB((sk1, sk2), (pk1, pk2)).

4. Compute an additional inefficient “advice” bit, as follows. Consider the random variables
(X,Y) , Spk1,pk2,yB = (sk1, sk2)|(pk1, pk2, yB), and consider the set R as defined in
Lemma A.1. Our final bit is the indicator of whether sk1 ∈ R.

5. Output yA = (pk1, pk2, yB,1τ=2 · sk1,1sk1∈R).

Where the value 1τ=2 ·sk1 means that if τ = 2 then we output sk1 as part of our leakage,
and otherwise this part is null.7

• The function breakA(pk, yA) will emulate breakB(pk1, pk2, yB) by playing the role of the veri-
fication oracle for i 6= τ and using the actual verification oracle for i = τ .

It immediately follows that A is a ppt-(a+1) adversary. It remains to analyze its success prob-
ability. By definition

AdvE,λ[A] = Pr [(leakA is λ-leaky at (pk, yA)) ∧ (A succeeds)] .

Let ρ denote the random tape of breakA and the random tape of the verifier in the verification
game (we emphasize that ρ does not include the random tape of leakA). Then, it holds that

7Assume w.l.o.g that this null value cannot be a legal secret key and thus this serves as an indication that τ = 1.

22

AdvE,λ[A] = Pr [(leakA is λ-leaky at (pk, yA)) ∧ (A succeeds)] =

E
pk1,pk2,yB,ρ

[
Pr
[
(leakA is λ-leaky at (pk, yA)) ∧ (A succeeds)

∣∣pk1, pk2, yB, ρ]] .
Note that conditioning on (pk1, pk2, yB, ρ), the latter probability is only over τ ← [2] and over
ski|pk1, pk2, yB.

We will prove the following claim.

Claim D.0.2. For all (pk1, pk2, yB, ρ), it holds that

Pr
[
(leakA is λ-leaky at (pk, yA)) ∧ (A succeeds)

∣∣pk1, pk2, yB, ρ] ≥
(1/4) · Pr

[
(leakB is (2λ− 1)-leaky at (pk1, pk2, yB)) ∧ (B succeeds)

∣∣pk1, pk2, yB, ρ] ,
where we envision an invocation of B that runs in the same probability space as A: Namely, its
key pair is ((sk1, sk2), (pk1, pk2)), its leakage value is yB and its verification game uses the same
random tape ρ.

Note that Claim D.0.2 completes the proof of the theorem as it implies that

AdvE,λ[A] ≥ (1/4) ·AdvE2,(2λ−1)[B] .

Proof of Claim D.0.2. Let us fix values for (pk1, pk2, yB, ρ) and keep them fixed throughout the
proof (thus omitting the conditioning in the probability brackets). Notice that conditioned on
these values,

Pr [(leakB is (2λ− 1)-leaky at (pk1, pk2, yB)) ∧ (B succeeds)] ∈ {0, 1}.

Namely, the values (pk1, pk2, yB, ρ) completely determine whether leakB is (2λ − 1)-leaky and
whether B succeeds. Moreover, notice that if the above probability is 0 then the claim holds
trivially (since the right-hand side is zero).

We thus focus our attention on values (pk1, pk2, yB, ρ) for which the above probability is 1; i.e.,
B succeeds and leakB is (2λ− 1)-leaky at (pk1, pk2, yB).

Since the verification game of A simulates that of B using the same randomness, it follows that
if B succeeds in the game then so does A. Therefore all that is left to prove is that

Pr [leakA is λ-leaky at (pk, yA)] ≥ 1/4 . (6)

We now let (X,Y) denote the distribution S2
pk1,pk2,yB

. Since B is (2λ−1)-leaky at (pk1, pk2, yB),
it holds that

H∞(X,Y) ≥ H∞(S2
pk1,pk2

)− (2λ− 1) =
(
H∞(Spk1)− λ+ 1

)
+
(
H∞(Spk2)− λ

)
.

Using Lemma A.1, we conclude that there exists a set R such that

H∞(X|X 6∈ R) ≥ H∞(Spk1)− λ+ 1 + log Pr[X 6∈ R] , (7)

and such that for all x ∈ R
H∞(Y |X = x) ≥ H∞(Spk2)− λ . (8)

We proceed with case analysis as to whether R is such that Pr[X ∈ R] ≥ 1/2.

23

• Assume Pr[X ∈ R] ≥ 1/2. If τ = 2 and sk1 ∈ R, which are independent events, each of
probability at least 1/2, then,

yA = (pk1, pk2, yB,1τ=2 · sk1,1sk1∈R) = (pk1, pk2, yB, sk1, 1) ,

and therefore, by Eq. (8), A is λ-leaky at (pk, yA).

• Assume Pr[X ∈ R] < 1/2, then log Pr[X 6∈ R] ≥ −1. In this case, if τ = 1 and sk1 6∈ R,
which are again independent with probability 1/2, it holds that

yA = (pk1, pk2, yB,1τ=2 · sk1,1sk1∈R) = (pk1, pk2, yB, 0, 0) ,

and therefore, by Eq. (7), A is λ-leaky at (pk, yA).

We conclude that in both cases, A is λ-leaky at (pk, yA) with probability at least 1/4. �

The proof of the claim concludes the proof of the lemma.

E Public-Key Encryption as Public-Key Primitive

We show that public-key encryption can be stated in terms of public-key primitives, defined in
Section 2.1. The basic idea is that an adversary that succeeds with 1/2 + 1/poly(k) probability in
the CPA game, will succeed, given a large enough number of challenges q, on at least 1/2+1/poly(k)
fraction of them almost always. However, if the scheme is CPA secure then no adversary can
succeed on a long enough sequence of inputs beyond beyond the standard deviation. Translating
this intuition to an actual game turned out to be more complicated than apparent at first glance.

E.1 Definition and CPA-Security

A public-key encryption scheme is a tuple of ppt algorithms (Gen,Enc,Dec) such that

• Gen(1k) is the key generation algorithm that takes the security parameter as input, and
outputs a key pair (sk, pk).

• Enc(pk,m) is the encryption algorithm that takes as input the public key pk and a message m
taken from a set M which is the message space of the scheme. It outputs a ciphertext c.

• Dec(sk, c) is the decryption algorithm that takes the secret key sk and a ciphertext c, and
outputs a message m′ ∈M .

The correctness requirement is that for all m ∈M it holds that

Pr [Dec(sk,Enc(pk,m)) 6= m] = negl(k),

where the probability is over the key generation and the randomness of Enc,Dec.

Definition E.1 (CPA-security). Let (Gen,Enc,Dec) be a public-key encryption scheme and let A be
some adversary. We define the CPA-experiment conducted between a challenger and the adversary A
as follows:

24

1. The challenger draws (sk, pk)←Gen(1k) and sends pk to A.

2. A chooses two messages of equal length m0,m1 ∈M and sends them to the challenger.

3. The challenger samples a random bit b
$← {0, 1} and sends cb:=Enc(pk,mb) to A.

4. A decides on a “guess” b∗ ∈ {0, 1} and sends it to the challenger.

The scheme is CPA-secure if for any polynomial time A it holds that

Pr[b = b∗] ≤ 1/2 + negl(k) ,

where the probability is over all the randomness in the experiment.

We note that the CPA experiment can be conducted even when the challenger has no knowledge
of sk (one can think of pk as a common input to the challenger and to A).

E.2 Public-Key Primitive

Let (Gen,Enc,Dec) be a public key encryption scheme, and consider the following public-key prim-
itive E = (G,V):

• The key generator G is identical to Gen. Namely, G(1k) runs (sk, pk)←Gen(1k) and outputs
(sk, pk).

• The verifier V , given a public key pk runs as follows. Recall that V is conducting a verification
game with its oracle O(pk), who knows the public key pk.

1. O sends two messages m0,m1 ∈M , and a unary value 1q to V .

2. V asks O to answer 128 · q3 · k challenges as follows. For all i ∈ [`], where ` = 128 · q2 · k,

and for all j ∈ [q], V samples a bit bi,j
$← {0, 1} and computes ci,j←Enc(pk,mbi,j). It

sends {ci,j}(i,j)∈[`]×[q] to O.

3. The oracle O returns a sequence of bits {b∗i,j}(i,j)∈[`]×[q].
4. For all i ∈ [`], we let Wi be an indicator variable for the event where for strictly more

than q/2 values of j, it holds that b∗i,j = bi,j . Note that Wi can be efficiently computed
by V for all i.

5. After computing all values W1, . . . ,W`, the verifier outputs 1 if and only if all of them
are true. Namely if

∧
i∈[`]Wi.

We note that for any polynomial time oracle, the above experiment runs in polynomial time,
simply because q cannot be more than O’s running time.

We now argue that E is a secure public-key primitive if and only if (Gen,Enc,Dec) is CPA-secure.

Lemma E.1. If E = (G,V) is a secure public-key primitive then (Gen,Enc,Dec) is CPA-secure.

25

Proof. Assume towards contradiction that there exists a (non-uniform) probabilistic polynomial
time adversary A such that Pr[b∗ = b] ≥ 1/2 + ε, where ε = ε(k) is non-negligible. We assume
without loss of generality that A is deterministic. We can assume this by simply fixing the “best”
randomness for A.

We define an adversary B, that uses A to break the security of the game of E , as follows.

1. Upon receiving pk, B sends pk to A and gets back messages m0,m1, which are forwarded to
the verifier V . B sets q←O(k/ε2) (see the analysis for the exact value of q), and sends 1q

to V .

2. For any ci,j throughout the different phases of the attack, B does the same: It computes b∗i,j
as A’s response to the ciphertext ci,j . Note that B rewinds A to the point in its execution
that is right before receiving the challenge ciphertext.

To analyze the performance of B we first note that with probability at least ε/2 over pk, it holds
that

Pr[b∗ = b|pk] ≥ 1/2 + ε/2.

Conditioned on this event, it holds by the Chernoff bound that taking O(k/ε2) samples, the proba-
bility that the number of successes deviates by more than ε/2 from the expectation is at most 2−k.
We set q to be this value.

[
Yael’s note: I would add in a footnote the precise Chernoff bound

that we are using.
]

Applying the union bound over all ` executions of the basic procedure, we have that B wins in
the breaking game with probability at least ε

2 · (1− ` · 2
−k) which is non-negligible.

Lemma E.2. If (Gen,Enc,Dec) is CPA-secure then E = (G,V) is a secure public-key primitive.

Proof. Assume towards contradiction that there exists a (non-uniform) probabilistic polynomial
time adversary A that breaks E with probability ε, where ε = ε(k) is non-negligible. As in the
proof of Lemma E.1 we assume without loss of generality that A is deterministic. We define an
adversary B for the CPA game as follows. Upon receiving pk, B simulates A to obtain m0,m1 and
1q and forwards m0,m1 to the challenger.

In addition, B tests the conditional success probability of A given pk and the random tape ρ
of A. Namely, B computes a binary variable S (that corresponds to a probabilistic event) such
that both Pr[S] ≥ ε/4 and Pr[A succeeds|S] ≥ ε/2. Essentially, S is computed by simulating the
verification game many times and estimating the success probability up to (say) ε/10 accuracy with
exponentially low estimation error. The variable S denotes the event where the estimated success
probability is more than (say) 2ε/3. The first property follows since A succeeds with probability
2ε/3 with probability at least ε/3 over the values of pk, ρ. The second property follows from the
estimation accuracy. We omit further details but emphasize that S depends only on pk, ρ.

If the event S does not happen, then B outputs a random guess b∗
$← {0, 1} regardless of the

challenge it receives. From this point and on, we describe the case where S indeed occurs.

Upon receiving a challenge ciphertext c from the challenger, B randomly samples i∗
$← [`] and

j∗
$← [q]. It then simulates the entire breaking game of A, playing the role of the verifier V , and

setting ci∗,j∗ :=c (all other ci,j are generated appropriately according to the breaking game).
After the breaking game is complete, B can compute Wi for all i 6= i∗. It proceeds by computing

W ∗ ,
∧
i<i∗Wi, and outputting b∗:=b∗i∗,j∗ if W ∗ holds, and a random value b∗

$← {0, 1} otherwise.

26

To analyze the performance of B, we first notice that with probability at least ε/2 over pk, the
success probability of A is at least ε/2. Let us condition on this case, bearing in mind that it is
correctly identified by B with all but 2−k probability.

A successful break of A means that the event
∧
i∈[`]Wi indeed occurs. Therefore in our case

ε/2 ≤ Pr

∧
i∈[`]

Wi

 =
∏
i∈[`]

Pr

[
Wi

∣∣∣ ∧
h<i

Wh

]
,

where the probability is only over the generation of the ciphertexts ci,j (all other randomness has
been fixed).

Denoting δi , Pr[Wi

∣∣∧
h<iWh], we have that ε/2 ≤

∏
i∈[`] δi. We claim that this implies that

most δi’s are in fact very close to 1.

Claim E.2.1. Let ε/2 ≤
∏
i∈[`] δi, where ε, δ1, . . . , δ` ∈ [0, 1]. Then for all t ≥ 2, it holds that

Pr
i
$←[`]

[δi < 1− 1/t] < 2t · ln(4/ε)/` .

Proof. Let I be the set of i’s such that δi is larger than the threshold and assume towards contra-
diction that |I| ≥ 2t ln(4/ε). Then it holds that∏

i∈[`]

δi ≤
∏
i∈I

δi < (1− 1/t)|I| ≤ e−|I|/(2t) ≤ ε/4 ,

in contradiction to ε/2 ≤
∏
i∈[`] δi. �

We proceed in the analysis of the success probability of B (recall that we are still conditioned
on pk):

Pr[b∗ = b] = Pr

[
¬
∧
i<i∗

Wi

]
· 1

2
+ Pr

[
bi∗,j∗ = b∗i∗,j∗

∣∣ ∧
i<i∗

Wi

]
· Pr

[∧
i<i∗

Wi

]

=
1

2
+ Pr

[∧
i<i∗

Wi

]
·

(
Pr

[
bi∗,j∗ = b∗i∗,j∗

∣∣ ∧
i<i∗

Wi

]
− 1

2

)
.

In addition

Pr

[
bi∗,j∗ = b∗i∗,j∗

∣∣ ∧
i<i∗

Wi

]
≥ Pr

[
bi∗,j∗ = b∗i∗,j∗

∣∣Wi∗ ,
∧
i<i∗

Wi

]
− Pr[¬Wi∗

∣∣ ∧
i<i∗

Wi]

≥ 1

2
+ 1/(2q)− E

i∗
$←[`]

[1− δi∗]

≥ 1

2
+ 1/(2q)− 2t ln(4/ε)

`
− 1/t ,

for all t ≥ 2. Where the last equation follows from Claim E.2.1. Taking t = 8q, we get that
2t ln(4/ε)

` = ln(4/ε)
8q·k ≤ 1/(8q) as well (since ln(4/ε) = O(log k) ≤ k), and therefore

Pr

[
bi∗,j∗ = b∗i∗,j∗

∣∣ ∧
i<i∗

Wi

]
≥ 1

2
+ 1/(2q)− 1/(8q)− 1/(8q) =

1

2
+ 1/(4q) .

27

Plugging into the above equation, this implies that

Pr[b∗ = b] =
1

2
+ Pr

[∧
i<i∗

Wi

]
· 1

4q
≥ 1

2
+

ε

8q
,

since Pr
[∧

i<i∗Wi

]
≥ Pr

[∧
i∈[`]Wi

]
≥ ε/2.

Finally, we compute the total success probability of B in the CPA experiment. Recalling the
Pr[S] ≥ ε/4, we have that

Pr[b = b∗] = Pr[¬S] · 1

2
+ Pr[S] · Pr[b = b∗|S]

=
1

2
+ Pr[S] ·

(
Pr[b = b∗|S]− 1

2

)
≥ 1

2
+ Pr[S] · ε

8q

≥ 1

2
+

ε2

32q
.

Since q is bounded by the absolute running time of A, it holds that ε2

32q is non-negligible and the
result follows.

28

