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Abstract—In this letter we report on an ultra-efficient key re-
covery attack under the chosen-plaintext-attack model against the
stream cipher A2U2, which is the most lightweight cryptographic
primitive (i.e., it costs only 284 GE in hardware implementation)
proposed so far for low-cost Radio Frequency Identification
(RFID) tags. Our attack can fully recover the secret key of the
A2U2 cipher by only querying the A2U2 encryption twice on
the victim tag and solving 32 sparse systems of linear equations
(where each system has 56 unknowns and around 28 unknowns
can be directly obtained without computation) in the worst case,
which takes around 0.16 second on a Thinkpad T410 laptop.

Index Terms—Stream Cipher, Key Recovery, RFID

I. INTRODUCTION

Radio Frequency Identification (RFID), which enables au-
tomatic remote identification of objects, is one of the most
promising technologies in the field of ubiquitous comput-
ing. Although RFID technology provides many attractive and
exclusive characteristics, the constrained computational and
storage capabilities as well as the extremely low manufacture
cost of RFID tags have posed a new challenge that goes
beyond the traditional cipher design paradigm and stimulates
the brand-new design of lightweight stream/block ciphers.
Typical examples include PRESENT [1], KATAN/KTANTAN
[3], Hummingbird [7], PRINT [9], Grain [8] and WG-7
[10]. Among them, PRESENT and KATAN/KTANTAN are
the most promising ones because of their compact hardware
implementation1, satisfactory throughput and widely-accepted
security (after extensive cryptanalysis).

More recently, David et al. [5] proposed a stream cipher
called A2U2, which is the most lightweight cipher proposed
so far, in terms of its hardware footprint of 284 GE. Besides
its compactness, the throughput of A2U2 is approximately
five times greater than that of PRESENT, KTANTAN32 and
PRINT. The security analysis of the A2U2 shows: (1) The
output sequence of the A2U2 can pass the NIST’s statistical
tests for pseudorandom number generators; (2) The period and
the linear complexity of the output sequence are around 270;
(3) Particular attacks are thwarted since variable number of
clock cycles used for the initialization ensures that the cipher
outputs different ciphertexts for identical plaintexts.

In this letter, we address the security of the lightweight
stream cipher A2U2. Our cryptanalytic results show that the
A2U2 is insecure under a simple chosen-plaintext attack,
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1PRESENT and KTANTAN32 cost 1075 GE and 462 GE in hardware
implementation, respectively.

which enables the full key recovery of the A2U2 through
executing two encryptions with particular plaintexts of 653
bits and solving 32 sparse systems of linear equations (where
each system has 56 unknowns and around 28 unknowns can
be directly obtained without computation) with around 0.16
second on a Thinkpad T410 laptop.

II. A2U2: A LIGHTWEIGHT STREAM CIPHER FOR RFID
TAGS

A. A Short Description of A2U2
As illustrated in Fig. 1, the stream cipher A2U2 is composed

of four building blocks: a 7-stage linear feedback shift register
(LFSR), a combination of two nonlinear feedback shift reg-
isters (NFLRs), a key schedule module, and a filter function.
In the following description, we use + to denote an XOR
operation, � an NAND operation, and · an AND operation.
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Fig. 1. The Architecture of the Stream Cipher A2U2

After a 61-bit secret key (k0, ..., k60) is burnt into an RFID
tag, the tag is capable of encrypting plaintext bits pδ, . . . , pn
to the corresponding ciphertext bits cδ, . . . , cn, where δ is the
number of clock cycles required to initialize the internal state
of the A2U2 and is determined by the following procedure:

1) The RFID reader and the tag generate and exchange two
32-bit random numbers RNDR = (a0, . . . , a31) ∈ F32

2

and RNDT = (b0, . . . , b31) ∈ F32
2 , respectively;

2) The value (RNDR + RNDT ) is then loaded into the
LFSR and two NFSRs of the A2U2 cipher;

3) Both the LFSR and two NFSRs run δ clock cycles for
initialization without any output until the state of the
LFSR reaches all ones. From the next clock cycle, the
stream cipher A2U2 outputs the ciphertext bits.
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To demonstrate our attack we further detail the building
blocks of the stream cipher A2U2 below.

The LFSR: The LFSR has seven stages denoted by a binary
vector (ti+6, . . . , ti) ∈ F7

2, i = 0, . . . , n. Moreover, the
following recursive relation holds:

ti+7 = ti + ti+4, for i = 0, . . . , n.

Note that the generated sequence is an m-sequence [6] with
the maximum period 27 − 1 = 127. In the above Step 2,
((a0, . . . , a4) + (b0, . . . , b4) + (k56, . . . , k60)) is loaded into
(t4, . . . , t0) of the LFSR, while leaving t5 to be a constant
one and t6 to be a constant zero.

The Two NFSRs: This block borrows part of the design from
the lightweight block cipher KATAN/KTANTAN [3]. For i =
0, . . . , n, the feedback functions can be represented as follows:

si+8 = li + li+2 � li+3 + li+5 + li+7 � ti+6

+li+10 � li+11 � li+12 + li+13 � li+15,

li+16 = si + si+1 � si+2 + si+3 + si+6 + ski, (1)

where ski is the subkey bit generated by the key schedule.

The Key Schedule: This module derives a sequence of
subkeys (sk0, . . . , skn) from a portion of the secret key
(k0, ..., k55), where ski is used by the NFSR during the i-
th clock cycle and is computed as follows:

ski = mux(kmod(5i,56), kmod(5i+1,56), ti+1)�
mux(kmod(5i+4,56), li+14, ti+5) +

mux(kmod(5i+2,56), kmod(5i+3,56), ti+3), (2)

where mod(x, y) returns x modulo y provided that x, y
are non-negative integers and mux() is a multiplexer such
that, given x, y, z ∈ {0, 1}, mux(x, y, z) = x iff z = 0 or
mux(x, y, z) = y iff z = 1.

The Filter Function: The filter function is essentially a
variant of the shrinking generator [4], which replaces the
XOR operation of keystream bits and plaintext bits in a
classical stream cipher. Regardless of its multiplexer-based
implementation, the filter function can be simply written as
(see Eq. (6) in [5]):

Case I: ci =
{
si+8 + ti, if li+16 = 0,
si+8 + pi, if li+16 = 1, for i = δ, . . . , n,

(3)
where pi is the plaintext bit fed into the A2U2 cipher during
the i-th clock cycle, and ci is the corresponding ciphertext bit.
Let us denote the above expression of ci as “Case I of ci”.

It is worthy to point out that we were recently informed
by Mohamed Ahmed Abdelraheem, Julia Borghoff and Erik
Zenner that the initial intention of the authors of [5] is in fact to
construct a multiplexer (as shown below) behaving like a stop-
and-go sequence generator [2], which is different from the
descriptions of A2U2 in [5]. Let us call the below expression
of ci as “Case II of ci”. Nevertheless, as shown later, our

attack is applicable to both designs.

Case II: ci =
{
si+8 + ti, if li+16 = 0,
si+8 + pf(i), if li+16 = 1, for i = δ, . . . , n̂

(4)
where f(i) = δ +

∑i+16
j=δ+16 lj , δ ≤ i ≤ n, f(δ) = δ and n̂

equals the sum of n and the number of inserted bits from the
m-sequence.

III. A LIGHTWEIGHT KEY RECOVER ATTACK

A. Attacker Model

We consider the classical chosen-plaintext attack against
the stream cipher A2U2 that is implemented on an RFID
tag with a fixed and high-entropy 61-bit secret key burnt
inside. An attacker, equipped with a programmable RFID
reader, queries the victim tag with a particular random number
RNDR and plaintext bits pδ, ..., pn. The attacker’s goal is to
recover the secret key (k0, ..., k60). Note that in our attack,
the reader, manipulated by the attacker, can always adaptively
choose RNDR to make (RNDR +RNDT ) a constant, e.g.,
RNDR +RNDT = 0.

B. Step 1: Recover Sequences of si+8 And li+16

A cryptographic primitive is only as strong as its weakest
module, which is the general principle to break a cryptosystem.
We noticed that the filter function in the A2U2 is quite weak,
which enables an attacker to easily recover the internal state
of the NFSRs by the following steps.

1) At the δ-th clock cycle, the LFSR reaches the all-one
state and the A2U2 starts the ciphertext output. As a
result, the attacker knows the sequence (tδ, tδ+1, ..., tn),
which is just a repetition of the m-sequence with period
127 as shown in Table I.

TABLE I
ONE PERIOD OF (tδ, tδ+1, ..., tn)

1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0,
0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0,
1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0,
0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0,
1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0.

2) Case I of ci: The attacker first chooses the plaintext bits

(pδ, . . . , pn) = (tδ, tδ+1, . . . , tn),

and sends them to the RFID tag for encryption. Since pi
and ti are equal for i = δ, . . . , n, Eq. (3) now becomes

ci = si+8 + ti, for i = δ, . . . , n.

Consequently, the variable li that controls the multi-
plexer is nullified and si+8 can be recovered (i.e., both
ci and ti are known to the attacker). Next, the attacker
chooses a new set of plaintext bits

(pδ, . . . , pn) = (1 + tδ, 1 + tδ+1, . . . , 1 + tn),
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and launches another encryption session with the RFID
tag. In this case, Eq. (3) becomes

ci =

{
si+8 + ti, if li+16 = 0
si+8 + ti + 1, if li+16 = 1

for i = δ, . . . , n.

Given ti, si+8 and ci, the attacker can easily distinguish
li = 0 from li = 1.
Case II of ci: The above procedure could be easily
transferred to attack ci in the second case, based on the
observation that the output ci of the multiplexer is a
linear function, i.e., either (si+8 + ti) or (si+8 + pf(i)).
To launch the attack, the attacker chooses two com-
plimentary plaintexts (pδ, . . . , pn) and (p′δ, . . . , p

′
n) for

encryption, i.e., pi+ p′i = 1, δ ≤ i ≤ n. Letting the cor-
responding ciphertexts be (cδ, . . . , cn̂) and (c′δ, . . . , c

′
n̂),

we have

ci + c′i =

{
0, if li+16 = 0,
1, if li+16 = 1, for i = δ, . . . , n̂,

which reveals the sequence {lδ+16, . . . , ln̂+16}. Conse-
quently, the sequence {sδ+8, . . . , sn̂+8} can be simply
recovered from Eq. (4) once each li+16 is known.

C. Step 2: Recover Internal States of NFSRs and Subkey ski
Given si+8 and li+16 (i ≥ δ) obtained from the Step 1, the

internal states of the two NFSRs are completely exposed to
the attacker after max(δ + 9, δ + 17) = δ + 17 clock cycles.
Next, the attacker employs the following relation derived from
Eq. (1) to recover the subkey bits ski for i = δ + 17, . . . , n,

ski = si + si+1 � si+2 + si+3 + si+6 + li+16.

We would like to point out that the attacker is already
capable of decrypting any ciphertext with the obtained subkeys
(skδ+17, . . . , skn). However, the attacker could do even better
by fully recovering the secret key as described below.

D. Step 3: Fully Recover Secret Key

Without loss of generality, we fix δ to be a specific integer
by guessing, e.g., assume δ = 88 hereafter, and first recover
the partial secret key bits k0, ..., k55. To this end, the attacker
generates (n − δ − 16) equations (see below) from Eq. (2)
as well as the internal state li of the NFSRs, and derives the
subkeys ski, when i ≥ δ + 17.

k22 · l119 + k23 = sk105 + 1 k26 · k30 + k29 = sk106 + 1

k31 · l121 + k34 = sk107 + 1 k37 · k40 + k38 = sk108 + 1

k42 · k45 + k44 = sk109 + 1 k46 · l124 + k48 = sk110 + 1

k52 · l125 + k53 = sk111 + 1 k0 · l126 + k3 = sk112 + 1

k5 · l127 + k8 = sk113 + 1 k11 · k14 + k13 = sk114 + 1

. . . . . .

Among these equations, approximately half of them are of
the type

kx · ly + kz = skw + 1, (5)

where x, y, z and w are integers. Since ly is known to the
attacker, he can select 56 such equations to form a sparse linear

system with full rank and solve it to get (k0, ..., k55). Through
extensive experiments, we found that when n = 512 + δ, the
attacker can obtain 56 linear independent equations out of 249
Eq. (5)-alike equations with probability 1, which implies that
in a practical attack scenario the attacker should query the
RFID tag with plaintexts of n = 512 + δ = 638 bits (recall
that δ ≤ 126).

To recover the rest key bits k56, . . . , k60, we make use
of the fact that δ is indeed the number of clock cycles
required to transit the LFSR’s state from (k60, . . . , k56, 1, 0)
to (1, 1, 1, 1, 1, 1, 1) or the reverse direction (here we assume
RNDR + RNDT = 0 for simplicity). In our example,
transiting the state (1, 1, 1, 1, 1, 1, 1) reversely for δ = 88
clock cycles gives us (k56, ..., k60) = (1, 0, 1, 0, 0). Due to
the uncertainty of δ, the attacker could have 32 possible keys
such that the recovered (k0, ..., k55) is a δ-bit shifted version
of the right key and (k56, ..., k60) is the state determined by δ
as listed in Table II. The attacker then utilizes the obtained one
plaintext/ciphertext pair to test all 32 key candidates locally
for retrieving the correct one.

TABLE II
DETERMINISTIC RELATION BETWEEN δ AND (k56, . . . , k60)

(k56, . . . , k60) δ (k56, . . . , k60) δ (k56, . . . , k60) δ

(0, 0, 0, 0, 0) 29 (0, 0, 0, 0, 1) 91 (0, 0, 0, 1, 0) 36
(0, 0, 0, 1, 1) 113 (0, 0, 1, 0, 0) 26 (0, 0, 1, 0, 1) 108
(0, 0, 1, 1, 0) 40 (0, 0, 1, 1, 1) 75 (0, 1, 0, 0, 0) 111
(0, 1, 0, 0, 1) 73 (0, 1, 0, 1, 0) 96 (0, 1, 0, 1, 1) 98
(0, 1, 1, 0, 0) 20 (0, 1, 1, 0, 1) 54 (0, 1, 1, 1, 0) 48
(0, 1, 1, 1, 1) 100 (1, 0, 0, 0, 0) 59 (1, 0, 0, 0, 1) 43
(1, 0, 0, 1, 0) 22 (1, 0, 0, 1, 1) 66 (1, 0, 1, 0, 0) 88
(1, 0, 1, 0, 1) 70 (1, 0, 1, 1, 0) 56 (1, 0, 1, 1, 1) 117
(1, 1, 0, 0, 0) 120 (1, 1, 0, 0, 1) 78 (1, 1, 0, 1, 0) 50
(1, 1, 0, 1, 1) 10 (1, 1, 1, 0, 0) 14 (1, 1, 1, 0, 1) 83
(1, 1, 1, 1, 0) 102 (1, 1, 1, 1, 1) 126

E. Computational Complexity of the Attack
Our attack is an ultra-efficient chosen-plaintext attack in

terms of the computational overhead. Table III summarizes
the computational complexity of the proposed attack.

TABLE III
COMPUTATIONAL COMPLEXITY OF THE PROPOSED ATTACK

Recovery Bits Computation Cost
si i = δ + 9, . . . , n one encryption of n bits
li i = δ + 17, . . . , n one encryption of n bits
ski i = δ + 17, . . . , n negligible
ki i = 0, . . . , 60 solve 32 sparse systems of linear equations

≈ 0.16 second on a Thinkpad T410

Generally speaking, solving a system of linear equations
with m variables requires O(m3) steps by the Gaussian elim-
ination. However, as observed in our experiment, the linear
system in question is quite special such that approximately 28
equations are of type

kz = skw + 1,

which immediately return the key bits. Moreover, the rest
equations can be solved with around 0.005 second on a
Thinkpad T410 laptop in our testing. In the worst case, the
attacker has to solve 32 such systems of linear equations using
around 0.16 second, which is negligible effort for the attacker.
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IV. CONCLUSION

In this letter, we identified the security vulnerabilities of
the A2U2 lightweight stream cipher and developed an ultra-
efficient chosen-plaintext attack to fully recover the secret
key of A2U2 through querying the encryption function twice
on the victim tag and solving 32 sparse systems of linear
equations with around 0.16 second. Our cryptanalysis implies
that A2U2 has been completely broken and is not eligible
to provide confidentiality and authenticity for RFID commu-
nications, which settled the concerns that are made in the
conclusion of [5].
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TAN – a family of small and efficient hardware-oriented block ciphers,
Cryptographic Hardware and Embedded Systems, CHES’09, pp. 272-
288, 2009.

[4] D. Coppersmith, H. Krawczyk and Y. Mansour, The shrinking generator,
Advances in Cryptology, Crypto’93, pp.22-39, 1994.

[5] M. David, D.C. Ranasinghe, T. Larsen, A2U2: a stream cipher for
printed electronics RFID tags, IEEE International Conference on RFID,
RFID’11, 2011.

[6] S.W. Golomb and G. Gong, Signal design with good correlation:
for wireless communications, cryptography and radar applications,
Cambridge University Press, 2005.

[7] D. Engels, X. Fan, G. Gong, H. Hu and E. M. Smith, Hummingbird:
ultra-lightweight cryptography for resource-constrained devices, 14th
International Conference on Financial Cryptography and Data Security,
FC’10, 2010.

[8] M. Hell, T. Johansson and W. Meier, Grain: a stream cipher for
constrained environments, International Journal of Wireless and Mobile
Computing, vol. 2, no. 1, pp. 86-93, 2007.

[9] L. Knudsen, G. Leander, A. Poschmann, and M. Robshaw, PRINTcipher:
a block cipher for IC-printing, Cryptographic Hardware and Embedded
Systems, CHES’10, pp. 16-32, 2011.

[10] Y. Luo, Q. Chai, G. Gong and X. Lai, WG-7, a lightweight stream cipher
with good cryptographic properties, IEEE Global Telecommunications
Conference, GLOBECOM’10, 2010.


