
Cryptanalysis of KeeLoq code-hopping using a
Single FPGA

Idan Sheetrit and Avishai Wool

Computer and Network Security Lab
School of Electrical Engineering

Tel-Aviv University, Ramat Aviv 69978, Israel
idanshee@post.tau.ac.il, yash@eng.tau.ac.il

Abstract. The KeeLoq cipher is used in many wireless car door systems
and garage openers. Recently the algorithm was studied and several at-
tacks have been published. When a random seed is not used the attack
on the system is fairly straight-forward. However when a seed is shared
between the remote control and the receiver previous research suggested
using highly parallel crypto hardware (like COPACOBANA) for break-
ing the cipher within reasonable time.
In this paper we show that highly-parallel hardware is not necessary:
our attack uses a single FPGA for breaking KeeLoq when using a 48-bit
random seed in 17 hours using a mid-range Virtex-4, and less than 3
hours using a high-end Virtex-6 chip. We achieve these results using a
combination of algorithmic improvements, FPGA design methodology,
and Xilinx-specific features.

Keywords: KeeLoq, cryptanalysis, FPGA

1 Introduction

1.1 Background

Wireless remote controls are popular in many applications including car access
and garage door openers. Simple remotes commonly send a unique code on a
known frequency to authorize access, which can easily lead to unauthorized ac-
cess. A popular improvement is to use the KeeLoq code hopping system: KeeLoq
consists of a low cost hardware implementation block cipher which has a large
number of combinations available and won’t respond twice to same transmitted
code. This cipher is used by Microchip for keyless systems usually for the auto-
mobile industry and door openers [10]. Car manufactures like Chrysler, Daewoo,
Fiat, GM, Honda, Jaguar, Toyota, Volvo, Volkswagen, etc. adopted KeeLoq for
their cars security [9].

1.2 Related work

The KeeLoq cipher was extensively studied lately and many attacks have been
published [1][2][4][5][6][7][8]. Research has shown that manufacturers often share

2Cryptanalysis of KeeLoq using a Single FPGA

the same master key for most of their products: if this is the case then this mas-
ter key can be recovered using side-channel attacks on one of the manufacturer’s
receivers [2]. When this master key is discovered the system stays secure only
if a random seed is used for the shared-key derivation between the remote unit
and the receiver (see section 2.2). Recently, Novotnỳ and Kasper have shown
that even when a random seed is used one can break the security using a spe-
cial 120-parallel-FPGA crypto cracker system called COPACOBANA1[3] within
reasonable time.

1.3 Contributions

In this paper we show that KeeLoq can be broken despite the use of a random
seed, using a single FPGA without the need for highly-parallel hardware. This
is achieved by algorithmic improvement and FPGA design methodology, that
together make our breaker more than 3 times faster than the breaker of [3] on
the same hardware. Additionaly, our breaker can use any two captured messages,
whereas [3] requires capturing two nearly-consecutive messages. Furthermore,
our design requires roughly 50% of the gate count of [3], allowing us to place many
more breaker blocks on the same FPGA. Combining all the above properties,
our implementation can break KeeLoq with a 48-bit random seed in less than
17 hours using a single mid-range Virtex-4 chip, and less than 3 hours using a
high-end Virtex-6 chip. Thus the single-chip Virtex-4 implementation is roughly
equivalent to the performance of the 120-FPGA COPACOBANA system of [3],
and the Virtex-6 implementation clearly has superior performance. This makes
our breaker more affordable, accessable and mobile.

2 Overview Of KeeLoq

2.1 KeeLoq Algorithm

The KeeLoq algorithm is a block cipher with a 64-bit key and a block size of 32-
bits. The algorithm is designed for efficient hardware implementation. As shown
in Figure 1 its main components include a 64-bit shift register (FSR), 32-bit
shift register (NLFSR) and a non linear feedback (NLF) function. The 64-bit
key is kept in the FSR. The feedback in the NLFSR register depends on the xor
result of 1 key bit, 2 taps on the NLFSR itself and the result of a non linear
feedback (NLF) function using 5 taps on the NLFSR. Each clock cycle the 64-bit
key FSR is cyclicly left-rotated, the NLFSR is shifted left and the new feedback
created is shifted back into the NLFSR. To preform decryption, the ciphertext is
loaded into the 32-bit NLFSR and the key into the key register. The entire block
is clocked 528 times after which the NLFSR contains the plaintext. Encryption
is done just in the opposite direction when clocking with relevant changes on
the taps place (the taps should move one bit left and the key tap would start
from 0).

1 Cost-Optimized Parallel COde Breaker based on 120 Spartan3-1000 FPGAs

Cryptanalysis of KeeLoq using a Single FPGA3

Fig. 1. Structure of the KeeLoq decryption cipher (taken from [9])

2.2 Key Derivation Schemes

Two different keys are involved in the typical KeeLoq application: a manufac-
turer key and a device key. As mentioned in [2] the manufacturer key is typi-
cally identical for all manufacturer receivers. The device key is derived during
the learning process between the transmitter and the receiver. The “learning
process” involves the manufacturer key, the serial number of the (transmitter)
device and (in some cases) the seed which is a random number passed from the
transmitter to the receiver during the “learning process” [11]. There are four

possible methods to derive the device key2.

Simple The simplest derivation called is Simple. In this derivation there is
no use of any seed and only the 64-bit manufacturer key and 28/32-bit serial

number3 are needed. The serial number is passed through a fixed transformation
(using 28 bits of the serial number appended with a different constant nibble for
each 32 bits) and then each 32-bit half is decrypted using a simple xor function
separately with the relevant 32-bit of the manufacturer key - see Figure 2(b).

Normal In this method the same process is used to create the input 64 bits
from the serial key as with Simple. However, instead of using a xor function the
Normal derivation uses KeeLoq decryption for the two 32 bits input-halves with
the manufacturer key - see Figure 2(a).

2 Details can be found in [11]. Here we use the naming convention from [14]
3 The serial number could be either 28-bit or 32-bit according to [13]

4Cryptanalysis of KeeLoq using a Single FPGA

(a) Normal/Secure Decrypt (b) Simple/Secure Xor

Fig. 2. Key Derivation Schemes (taken from [2])

Secure Decrypt In this method a random seed is used. The seed is used as
the MSB that is prepended to the serial number to form a 64-bit input. There
are 3 possible random seed lengths: 32, 48 or 60 bits; The remaining bits are
taken from the serial number. The resulting 64 bits are split into 2 halves, each
decrypted by KeeLoq using the manufacturer key (as in the Normal method).

Secure Xor In this method the same process is used to make the 64-bit input
from the seed and serial key as in Secure Decrypt, but instead of decrypting with
the manufacturer key the input bit string is xored with the manufacturer key as
shown in Figure 2(b).

From the above we can see that every receiver must store the manufacturer
key—it uses this key when “learning” to work with a new transmitter. Therefore,
by a side-channel attack on any single receiver, the attacker can extract the
manufacturer key—that is shared among all the manufacturer’s devices [2].

In this paper we assume that the attacker knows the manufacturer key—
e.g., from a power-analysis attack [2]. In such a scenario the Normal and Simple
key derivation is completely broken, therefore we focus our attention on the
seed-derived key derivation methods (Secure Decrypt and Secure Xor).

2.3 The Code Hopping Protocol

The code hopping protocol is the common KeeLoq mode of operation that is
used for keyless entry systems, primarily for vehicles and home garage door
openers (according [12],[13]). Code hopping is a method by which the code is
different on every key press. This is done by maintaining 16-bit counter that is
synchronized between the transmitter and receiver. Each time the transmitter
button is pressed, the counter is incremented by 1. This 16-bit counter is padded
with other parameters (10 bits called “discrimination” and 6 other configuration
bits) to produce a 32-bit block. This block is encrypted using KeeLoq with the
device key that was created earlier by one of the key derivation schemes. The

Cryptanalysis of KeeLoq using a Single FPGA5

resulting 32-bit ciphertext is sent together with other parameters (some of the
serial number bits and configuration) to the receiver. Note that all the message
components, except for the 32-bit ciphertext, are sent in clear.

When the receiver receives the message it: 1) checks if the serial number is
equal to the learned serial number ; 2) decrypts the contents and extracts the
sent counter value; 3) verifies that the sent counter is in its reception window
(within 16 or 32 of the last received counter value).

An important observation is that the 16 padding bits encrypted together with
the counter are in fact known: the 10 discrimination bits are the 10 LSB bits of
the serial number (which is also sent as plaintext on every transmission), and

the other 6 bits consist of a 4-bit button status which is also sent as plaintext4

and 2 bits of counter overflow which are practically constant5.

3 Cryptanalysis Keeloq

3.1 Assumptions

From previous works and relevant documentation [2][13] we can assume that the
manufacturer key is same for major groups of interest (same manufacturer). This
means that with access to a single receiver the attacker can extract the manu-
facturer key which would be relevant to most or even all of that manufacturer’s
products. In the attack described in this paper we assume the manufacturer key
is known. Our attack also assumes having 2 recordings of the same transmitter
(full hop-code words), meaning 2 ciphertexts and the relevant data sent with
them. Note that unlike [3] we do not require the two messages to be intercepted
within a short time interval—any two messages will do.

Our goal is to design an FPGA breaker that will implement a brute-force
attack on all possible random seed values to discover the device key based on
these 2 recovered messages.

3.2 Using Interesting KeeLoq Properties

When implementing a brute-force attack we need to test whether our key guess
is correct or not. The approach taken by [3] is to decrypt the two separate
transmissions and compare their constant bits (bits known to be equal on both

transmissions6) and, in parallel, compare the numeric distance between the two
decrypted counters. The authors assume that the two messages were intercepted
within a short period in time, so the counters should be close in value—thus the

4 This is always true for the Microchip HCS301 model (see [12]), but isn’t true when
using a specific feature on HCS410 called “extended serial number” (see [13])

5 If we assume that a user uses the remote transmitter 8 times a day the overflow
would change after more than 20 years.

6 In [3] only the 10 discrimination bits are being compared

6Cryptanalysis of KeeLoq using a Single FPGA

filtering will yield a small set of possible device keys with high probability7. The
main drawback of this approach, from an FPGA design point of view, is that it
requires 2 copies of the KeeLoq decryptor to be constructed, i.e., twice the area.

However, using the observations of Section 2.3, we can do much better, and
use just a single KeeLoq decryptor. Since we know the 16 bits of padding, we can
compare the decrypted 16 MSB bits of one transmission to the known padding
value and filter out the mismatching keys. Doing so would result with a set of
key candidates. The second step is to reduce the set of candidates to a handful
of possible keys by using the same process with the second ciphertext sample.

3.3 Breaker Algorithm

In this section we focus on 32-bit seeds, the case for 48 or 60-bit seeds is similar.
As before we assume that the manufacturer key and serial number are known.
For a candidate seed value seedi the KeeLoq operation can be described as:

FKm,Serial (seedi) = Kdi (1)

where Km is the manufacturer key, Serial is the serial number and Kdi is the
candidate device key. Note that a 32 bit seed size changes only half of the device
key with new seed value as described in Section 2.2. Therefore when using a
brute-force attack there is no benefit from actually deriving the key on the
unchanging half of the key. Since the changing half of the key goes over all 232

possibilities, again there is no need to derive it - a simple counter suffices.
Using the candidate device key to decrypt the ciphertext sample(C1):

V1,i = DECKdi
(C1) (2)

V1,i should be compared to the constant values we know (described on 3.2). If
the values are equal then Kdi is relevant to next step and would be added to
a key set named K1. After all 232 possibilities for Kdi have been tested, the
next step would be to use K1 to decrypt the second ciphertext sample (C2) and
compare V2,i to the constant string value known for this sample and create a
very small set of keys name K2,

V2,i = DECK1,i (C2) (3)

Note that the set K1 would be stored on the host and that Eq.3 can be
calculated on the host (when K1 isn’t empty) in parallel to Eq.2 on the FPGA.

3.4 Expected Number Of Key Candidates

In this section we calculate the probability of a random key passing the condition
on each step. Each filtering step of Eq.2 or Eq.3 reduces the expected number

7 Our analysis shows the expected number of keys passing the filter is linear in T , the
maximum allowed distance between the counters

Cryptanalysis of KeeLoq using a Single FPGA7

of possible keys to a 1/216 fraction. Assuming that a-priori there are M possible

device keys (M = 232 for a 32-bit seed) then after 2 filtering steps, using 2
ciphertext samples, we obtain the following:

E [|K2|] = M
1

216
1

216
(4)

so for M = 232 we expect to find a single possible key.

3.5 Complexity

Naive If we create a new device key on every brute-force cycle and compare
two decryption results to each other (as done by [3]), the number of KeeLoq
operation would be:

232 (2 + 1 + 1) (5)

However note that half of these operations are done in parallel.

Our Attack Our attack evaluates one KeeLoq decryption (of C1) on 232 key

candidates, we then decrypt C2 only on smaller set of suspicious keys (216 on
our example). Thus the number of KeeLoq operations would be:

232 + 216 + 1 (6)

232 operations for decrypting C1, 216 for decrypting C2 and 1 to calculate the
known 32 bit half-key.

In comparison to the method of [3], both methods have to process roughly the
same enumeration space. However, the advantage of our method is that it needs
50% of the hardware, which means that we can place twice as many breaker
modules in a chip and double our attack speed. In addition our implementation
uses some special FPGA features that make it even more compact even with full
loop unrolling, thus allowing a faster clock rate. Finally, our attack is effective
even if the two intercepted messages do not have close counter values.

4 Implementation

4.1 Baseline

In a baseline implementation the base element of the breaker is a standard
KeeLoq decryptor (as shown in Figure 1) implemented with loop-unrolling tech-
nique (Choosing a loop-unrolling technique would better use the given hardware
on brute-force attack in comparison to many independent breakers). In this im-
plementation we follow the design of [3]. It uses 4 levels of loop unrolling followed
by a line of flip-flops (FF). Novotnỳ & Kasper’s design uses 2 separate copies
of the logic block for the search of the correct key. When we implemented their
design we used no manual optimization, only the automatic optimization tools
were applied.

8Cryptanalysis of KeeLoq using a Single FPGA

4.2 Full Loop Unrolling

Figure 3 shows a fully loop-unrolled (LUR) KeeLoq decryption implementation.
In this figure the 8 −→ 1 block implements the NLF and Xor used (as shown in
Figure 1) to calculate the next bit which is used as input for next LUR level.
We use 528 levels of unrolling.

Fig. 3. Loop-Unrolling of KeeLoq decryption

A key observation is that in the design in Figure 3 there is a lot of structure
in the columns. For instance, we can see that bit 15 in the first round appears as
a tap to the 8 −→ 1 block, and then it is used again in round 5 when the bit is in
position 19. Thus we need to implement “vertical” shift registers. A useful way
to show the shift registers needed is shown in Figure 4. In this figure each row
marks a LUR level (there should be 529 rows). Numbers in gray boxes indicate
the taps for the 8 −→ 1 function which outputs the new bit for next level (all
other bits are just copied). The first row (number 0) is the input of the LUR,
which has taps on the 0,8,15,19,25,30,31 bits. The result of the 8 −→ 1 function
is marked as −1 and is used in the next level. The last (528th) row would be
the LUR output. From this figure it is easy to see that each bit “waits” several
cycles before being used.

Cryptanalysis of KeeLoq using a Single FPGA9

Fig. 4. Detailed Loop-Unrolling of KeeLoq - first 33 rounds out of 528

4.3 Using special FPGA features in the design

Xilinx FPGA devices have special properties that can be used in our design. In
these devices the basic logic element is called LUT, and it is commonly used for
creating any asynchronous 16 −→ 1 function. However, a LUT can also be used
as 16-bit variable-length shift-register with a single bit clock input. This mode
is called a shift-register LUT (SRL)[15][16].

When using the Xilinx Spartan-3, Virtex-2 or Virtex-4 architecture an SRL
block (as shown in Figure 5) actually functions simultaneously as two shift reg-
isters, shifting the same bits: one has a variable length (determined dynamically
by 4 control lines A[0-3]), and other is a fixed-length 16-bit shift-register. Thus
the SRL has a single bit input (D), and two bit outputs: Q and Q15. Q which
is the output of the dynamic length shift-register, and Q15 is the output of the
16-bit register. In Figure 6 we can see a basic chain of SRL blocks with different
lengths (without using the Q15 output).

When using the Xilinx Virtex-5 or Virtex-6 the architecture is slightly differ-
ent: a LUT can be used to implement either a single 32-bit shift-register, or a pair
of dual 16-bit shift-register[17][18]—however dual shift registers implemented on

the same LUT have the same dynamic length8. These SRL blocks are especially
useful in our loop-unrolled design since they can be utilized in the construction

8 According to our experience and conversations with Xilinx support the only way to
use the dual 16-bit SRL feature is to manually choose it. The automatic optimization
of Xilinx software doesn’t use this feature

10Cryptanalysis of KeeLoq using a Single FPGA

Fig. 5. SRL16 Block (taken from [15])

of the various “vertical” shift registers instead of using multiple flip-flop (FF)
blocks.

4.4 The Breaker Block

The main breaker block in our optimized design is one fully loop-unrolled KeeLoq
implementation as shown in Figure 3.

Considering the property mentioned in Section 4.3, note that any shift-
register (which is implemented as a SRL) whose length is up to 16-bit requires
no additional logic. As a result of this assumption, and the fact that the longest
vertical shift register in the LUR is 8 bits, we chose to make heavy use of SRLs
in our breaker.

When we experimented with the SRLs we discovered that the Xilinx auto-
matic optimization implements the “vertical shift register” as shown in Figure
6, for a total of 5 SRLs and 2 flip-flops. However, with some careful design we
can do better. Our best construction is shown in Figure 7 using only 3 LUTs
as SRLs (taps are marked in gray). The design of Figure 7 is relevant for Xilinx

FPGAs older than Virtex-59.

Fig. 6. LUR Column: simple implementation (2 FFs, 5 LUTs)

9 Our best construction for the Xilinx Spartan-3 is slightly different but the same
concept applies

Cryptanalysis of KeeLoq using a Single FPGA11

Fig. 7. LUR Column: manual optimization (2 FFs, 3 LUTs)

Fig. 8. LUR Column: manual optimization on a Virtex-5/6 (3 FFs, 2 LUTs)

We could use the design of Figure 7 on a Virtex-5 or Virtex-6 architecture
too. However, we can also use the dual-SRL feature to reduce the LUT count
even further. This is advantageous since it balances the number of LUTs and
FFs. Xilinx FPGA’s have roughly the same number of LUTs and FFs available,
and we discovered that our design area is primarily constrained by the number
of LUTs it uses. Our best design for the Virtex-5 architecture is shown in Figure
8, for a total of 3 FFs and 2 LUTs.

12Cryptanalysis of KeeLoq using a Single FPGA

5 Performance Analysis

5.1 The Evaluation Environment

To evaluate our breaker designs, we used the Xilinx ISE 12.2 environment run-
ning on multicore Windows7 system for synthesizing our code and for imple-
menting the various designs (for all the designs we used the highest optimization
allowed by this environment). Our VHDL code was tested with the Aldec Active

HDL 8.2 simulator for every design and configuration we used10. We compiled
the designs assuming various target architectures, and evaluated the properties
of the results.

We evaluated 3 designs: As a baseline we followed the design of Novotnỳ
& Kasper, as described in Section 4.1 using 2 parallel KeeLoq decryptors to
compare counters. The second design, which we call “simple” uses a single LUR
machine per block with vertical SRs implemented with FFs11. The “simple” de-
sign uses the known half-plaintext for the brute-force attack as described earlier,
so it uses half of the hardware in comparison to the baseline). The third de-
sign, which we call “optimized”, includes all the manual space optimization as
described on previous sections.

The effect of our low-space designs is that we can fit more loop-unrolled
KeeLoq blocks on a single chip, which in turn means that we can test more keys
in parallel and reduce the overall enumeration time.

5.2 Implementation Results

The 3 implementations above were implemented based on Virtex4-100-12 chip.
This chip has 98,304 LUTs and FFs (49,152 slices), and its price is approximately
$2,000. Using this chip we could implement 10 baseline breaker modules with
6.6 ns clock. We implemented 19 “simple” breaker modules on this chip with
less than 5 ns clock cycle. Finally with our manually optimized the hardware
implementation we managed to implement 23 “optimized” breaker modules with
5 ns clock cycle. These 23 modules and the added control logic used 26,862 FFs
and 96,569 LUTs which occupied 48,797 (99%) chip slices. A single “optimized”

full breaker module uses 1,333 FFs and 3,808 LUTs totalling 2,234 slices12.
Figure 9 shows the total break time for a full brute force attack, for the 3 possible
seed lengths (32, 48, and 60-bit). All the results assume the same Virtex4-100-12
chip. We can see that the optimized design reduces the attack time by a factor
of 3.05 over the baseline. This improvement is due to improving the breaking
algorithm, the faster clock rate, and the higher parallelism that the smaller space
requirements allow.

10 The simulation results were compared with a C code implementation, which we
validated against [14]

11 The automatic Xilinx optimization replaces chaining FFs by an SRL, as shown earlier
in Figure 6

12 Note that some FFs are shared between the breaker modules and that the control
logic increases when a module is added

Cryptanalysis of KeeLoq using a Single FPGA13

Fig. 9. Virtex-4 results comparison assuming 32, 48, and 60-bit random seed length

5.3 Comparison to previous work

Figure 10 compares the performance of our optimized design to the COPA-
COBANA implementation reported in [3].

Fig. 10. Previous work comparison assuming 48-bit random seed length

Recall that COPACOBANA consists of 120 Spartan-3 FPGAs, and the au-
thors implemented the “baseline” design on each of those chips. In comparison
we show the performance of our optimized design on a single Virtex-4 or Virtex-6
chip.

Figure 10 shows that the 120-chip COPACOBANA is only 2.87 times faster
than a single Virtex-4 (medium size) chip. Furthermore, our design implemented
on a Virtex6-760-2 chip (that has more than 7 times of logic and better timing)
is at least 2.09 times faster than COPACOBANA. Moreover when designing for

14Cryptanalysis of KeeLoq using a Single FPGA

COPACOBANA hardware (Spartan-3) with our optimized breaker we managed
to get approximately 3 times better than previous works.

6 Conclusions

Our results demonstrate that when building a break system we can use a single
“mobile” breaker based on standard FPGA technology. One does not need to
purchase or rent any special crypto hardware, and can easily build a homemade
breaker using a standard evaluation board. The time to crack a 32-bit seed is
under 1 sec, and a 48-bit seed only requires 17 hours. Thus, it is very reasonable
that such a breaker could be built using only one Virtex-4 chip. Such a small
system could even be installed on a hacker’s car. By just recording two legitimate
remote transmissions the attacker can break into the car by the next day (even
assuming a 48-bit seed).

Note that in our design there are still many free FFs. This means that,
theoretically, there is room for more modules based only on FFs. We have not
attempted to use these FFs—in fact it is unclear whether this space can be
effectively used (routing would be probably the problem)—but it may offer an
opportunity for even further improvement.

References

1. Nicolas T. Courtois, Gregory V. Bard, Andrey Bogdanov.: Periodic Ciphers with
Small Blocks and Cryptanalysis of Keeloq. Tatra Mt. Math. Publ. 41 (2008)

2. T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, and M. T. M.
Shalmani: On the Power of Power Analysis in the Real World: A Complete Break
of the KeeLoq Code Hopping Scheme, in Advances in Cryptology - CRYPTO 2008,
pp. 203-220 (2008)

3. M. Novotnỳ and T. Kasper: Cryptanalysis of KeeLoq with COPACOBANA.
SHARCS’09 Special-purpose Hardware for Attacking Cryptographic Systems, 159
(2009)

4. Indesteege, S. and Keller, N. and Dunkelman, O. and Biham, E. and Preneel, B.: A
practical attack on KeeLoq. Proceedings of the theory and applications of crypto-
graphic techniques 27th annual international conference on Advances in cryptology,
1–18, Springer-Verlag (2008)

5. Courtois, N. and Bard, G. and Wagner, D.: Algebraic and slide attacks on KeeLoq,
Fast Software Encryption, 97–115, Springer (2008)

6. Bogdanov, A.: Linear slide attacks on the KeeLoq block cipher, Information Security
and Cryptology, 66–80, Springer (2008).

7. Eisenbarth, T. and Kasper, T. and Moradi, A. and Paar, C. and Salmasizadeh, M.
and Shalmani, M.T.M.: Physical cryptanalysis of keeloq code hopping applications,
Cryptology ePrint Archive: Report 2008/058. Dostupné na: http://www.crypto.
rub.de/keeloq (2008)

8. Kasper, M. and Kasper, T. and Moradi, A. and Paar, C.: Breaking KeeLoq in a
Flash, AFRICACRYPT 2009. 5580, 402–419 (2009)

9. Keeloq wikipedia article. 30 September 2010. http://en.wikipedia.org/

wiki/KeeLoq

Cryptanalysis of KeeLoq using a Single FPGA15

10. Microchip. An Introduction to KeeLoq Code Hopping. Available from http://

ww1.microchip.com/downloads/en/AppNotes/91002a.pdf (1996)
11. Microchip. Secure Learning RKE Systems Using KEELOQ Encoders. Available

from ww1.microchip.com/downloads/en/AppNotes/91000a.pdf (1996)
12. Microchip. HCS301 Keeloq Code Hopping Encoder and Transponder. Available

from ww1.microchip.com/downloads/en/devicedoc/21143b.pdf (2001)
13. Microchip. HCS410 Keeloq Code Hopping Encoder and Transponder. Available

from http://ww1.microchip.com/downloads/en/DeviceDoc/40158e.pdf (2001)
14. Microchip KeeLoq tool, V.02.00.04, Available from http://www.microchip.com

15. Xilinx. Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 Generation
FPGAs. Available from www.xilinx.com/support/documentation/application_

notes/xapp465.pdf (2005)
16. Xilinx. Virtex-4 FPGA - User Guide. Available from www.xilinx.com/support/

documentation/user_guides/ug070.pdf (2008)
17. Xilinx. Virtex-5 FPGA - User Guide. Available from www.xilinx.com/support/

documentation/user_guides/ug190.pdf (2010)
18. Xilinx. Virtex-6 FPGA Configurable Logic Block - User Guide. Available from

www.xilinx.com/support/documentation/user_guides/ug364.pdf (2009)

