
A Novel Adaptive Proactive Secret Sharing without a Trusted
Party

Xiuqun Wang

Beijing Certificate Authority Ltd., Beijing, 100080, P. R. China
xqwang91@hotmail.com

Abstract. A (t + 1, n) proactive secret sharing is to protect a secret in long-lived system by
distributing it to a group of n participants and refreshing their shares periodically in this fixed
group, while any t + 1 and more than t + 1 shares can reconstruct the secret. In some environment,
it needs to change not only the number of participants n but also the threshold value t. An adaptive
proactive secret sharing is to refresh the shares as t and n change. In this paper, we propose a novel
adaptive proactive secret sharing scheme without a trusted party. Our proposed scheme is uniformly
efficient and tolerates t Byzantine faults in any single time interval, where the number of participants
n ≥ 3t+1. The threshold value t and the number of participants n can be changed arbitrarily in two
adjacent intervals. We also prove that our proposed scheme is secure under the discrete logarithm
intractability assumption.

Keywords. Secret sharing, proactive secret sharing, adaptive proactive secret sharing, validated
Byzantine agreement protocol.

1 Introduction

Secret sharing [22, 2] is a basic cryptographic protocol, which can protect a secret by distributing
it among different participants. In a (t+1, n) threshold secret sharing, the secret s is distributed
among n participants, each holding a share. Every group of t + 1 participants can recover the
secret s, while any smaller group of participants cannot get any information about the secret s. In
order to reconstruct the secret, the adversary has to corrupt at least t+1 participants. Comparing
the threshold secret sharing with the secret owned by a single participant, the security of secret
sharing is significantly enhanced.

However, for the long-lived secrets, the adversary may still have enough time to gradually
corrupt enough participants. A natural defense is to periodically update the secret, but it is
not always possible, e.g. for the long-lived certification authority (CA) signing key. To address
this problem, Herzberg et al. [13] introduced the concept of proactive secret sharing (PSS). In a
proactive secret sharing, the lifetime of the secret is divided into time intervals. The shares are
periodically refreshed at the beginning of each time interval using the so-called update algorithm,
after which new shares of the same secret are obtained by the participants, the old shares are
discarded safely. Their proposed PSS is secure against a mobile adversary [17] who can corrupt
each participant many times but it cannot obtain the secret unless it has been able to corrupt
at least t + 1 participants in a single time interval.

The traditional PSS assumes that the threshold value t is the same in any interval. However,
if the security environment changes, then we need adjust the threshold value t accordingly. For
example, a discovery of new vulnerability in the operating system might lead to an increase of
t, whereas the removal of the the vulnerability might lead to a decrease of t. Adaptive proactive
secret sharing [21, 24] (also called the mobile proactive secret sharing) allows to increase or
decrease the threshold value t and adjust the number n of participants.

1.1 Related Work

The first threshold secret sharing schemes were proposed by Shamir [22] and Blakey [2]. In
order to prevent an inconsistent secret sharing, Feldman [8] and Pedersen [20] introduced the

2 Xiuqun Wang

verifiable secret sharing (VSS) scheme based on Shamir secret sharing. Their schemes need a
trusted party to distribute the secret. Pedersen [19] showed that it is possible to design threshold
cryptosystems, in which the role of the trusted party is distributed among all parties.

The concept of proactivity was introduced by Ostrovsky and Yung [17] in the mobile adver-
sary context. The solution discussed in their paper achieved the information theoretic security
in the presence of mobile adversary attacks. Canetti and Herzberg [6] gave a practical solution
for proactive distributed pseudorandom generator. Herzberg et al. [13] applied the concept of
proactivity to secret sharing. This work was continued by Alon et al. in [1].

The proactive secret sharing have been studied extensively in the literature [13, 25, 3, 21,
24, 23]. The PSS schemes of Herzberg et al. [13] and Stinson et al. [23] need a distributed
commitment protocol in the update phase, in which the participants are committed to the value
of “0” in order to update the participant shares. Nikov et al. [16] showed that these schemes are
vulnerable to an attack. Frankel et al. [10] used the re-sharing protocol in order to refresh the
secret. Zhou et al. [25] used (l, l) secret sharing [14], where l =

(
n
t

)
, to build an asynchronous

secret sharing, which can tolerate Byzantine faults, with the communication complexity O(
(
n
t

)
).

Cachin et al. [3] considered asynchronous secret sharing using bivariate polynomials, which can
tolerate Byzantine faults as well, with communication complexity O(n3). In the update phase,
the Cachin et al. scheme uses a Byzantine agreement to determine the participants contributions
to the new shares.

Recently, Wang et al. [24] and Schultz et al. [21] considered the adaptive proactive secret
sharing (APSS), in these schemes they not only change the number n of participants but also
change the threshold t. These two APSS schemes use the idea of Herzberg et al. PSS [13] to
update the shares by committing to the value 0, which was proven to be insecure in the mobile
attack model.

All these PSS and APSS schemes initiate the secret using a trusted party. This is certainly a
security problem if the trusted party becomes corrupted. In this paper, we propose an adaptive
proactive secret sharing without a trusted party in the asynchronous communication system.

1.2 Contribution

Our contribution is the design of a novel adaptive proactive secret sharing without a trusted party
in asynchronous communication system. Our scheme is similar with Cachin et al. scheme [3], but
it initiates the secret without a trusted party. In the initialization phase of our proposed scheme,
every participant Pi chooses a random value si and distributes it among all participants, the
secret x is a function as x =

∑
i∈L siλ

i
L, where L is the set of participants agreed by a Byzantine

agreement, λi
L is the Lagrange coefficient according to L (see Sec. 3.1). In other schemes [19], the

secret is generated by the function as x =
∑

i∈B si where B is some subset of all the participants.
Our function can guarantee the robustness of our proposed adaptive proactive secret sharing
which doesn’t require a trusted party in the initialization phase (see Sec. 4.1).

Then, each participant updates their previous share using re-sharing technique, and generates
the new share using the same function (see Sec. 3.2). With this method, we can change the
threshold value and the number of participants arbitrarily in each interval (see Sec. 3.3). Our
method is simpler than that in the schemes [24, 21] which have to distinguish the change of the
threshold value into two cases (increase and decrease).

Our proposed scheme is efficient and tolerates Byzantine faults as long as n ≥ 3t + 1.
The expected message complexity is O(n3) and communication complexity is O((n)3t + (n)2t3).
We also prove that our proposed scheme is secure under the discrete logarithm intractability
assumption (see Sec. 4).

A Novel Adaptive Proactive Secret Sharing without a Trusted Party 3

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we introduce the basic security
model and definitions. Section 3 presents our adaptive proactive secret sharing scheme without
a trusted party. Section 4 gives the proof of the security and discusses the complexity of the
scheme. We conclude in Section 5.

2 Model and Definitions

2.1 Security Model

We use the security model given in [12]. The adversary can not only try to know secret informa-
tion (passive adversary also called honest but curious) but also can generate Byzantine faults
(malicious adversary that deviates arbitrarily from the protocol). The model used in our work
consists of the following components.

Participants and Communication. We assume that our system consists of a set of n par-
ticipants, {P1, P2, . . . , Pn}, which can be modeled by a polynomial-time Turing machine. The
participants are connected by a complete network of secure point-to-point channels, which can
be implemented with standard cryptographic techniques.

The participants have access to a multicast channel C, with the property, that messages sent
on C reach every participant connected to it. We also assume that the communication channels
provide an asynchronous message delivery. This means that messages sent on either a point-to-
point or a multicast channel are received by the recipients finally although they will be relayed.
A failure of a communication channel to deliver a message can be treated as a failure of the
sender.

The life-time of the whole system is divided into time intervals (which are determined by
the common global clock) such as a day, a week, etc. Each time interval starts from an update
(or change of threshold) phase, during which the participants engage in an interactive update
(change of threshold) algorithm and after which each participant holds a new share of the secret.

Adversary. We assume that the adversary can corrupt up to t out of n participants in the net-
work. A Byzantine adversary [15], who also called malicious adversary, can corrupt participants
and deviate from the protocol in an arbitrary way.

We assume that the adversary is computationally bounded, i.e. he cannot break the un-
derlying computational assumptions that are used in the construction. There are two kinds of
adversaries: static and mobile. A static adversary chooses participants that it will try to corrupt
at the beginning of the protocol. A mobile adversary can corrupt up to t participants during
a single time interval. From now on, we consider the mobile Byzantine adversary. Note that
we assume that at the beginning of each time interval, the adversary has been removed by the
update algorithm.

Given a protocol P , the view of an adversary A, denoted by V iewA(P), is defined by the
knowledge of the adversary, i.e., the transcript of past run of the protocol that includes the
communication and input/output observations, the computational and memory history of all
the corrupted participants, the public communications and outputs of the protocol.

2.2 Definitions

Adaptive Proactive Secret Sharing is a collection of four algorithms (I,U , C,R) performed
jointly by the participants {P1, . . . , Pn}.

4 Xiuqun Wang

The initialization algorithm I sets up the scheme and it is run jointly by all participants.
At the beginning of the algorithm I, each participant Pi generates a random integer si as input
and at the end, each participant Pi gets a share xi of the secret x.

If there is no threshold change, then the participants perform jointly the update algorithm
U at the beginning of the current time interval. Each Pi provides the private share xi from the
previous interval as the input to the algorithm and the participant Pj gets a new private share
x̄j for the current interval. The elements (x̄1, . . . , x̄n) are shares of the same secret x.

When there is a threshold change, the threshold changes from t to t′, and the number of
participants change from n to n′. At the beginning of the current time interval, the participants
perform jointly the threshold change algorithm C. Each Pi provides the private share xi from
the previous interval as input to the algorithm and every Pj gets a new private share x̄j for the
current interval. The elements (x̄1, . . . , x̄n′) are shares of the same secret x.

The algorithm R is run jointly by a subset of participants. If the number of participants is
at least t + 1 and they work together with their correct shares, then R reconstructs the secret
x. Otherwise, R fails.

Definition 1. Let (I,U , C,R) be a collection of four algorithms introduced above. Assume fur-
ther that the threshold changes from t to t′ for current interval, and the number of participants
changes from n to n′. Given a mobile adversary who corrupts at most t participants at each time
interval and has access to the view of the algorithm I as well as to the views of multiple runs of
the algorithms U and C, then we call it a secure adaptive proactive secret sharing if the following
properties hold:

– Robustness: The collection of t+1 participants who jointly execute the algorithm R in any
interval can always reconstructs the secret x.

– Privacy: An adversary knows no information about secret x.
– Liveness: Execution of the protocol always terminates on all servers that are honest.

2.3 Computational Assumptions

Let p and q be two large primes, such that q | p− 1 and q > n, where n is the cardinality of the
set of participants. Assume further that G denotes a multiplicative subgroup of order q of Zp ,
and g, h are two distinct generators of G such that no one knows logg h.

We use the well-known discrete logarithm (DL) intractability assumption which can be
worded as follows. Given a cyclic group G, its generator g, and a random element h ∈ G.
Find an element α ∈ Zq such that h = gα, in other words, find α = logg h. It is believed
that there is no polynomial time algorithm that solves DL assumption with a non-negligible
probability.

2.4 Multi-valued Validated Byzantine Agreement

Byzantine agreement [15, 18] is a fundamental problem in distributed computing. In asyn-
chronous networks, it is impossible to solve it by deterministic protocols [9], which means that
one has to resort to a randomized protocol. A polynomial-time solution to this problem was
given by Canetti and Rabin [7]. The standard solution of the Byzantine agreement implements
only a binary decision in asynchronous networks. The multi-valued validated Byzantine agree-
ment (VBA) [4] extends this to arbitrary domain by means of the so-called external validity
condition. It is based on a global, polynomial-time computable predicate QID known to all par-
ticipants. Each participant may propose a value that perhaps contains validation information.
The agreement ensures that the decision value satisfies QID and that it has been proposed by
at least one participant.

A Novel Adaptive Proactive Secret Sharing without a Trusted Party 5

When a participant Pi starts a VBA with a tag ID and input v ∈ {0, 1}∗, we say that Pi

proposes vi for ID (the honest participants propose values that satisfy QID). When a participant
Pi terminates a VBA with a tag ID and outputs value v, we say that Pi decides the value v.

Definition 2. Multi-valued validated Byzantine agreement – a protocol solves VBA with pred-
icate QID if it satisfies almost always the following conditions (i.e. the conditions fail with a
negligible probability).

External validity: Any honest participant who terminates decides v for ID such that QID(v)
holds.

Agreement: If some honest participant decides v for ID, then all honest participants who
terminate decide v for ID.

Liveness: If all honest participants have been activated on ID and all associated messages have
been delivered, then all honest participants have decided for ID.

Integrity: If all participants follow the protocol, and if some parties decide v for ID, then there
is a participant who has proposed v for ID.

Efficiency: For every ID, the communication complexity of the instance ID is polynomially
uniformly bounded.

The protocol proposed by Cachin et al. [4] for the multi-valued validated Byzantine agreement
relies on a threshold signature and a threshold coin-tossing protocol [5]. The expected message
complexity is O(n2), and the expected communication complexity is O(n3 +n2(K + |v|)), where
|v| is the length of the value v which is proposed by any participant and K is the length of a
threshold signature.

2.5 Pedersen VSS

Pedersen VSS [20] is information-theoretic secure, and it follows the following steps.

– The dealer chooses two random polynomials f(z) =
∑t

i=0 ajz
j and f ′(z) =

∑t
i=0 bjz

j over
Zq such that f(0) = σ. The shares are σi = f(i) and τi = f ′(i). The shares (σi, τi) are sent
to the participant Pi.

– The dealer commits to coefficients of the polynomials f and f ′ by publishing the values
Aj = gajhbj (mod p) for j = 0, 1, . . . , t. This will allow the participants to verify the received
shares by testing

gσihτi ?=
t∏

j=0

(Aj)ij (mod p),where i = 1, 2, . . . , n. (1)

– The reconstruction algorithm is the same as in the Shamir scheme [22].

3 Adaptive Proactive Secret Sharing without a Trusted Party

In this section, we construct our adaptive proactive secret sharing (I,U , C,R) without a trusted
party (called TPfree-APSS), in which there is no trusted party. It would seem that the simplest
way to do this is to run jointly a secret sharing based on the Feldman VSS [8], where each
participant shares a random value si ∈ Zq. However, in a asynchronous communication model,
this is insecure since the Feldman VSS reveals gsi (mod p), and hence the adversary might wait
till he sees the gsi values corresponding to the random values of honest participants and use
them to produce his shares. As the result, the secret x ∈ Zq might not be random. For example,
it is easy to show that the adversary can control the last bit of the resultant secret x [11]. Our
protocol is based on the Pedersen VSS [20], where the privacy of the secret is unconditionally
secure, and it reveals nothing about gsi and gx.

6 Xiuqun Wang

In the following subsections, we will describe the algorithms I, U , C and R respectively for
our proposed TPfree-APSS. The proof of security of the proposed scheme will be given in Section
4.

3.1 Initialization Algorithm I

In the initialization phase, every participant shares a random value si using Pedersen VSS [20].
After that, they agree on the participant contributions to the secret. This is done by the execution
of the multi-valued validated Byzantine agreement protocol. Then participants compute their
shares using the function we will define (see details below). This function can guarantee the
robustness of our proposed adaptive proactive secret sharing which doesn’t require a trusted
party in the initialization phase. The detailed description of the algorithm I is presented as
follows.

Algorithm I :

Input: The security parameter q.
Output: The private outputs of Pi are secret shares xi and the committed shares x′

i for i =
1, 2, . . . , n. The public outputs are L and V = {V0, V1, . . . , Vt} (The sets L and V will be
described in Remark 1 and in Step 5 respectively).

Steps: (executed by Pi)

1. Pi chooses two random polynomials fi(z) =
∑t

k=0 aikz
k and f ′

i(z) =
∑t

k=0 bikz
k of the degree

t with fi(0) = si, where si is a random number. Next Pi creates a set Ai = {Aik}, where Aik =
gaikhbik (mod p) for k = 0, . . . , t. Further, Pi sends the message (I, send, i, j, Ai, σij , τij) to
each participant Pj , where σij = fi(j) and τij = f ′

i(j) for j ∈ {1, 2, . . . , n}.
2. Pi waits for a message (I, send, j, i, Aj , σji, τji) from Pj , and verifies its correctness, then

sends message (I, echo, j, i, Aj) to every participant, which means that Pi has received a
correct share from Pj .

3. Upon receiving 2t + 1 valid echo messages (I, echo, j, k, Aj) with the same Aj from different
Pk, Pi puts all these 2t + 1 echo messages into a set Πj = {(I, echo, j, k, Aj)} (2t + 1 echo
messages mean that Pj has finished the distribution of the random value si). Upon getting
t + 1 sets Πj , Pi sets Li = {(j,Πj)} of (t + 1)-tuples.

4. Pi proposes the set Li for the multi-value validated Byzantine agreement proposed by Cachin
et al. [4] with a tag ID/VBA. After deciding on some set L, Pi interpolates its share from L as
xi =

∑
l∈L

σliλ
l
L and x′

i =
∑
l∈L

τliλ
l
L, where λl

L = l
Q

k∈L,k 6=l

(k−l) is the normal Lagrange coefficient

(if participant Pi has no σli for some l ∈ L, then other participants can reconstruct σli for
Pi).

5. Pi computes Vk =
∏
l∈L

(Alk)λl
L (mod p), here Alk = galkhblk (mod p) for k = 0, 1, . . . , t. From

Equation (2), the following equation holds gxihx′
i =

t∏
k=0

(Vk)ik (mod p). The sets L and

V = {V0, V1, . . . , Vt} are the public outputs.

Remark 1. – In Step 2 of I, the correctness of (I, send, i, j, Ai, σij , τij) means that Equation
(1) holds.

– In Step 4 of I, there are two methods to reconstruct σli for Pi. One is by the Shamir method
[22], the other is by the recovery method applied in Herzberg et al. work [12]. For the
Shamir method, every Pj sends σlj to Pi, so that he can reconstruct the σli with Lagrange

A Novel Adaptive Proactive Secret Sharing without a Trusted Party 7

interpolation. With this method, a participant corrupted by the adversary can cheat that
he has no σli, so that he can get the additional fl(·). As the result, the adversary can
control more than t participants. In this paper, we use the Herzberg et.al. recovery method
to reconstruct σli for Pi.

– For Step 5 of I, the following equation holds.

gxihx′
i = g

P

l∈L

σliλl

h

P

l∈L

τliλl

=
∏

l∈L gσliλlhτliλl

=
∏

l∈L(g

t
P

k=0

alkik

h

t
P

k=0

blkik

)λl

=
∏

l∈L(
∏t

k=0(Alk)ik)λl

=
∏t

k=0(
∏

l∈L(Alk)λl)ik

=
t∏

k=0

(Vk)ik (mod p).

(2)

– For Step 4 of I, L is the set decided by multi-value validated Byzantine agreement. From
the Integrity property of Definition 2, L is some Li proposed by Pi.

3.2 Update Algorithm U
In the update phase, the threshold t and the number n of participants are fixed. The corrupted
participant in the previous interval can be reset or replaced by a new participant. The difference
between U and I is that the participants in U has to reshare their shares from the previous
interval instead of sharing a random number in the algorithm I.

The detailed description of the algorithm U is presented as follows.

Algorithm U :

Input: xi, x′
i – the private inputs of Pi; L and V = {V0, V1, . . . , Vt}– the public inputs.

Output: x̄i, x̄′
i – the private output of Pi. The sequence (x̄1, . . . , x̄n) represents shares of the same

secret x and their commitments (x̄′
1, . . . , x̄

′
n) for the current interval. The public outputs are

L̄ and V̄ .

Steps:(executed by the participant Pi)
1. Pi chooses two random polynomials f̄i(z) =

∑t
k=0 āikz

k and f̄ ′
i(z) =

∑t
k=0 b̄ikz

k of t degree
such that f̄i(0) = xi and f̄ ′

i(0) = x′
i. He calculates σ̄ij = f̄i(j), τ̄ij = f̄ ′

i(j) for j ∈ {1, . . . , n}
and Āi = {Āik}, where Āik = gāikhb̄ik (mod p) for k = 0, 1, . . . , t. After Pi distributes the
shares, then he immediately erases his shares and the polynomials f̄i(z) and f̄ ′

i(z).
2. Pi waits for a message (U, send, j, i, Āj , σ̄ji, τ̄ji) from Pj , verifies its correctness, then sends

message (U, echo, j, i, Āj) to every participant, which means that Pi has received a correct
share from Pj .

3. Pi waits for 2t + 1 echo messages (U, echo, j, k, Āj) with the same Āj from different Pk. Pi

puts all these 2t + 1 echo messages into a set Π̄j = {(U, echo, j, k, Āj)}. Upon getting t + 1
such Π̄j , Pi sets L̄i = {(j, Π̄j)} of (t + 1)-tuples.

4. Pi proposes the set L̄i for multi-value validated Byzantine agreement with ID/BV A. After
deciding a set L̄, then Pi interpolates his share from L̄ using the following equations x̄i =∑
l∈L̄

σ̄liλ
l
L̄

and x̄′
i =

∑
l∈L̄

τ̄liλ
l
L̄
. At the meanwhile, Pi computes V̄k =

∏
l∈L̄

(Ālk)λl
L̄ (mod p) for

k = 0, 1, . . . , t. L̄ and V̄ = {V̄0, V̄1, . . . , V̄t} are the public outputs.

Remark 2. In Step 2 of U , the correctness of (U, send, i, j, Ai, σij , τij) means that not only Equa-
tion (1) holds but also Āi0 =

∏t
j=0(Vi)ij (mod p). So there is gxihx′

i = Āi0 (mod p), which means
that Pi distributes the share he has owned in the previous interval.

8 Xiuqun Wang

3.3 Change Threshold Algorithm C

We denote the participants set in the previous interval as S, the one in the current interval as T ,
here |S| = n and |T | = n′. As we consider the change of the threshold from t to t′, an intuitive
method is that the participants reshare their shares using a polynomial of degree t′. The change
threshold algorithm is somehow similar to the update algorithm. The difference is that every
Pi ∈ S distributes his share to every participant Qj in T . After that, every Qj agrees on the
participant contribution to the new shares. The contribution is completely determined by the
parameter t, so we need to consider the change of t only. For the clarity of presentation, the
detailed description of the algorithm C is given below.

Algorithm C: (xi, x′
i, L and V are the same as in the algorithm U which are from the previous

interval)

Input: xi, x′
i – the private inputs of Pi ∈ S; L and V = {V0, . . . , Vt} – the public inputs of

Pi ∈ S.
Output: x̄j , x̄′

j – the private outputs of Pj ∈ T . (x̄1, . . . , x̄n′) are shares of the same secret and
(x̄′

1, . . . , x̄
′
n′) are their commitments for the current interval. The public outputs are L̄ and

V̄ = {V̄0, V̄1, . . . , V̄t′}.

Steps :
1. Pi ∈ S designs two random polynomials f̄i(z) =

∑t′

k=0 āikz
k and f̄ ′

i(z) =
∑t′

k=0 b̄ikz
k of the

degree t′ such that f̄i(0) = xi and f̄ ′
i(0) = x′

i. He calculates σ̄ij = f̄i(j), τ̄ij = f̄ ′
i(j) and

Āi = {Āik}, where Āik = gāikhb̄ik (mod p) for k = 0, 1, . . . , t′.
Pi distributes his share by sending message (C, send, i, j, Āi, σ̄ij , τ̄ij) to every Qj ∈ T . After
Pi distributes the shares, then he immediately erases his shares and the polynomials f̄i(z)
and f̄ ′

i(z).
2. Qj ∈ T receives the send message from Pi and checks its correctness. If the send message is

correct, then Qj sends (C, echo, i, j, Āi) to every Qk ∈ T .
3. Qj ∈ T waits for 2t′ +1 echo messages (C, echo, i, k, Āi) with the same Āi from different Qk.

Qj puts all these 2t′ + 1 echo messages into a set Π̄i = {(C, echo, i, k, Āi)}. Upon getting
t + 1 such Π̄i, Pj sets L̄j = {(i, Π̄i)} of (t + 1)-tuples.

4. Qj ∈ T proposes the set L̄j for multi-valued validated Byzantine agreement with ID/V BA
and decides on a t + 1 tuple set L̄. After that, Qj interpolates his share from L̄ using
the following equations x̄j =

∑
i∈L̄

σ̄ijλ
i
L̄

and x̄′
j =

∑
i∈L̄

τ̄ijλ
i
L̄
. At the meanwhile, he can get

V̄ = {V̄0, V̄1, . . . , V̄t′} with the same way as in the algorithm U .

Remark 3. – In Step 2 of C, the verification of the message correctness is the same as for the
algorithm U .

– In Step 3 of C, because n′ ≥ 3t′ + 1 in the current interval, Qj ∈ T can get 2t′ + 1 echo
messages for participant Pi ∈ S, that means each Pi ∈ S can eventually distribute his share.

– In Step 3 of C, because n ≥ 3t + 1 in S, Qj ∈ T can get t + 1 Π̄i, that means participants in
T can agree with a (t + 1)-tuple set in Step 4.

– We can deal with both the decreasing and increasing of the threshold value in algorithm C,
because of the use of resharing technique.

3.4 Reconstruction Algorithm R

In each interval, t + 1 honest participants can reconstruct the secret. The detailed algorithm R
is presented as follows.

A Novel Adaptive Proactive Secret Sharing without a Trusted Party 9

Algorithm R :

Input: xi – the private inputs of Pi; V – the public input.
Output: Public output of Pi is the secret x.

Steps:(executed by the participant Pi)
1. Pi sends the message (recons, xi, x

′
i) to Pj for j ∈ {1, . . . , n}.

2. Upon receiving a message (recons, xk, x
′
k) from Pk, Pi verifies this message by checking if

gxihx′
i

?=
∏t

j=0(Vi)ij (mod p).
3. Upon receiving (t + 1) valid recons messages from different t + 1 participants, Pi can recon-

struct x with Lagrange interpolation by using these (t + 1) messages .

4 Security Proof

From the Definition 1, in order to prove the security of TPfree-APSS, we have to prove that
TPfree-APSS satisfies three properties: robustness, privacy and liveness.

4.1 Proof of Robustness

From the Definition 1, we have to prove that the collection of t + 1 participants in any interval
can always reconstructs the secret x. There are three cases to discuss, namely the robustness of
the algorithms I, U and C respectively.

Lemma 1. Let n ≥ 3t+1, then the algorithm I is robust under the mobile Byzantine adversary
model.

Proof. In order to prove that I is robust, we have to show that every collection of t + 1 or more
participants reconstructs the same secret.

Let L be a currently active set of participants agreed in Step 4 of the algorithm I, L′ and
L′′ be two random reconstruction sets with t + 1 participants, and x′, x′′ be the reconstructed
values from L′ and L′′ respectively. Then the following equation holds.

x′ =
∑
k∈L′

skλ
k
L′ =

∑
k∈L′

∑
l∈L

σlkλ
l
Lλk

L′ =
∑
l∈L

∑
k∈L′

σlkλ
k
L′λl

L =
∑
l∈L

slλ
l
L. (3)

For the same reason, we have x′′ =
∑

k∈L′′ skλ
k
L′′ =

∑
l∈L slλ

l
L. Then the equation x′ = x′′ holds,

which means that the robustness property of I holds. 2

From now on, we denote the secret as x0.

Lemma 2. Let n ≥ 3t + 1, then the algorithms U and C are robust under the mobile Byzantine
adversary model.

Proof. In order to prove robustness property of the algorithm U , we have to demonstrate that
the new secret computed at the end of the update phase should be the same as the secret x0,
which means any subset of t+1 of the new shares can reconstruct the secret x0. Assume that in
the current phase, the reconstructed secret is x̄0. Let L̄ be the agreed set in the current interval
and K be a random set which contains t + 1 participants. Then

x̄0 =
∑
k∈K

x̄kλ
k
K =

∑
k∈K

∑
l∈L̄

σ̄lkλ
l
L̄λk

K =
∑
l∈L̄

∑
k∈K

σ̄lkλ
k
Kλl

L̄ =
∑
l∈L̄

xlλ
l
L̄ = x0. (4)

10 Xiuqun Wang

Thus, the robustness property of U holds.
The robustness of the algorithm C is similar with that in the algorithm U . The difference is

that in the threshold change phase, with the threshold changes from t to t′, any subset of t′ + 1
of the new shares can reconstruct the secret x0.

Assume that the reconstructed secret is x̄′
0. Let L̄′ be the agreed set in the current interval

with t + 1 participants (notice that the participants in the L̄′ come from the previous interval)
and K ′ be a random set which contains t′ + 1 participants. Then

x̄′
0 =

∑
k∈K′

x̄kλ
k
K′ =

∑
k∈K′

∑
l∈L̄′

σ̄lkλ
l
L̄′λ

k
K′ =

∑
l∈L̄′

∑
k∈K′

σ̄lkλ
k
K′λl

L̄′ =
∑
l∈L̄′

xlλ
l
L̄′ = x0. (5)

Thus, the robustness property of algorithm C holds. 2

Theorem 1. Under the mobile Byzantine adversary model, TPfree-APSS satisfies the robust
property.

Proof. The proof of the above theorem can be guaranteed from Lemmas 1 and 2. 2

4.2 Proof of Privacy

For the privacy of TPfree-APSS, there are two cases. One is the privacy of the algorithm I which
means that it reveals no information about secret in a fixed interval. The other case is that the
transition to the new interval does not leak any information to the adversary about the secret,
by using either algorithm U or algorithm C.

Lemma 3. Assuming the hardness of the discrete-logarithm problem, the algorithm I of TPfree-
APSS reveals no information about the secret under the adversarial model with Byzantine faults
and n ≥ 3t + 1, where t is the number of dishonest participants.

Proof. This lemma is proven in the Appendix A. 2

Theorem 2. Assuming the hardness of the discrete-logarithm problem, TPfree-APSS preserves
privacy under the adversarial model with Byzantine faults with n ≥ 3t + 1.

Proof. We proceed by induction. The privacy of the initialization is guaranteed by the Lemma 3.
Assume that at each time interval r = 1, 2, . . . , e− 1 the theorem holds. It means that after the
update or threshold change phase of time interval e−1, the adversary has known no information
about the secret.

Let T1 be the set of t1 servers that the adversary corrupted into interval e− 1, T2 be the set
of t2 servers that the adversary corrupted into in interval e. We also denote by S1 and S2 the set
of shares corresponding to the servers in T1 and T2, respectively. We assume that the threshold
changes from t to t′ when the time interval changes from e− 1 to e. So that, we have t1 ≤ t and
t2 ≤ t′. Here, we assume that t1 = t and t2 = t′ (for t1 < t and t2 < t′, the adversary knows less
about the secret). Further, we assume that the threshold t ≥ t′ and then T2 ⊆ T1.

We now show that the availability of all this information about shares and threshold change
does not provide information about x0. Note that the update case is the special case of the
threshold change.

Since we assume that the t shares from interval e − 1 are known (from the view of the
adversary), fixing the secret x0 determines the interpolation polynomial f (e−1) of degree t,
corresponding to interval e−1. Similarly, from the t′ known shares of interval e, fixing the secret
x0 determines the polynomial fe of degree t′. The difference between f (e−1) and f (e) represents
a t-degree polynomial with free coefficient zero and its evaluation on the points corresponding
to the servers in T2 is consistent with the shares available to the adversary.

Since the above argument holds for any value of x0, then all possible values of x0 are consistent
with the available information to the adversary. In other words, no information on x0 is revealed.

2

A Novel Adaptive Proactive Secret Sharing without a Trusted Party 11

4.3 Proof of Liveness

Theorem 3. Let n ≥ 3t + 1, TPfree-APSS preserves the liveness under the mobile Byzantine
adversary model.

Proof. In the following, we analyze the liveness (termination) of the algorithms I,U , C, respec-
tively.

– Liveness of algorithm I depends on termination of Step 3 and 4. Because there are at most
t corrupted participants in the interval, each participant waits for 2t + 1 echo messages for
participant Pi from different participants, which confirms that the Pi has completed the
distribution their share. The echo messages are stored in the set Πi. Because there are at
least t + 1 honest participant, every participant can get t + 1 Πi, so Step 3 terminates.
The termination of Step 4 is guaranteed by the termination of the multi-valued Byzantine
agreement protocol.

– The proof of the liveness of algorithm U is the same as in the case of the algorithm I.
– Because the number of corrupted participants in the current interval is at most t′ and n′ ≥

3t′+1, every Qj ∈ T can wait for 2t′+1 echo messages for evert honest Pi ∈ S, which means
every honest participant in S has finished the resharing of his share. As the threshold value
in S is t, there are at least 2t+1 participants would like to distribute their shares, then every
participant Qj ∈ T will eventually get t + 1 Π̄i in each L̄j , which means the termination
of Step 3 of the algorithm C. The termination of Step 4 is guaranteed by the multi-valued
Byzantine agreement protocol. Finally, every participant in T can compute their new shares
according to a polynomial of degree t′.

2

4.4 Security of Proposed Scheme

Theorem 4. Assuming the hardness of the discrete-logarithm problem, n ≥ 3t + 1 and the
threshold change from t to t′ and the number of participants change from n ≥ 3t + 1 to n′ ≥
3t′ + 1, respectively, TPfree-APSS is a secure adaptive proactive secret sharing under the mobile
Byzantine adversary model.

Proof. It can be obtained from Theorems 1, 2 and 3. 2

4.5 Discussion of Complexity

We consider the complexity of TPfree-APSS from two aspects, one is message complexity, the
other is communication complexity. It can be seen that the complexity of algorithms I and U are
the same, and algorithm U is a special case of algorithm C, so we only analysis the complexity
of C.

First, we consider the message complexity of C. In the Step 1, each participant Pi ∈ S send
send message to every participant Qj ∈ T . So, there are n′n messages in Step 1. In the Step
2, each participant Qj ∈ T send echo message for each Pj ∈ S to every participant in T . So,
there are (n′)2 ∗ n messages in Step 2. In Step 4, the message complexity, which is dominated
by the a multi-valued validated Byzantine agreement [5], is O((n′)2). As a result, the message
complexity of C is O((n′)2n).

Now we analyze the communication complexity of C. The length of send, echo messages,
which is dominated by Ai, is O(t′), so the communication complexity of the Step 1 and Step
2 are O(n′nt′) and O((n′)2nt′) respectively. In Step 4, the communication complexity, which is
dominated by the multi-valued validated Byzantine agreement [5], is O(n3 +n2(|L̄|)), here the L̄

12 Xiuqun Wang

is composed of t+1 Π̄i and each Π̄i is composed of 2t′+1 echo messages. So, the communication
complexity of Step 4 is O((n′)3 + (n′)2t(t′)2). Therefore, the communication complexity of C is
O((n′)3+(n′)2t(t′)2+(n′)2nt′). Furthermore, we can do some optimization to the communication
complexity by using the digest of Āi instead of Āi itself in the echo message.

In order to simple the formal of the complexity, we assume n and n′, t and t′ are in the
same level in complexity. Thus, TPfree-APSS has message complexity O(n3) and communication
complexity O((n)3t + (n)2t3).

5 Conclusion

In this paper, we design a novel adaptive proactive secret sharing without a trusted party in asyn-
chronous communication system. Using the resharing technology and multi-valued Byzantine
agreement protocol, the proposed scheme is secure and practical with the message complexity
O(n3) and communication complexity O((n)3t + (n)2t3).

References

1. Alon, N., Galil Z., Yung, M.: Dynamic-resharing verifiable secret sharing against mobile adversary. In: Spirakis,
P. (ed.) 3rd European Symp. On Algorithms (ESA’95). LNCS, vol. 979, pp. 523–537. Springer, Heidelberg
(1995)

2. Blakley, G. R.: Safeguarding cryptographic keys. In: Proc. of AFIPS National Computer Conference. vol. 48,
pp. 313–317 (1979)

3. Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R: Asynchronous verifiable secret sharing and proactive
cryptosystem. In: Proc. 9th ACM Conference on Computer and Communications Security, pp. 88–97 (2002)

4. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous broadcast protocols
(extended abstract). In: Kilian, J. (ed.) CRPYTO’01. LNCS, vol. 2139, pp. 524–541, Springer, Heidelberg
(2001)

5. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantinople: Practical asynchronous Byzantine
agreement using cryptography. In: 19th ACM Symp. on Principles of Distributed Computing, pp. 123–132
(2000)

6. Canetti, R., Herzberg, A.: Maintaining security in the presence of transient faults. In: Desmedt, Y. (ed.)
CRYPTO’94. LNCS, vol. 839, pp. 425–438. Springer, Heidelberg (1994)

7. Canetti, R., Rabin, T.: Fast asynchronous Byzantine agreement with optimal residence. In: Proc. 25th Annual
ACM Symposium on Theory of Computing, pp. 42–51 (1993)

8. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: Proc. 28th Annual Symposium
on the Foundations of Computer Science, pages 427–437 (1987)

9. Fischer, M. J., Lynch, N. A., Paterson, M. S.: Impossibility of distributed consensus with one faulty process.
J. ACM 32(2), 374–382 (1985)

10. Frankel, Y. Gemmell, P., MacKenzie, P., Yung, M.: Proactive RSA. In: Burton, S., Kaliski., Jr. (eds.)
CRYPTO’97. LNCS, vol. 1294, pp. 440–454. Springer, Heidelberg (1997)

11. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation in discrete-log based
cryptosystems. J. Cryptology 20 (1), 51–83 (2007)

12. Herzberg, A., Jakobsson, M., Jarecki, S., Krawczyk, H., Yung, M.: Proactive public key and signature systems.
In: Proc. of the 1997 ACM Conference on Computers and Communication Security, pp. 100–110 (1997)

13. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: How to cope with perpetual
leakage. In: Coppersmith, D. (ed.) CRYPTO’95. LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995)

14. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access structure. In: Proc. of IEEE
Global Communication Conference, pp. 99–102 (1998)

15. Lamport, L., Shostak, R., Pease. M.: The Byzantine generals problem. ACM transaction on Programming
language and system 4 (3), 382–401 (1982)

16. Nikov, V., Nikova, S.: On proactive secret sharing scheme. In: Handschuh, H., Anwar Hasan, M. (eds.) SAC’04.
LNCS, vol. 3357, pp. 308–325. Springer, Heidelberg (2005)

17. Ostrovsky, R., Yung, M.: How to withstand mobile virus attack. In: PODC’1991, pp. 51–59 (1991)
18. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. J. Association for Com-

puting Machinery 27 (2), 228–234 (1980)
19. Pedersen, T.: A threshold cryptosystem without a trusted party. In: Davies, D. (ed.) EUROCRYPT’91. LNCS,

vol. 547, pp. 129–140. Springer, Heidelberg (1991)

A Novel Adaptive Proactive Secret Sharing without a Trusted Party 13

20. Pedersen, T.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J.
(ed.) CRYPTO’91. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)

21. Schultz, D., Liskov, B., Liskov, M.: MPSS: Mobile proactive secret sharing. In: 27th Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, pp. 458–458 (2008)

22. Shamir, A.: How to share a secret. Comm of ACM. 22, 612–613 (1979)
23. Stinson, D. R., Wei, R.: Unconditionally secure proactive secret sharing scheme with combinatorial structures.

In: Heys, H. M., Adams, C. M. (eds.) SAC’99. LNCS. vol. 1758, pp. 200–214. Springer, Heidelberg (2000)
24. Wang, S., Tsai, Y., Chen, P.: Strategies of proactive (k, n) threshold secret sharing and application in a secure

message exchange system. J. Computers 19 (1), 29–38 (2008)
25. Zhou, L., Schneider, F. B., Ranesse, R. V.: APSS: Proactive secret sharing in asynchronous systems. ACM

Transaction on Information and System Security 8 (3), 259–286 (2005)

A Proof of Lemma 3

Proof. We recall that the privacy property is if an adversary who knows no more than t shares
knows nothing about the secret.

In order to prove that the adversary who has no more than t shares knows nothing about
the secret x0, we have to show that for every value x̃0, there exist two polynomials f̃ , f̃ ′ ∈ Zq[x]
of degree t that are consistent with the adversary view and such that f̃(0) = x̃0.

Fix any point in time, let B be the index set of participants that are corrupted. Here, we
assume |B| = t (for |B| < t, the adversary knows less). Without loss of generality, we assume
that the set B contains the first t participants. The adversary view consists of the polynomials
fi(z), f ′

i(z), and the shares xi, x′
i for i ∈ B, and all the commitments Aj for j ∈ {1, . . . , n}.

Note that, for any x̃0, there is a unique value x̃′
0 such that gx̃0hx̃′

0 = gx0hx′
0 . For i ∈ B, the

values x̃0 and x̃′
0 together with xi and x′

i, define uniquely two polynomials f̃0, f̃ ′
0 ∈ Zq[x] of

degree t such that f̃0(0) = x̃0 and f̃ ′
0(0) = x̃′

0, as well as

f̃i(z) = fi(z), f̃ ′
i(z) = f ′

i(z). (6)

It remains to show that Aik = gãikhb̃ik for k ∈ {0, . . . , t} and i ∈ {0, 1, . . . , n}. Define ei(z) =
fi(z) + lf ′

i(z) =
∑t

k=0 eikz
k and ẽi(z) = f̃i(z) + lf̃ ′

i(z) =
∑t

k=0 ẽikz
k, where l = logg h, then we

have Aik = geik = gaik+logg h×bik = gaikhbik (mod p). From Equation (6), we have Aik = gãikhb̃ik

(mod p) for k ∈ {0, . . . , t} and i ∈ B. It remains to show that ei(z) = ẽi(z) for i ∈ {0} ∪ {t +
1, . . . , n}.

For i = 0, we have

gẽ0(0) = gf̃0(0)+lf̃ ′
0(0) = gx̃0hx̃′

0 = gx0hx′
0 = gf0(0)+lf ′

0(0) = ge0(0),

and this implies e0(0) = ẽ0(0). For f̃0(i) = xi = f0(i) and f̃ ′
0(i) = x′

i = f ′
0(i), we can get that

e0(z) = ẽ0(z).

Assume that L = B ∪ {Pt+1}. For i = t + 1, define f̃t+1(z) = Σi∈{0}∪B f̃i(z)λi and f̃ ′
t+1(z) =

Σi∈{0}∪B f̃ ′
i(z)λi. From the algorithm I, we have ft+1(z) = Σi∈{0}∪Bfi(z)λi and f ′

t+1(z) =
Σi∈{0}∪Bf ′

i(z)λi. So
gẽt+1(0) = gf̃0(0)λ0+lf̃ ′

0(0)λ0+(Σi∈B f̃i(0)λ
i+lf̃ ′

i(0)λ
i)

= gẽ0(0)λ0+Σi∈B ẽi(0)λ
i

= ge0(0)λ0+Σi∈Bei(0)λ
i

= gf0(0)λ0+lf ′
0(0)λ0+(Σi∈Bfi(0)λ

i+lf ′
i(0)λ

i)

= get+1(0).

(7)

For the same reason, we can get gẽt+1(i) = get+1(i) for i = 1, . . . , t. So ẽt+1(z) = et+1(z).
For i = t + 2, . . . , n, because Pi ∈ {1, . . . , n} \ B and it doesn’t contribute to the secret x0

from the view of the adversary, we can choose random polynomials f̃i(z) and f̃ ′
i(z) such that

Aik = gãikhb̃ik (mod p). 2

