
THE BLOCK CIPHER NSABC (PUBLIC DOMAIN)

ALICE NGUYENOVA-STEPANIKOVA (*) AND TRAN NGOC DUONG (**)

Abstract. We introduce NSABC/w � Nice-Structured Algebraic Block Ci-
pher using w-bit word arithmetic, a 4w-bit analogous of Skipjack [NSA98] with
5w-bit key. The Skipjack's internal 4-round Feistel structure is replaced with
a w-bit, 2-round cascade of a binary operation (x, z) 7→ (x� z)≪ (w/2) that
permutes a text word x under control of a key word z. The operation �, sim-
ilarly to the multiplication in IDEA [LM91, LMM91], bases on an algebraic
group over w-bit words, so it is also capable of decrypting by means of the
inverse element of z in the group. The cipher utilizes a secret 4w-bit tweak
� an easily changeable parameter with unique value for each block encrypted
under the same key [LRW02] � that is derived from the block index and an
additional 4w-bit key. A software implementation for w = 64 takes circa 9
clock cycles per byte on x86-64 processors.

1. Introduction

In the today's world full of crypto algorithms, one may wonder what makes a
block cipher attractive.

In the authors' opinion, the answer to the question is one word: elegance. If
something looks nice, then there is a big chance that it is also good.

An elegant speci�cation makes it easier to memorize. Memorability makes it
easier to realize and to analyze, that allows for fruitful cryptanalytic results, leading
to deeper understanding which, in turn, makes greater con�dence in the algorithm.

The elegance comprises the following features:

• Few algebraic operations. Using of many operations results in hardly-
tractable and possibly undesirable interactions between them.

• Simple and regular key schedule. A complex key schedule, which e�ectively
adds another, unrelated, function to the cipher, results in hardly-tractable
and possibly undesirable interactions between the functions.

IDEA, a secure block cipher designed by Xuejia Lai and James L. Massey [LM91,
LMM91] is an example of elegance. Besides being elegant with an e�cient choice
and arrangement of algebraic operations, it is elegant for some more features:

• The use of incompatible group operations, where incompatible means there
are no simple relations (such as distributivity) between them. The in-
compatibility eliminates any exploitable algebraic property thus makes it
infeasible to solve the cipher algebraically.

• The use of modular multiplication. Multiplication produces huge mathe-
matical complexity while consuming few clock cycles on modern processors.
It thus greatly contributes to security and e�ciency of the cipher.

Date: May 8th, 2011. This is version 2 of the algorithm, superseding version 1 that was
published on Usenet July 2010.

Key words and phrases. block cipher, tweakable, algebraic, multiplication, IDEA, Skipjack.

(*) Hradcany, Praha, Czech Republic.
(**) Pernink, Karlovy Vary, Czech Republic. E-mail: tranngocduong@gmail.com.

1

THE BLOCK CIPHER NSABC (PUBLIC DOMAIN) 2

However, IDEA uses multiplication modulo the Fermat prime 2w + 1 which does
not exist for w = 32 or w = 64, making it not extendable to machine word lengths
nowadays. Furthermore, its key schedule is rather irregular due to the rotation of
the primary key.

Skipjack, a secure block cipher designed by the U.S. National Security Agency
[NSA98], is another example of elegant design. Besides being elegant with an
e�cient, simple and regular key schedule, it is elegant for one more feature: the use
of two ciphers � an outer cipher, or wrapper, consisting of �rst and last rounds,
and an inner cipher, or core, consisting of middle rounds.

The terms �core� and �wrapper� were introduced in the design rationale of a struc-
tural analogous of Skipjack: the block cipher MARS [IBM98]. MARS's designers
justify this two-layer structure by writing that it breaks any repetitious property,
it makes any iterative characteristic impossible, and it disallows any propagation of
eventual vulnerabilities in either layer to the other one, thus making attacks more
di�cult. The wrapper is primarily aimed at fast di�usion and the core primarily
at strong confusion. As Claude E. Shannon termed in his pioneer work [Sha49],
di�usion here refers to the process of letting each input bit a�ect many output bits
(or, equivalently, each output bit be a�ected by many input bits), and confusion

here refers to the process of letting that a�ection very involved, possibly by doing
it multiple times in very di�erent ways. If a cipher is seen as a polynomial map
in the plaintext and the key to the ciphertext, then the methods of di�usion and
confusion can be described as the e�ort of making the polynomials as complete as
possible, i.e. such that they contain virtually all terms at all degrees. This algebraic
approach is very evident in the structure of Skipjack (see Figure 5.1). Skipjack (as
opposed to MARS) was moreover sought elegant as the wrapper there is, in essence,
the inverse function of the core.

However, Skipjack uses an S-box that renders it rather slow, hard to program in
a secure and e�cient manner, and not extendable to large machine word lengths,
as such.

This article describes an attempt to combine the elegant idea of using incompat-
ible and complex machine-oriented algebraic operations in IDEA with the elegant
structure of Skipjack into a scalable and tweakable block cipher called NSABC �
Nice-Structured Algebraic Block Cipher.

NSABC is scalable. It is de�ned for every even word length w. It encrypts a
4w -bit text block under a 5w -bit key, thus allows scaling up with 8-bit increment
in block length and 10-bit increment in key length.

NSABC is tweakable. It can use an easily changeable 4w -bit parameter, called
tweak [LRW02], to make a unique version of the cipher for every block encrypted
under the same key. Included in the speci�cation is a formula for changing the
tweak.

NSABC makes use of entirely the overall structure of Skipjack, including the
key schedule, and only replaces the internal 4-round Feistel structure of Skipjack
with another structure. The new structure consists of two rounds of the binary
operation (x, z) 7→ (x�

e
z)≪ (w/2), that encrypts a text word x using a key word

z and a key-dependent word e. The operation �
e
is derived from an algebraic group

over w -bit words taking e as the unit element, so it is also capable of decrypting by
means of the inverse element of z in the group. The two rounds are separated by
an exclusive-or (XOR) operation that modi�es the current text word by a tweak
word.

NSABC is put in public domain. As it bases on Skipjack, eventual users should
be aware of patent(s) that may be possibly held by the U.S. Government and take

THE BLOCK CIPHER NSABC (PUBLIC DOMAIN) 3

steps to make sure the use is free of legal issues. We (the designers of NSABC) are
not aware of any patent related to other parts of the design.

The rest of the article is organized as follows. Section 2 de�nes operations
and notations. Section 3 speci�es the cipher. Section 5 gives numerical examples.
Section 4 suggests some implementation techniques. Section 6 concludes the article.
Source code of software implementations are given in the Appendices.

2. Definitions

2.1. Operations on words. Throughout this article, w denotes the machine word
length. We use the symbols �, �, � and (.)−1 to denote addition, subtraction
(and arithmetic negation), multiplication and multiplicative inversion, respectively,
modulo 2w (unless otherwise said). We use the symbols ¬ and ⊕ to denote bit-wise
complement and exclusive-or (XOR) on w -bit operands (unless otherwise said).
We write x≪ n to denote leftward rotation (i. e. cyclic shift toward the most
signi�cant bit) of x, that is always a w -bit word, by n bits. For even w, the symbol
(.)S denotes swapping the high and low order halves, i.e. xS = x≪ (w/2).

Let's de�ne binary operation � by

x� y = 2xy � x� y

and binary operation � by

x� y = 2xy � x� y

The bivariate polynomials on the right hand side are permutation polynomials
in either variable for every �xed value of the other variable [Riv99]. In other words,
� and � are quasi-group operations.

Furthermore, � is a group operation over the set of w -bit numbers1. This fact be-
comes obvious by considering an alternative de�nition for the � operation [Mey97]:
it can be done by dropping the rightmost bit, which is always �1�, of the product
modulo 2w+1 of the operands each appended with an �1� bit. Symbolically,

x� y = [(2x+ 1)(2y + 1)− 1] /2 (mod 2w)

The group de�ned by � is thus isomorphic to the multiplicative group of odd
integers modulo 2w+1, via the isomorphism

x 7→ 2x+ 1

The unit (i.e., identity) element of the group is 0. The inverse element of x,
denoted x̄, is

x̄ = �x(2x� 1)−1

The following relations are obvious.

x� y = � [(�x)� y]

x� y = � [(�x)� y]

Since the unary operator � is an involution, the following relations hold.

(x� y)� z = x� (y � z)

x� 0 = 0

1This fact, although simple and straightforward, does not seem to have been mentioned in the
literature.

THE BLOCK CIPHER NSABC (PUBLIC DOMAIN) 4

Notice that 0 is the right unit element w.r.t. the operation �. Hence

(x� y)� ȳ = x

which means that ȳ is also the right inverse element of y w. r. t. the � operation.
Since (¬x)� x = �1 holds for every x, the following relations hold.

(¬x)� y = ¬(x� y)

(1� x)� y = 1� (x� y)

Let e be a �xed w -bit number. Let's de�ne binary operations �
e
and �

e
by

x�
e
y = (x� e)� (y � e)� e = 2xy � (1− 2e)(x+ y − e)

x�
e
y = (x� e)� (y � e)� e = 2xy � (1− 2e)(x− y + e)

Then �
e
and �

e
are quasi-group operations over the set of w -bit numbers. This

follows from a more general fact that the right-hand side trivariate polynomials are
permutations in either variable while keeping the other two �xed [Riv99]. Actually,
the symbols �

e
and �

e
each de�nes an entire family of binary operations, of which

each is uniquely determined by e.
Furthermore, from the de�nition it immediately follows that �

e
is a group oper-

ation, namely, the group is isomorphic to one de�ned by � via the isomorphism

x 7→ x� e

The unit element of the group is e.
The inverse element of x in the group, denoted e

x , is

e

x
= x� e� e = [(2e− 1)x� 2e(e− 1)] � [2(x− e)� 1]

−1

Simple calculation proves the following relations.

x�
e
y = �

[
(�x)�

e
y
]

x�
e
y = �

[
(�x)�

e
y

]
(1� 2e� x)�

e
y = 1� 2e� (x�

e
y)

(x�
e
y)�

e
z = x�

e
(y �

e
z)

(x�
e
y)�

e

e

y
= x

Notice that e is also the right unit element w. r. t. �
e
, and e

y also the right

inverse element of y w. r. t. �
e
. The operation �

e
, which is non-commutative

and non-associative, will be used for encryption and, due to the existence of right
inversion, also for decryption.

THE BLOCK CIPHER NSABC (PUBLIC DOMAIN) 5

2.2. Order notations. We write multi-part data values in string (or number)
notation or tuple (or vector) notation. In string notation, the value is written as a
sequence of symbols, possibly separated by space(s) that are insigni�cant. In tuple
notation, the value is written as a sequence, in parentheses, of comma-separated
symbols.

For examples, z y x and 43 210 are in string notation, (x, y, z) and (0, 1, 2, 3, 4)
are in tuple notation.

The string notation indicates high-�rst order: the �rst (i.e. leftmost) symbol
denotes the most signi�cant part of the value when it is interpreted as a number.

Conversely, the tuple notation indicates low-�rst order: the �rst symbol denotes
the least signi�cant part of the value when it is interpreted as a number.

For examples, to interpret a 3-word number, x2 denotes the most signi�cant
word of x2x1x0 and x0 denotes the least signi�cant word of (x0, x1, x2).

The same value may appear in either notation. Thus, for example, for every a,
b, c and d,

a b c d = (d, c, b, a)

The term part introduced above usually refers to �word�, but it may also refer to
�digit� [of a number], �component� [of a tuple or vector], as well as group thereof.
If, for example x, y, z, t are 1-digit, 2-digit, 3-digit and 4-digit values respectively,
then (x, y, z, t) = 9876543210 means x = 0, y = 21, z = 543 and t = 9876.

Note that the �string notation� and �number notation� being used as synonyms
does not mean that big-endian data ordering is mandated. In order to avoid security
irrelevant details, we do not specify endianess. We nevertheless provide a �reference�
implementations in C++, where every octet string is considered as a [generally
multi-word] number with the �rst octet taken as the least signi�cant one. The
implementation thus interprets octet strings as numbers in little-endian order.

2.3. Operations on word strings. Let (.)R denote the permutation that reverses
the word order of a non-empty word string. For example, for w = 8,

0x0123ABCDR = 0xCDAB2301

Let (.)S denote the permutation that swaps the high order and low order halves
of every word of a non-empty word string. For example, for w = 8,

0x0123ABCDS = 0x1032BADC

The operator ⊕ on word strings denote word-wise application of ⊕. For example,

(a0, a1, a2, ...)⊕ (b0, b1, b2, ...) = (a0 ⊕ b0, a1 ⊕ b1, a2 ⊕ b2...)
Unless otherwise said, operators � and � on word strings denote word-wise

modular addition and subtraction, respectively. For example,

(a0, a1, a2, . . .)� (b0, b1, b2, . . .) = (a0 � b0, a1 � b1, a2 � b2, . . .)

(a0, a1, a2, . . .)� (b0, b1, b2, . . .) = (a0 � b0, a1 � b1, a2 � b2, . . .)

Let (̄.) denote the word-wise application of the inversion operator (̄.) on a word
string. For example,

(a, b, c, ...) = (ā, b̄, c̄, ...)

THE BLOCK CIPHER NSABC (PUBLIC DOMAIN) 6

Given word strings E and X of the same length, let E
X denote the word-wise

application of the inversion operator e
x on every word x of X with the index-

matching word of E taken as the [right] unit element e. For example,

(e1, e2, e3, . . .)

(x1, x2, x3, . . .)
=

(
e1
x1
,
e2
x2
,
e3
x3
, . . .

)
Operations on word strings are used in this article only to express the decryption

function explicitly.

3. Specification

This section provides details of NSABC/w. From now on w, the word length,
must be even.

Throughout this article, X denotes a 4w -bit plaintext block, Y a 4w -bit cipher-
text block, Z a 5w -bit key, T a 4w -bit secret tweak, i.e., a value that is used to
encrypt only one block under the key, U a w -bit unit key, i.e. an additional key
that generates right unit elements for the underlying quasi-groups.

Tweaking is optional. It may be disabled by keeping T constant (like Z and
U) while encrypting many blocks. When tweaking is disabled, NSABC becomes a
conventional, non-tweakable, block cipher.

Mathematically, the cipher is given by two functions,

ENCRYPT(X,Z, T, U), which encrypts X under control of Z, T and U,
DECRYPT(Y,Z, T, U), which decrypts Y under control of Z, T and U,

satisfying the apparent relation

DECRYPT(ENCRYPT(X,Z, T, U), Z, T, U) = X

The function ENCRYPT is de�ned in terms of four functions:

CRYPT, a text encryption function that encrypts a plaintext block using a key

schedule, a unit schedule and a tweak schedule;
KE, a key expansion function, that generates the key schedule from Z ;
UE, a unit element function, that generates the unit schedule from U ; and
TE, a tweak expansion function, that generates the tweak schedule from T.

Algorithm 1 Function ENCRYPT

Input:
X 4w -bit plaintext block
Z 5w -bit key
T 4w -bit tweak
U w -bit unit key

Output:
Y 4w -bit ciphertext block

Relation:
ENCRYPT(X,Z, T, U) = CRYPT(X, KE(Z),UE(U),TE(T))

An explicit relation for ENCRYPT is given in Algorithm 1. An explicit relation
for DECRYPT is given in Algorithm 7.

Mechanically, encryption is performed on a conceptual processor with a 4-word
text register (x0, x1, x2, x3), a 5-word key register (z0, z1, z2, z3, z4), a 4-word tweak

register (t0, t1, t2, t3) and a word unit register u. The key register is initially loaded
with the key Z. The tweak register is initially loaded with the tweak T. The unit
register is initially loaded with the unit key U. The text register is initially loaded
with the plaintext block X and �nally it contains the ciphertext block Y.

THE BLOCK CIPHER NSABC (PUBLIC DOMAIN) 7

A
Bu(18)

G
G z4(2) z3(2) z2(2) z1(2) z0(2)z4(16) z3(16) z2(16) z1(16) z0(16)

z4(18) z3(18) z2(18) z1(18) z0(18)z4(17) z3(17) z2(17) z1(17) z0(17)z4(64) z3(64) z2(64) z1(64) z0(64)
x2(1) x0(1)x1(1)x3(1)x3(8) x2(8) x0(8)x1(8)

x0(32)x1(32)x2(32)x3(32) x3(9) x2(9) x0(9)x1(9)

z4(0) z3(0) z2(0) z1(0) z0(0)z4(1) z3(1) z2(1) z1(1) z0(1)x3(0) x2(0) x0(0)x1(0)t0(0)t1(0)t2(0)t3(0)
t0(1)t1(1)t2(1)t3(1) t0(8)t1(8)t2(8)t3(8)
t0(9)t1(9)t2(9)t3(9) t0(32)t1(32)t2(32)t3(32)u(64)

u(0)u(1)u(2)
u(17)u(16)

2U+1

Figure 3.1. Representative rounds.

The concrete, vector, notation here speci�es the order of words so, for example,
x0 is initially loaded with the least signi�cant word of X and �nally it contains the
least signi�cant word of Y.

3.1. Text encryption. The text register (x0, x1, x2, x3) is initially loaded with the
plaintext block X and �nally it contains the ciphertext block Y.

Text encryption proceeds in 32 rounds of operations. A round is of either type
A or type B. The rounds are arranged in four passes: �rstly eight rounds of type A,
then eight rounds of type B, then eight rounds of type A again, �nally eight rounds
of type B again.

For k -th round, 0 ≤ k ≤ 31, the text word x0 is permuted, i.e. it is updated by
an execution unit called G-box that implements a permutation G on the set of word
values, and the contents of the text word x0 are mixed, by exclusive-or (XOR), into
an other text word that is either x1 or x3. The order of operations and the target
of mixing depend on the round type:

• For an A-typed round (see Figure 3.1 part A), G applies �rst, then the
mixing takes place and targets x1. That is, the contents of x0 enters the G-
box, the output value of the G-box is stored back to x0, then the contents
of x0 and x1 are XOR'ed and the result is stored to x1. The words x2 and
x3 are left unchanged.

• For a B-typed round (see Figure 3.1 part B), the mixing takes place and
targets x3 �rst, then G applies. That is, the contents of x0 and x3 are
XOR'ed and the result is stored to x3, then the contents of x0 enters the
G-box, the output value of the G-box is stored back to x0. The words x1
and x2 are left unchanged.

Besides the text input, the G-box also takes as its inputs an ordered pair of
w -bit key words (K2k,K2k+1) (depicted by / in Fig. 3.1 and 3.2), an ordered pair
of w -bit unit words (L2k, L2k+1) (depicted by � in Fig. 3.1 and 3.2), and a w -bit
tweak word Ck (depicted by D in Fig. 3.1 and 3.2). The details on how key words,
unit words and tweak words are generated and used will be given in the subsequent
subsections.

THE BLOCK CIPHER NSABC (PUBLIC DOMAIN) 8

Algorithm 2 Function CRYPT (text encryption)

Input:
X 4w -bit plaintext block
K 64w -bit key schedule
L 64w -bit unit schedule
C 32w -bit tweak schedule

Output:
Y 4w -bit ciphertext block

Pseudo-code:

(x0, x1, x2, x3)← X
for k ← 0, 1, 2, . . . , 31 loop

if 0 6 k < 8 ∨ 16 6 k < 24 then

x0 ← G(x0, (K2k,K2k+1), (L2k, L2k+1), Ck)
x1 ← x1 ⊕ x0

elsif 8 6 k < 16 ∨ 24 6 k < 32 then

x3 ← x3 ⊕ x0
x0 ← G(x0, (K2k,K2k+1), (L2k, L2k+1), Ck)

end if

(x0, x1, x2, x3)← (x1, x2, x3, x0)
end loop

Y ← (x0, x1, x2, x3)

Relations:

Y = (x
(32)
0 , x

(32)
1 , x

(32)
2 , x

(32)
3)

For 0 6 k < 8 ∨ 16 6 k < 24:

x
(k+1)
0 = x

(k)
1 ⊕ g(k)

x
(k+1)
1 = x

(k)
2

x
(k+1)
2 = x

(k)
3

x
(k+1)
3 = g(k)

For 8 6 k < 16 ∨ 24 6 k < 32:

x
(k+1)
0 = x

(k)
1

x
(k+1)
1 = x

(k)
2

x
(k+1)
2 = x

(k)
3 ⊕ x(k)0

x
(k+1)
3 = g(k)

For 0 6 k < 32:

g(k) = G(x
(k)
0 , (K2k,K2k+1), (L2k, L2k+1), Ck)

(x
(0)
0 , x

(0)
1 , x

(0)
2 , x

(0)
3) = X

(K0,K1,K2, . . . ,K63) = K
(L0, L1, L2, . . . , L63) = L
(C0, C1, C2, . . . , C31) = C

The encryption round is completed with a rotation by one word toward the
least signi�cant word on the text register, i.e. the text register is modi�ed by
simultaneous loading the word x0 with the contents of the word x1, x1 with the
contents of x2, x2 with the contents of x3, and x3 with the contents of x0.

3.2. Tweak schedule. The tweak register (t0, t1, t2, t3) is initially loaded with the
tweak T. The tweak words are generated in 32 rounds of operations.

For k -th round, 0 ≤ k ≤ 31, the value of the word t0 of the tweak register is taken
as the tweak word Ck [which enters the G-box in the k -th encryption round]. Then,

THE BLOCK CIPHER NSABC (PUBLIC DOMAIN) 9

Algorithm 3 Function TE (tweak expansion)

Input:
T 4w -bit tweak

Output:
C 32w -bit tweak schedule

Pseudo-code:

(t0, t1, t2, t3)← T
for k ← 0, 1, 2, . . . , 31 loop

Ck ← t0
(t0, t1, t2, t3)← (t1, t2, t3, t0)

end loop

Relations:

C = (C0, C1, C2, . . . , C31)
For 0 6 k < 32:

Ck = t
(k)
0

t
(k+1)
0 = t

(k)
1

t
(k+1)
1 = t

(k)
2

t
(k+1)
2 = t

(k)
3

t
(k+1)
3 = t

(k)
0

(t
(0)
0 , t

(0)
1 , t

(0)
2 , t

(0)
3) = T

similarly to the text register, the tweak register is rotated by one word toward the
least signi�cant word (see Figure 3.1).

NOTE. For T3T2T1T0 = T , the tweak schedule is

TE(T) = (T0, T1, T2, T3, T0, T1, T2, T3, . . . , T0, T1, T2, T3)

3.3. Key schedule. The key register (z0, z1, z2, z3, z4) is initially loaded with the
key Z. The key words are generated in 64 rounds of operations.

For k -th round, 0 ≤ k ≤ 63, the value of the word z3 of the key register is taken
as the key word Kk [which enters the G-box of the k/2-th encryption round as the
�rst key word if k is even, or as the second key word if k is odd]. The key register is
then rotated by one word toward the least signi�cant word. The rotation is similar
to that on the text register and the tweak register. (See Figure 3.1.)

NOTE. For Z4Z3Z2Z1Z0 = Z, the key schedule is

KE(Z) = (Z3, Z4, Z0, Z1, Z2, Z3, Z4, Z0, Z1, Z2, . . . , Z3, Z4, Z0, Z1)

3.4. Unit schedule. The unit register u is initially loaded with the unit key U.
Unit words are generated in 64 rounds of operations.
For k -th round, 0 ≤ k ≤ 63, the value of the unit register u is taken as the

unit word Lk [which, similarly to the key word Kk, enters the G-box of k/2-th
encryption round as the �rst unit word if k is even, or as the second unit word if
k is odd]. The register is then added modulo 2w by the [key-dependent] constant
2U � 1 to become ready for the next round. (See Figure 3.1.)

NOTE. Given unit key U, the unit schedule is

UE(U) = (U, 3U � 1, 5U � 2, 7U � 3, . . . , 127U � 63)

THE BLOCK CIPHER NSABC (PUBLIC DOMAIN) 10

Algorithm 4 Function KE (key expansion)

Input:
Z 5w -bit key

Output:
K 64w -bit key schedule

Pseudo-code:

(z0, z1, z2, z3, z4)← Z
for k ← 0, 1, 2, . . . , 63 loop

Kk ← z3
(z0, z1, z2, z3, z4)← (z1, z2, z3, z4, z0)

end loop

Relations:

K = (K0,K1,K2, . . . ,K63)
For 0 6 k < 64:

Kk = z
(k)
3

z
(k+1)
0 = z

(k)
1

z
(k+1)
1 = z

(k)
2

z
(k+1)
2 = z

(k)
3

z
(k+1)
3 = z

(k)
4

z
(k+1)
4 = z

(k)
0

(z
(0)
0 , z

(0)
1 , z

(0)
2 , z

(0)
3 , z

(0)
4) = Z

Algorithm 5 Function UE (unit element)

Input:
U w -bit unit key

Output:
L 64w -bit unit schedule

Pseudo-code:

u← U
for k ← 0, 1, 2, . . . , 63 loop

Lk ← u
u← u� 2U � 1

end loop

Relations:

L = (L0, L1, L2, . . . , L63)
For k = 0, 1, 2, . . . , 63:
Lk = u(k)

u(k+1) = u(k) � 2U � 1
u(0) = U
Or, equivalently, for every k:
u(k) = U � k

3.5. G-box. The G-box implements a permutation G (see Figure 3.2) that takes
as argument a text word and is parametrized by an ordered pair of key words
(K0,K1), an ordered pair of unit words (L0, L1) and a tweak word C0 to return
a text word as the result. The G-box operates on a word register that initially
contains the argument and �nally contains the result. The G-box proceeds in two

THE BLOCK CIPHER NSABC (PUBLIC DOMAIN) 11

Figure 3.2. Permutation G.

rounds, each consisting of an operation �
e
followed by a half-word swap S. The two

rounds are separated by an exclusive-or (XOR) operation.
For the �rst round, the operation �

e
takes the contents of the register as the left

operand, K0 as the right operand, and L0 as its right unit element. The result
is stored back to the register. The register is then modi�ed by operation S, i.e.
swapping the contents of its high and low order halves.

For the inter-round XOR operation, the register is modi�ed by XOR'ing its
contents with the tweak word C0 and storing the result back to it.

For the second round, the register is processed similarly to the �rst round with
K1 and L1 being used instead of K0 and L0, respectively.
NOTES.

(1) The cipher uses 64 distinct instances from the family of operations �
e
.

(2) Alternatively, it may be seen as using 64 identical instances of the single
operation � or �, but operands and result of each instance are �biased�
by adding or subtracting the constant L0 (or L1) that is speci�c to the
instance, and furthermore, being seen as �, the left operand enters and the
result leaves it in altered sign.

(3) Like Skipjack, the G-box permutes K0 (or K1) while keeping x and other
parameters �xed. Unlike Skipjack, the G-box doesn't permute the word
(Hi(K0),Lo(K1)) where Hi(.) and Lo(.) stand for the high and the low
order half respectively.

(4) Unlike Skipjack, di�usion in the G-box is incomplete, i.e. not every input
bit a�ects all output bits. Indeed, the v -th bit of the argument, with
v > w/2, a�ects only all bits of the low order half and bits v through w− 1
of the result; bits w/2 through v − 1 remain una�ected.

(5) If (K0,K1) = (L0, L1) ∧ C0 = 0 then G becomes the identity.

3.6. Decryption. Decryption can be easily derived from encryption. Namely, if

Y = CRYPT(X,KE(Z),UE(U),TE(T))

THE BLOCK CIPHER NSABC (PUBLIC DOMAIN) 12

Algorithm 6 Permutation G

Input:
x w -bit text word
(K0,K1) pair of w -bit key words
(L0, L1) pair of w -bit unit words
C0 w -bit tweak word

Output:
y w -bit text word

Pseudo-code:

x← x �
L0

K0

x← xS

x← x⊕ C0

x← x �
L1

K1

x← xS

y ← x

Relation:

G(x, (K0,K1), (L0, L1), C0) = (((x �
L0

K0)S ⊕ C0) �
L1

K1)S

Algorithm 7 Function DECRYPT

Input:
Y 4w -bit ciphertext block
Z 5w -bit key
T 4w -bit tweak
U w -bit unit key

Output:
X 4w -bit plaintext block

Relation:

DECRYPT(Y,Z, T, U) = CRYPT(Y RS,
UE(U)R

KE(ZR)
,UE(U)R,TE(TRS))RS

then it immediately follows that

CRYPT(Y RS,
UE(U)R

KE(ZR)
,UE(U)R,TE(TRS)) = XRS

In other words, encrypting the cipher block in reverse half-word order (Y RS)
using the tweak in reverse half-word order (TRS), the unit schedule in reverse word
order (UE(U)R), and the key schedule consisting of inverse words of one expanded
from the key in reverse word order (ZR), where the inversions are of the quasi-
groups de�ned by the operation �

e
and each quasi-group is uniquely given by its

right unit that is the index-matching word of the encryption unit schedule in reverse
word order (UE(U)R), recovers the plain block in reverse half-word order (XRS).
NOTES.

(1) The full cipher is illustrated in Figure 3.3, whereX3X2X1X0 = X, Y3Y2Y1Y0 =
Y , Z4Z3Z2Z1Z0 = Z and T3T2T1T0 = T (the unit schedule is omitted).
The �gure is obtained by �unrolling� (i.e. eliminating all rotations of) the
data�ow graph of the full cipher that would be obtained by cascading the
individual rounds as in Figure 3.1.

THE BLOCK CIPHER NSABC (PUBLIC DOMAIN) 13

(2) The overall structure is up to word indexing identical to that of Skipjack.
The word re-indexing, which is cryptographically insigni�cant, was intro-
duced to ease description and illustration.

(3) Like Skipjack, decryption is similar to encryption. To decrypt with Skip-
jack, one swaps adjacent words in the cipher and the plain block and swaps
adjacent word pairs in the key. To decrypt with NSABC, one reverses the
word order, i.e., swaps the �rst and the last words as well as the second
�rst and the second last ones in the text block, the tweak and the key.
For Skipjack, one also swaps high and low order halves of every word. For
NSABC, one swaps high and low order halves of every word but that of the
key.

(4) Unlike Skipjack, just swapping the words and half-words doesn't turn en-
cryption into decryption � one needs to invert key words too. Thus although
ENCRYPT and DECRYPT can be expressed explicitly in terms of CRYPT,
DECRYPT cannot be expressed explicitly in terms of ENCRYPT.

3.7. Tweak derivation. The 4w -bit secret tweak T is used to encrypt only one
block [under a given key Z and unit key U]. In order to encrypt multiple blocks the
tweak is derived from the block index and a 4w -bit [additional] key, called tweak

key, as follows. Let T (j) denote the tweak used to encrypt j -th block. For the �rst
block (j = 0), the tweak key is used as the tweak directly:

T (0) = tweak key

The subsequent tweak is computed from the current tweak by the recurrent
relation:

T (j+1) = T (j) � 2T (0) � 1

or, equivalently,

T (j) = T (0) � j

where all operands are regarded as 4w -bit numbers and all operators are de�ned
on 4w -bit arithmetic, i.e. mod 24w.
NOTES.

(1) The third relation, where T (0) conveniently designates the [unnamed] tweak
key, is meant for random access. The family of functions

{
T : j 7→ T (0) � j

}
,

parametrized by the tweak key T (0), is not ε-almost 2-XOR universal ac-
cording to de�nition in [LRW02]. Eventual application of this family in
the Liskov-Rivest-Wagner construction, i.e. encryption by CRYPT(X ⊕
T (j),KE(Z), 0,UE(U))⊕ T (j), is therefore impossible.

(2) For e�cient random access, applications may opt to use non-�at spaces
of the block index j. For example, an application that encrypts relational
databases may de�ne the index in the format j = j4 j3 j2 j1 j0, where j4 is
database number, j3 is table number within the database, j2 is row number
within the table, j1 is �eld number within the row and j0 is block number
within the �eld.

(3) Tweaking must be disabled when the cipher is used as a permutation, i. e.
to generate a sequence of unique numbers.

(4) Tweaking should be enabled in all other modes of operation. For exam-
ple, a non-tweakable block cipher can generate a sequence of independent
numbers by encrypting a counter block in Cipher Block Chaining (CBC)
mode; NSABC can generate a similar sequence with virtually the same
cycle length by encrypting a constant block in a �tweaked CBC� mode.

THE BLOCK CIPHER NSABC (PUBLIC DOMAIN) 14

Figure 3.3. The full cipher, by �unrolling�.

THE BLOCK CIPHER NSABC (PUBLIC DOMAIN) 15

4. Example

An encipherment in NSABC/16 with

X = 0x0123456789ABCDEF

Z = 0x88880777006600050000

T = 0x0001002203334444

U = 0x1998

results in

Y = 0x88B14E700F51921E

Table 1 lists states of the [conceptual] processor during the encipherment, i.e.
the contents of all registers at the start of round k for k = 0, 1, 2, ..., 64 for key
schedule and unit schedule, and k = 0, 1, 2, ..., 32 for tweak schedule and text
encryption. The start of round 64 (32) conveniently means the end of round 63
(31), which is that of the entire algorithm.

5. Notes on implementation

This section provides methods for e�cient software implementation for two types
of environment: memory-constrained, such as embedded computers, and memory-
abundant, such as servers and personal computers.

5.1. Memory-constrained environment. The function ENCRYPT can be im-
plemented without using any writeable memory on a processor with at least 16
word registers:

• 4 for (x0, x1, x2, x3) � text register
• 5 for (z0, z1, z2, z3, z4) � key register
• 4 for (t0, t1, t2, t3) � tweak register
• 1 for u � unit register,
• 1 for the constant value 2U � 1, and
• 1 for k � round index.

Indeed, the schedules K, L and C can vanish because every word of them, once
produced, can be consumed immediately, provided that the functions KE, TE,
UE and CRYPT are programmed to run in parallel and synchronized with each
increment of k. Source code of this implementation is given in Appendix A.

Unlike ENCRYPT, DECRYPT needs memory for the key schedule because on-
the-�y modular multiplicative inversion is too slow to be practical. In this envi-
ronment, modes of operation that avoid DECRYPT (i.e. ones using ENCRYPT to
decrypt) are thus preferable.

5.2. Memory-abundant environment. The quasi-group operation �
e

can be

evaluated by only one multiplication and one addition. Indeed,

x�
e
z = mx� n

where x is a text word, z key word, and

m = 2(z − e)� 1

n = (2e− 1)� (z − e)
So, instead of using the (z, e) pairs, one may pre-compute the (m,n) pairs once

and use them many times.

THE BLOCK CIPHER NSABC (PUBLIC DOMAIN) 16

Table 1. Processor states during an encipherment by NSABC/16

=== ==== ==================== === ================ ================

Unit Key register Tweak register Text register

k u z4 z3 z2 z1 z0 k t3 t2 t1 t0 x3 x2 x1 x0

=== ==== ==================== === ================ ================

0 1998 88880777006600050000 0 0001002203334444 0123456789ABCDEF

1 4CC9 00008888077700660005

2 7FFA 00050000888807770066 1 4444000100220333 388401234567B12F

3 B32B 00660005000088880777

4 E65C 07770066000500008888 2 0333444400010022 1E90388401235BF7

5 198D 88880777006600050000

6 4CBE 00008888077700660005 3 0022033344440001 60AC1E903884618F

7 7FEF 00050000888807770066

8 B320 00660005000088880777 4 0001002203334444 499160AC1E907115

9 E651 07770066000500008888

10 1982 88880777006600050000 5 4444000100220333 C2D7499160ACDC47

11 4CB3 00008888077700660005

12 7FE4 00050000888807770066 6 0333444400010022 F1EFC2D749919143

13 B315 00660005000088880777

14 E646 07770066000500008888 7 0022033344440001 03D2F1EFC2D74A43

15 1977 88880777006600050000

16 4CA8 00008888077700660005 8 0001002203334444 273D03D2F1EFE5EA

17 7FD9 00050000888807770066

18 B30A 00660005000088880777 9 4444000100220333 1615C2D703D2F1EF

19 E63B 07770066000500008888

20 196C 88880777006600050000 10 0333444400010022 A9B6E7FAC2D703D2

21 4C9D 00008888077700660005

22 7FCE 00050000888807770066 11 0022033344440001 18C0AA64E7FAC2D7

23 B2FF 00660005000088880777

24 E630 07770066000500008888 12 0001002203334444 B049DA17AA64E7FA

25 1961 88880777006600050000

26 4C92 00008888077700660005 13 4444000100220333 851857B3DA17AA64

27 7FC3 00050000888807770066

28 B2F4 00660005000088880777 14 0333444400010022 71F82F7C57B3DA17

29 E625 07770066000500008888

30 1956 88880777006600050000 15 0022033344440001 D5F0ABEF2F7C57B3

31 4C87 00008888077700660005

32 7FB8 00050000888807770066 16 0001002203334444 E5118243ABEF2F7C

33 B2E9 00660005000088880777

34 E61A 07770066000500008888 17 4444000100220333 94FAE51182433F15

35 194B 88880777006600050000

36 4C7C 00008888077700660005 18 0333444400010022 7BB394FAE511F9F0

37 7FAD 00050000888807770066

38 B2DE 00660005000088880777 19 0022033344440001 11747BB394FAF465

39 E60F 07770066000500008888

40 1940 88880777006600050000 20 0001002203334444 D14F11747BB345B5

41 4C71 00008888077700660005

42 7FA2 00050000888807770066 21 4444000100220333 0385D14F11747836

43 B2D3 00660005000088880777

44 E604 07770066000500008888 22 0333444400010022 873B0385D14F964F

45 1935 88880777006600050000

46 4C66 00008888077700660005 23 0022033344440001 CB9B873B03851AD4

47 7F97 00050000888807770066

48 B2C8 00660005000088880777 24 0001002203334444 D6FCCB9B873BD579

49 E5F9 07770066000500008888

50 192A 88880777006600050000 25 4444000100220333 D4CF0385CB9B873B

51 4C5B 00008888077700660005

52 7F8C 00050000888807770066 26 0333444400010022 779F53F40385CB9B

53 B2BD 00660005000088880777

54 E5EE 07770066000500008888 27 0022033344440001 8CECBC0453F40385

55 191F 88880777006600050000

56 4C50 00008888077700660005 28 0001002203334444 C93A8F69BC0453F4

57 7F81 00050000888807770066

58 B2B2 00660005000088880777 29 4444000100220333 2E1A9ACE8F69BC04

59 E5E3 07770066000500008888

60 1914 88880777006600050000 30 0333444400010022 8038921E9ACE8F69

61 4C45 00008888077700660005

62 7F76 00050000888807770066 31 0022033344440001 D4BE0F51921E9ACE

63 B2A7 00660005000088880777

64 E5D8 07770066000500008888 32 0001002203334444 88B14E700F51921E

THE BLOCK CIPHER NSABC (PUBLIC DOMAIN) 17

The cipher is parallelizable. The following procedure executes all 32 rounds in
20 steps, of which half performing two or three parallel evaluations of G. Recall
that g(k) is the result of G in round k.

(1) Compute g(0)

(2) Compute g(1)

(3) Compute g(2)

(4) Compute g(3)

(5) Compute g(4)

(6) Compute g(5), g(11) in parallel
(7) Compute g(6), g(9) in parallel
(8) Compute g(7), g(10), g(13) in parallel
(9) Compute g(8), g(14) in parallel
(10) Compute g(12), g(15) in parallel
(11) Compute g(16)

(12) Compute g(17)

(13) Compute g(18)

(14) Compute g(19)

(15) Compute g(20)

(16) Compute g(21), g(27) in parallel
(17) Compute g(22), g(25) in parallel
(18) Compute g(23), g(26), g(29) in parallel
(19) Compute g(24), g(30) in parallel
(20) Compute g(28), g(31) in parallel

The procedure becomes evident by examining the data�ow graph of the cipher,
shown in Figure 5.1, which is obtained by �unrolling� the one in Figure 3.3. Here
�unrolling� means introducing a rotation so that the G-boxes with congruent round
indices (mod 3) lay on a straight line.

On a x86-64 processor in 32-bit mode (w = 32), the procedure takes about 256
clock cycles, i.e. 256/16 = 16 clock cycles per byte encrypted. (The source code
of this implementation is given in Appendix B.) In 64-bit mode (w = 64), it takes
about 384 clock cycles, i.e. 384/32 = 12 clock cycles per byte.

The procedure may be also coded twice, i.e. it may be run in two instances in
parallel on a single core of the processor, with the second instance delayed by a few
steps after the �rst, to encrypt two blocks possibly under di�erent tweaks and/or
keys. This method has shown to be e�ective for x86-64 processors in 64-bit mode,
resulting in about 9 clock cycles per byte.

6. Conclusion

We de�ned NSABC, a block cipher utilizing a group operation that is essentially
modular multiplication of machine words, a powerful operation available on many
processors.

NSABC was meant to be elegant. It uses no S-boxes or �magic� constants. It uses
only machine word-oriented algebraic operations. It makes use of the simple and
regular structure of Skipjack which has become publicly known for over a decade
� su�cient time to be truly understood. It is elegant to be easily memorizable,
realizable and analyzable.

NSABC bases on some valuable design of a well-reputed agency in the branch.
We therefore believe that it is worth analysis and it can withstand rigorous analysis.
If this happens to be true, then we may have a practical cipher with 256-bit blocks,
allowing to encrypt enormous amount of data under the same key, and with 320-bit
keys, allowing to protect data over every imaginable time.

THE BLOCK CIPHER NSABC (PUBLIC DOMAIN) 18

Figure 5.1. The full cipher, by another �unrolling�.

In cipher design there is always a trade-o� between security and e�ciency, and
designers always have to ask: �What do we want, a very strong and fairly fast
cipher, or fairly strong but very fast?�

NSABC re�ects the authors' view on the dilemma. If Skipjack is regarded as very
strong and just fairly fast, then NSABC may be regarded as a design emphasizing
the second aspect � make it very fast, abeit just fairly strong. For w -bit word
length, NSABC key length is 5w bits, optionally plus 5w bits more, whilst the true
level of security is yet to be determined. On the other hand, on a modern 64-bit
processor it takes only 9 clock cycles to encrypt a byte.

NSABC is thus fast to be comparable to every modern block cipher.

THE BLOCK CIPHER NSABC (PUBLIC DOMAIN) 19

References

[IBM98] Burwick C., Coppersmith D., D'Avignon E., Gennaro G., Halevi S., Jutla C., Matyas
S. M. Jr., O'Connor L., Peyravian M., Sa�ord D., Zunic N.: MARS � a candidate
cipher for AES. 1998.

[LM91] Lai X., Massey J. L.: A proposal for a new block encryption standard. 1991.
[LMM91] Lai X., Massey J. L., Murphy S.: Markov ciphers and di�erential cryptanalysis. 1991.
[LRW02] Liskov M., Rivest R. L., Wagner D.: Tweakable block ciphers. 2002.
[Mey97] Meyers J. H.: Modifying IDEA. Discussion on Usenet. 1997.
[NSA98] National Security Agency: Skipjack and KEA speci�cation. 1998.
[Riv99] Rivest R. L.: Permutation polynomials modulo 2w. 1999.
[Sha49] Shannon C. E.: Communication theory of secrecy systems. 1949.

APPENDIX A. A reference implementation of NSABC/32 � ENCRYPT only

1 typedef uint32_t word;

2 //--

3 static word o(word x, word y, word e)

4 {

5 return 2*x*y + (1 - 2*e)*(x - y + e);

6 }

7 //--

8 static word G(word x, word z0, word z1, word u0, word u1, word t)

9 {

10 x = o(x,z0 ,u0);

11 x = _rotl(x,16);

12 x ^= t;

13 x = o(x,z1 ,u1);

14 x = _rotl(x,16);

15 return x;

16 }

17 //--

18 void encrypt(word Y[4], word const X[4], word const Z[5],

19 word const T[4], word U)

20 {

21 word

22 x0 = X[0], x1 = X[1], x2 = X[2], x3 = X[3],

23 z0 = Z[0], z1 = Z[1], z2 = Z[2], z3 = Z[3], z4 = Z[4],

24 t0 = T[0], t1 = T[1], t2 = T[2], t3 = T[3],

25 u0 = U,

26 u1 = u0 + 2*U + 1;

27 for(int k = 0; k < 32; k++)

28 {

29 if(k & 8) // B-round

30 {

31 x3 ^= x0;

32 x0 = G(x0 , z3 , z4, u0, u1, t0);

33 }

34 else // A-round

35 {

36 x0 = G(x0 , z3 , z4, u0, u1, t0);

37 x1 ^= x0;

38 }

39 word x = x0; x0 = x1; x1 = x2; x2 = x3; x3 = x;

40 word z = z0; z0 = z2; z2 = z4; z4 = z1; z1 = z3; z3 = z;

41 word t = t0; t0 = t1; t1 = t2; t2 = t3; t3 = t;

42 u0 = u1 + 2*U + 1;

43 u1 = u0 + 2*U + 1;

44 }

45 Y[0] = x0; Y[1] = x1; Y[2] = x2; Y[3] = x3;

46 }

APPENDIX B. An optimized implementation of NSABC/32

1 void expandkey (word M[64], word N[64], word const Z[5], word U)

2 {

3 word z0=Z[0], z1=Z[1], z2=Z[2], z3=Z[3], z4=Z[4];

4 word u = U;

THE BLOCK CIPHER NSABC (PUBLIC DOMAIN) 20

5 for(int k=0; k<64; k++)

6 {

7 M[k] = 2*(z3 - u) + 1;

8 N[k] = (2*u - 1)*(z3 - u);

9 u += 2*U + 1;

10 word z=z0; z0=z1; z1=z2; z2=z3; z3=z4; z4=z;

11 }

12 }

13 //--

14 static inline

15 word G(word x, word t, word m0 , word m1, word n0 , word n1)

16 {

17 x *= m0;

18 x += n0;

19 x = _rotl(x,16);

20 x ^= t;

21 x *= m1;

22 x += n1;

23 x = _rotl(x,16);

24 return x;

25 }

26 //--

27 void crypt(word Y[4], word const X[4], word const T[4],

28 word const M[64], word const N[64])

29 {

30 // Step 1

31 word const g0 = G(X[0], T[0], M[0], M[1], N[0], N[1]);

32 // Step 2

33 word const g1 = G(X[1]^g0 , T[1], M[2], M[3], N[2], N[3]);

34 // Step 3

35 word const g2 = G(X[2]^g1 , T[2], M[4], M[5], N[4], N[5]);

36 // Step 4

37 word const g3 = G(X[3]^g2 , T[3], M[6], M[7], N[6], N[7]);

38 // Step 5

39 word const g4 = G(g0^g3, T[0], M[8], M[9], N[8], N[9]);

40 // Step 6

41 word const g5 = G(g1^g4, T[1], M[10],M[11],N[10],N[11]);

42 word const g11= G(g4 , T[3], M[22],M[23],N[22],N[23]);

43 // Step 7

44 word const g6 = G(g2^g5, T[2], M[12],M[13],N[12],N[13]);

45 word const g9 = G(g5 , T[1], M[18],M[19],N[18],N[19]);

46 // Step 8

47 word const g7 = G(g3^g6, T[3], M[14],M[15],N[14],N[15]);

48 word const g10= G(g6 , T[2], M[20],M[21],N[20],N[21]);

49 word const g13= G(g6^g9, T[1], M[26],M[27],N[26],N[27]);

50 // Step 9

51 word const g8 = G(g4^g7, T[0], M[16],M[17],N[16],N[17]);

52 word const g14= G(g4^g10 , T[2], M[28],M[29],N[28],N[29]);

53 // Step 10

54 word const g12= G(g5^g8, T[0], M[24],M[25],N[24],N[25]);

55 word const g15= G(g5^g8^g11 , T[3], M[30],M[31],N[30],N[31]);

56 // Step 11

57 word const g16= G(g6^g9^g12 , T[0], M[32],M[33],N[32],N[33]);

58 // Step 12

59 word const g17= G(g4^g10^g13^g16 , T[1], M[34],M[35],N[34],N[35]);

60 // Step 13

61 word const g18= G(g5^g8^g11^g14^g17 , T[2], M[36],M[37],N[36],N[37]);

62 // Step 14

63 word const g19= G(g15^g18 , T[3], M[38],M[39],N[38],N[39]);

64 // Step 15

65 word const g20= G(g16^g19 , T[0], M[40],M[41],N[40],N[41]);

66 // Step 16

67 word const g21= G(g17^g20 , T[1], M[42],M[43],N[42],N[43]);

68 word const g27= G(g20 , T[3], M[54],M[55],N[54],N[55]);

69 // Step 17

70 word const g22= G(g18^g21 , T[2], M[44],M[45],N[44],N[45]);

71 word const g25= G(g21 , T[1], M[50],M[51],N[50],N[51]);

72 // Step 18

73 word const g23= G(g19^g22 , T[3], M[46],M[47],N[46],N[47]);

74 word const g26= G(g22 , T[2], M[52],M[53],N[52],N[53]);

THE BLOCK CIPHER NSABC (PUBLIC DOMAIN) 21

75 word const g29= G(g22^g25 , T[1], M[58],M[59],N[58],N[59]);

76 // Step 19

77 word const g24= G(g20^g23 , T[0], M[48],M[49],N[48],N[49]);

78 word const g30= G(g20^g26 , T[2], M[60],M[61],N[60],N[61]);

79 Y[1] = g20^g26^g29;

80 // Step 20

81 word const g28= G(g21^g24 , T[0], M[56],M[57],N[56],N[57]);

82 word const g31= G(g21^g24^g27 , T[3], M[62],M[63],N[62],N[63]);

83 Y[2] = g21^g24^g27^g30;

84 // Step 21

85 Y[0] = g22^g25^g28;

86 Y[3] = g31;

87 }

88 //--

89 // Multiplicative inverse of x (mod 2**32) , x odd.

90 // Source code by Thomas Pornin , Usenet 2009.

91 word inverse(word x)

92 {

93 word y = 2 - x; // xy == 1 mod 4

94 y *= 2 - x*y; // xy == 1 mod 16

95 y *= 2 - x*y; // xy == 1 mod 256

96 y *= 2 - x*y; // xy == 1 mod 65536

97 y *= 2 - x*y; // xy == 1 mod 4294967296

98 return y;

99 }

100 //--

101 void invertkey(word iM[64], word iN[64],

102 word const M[64], word const N[64])

103 {

104 // M, N, iM, iN must not overlap!

105 for(int k=0; k < 64; k++)

106 {

107 iM[k] = inverse(M[63-k]);

108 iN[k] = - N[63-k] * iM[k];

109 }

110 }

111 //--

112 void icrypt(word X[4], word const Y[4], word const T[4],

113 word const iM[64], word const iN[64])

114 {

115 word Xrs[4], Trs [4];

116 Trs [0] = _rotl(T[3] ,16);

117 Trs [1] = _rotl(T[2] ,16);

118 Trs [2] = _rotl(T[1] ,16);

119 Trs [3] = _rotl(T[0] ,16);

120 Xrs [0] = _rotl(Y[3] ,16);

121 Xrs [1] = _rotl(Y[2] ,16);

122 Xrs [2] = _rotl(Y[1] ,16);

123 Xrs [3] = _rotl(Y[0] ,16);

124 crypt(Xrs , Xrs , Trs , iM, iN);

125 X[0] = _rotl(Xrs [3] ,16);

126 X[1] = _rotl(Xrs [2] ,16);

127 X[2] = _rotl(Xrs [1] ,16);

128 X[3] = _rotl(Xrs [0] ,16);

129 }

130 //--

131 // Testing against the reference implementation

132 void test()

133 {

134 int const nTimes = 10000;

135 int const nRep = 100;

136 word X[4], Y[4], T[4], Z[5], M[64], N[64], iM[64], iN [64];

137 for(int i=0; i<5; i++)

138 Z[i] = random_word ();

139 for(int i=0; i<4; i++)

140 T[i] = random_word ();

141 word U = random_word ();

142 // correctness of the optimized implementation

143 expandkey(M, N, Z, U);

144 for(int n=nTimes; n; n--)

THE BLOCK CIPHER NSABC (PUBLIC DOMAIN) 22

145 {

146 for(int i=0; i<4; i++)

147 X[i] = random_word ();

148 memcpy(Y, X, sizeof(X));

149 for(int m=nRep; m; m--)

150 {

151 encrypt(X, X, Z, T, U);

152 crypt(Y, Y, T, M, N);

153 }

154 if(memcmp(Y,X,sizeof(X)) !=0)

155 cout << "crypt: incorrect encryption !" << endl;

156 }

157 // invertibility of the optimized implementation

158 invertkey(iM, iN, M, N);

159 for(int n=nTimes; n; n--)

160 {

161 for(int i=0; i<4; i++)

162 X[i] = random_word ();

163 memcpy(Y, X, sizeof(X));

164 for(int m=nRep; m; m--)

165 crypt(Y, Y, T, M, N);

166 for(int m=nRep; m; m--)

167 icrypt(Y, Y, T, iM,iN);

168 if(memcmp(Y, X, sizeof(X)) !=0)

169 cout << "icrypt: incorrect decryption !" << endl;

170 }

171 }

172 //

	1. Introduction
	2. Definitions
	2.1. Operations on words
	2.2. Order notations
	2.3. Operations on word strings

	3. Specification
	3.1. Text encryption
	3.2. Tweak schedule
	3.3. Key schedule
	3.4. Unit schedule
	3.5. G-box
	3.6. Decryption
	3.7. Tweak derivation

	4. Example
	5. Notes on implementation
	5.1. Memory-constrained environment
	5.2. Memory-abundant environment

	6. Conclusion
	References
	APPENDIX A. A reference implementation of NSABC/32 — ENCRYPT only
	APPENDIX B. An optimized implementation of NSABC/32

