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Abstract. Zero-knowledge proofs of knowledge (ZK-PoK) for discrete logarithms and related problems
are indispensable for practical cryptographic protocols. At Eurocrypt 2009, Camenisch, Kiayias, and
Yung provided a specification language (the CKY-language) for such protocols, which allows one to
modularly design and analyze cryptographic protocols: protocol designers just need to specify the
statement they want to prove in zero-knowledge and are ensured that an efficient proof protocol exists
and indeed proves the specified statement, provided that the specification was in the CKY-language.
However, as specifications in the CKY-language are realized by so-called Σ-protocols, the resulting
protocols only satisfy the classical notion of zero-knowledge proofs of knowledge, which not retained
if they are composed with themselves or with other protocols, e.g., when used as building blocks for
higher-level applications. This problem can be tackled by moving to the Universal Composability (UC)
framework, which guarantees retention of security when composing protocols and, in particular, when
using them as building blocks in arbitrary contexts. While there exists generic transformations from
Σ-protocols to protocols that are secure under this stronger security notion, these transformation are
often not efficient enough for the design of practical protocols.
In this paper we are aiming for practically efficient ZK-PoK in the UC-framework by introducing
a specification language akin to the CKY-language and a compiler such that protocols specified in
our language are UC-secure and efficient. To this end we propose an extension of the UC-framework
addressing the problem that UC-secure zero-knowledge proofs are always proofs of knowledge, and
state a special composition theorem which allows one to use the weaker – but more efficient and often
sufficient – notion of proofs of existence in the UC-framework for the first time. We believe that our
contributions enable the design of practical protocols that are UC-secure and thus themselves can be
used as building blocks.
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1 Introduction

The probably most demanding task when designing a practical cryptographic protocol is to define
its security properties and then to prove that it indeed satisfies them. For this security analysis
it is often assumed that the “world” consists only of one instance of the protocol and only of the
involved parties, rather than of many parties running many instances of the same protocol as well
as other protocols at the same time. While this approach allows for a relatively simple analysis of
protocols, it does not properly model reality and therefore provides little if any security guarantees.
Also, this approach does not allow for a modular usage of the protocols, i.e., when a protocol is
used as a building block for another protocol, the security analysis must be all done from scratch.

To address these problems, a number of frameworks have been proposed over the years, e.g., [3,17,58].
The so-called Universal Composability (UC) framework by Canetti [17] seems to be the one that is
most prevalent. The probably most fundamental result in this model is its very strong composition
theorem: once a protocol is proved secure in this model, it can be used in arbitrary contexts retain-
ing its security properties. This allows one to split a protocol into smaller subroutines so that the
security analysis becomes easier as each subprotocol can be analyzed separately. In particular, each
protocol only has to be analyzed once and for all, and the analysis does not have to be repeated
for each specific context.

This modularity and the high security guarantees suggest that protocols should always be de-
signed and proven secure in the UC-framework rather than in an ad-hoc way. However, only a
fraction of the protocols found in the literature is proved UC-secure, examples including oblivious
transfer [57] and encryption- [40,41,52], signature- [1,39,70] and commitment schemes [45]. Further-
more, only very few UC-secure protocols are actually deployed in the real world, e.g., [19,38]. We
believe that one main reason for this is the high computational overhead coming along with most
UC-secure protocols compared to those which have not been proved secure in the UC-framework.

When designing practical cryptographic protocols, efficient zero-knowledge proofs of knowledge
(ZK-PoK) for discrete logarithms and related problems have turned out to be indispensable. On
a high level, these are two party protocols between a prover and a verifier which allow the for-
mer to convince the latter that it possesses some secret piece of information, without the verifier
being able to learn anything about it. This allows protocol designers to enforce a protocol partic-
ipant to assure other parties that its actions are consistent with its internal knowledge state. The
shorthand notation for such proofs, introduced in [16], has been extensively employed in the past
and contributed to the wide employment of these protocols in cryptographic design. This nota-
tion suggested using, e.g., PK [(α) : y = gα] to denote a proof of the discrete logarithm α = logg y,
and it appeared in many works to describe quite complex discrete logarithm based relations, e.g.,
[2,5,7,8,9,10,12,15,31,34,42,47,48,50,51,64,65,66,67,68,69]. This informal notion was recently formal-
ized and refined by Camenisch, Kiayias and Yung who have provided a specification language
(CKY-language) for such protocols [13]. The language allows for the modular design and analysis
of cryptographic protocols: protocol designers just needs to specify the statement the ZK-PoK shall
prove and, if the specification is in the CKY-language, they are ensured that the proof protocol ex-
ists and indeed proves the specified statement. Their realizations are based on so-called Σ-protocols,
which satisfy the classical notion of ZK-PoK. Unfortunately, these protocols are not UC-secure and
thus cannot be used for protocol design in the UC-framework. While generic transformations from
Σ-protocols to UC-ZK protocols are known [33], they come along with a significant computational
overhead, making the resulting protocols impracticable for real-world usage.
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Our Contributions. In this paper we aim at closing the gap between high security guarantees and
practical usability and efficiency for ZK-PoK. To this end, we first present an exhaustive language
and a compiler which allow protocol designers to efficiently and modularly specify and obtain UC-
ZK protocols. We then give an extension of the UC-framework allowing protocol designers to also
make usage of the more efficient proofs of existence (as opposed to proofs of knowledge) for the
first time, which we also incorporate into our language. Let us explain this in more detail.

A language for UC-ZK protocols. We provide an intuitive language for specifying ZK-PoK for dis-
crete logarithms akin to the CKY-language [13] where the specification also allows one to assess the
complexity of the specified protocol. We then provide a compiler which translates these specifica-
tions into concrete protocols. Even though this compiler is mainly based on existing techniques, it
offers unified and unambiguous interfaces and semantics for the associated protocols and function-
alities for the first time. It thus enables protocol designers to treat specifications in our language
as black-boxes, while having clearly defined security guarantees.

Proving existence rather than knowledge. In the UC-framework, all proof protocols are necessarily
proofs of knowledge. This is, because the prover must provide the witness of the statement to be
proved to the UC-ZK ideal functionality as otherwise the functionality would typically not be able
to verify the correctness of a statement in polynomial time. However, when designing higher-level
protocols, is often only necessary to prove that some computation was done correctly, but not to
show that the secret quantities are actually ‘known’. This difference can be exploited to obtain
much more efficient protocols: in the security proofs for proofs of knowledge the simulator needs
to be able to extract the witness from the adversary – a requirement which is computationally
expensive to achieve in the UC-framework, and which is not needed for a proof that a protocol step
was done correctly.

To allow protocol designer to also make use of these more efficient protocols (which are not proofs
of knowledge any more), we extend our language and provide the necessary framework to prove UC-
security. Loosely speaking, we therefore formulate the so-called gullible ZK ideal functionality FgZK,
and provide a special composition theorem which allows protocol designers to use existence-proofs
“as if they were ideal functionalities”, if they are later instantiated as described in our compiler. On
a high level the theorem states that proving the correctness of a protocol using FgZK in a slightly
non-UC-compliant way is sufficient for the protocol where FgZK is instantiated as described in our
compiler to be UC-secure in the standard sense.

Related Work. The UC-framework has first been introduced by Canetti [17]. The notion of Ω-
protocols was introduced in [32,33], and so far the most efficient UC-secure zero-knowledge proofs
of knowledge have been proposed in [49]. Further, [28] analyzes UC-ZK in the presence of global
setup [18]. The idea of committed proofs was first mentioned in [37]. We combine the techniques
of [37,49] to compile proof specifications in our language to real protocols. In particular this allows
us to realize proofs of existence.

A language for specifying discrete logarithm based ZK-PoK was presented by Camenisch and
Stadler in [16] and later refined in [13], but neither of their realizations are UC-secure. Nevertheless,
our notation is strongly inspired by theirs. In fact, our language has already turned out to be very
useful to describe ZK-PoK in a companion paper[11], and in this paper we fulfill the promises given
therein.

Functionalities similar to FgZK have already been used by Lindell [43,44] and Pass and Rosen [55]
in different contexts. That is, all this work is on two-party protocols which preserve their security
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guarantees under bounded-concurrent self-composition and not on full UC-security. Prabhakaran
and Sahai [59,60] also suggest generalizations of the UC-framework in which functionalities can be
realized that cannot be realized in the plain UC-framework. Their work differs from ours in that
they leave the standard model of polynomial time computation by granting the adversary access
to some super-polynomially powerful oracle (“imaginary angel”), while our approach works in the
standard computational model. Furthermore, they suggest generic solutions for ZK-PoK while we
are aiming at practically efficient protocols.

Roadmap. After introducing some notation, recapitulating fundamental theory and presenting
two running examples in §2, we describe a basic language for specifying UC-secure ZK-PoK protocols
in detail in §3. In §4 we show how proofs of existence rather than knowledge can be UC-realized,
resulting in much more efficient protocols, and extend our language accordingly. We show how such
specifications can be compiled to actual protocols in §5. Finally, in §6 we give several extensions to
our basic language.

2 Preliminaries

Let us introduce some notation first. By s ∈R S we denote the uniform random choice of some
element s in set S. For bitstrings n and m, the bitwise XOR is written as n ⊕ m. The group of
signed quadratic residues [36] for some modulus n is denoted by SRn. We recap some properties of

this group in §A.3. For two random ensembles,
s
≈ denotes statistical indistinguishability. Finally,

two party protocols between parties P and V with common input y and private input w to P are
written as (P(w),V)(y).

We assume that the reader is familiar with the notion of Σ- and Ω-protocols, and only give
informal definitions here. A protocol (P(w),V)(y) is called a Σ-protocol [22], if it is an honest verifier
ZK-PoK in the non-UC model, consisting of three messages being exchanged (a commitment t, a
challenge c ∈R C = {0, 1}k, and a response r), such that the secret w can be computed from any
two valid protocol transcripts with the same commitment but different challenges. A protocol is
called an Ω-protocol [33], if it further takes a common reference string σ as additional input, such
that knowing a trapdoor to σ it is possible to compute the prover’s secret input from any successful
run of the protocol. For formal definitions we refer to §A.1.

We further say that an Ω-protocol f -extractable, if it is not possible to compute w from any
successful run, but only f(w) for some function f . In particular, we will make use of two types of
f -extractable protocols: one the one hand we will use f(w1, . . . , wn) = (w1, . . . , wk) for some k ≤ n,
i.e., protocols which only allow to extract parts of the witness. On the other hand, we will have
f(w1, . . . , wn) = (w1, . . . , wn,A(w1, . . . , wn)), i.e., functions f which in addition to all witnesses
additionally output some additional values depending on these witnesses. These constructions will
allow for an efficiency speedup compared to using plain Ω-protocols, while still ensuring appropriate
security guarantees for many applications.

2.1 The UC-Model

We next want to briefly recapitulate the Universal Composability (UC) framework [17].
By a party we refer to a probabilistic polynomial time (PPT) interactive Turing machine. Each

party P is uniquely determined by a pair (PIDP , SIDP ), where PIDP and SIDP are its party ID and
its session ID, respectively. By convention, two parties share the same session ID if and only if
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they are participants of the same instance of a protocol. The only purpose of party IDs is to be
able to distinguish between different participants of the same protocol instance. Following [11], we
assume that session IDs are structured as pathnames. That is, for a protocol with session ID SID,
the session ID of any of its subprotocols is given by SID/subsession, where subsession is a unique
local identifier, containing the party IDs of all participating parties and shared public parameters.

The main concept of the UC framework is that of UC-emulation. Loosely speaking, a protocol ρ
UC-emulates some protocol φ, if ρ does not affect the security of anything else than φ would have,
no matter how many other instances of ρ or arbitrary other protocols are executed concurrently.
This implies that ρ can safely be used on behalf of φ without compromising security. The most
interesting case is where φ is some ideal functionality F, which can be thought of as an incorruptible
trusted party that takes inputs from all parties, locally computes a certain cryptographic task, and
hands back outputs to each participating party. Ideal functionalities are secure by definition, and
can therefore be seen as “formal specifications” of cryptographic tasks. Now, if ρ UC-emulates
F, one can infer that ρ does not leak any information to an adversary than F would have, and
therefore securely realizes the task at hand in arbitrary contexts. For a more precise description we
refer to [17] and §A.2.

A protocol ρ may itself make use of some ideal functionality F as a subroutine. In this case, ρ is
called an F-hybrid protocol. If not stated otherwise, all protocols we are going to present are Fach-
hybrid protocols, where Fach is an ideal functionality realizing authenticated (but not necessarily
private) channels. The functionality takes as input a message x from some sender, which it simply
forwards to a receiver. The adversary A learns the message x, and is allowed to change its content
before it is delivered to the receiver, whenever the sender is corrupted. See §A.2 for a formal
description of Fach.

The corruption model underlying our discussion is adaptive corruptions with erasures. This
can be seen as a bit of a compromise: while only considering static corruptions would not properly
reflect reality, assuming secure data erasures is necessary to obtain efficient protocols in this setting.
However, even if implementing erasures might be difficult, it is not impossible.

The Basic UC-ZK Ideal Functionality. In the following we discuss the basic ideal zero-
knowledge functionality, which is formally specified in Figure 1. It is parametrized by two binary
relations, R,R′, which have the following meaning: the relation R specifies the set of inputs (y, w)
the functionality accepts from an honest prover. For such inputs, the functionality informs the
verifier that the prover knows a witness for y, while an adversary does not learn w. Yet, if the
prover is corrupted, it is allowed to supply inputs from a binary relation R′ ⊇ R, in which case the
ZK property does not have to be satisfied any more.

The relation R might itself be parametrized by system parameters, specifying, e.g., the concrete
groups being used. We will model all such parameters as public coin parameters, i.e., the environ-
ment might know the random coins being used to generate the system parameters. This is helpful
if the same parameters are used in other protocols as well, e.g., to sign messages.

The functionality defined in Figure 1 differs from the standard one found in the literature in two
ways. Firstly, we delay revealing the claimed statement y to V and A until the last possible moment,
and only give `(y) to the adversary in the first step, where ` is a leakage function, which roughly
gives some information about the “size and shape” of y to A (to be precise, `() is a parameter of
FZK as well which will be disregarded in the remainder of our discussion). This approach prevents
the simulator from being over-committed in our constructions, and to the best of our knowledge

FR,R
′

ZK can safely be used instead of the standard UC-ZK functionality in any application. In §C
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The zero-knowledge functionality FR,R′

ZK

1. Wait for an input (prove, y, w) from P such that (y, w) ∈ R if P is honest, or (y, w) ∈ R′ if P is corrupt.
Send (prove, `(y)) to A. Further wait for a message ready from V , and send ready to A.

2. Wait for a message lock from A.
3. Upon receiving a message done from A, send done to P . Further wait for an input proof from A and send

(proof, y) to V .

Corruption rules:

. If P gets corrupted after sending (prove, y, w) and before Step 2, A is given (y, w) and is allowed to change
this value to any value (y′, w′) ∈ R′ at any time before Step 2.

Fig. 1: The basic zero-knowledge functionality FR,R
′

ZK , parametrized by two binary relations R,R′

such that R′ ⊇ R [11].

we give an illustrative example of an efficient protocol which can be proved to be UC-secure using
our formalization, but not using the standard one. Secondly, we allow corrupt parties to supply
witnesses from a larger set than honest parties. This relaxation stems from the soundness gap of
most known efficient constructions for ZK-PoK for discrete logarithms in the non-UC case [27]
(which are underlying the constructions for UC-ZK protocols): there, the verifier can only infer
that the prover knows a witness w such that (y, w) ∈ R′, whereas an honest prover is ensured that
for (y, w) ∈ R the verifier cannot learn the secret. We will discuss the precise relation between R
and R′ later in §5 and §B. The same formalization of the ZK functionality was also used in [11].

2.2 Running Examples

We next introduce two running examples, which we are going to use throughout the discussion to
illustrate our techniques.

Example 2.1 (Running Example 1). Let be given an integer commitment y ∈ SRn for some safe
RSA modulus n. Let further be given two generators g, h of SRn. In this example, a prover is
interested in proving knowledge of integers w, r such that y = gωhρ and ω ≥ 0. ut

Numerous practically relevant applications require such proof goals as basic building blocks for
more complex protocols, e.g., [8,12].

Example 2.2 (Running Example 2). Let be given a cyclic group H of prime order q, and two
generators, g, h of H. Let further be given a triple (u1, u2, e) ∈ H3, and let one be interested in
proving that (u1, u2, e) is a valid encryption of gα ∈ H for some α ∈ Zq known to the prover under
the semantically secure version of the Cramer-Shoup cryptosystem [25,37]. That is, the task is to
prove that (u1, u2, e) is of the form (gρ, hρ, gαcρ) for a publicly known c ∈ H. ut

This example stems from [11], where such proofs are repeatedly needed in the context of
credential-authenticated key-exchange and identification protocols.

3 A Language For Specifying UC-ZK Protocols

As shown in [20], any ideal functionality can be UC-realized given only functionalities realizing com-
mitments and ZK proofs, respectively. This result suggests that ZK proofs are important building
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blocks of higher-level applications, and will thus often be deployed when UC-realizing cryptographic
tasks.

Taking this as a motivation, we describe an intuitive language for specifying universally com-
posable zero-knowledge protocols. The language is strongly inspired by the standard notation for
describing zero-knowledge proofs of knowledge in the non-UC case which was introduced in [16].
We stress that similar to there, our notation does not only specify proof goals (i.e., what one wants
to prove), but concrete protocols. That is, together with the techniques presented in §5 and §B,
each statement in our language describes a unique protocol. Especially for our results given in §4,
this unambiguity is important.

We start by describing a basic language, which allows one to specify arbitrary Boolean com-
binations of protocols proving knowledge of discrete logarithms (or representations) in arbitrary
groups. In many cases the complexity of the resulting protocol can be inferred directly from the
proof specification.

A protocol proving knowledge of integers ω1, . . . , ωn satisfying a predicate φ(ω1, . . . , ωn) is de-
notes as follows:

Kω1 ∈ I∗(mω1), . . . , ωn ∈ I∗(mωn) : φ(ω1, . . . , ωn) . (1)

Here, each witness ωi belongs to some integer domain I∗(mωi). The predicate φ(ω1, . . . , ωn) is a
Boolean formula containing ANDs (∧) and ORs (∨), built from atomic predicates of the following
form:

y =

u∏
i=1

g
Fi(ω1,...,ωn)
i .

The gi and y are elements of some commutative group, and each Fi ∈ Z[X1, . . . , Xn] is an integer
polynomial. Similar to [16], we make the convention that values of which knowledge has to be proved
are denoted by Greek letters, whereas all other quantities are assumed to be publicly known.

In the following we want to discuss the single components of our basic language in more detail.

Groups. Different atomic predicates may use different groups. Besides efficiently evaluable group
operations we only require that group elements are efficiently recognizable, and that the group
order does not contain any small prime divisors, where “small” can be seen as an implementation
dependent parameter which typically will have 160 − 256 bits. In particular, we do not make any
intractability assumption for the groups. However, if the group order is unknown, this can be
exploited for efficiency gains, as we will discuss in §6.4.

We stress that the group of quadratic residues modulo a safe RSA modulus n (i.e., n = pq,
where p, q, p−1

2 , q−1
2 are prime, denoted by QRn) does not satisfy the above requirements, as group

membership cannot be efficiently verified. We recommend using the group of signed quadratic
residues, recapitulated in §A.3, instead. However, for the case that using the quadratic residues
cannot be avoided, we will show how the requirement of no small divisors can be dropped, if the
soundness guarantees may be loosened slightly in §6.3.

Predicates. We allow predicates to be arbitrary combinations of atomic predicates by the Boolean
connectives AND and OR. Also, witnesses may be reused across different atomic predicates. How-
ever, this may introduce some additional overhead in the case of Boolean ORs as discussed in §5.
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Domains. In general, we allow the secret values ω1, . . . , ωn to be arbitrary integers. However, for
implementation issues, it is necessary to specify an integer mωi such that

ωi ∈ I(mωi) := {l ∈ Z : −mωi ≤ l ≤ mωi}

for each ωi. The value of mωi (and therefore the size of the interval) can be chosen arbitrarily large,
and is only needed for the resulting protocol to be statistically zero-knowledge for any ωi ∈ I(mωi).
The protocols resulting from the constructions given in §5 will then guarantee that the prover
knows witnesses in a slightly larger interval, i.e., they prove knowledge of witnesses ω∗i satisfying

ω∗i ∈ I∗(mωi) := {l ∈ Z : −tmωi ≤ l ≤ tmωi},

where t is an implementation dependent parameter, which usually will have about 160 − 256 bits
and which is independent of the groups used in the predicate. In particular, I∗(mωi) is thus uniquely
defined even if ωi is used across different atomic predicates. More precisely, we roughly have t ≈ 2k+l,
where 2−k is the success probability of a malicious prover, and l is a security parameter controlling
the tightness of the statistical ZK property of the protocol.

Formally, the gap between I(mωi) and I∗(mωi) is achieved by allowing corrupt provers to hand
in values satisfying a relation R′ ⊇ R to the ideal functionality, whereas honest parties have to
supply values in R, cf. §2.1.

As a special case, we allow to define I∗(mωi) = I(mωi) = Zq, if (i) the secret ωi only occurs in
atomic predicates for which the order of the group is known, and (ii) the integer q is a common
multiple of all these group orders.

Induced Relation. Each proof specification spec of the form (1) induces two binary relations,
R = R(spec) ⊆ R′(spec) = R′, and a protocol π = π(spec) the compilation of which will be

discussed in §5. The protocol π will be proved to UC-emulate FR,R
′

ZK , i.e., for inputs (y, w) ∈ R the
protocol ensures the prover to not leak any information about w to the verifier, while the verifier
is guaranteed that the prover supplied an input (y′, w′) ∈ R′.

Let us now illustrate our basic language by means of our two running examples.

Example 3.1 (Running Example 1). As our basic language defined above does not allow one to
specify algebraic properties of witnesses directly, we first have to resolve the condition ω ≥ 0 to the
form (1). We do this by applying the technique proposed in [46]. That is, we prove that ω can be
written as ω =

∑4
i=1 χ

2
i for some χi ∈ Z. This relation then can easily be rewritten as an expression

in our basic language.
As discussed above, it is necessary to know an interval ω lies in. Let it be given by [−T, T ], i.e.,

mω = T . Then, clearly, we have that mχi = b
√
T c for i = 1, . . . , 4. Also, for y to be blinding, we

can assume that mρ = bn/4c.
The proof goal is thus given by:

Kρ ∈ I∗(bn/4c), {χi}4i=1 ∈ I∗(b
√
T c), : y = gχ

2
1+χ2

2+χ2
3+χ2

4hρ . ut

Example 3.2 (Running Example 2). In this case, all secret values, i.e., α and ρ, are elements of Zq,
where q is the order of H. We therefore can specify the protocol by the following expression

Kα, ρ ∈ Zq : u1 = gρ ∧ u2 = hρ ∧ e = gρcα .

In particular note that the requirement that ordH does not have small prime divisors is satisfied
as q was assumed to be prime, cf. Example 2.1. ut
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4 Proving Existence Rather Than Knowledge

As we will see in detail in the next section, realizing proofs of knowledge in the UC-framework is a
computationally expensive task. On a high level this is because the simulator needs to be able to
extract the secret witness without rewinding, and the most efficient currently known way to achieve
this is to include a Paillier encryption of the witness into the proof. Now, in larger protocols, zero-
knowledge proof protocols are often only used to ensure that a computation was done correctly,
and indeed the simulator does not require the witnesses in the security proof. This is for instance
the case in Example 2.2, where proving the existence of a ρ is sufficient to imply the required
wellformedness of the ciphertext.

Thus, what would often be sufficient is a functionality realizing the following steps:

1. Wait for an input (prove, y, w) from P such that there is a w̃ satisfying (y, w̃) ∈ R and f(w̃) = w,
and send (prove, `(y)) to A. Further wait for a message ready from V , and send ready to A.

2. Wait for a message lock from A.
3. Upon receiving a message done from A, send done to P . Further wait for an input proof from
A and send (proof, y) to V .

That is, one is aiming for a functionality which checks whether the prover knows some (partial)
information w̃ = f(w) for a full witness w, and informs the verifier if this is the case. However, the
problem is that by definition any zero-knowledge proof in the UC-Framework is always a proof of
knowledge. This is, because in general the existence of w̃ cannot be checked efficiently, and thus
the witness has to be given as an input for the functionality to be able to check whether or not the
statement is true. In this section we give a framework for how proof protocols that are not proofs
of knowledge but only proofs of existence can still be used to construct UC-secure protocols and
be exploited for a considerable efficiency gain.

We first extend our basic language by the additional E-quantifier. Its semantics is that for secrets
quantified under E(instead of K) only their existence (instead of their knowledge) is proved to the
verifier. Having said this, a generalized specification of a proof goal looks as follows:

K{ωi ∈ I∗(mωi)}
n
i=1 : E

{
χj ∈ I∗(mχj )

}m
j=1

: φ(ω1, . . . , ωn, χ1, . . . , χm) (2)

The computational costs of values quantified by Eare the same as for ZK-PoK in the non-UC
setting, as they are compiled to standard Σ-protocols. In particular the computationally expensive
Paillier encryption [54] of these values can be avoided. We will detail the compilation in §5.

Before stating our composition theorem, we have to introduce some definitions.
The gullible zero-knowledge functionality FR,RgZK expects the prover to supply an image y and a

pair (w, x) as inputs, and always informs the verifier that (y, (w, x)) ∈ R′, no matter whether this
is the case or not, cf. Figure 2. For an honest prover, w will be the part of the witness for which
knowledge has to be proved, whereas x is the part for which only existence has to be proved. Upon
corruption of the prover, the adversary only learns y and w, but not x. This is to model the intuitive
goal of proofs of existence more appropriately. However, it therefore is important that submitting x
to FgZK and securely erasing it is possible in one step, i.e., the prover cannot be corrupted between
submission and erasure of x.

Our special composition theorem guarantees that ρπ/F
R,R′
gZK UC-emulates some other protocol

φ, if ρ UC-emulates φ with respect to a certain type of environments, called nice environments,
which we define next. On a high level, these are environments which (almost) never ask the dummy
adversary to send incorrect inputs to the weak zero-knowledge functionality:
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The gullible zero-knowledge functionality FR,R′

gZK

1. Wait for an input (prove, y, (w, x)) from P and send (prove, `(y)) to A. Further wait for a message ready

from V , and send ready to A.
2. Wait for a message lock from A.
3. Upon receiving a message done from A, send done to P . Further wait for an input proof from A and send

(proof, y) to V .

Corruption rules:

. If P gets corrupted after sending (prove, y, (w, x)) and before Step 2, A is given (y, (w,⊥)) and is allowed
to change this value at any time before Step 2.

Fig. 2: The gullible zero-knowledge functionality FR,R
′

gZK always informs the verifier that the proof
was correct.

Definition 4.1. Let A∗ denote the dummy adversary attacking some FR,R
′

gZK -hybrid protocol. We

call an environment Z nice, if the statements it requires A∗ to send to FR,R
′

gZK acting as a prover are
true with overwhelming probability. That is, with overwhelming probability Z prompts A∗ to send

pairs (y, (w, x)) to FR,R
′

gZK , for which there is an w̃ satisfying (y, w̃) ∈ R and f(w̃) = w.

In analogy to the standard case we now define UC-emulation with respect to nice environments:

Definition 4.2. Let ρ be an FR,R
′

gZK -hybrid protocol. We say that ρ UC-emulates a protocol φ with
respect to the dummy adversary A∗ and nice environments, if there is an efficient simulator S such
that no nice environment can distinguish whether it is interacting with ρ and A∗ or with φ and S.
That is, for every nice environment Z it holds that

EXEC(ρ,A∗,Z) ≈ EXEC(φ,S,Z) .

Here, EXEC(ρ,A,Z) denotes the random variable given by the output of Z when interacting with
ρ and A, and analogously for EXEC(φ,S,Z).

Having said this, we can now state our special composition theorem, which allows a protocol
designer to use zero-knowledge proofs of existence in a UC-compliant way. The theorem is illustrated
in Figure 3. On a high level, the theorem allows one to use zero-knowledge proofs of existence as
black-boxes in protocol design, as if they were zero-knowledge proofs of knowledge. If a protocol

φ uses such a proof as a subroutine, one only has to prove the UC-security of the FR,R
′

gZK -hybrid
variant of φ, and this only with respect to nice environments.

Theorem 4.3. Let spec be a proof specification of the form (2), and let R = R(spec), R′ =

R′(spec), and π = π(spec). Let further ρ be an FR,R
′

gZK -hybrid protocol, such that ρ UC-emulates a
protocol φ with respect to the dummy adversary and nice environments, and let ρ, φ be subroutine re-

specting. Then ρπ/F
R,R′
gZK UC-emulates φ (in the standard sense) with respect to adaptive corruptions

if securely erasing data is possible.

Proof (Sketch). Due to space limitations we omit a full proof here, and only give the underlying
intuition. Let therefore S be the simulator for nice environments, which exists by assumption. We
have to show that there exists an efficient simulator Ŝ such that for arbitrary environments Z we
have that

EXEC(ρπ/F
R,R′
gZK ,A∗,Z)

s
≈ EXEC(φ, Ŝ,Z) .
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s

 

with respect to nice environments for arbitrary environments

s




',RR

gZK
F

*A S




*A Ŝ

Fig. 3: Illustration of Theorem 4.3: for proving that ρπ/F
R,R′
gZK UC-emulates φ, it is sufficient to show

that ρ emulates φ for nice environments.

The idea is that Ŝ runs a copy of S and one of A∗ internally, and all messages sent to or received
from Z are routed through the simulated A∗. In general, all communication is further forwarded
to S, and Ŝ outputs whatever S does. The only exception is made when encountering a call to π
between two parties, P and V . In this case Ŝ internally executes the protocol on the given inputs
and behaves as follows (independent of the corruption state of the parties):

. If the run is successful, then with overwhelming probability the input was correct (i.e., Z
“behaved nicely”), as the underlying Σ-protocol is an interactive proof system [35]. Thus, Ŝ
outputs whatever S outputs on the same inputs.

. If however the run of π is not successful, the given input was incorrect. In this case, Ŝ behaves
as S in the case that no proof-message had been sent by the attacker.

The remainder of the proof works similar to that in [49]. The main difference is that in the
real protocol an honest prover that gets corrupted also hands all witnesses quantified by Eto the
attacker. This can be simulated because of the usage of the committed proof technique [37]: Ŝ may
choose these secrets arbitrarily at random whenever necessary. It then computes the corresponding
image y′, and opens the commitment made in its first message accordingly. As in [49], this is possible
because of the trapdoor property of the used commitment scheme. ut

Summarizing, this modeling for the first time allows one to use ZK proofs of existence in the
UC-framework. We believe that this decrease of the computational costs of UC-secure protocol can
contribute substantially to a broader employment of such protocols in practical applications.

5 Compiling Specifications to Protocols

Due to space limitations we here only give a brief overview about how protocol specifications are
compiled into protocols. All details of the construction can be found in §B, where we also show
how to estimate the costs of the protocol resulting from a specification of the form (1) in advance.

. First, the proof specification is rewritten to a predicate which only contains atomic predicates
having homogeneous linear relations in their exponents. This can be done by applying standard
techniques [6,23,27,30,46,63], cf. §B.1.

. In a second step, the prover computes integer commitments to all secret witnesses quantified
by K, see §B.2.

. Next, using the technique proposed in [27], each conjunctive term in the specification (i.e.,
each subformula of φ not containing any OR connectives) is translated into a Σ-protocol which
additionally proves that the witnesses used are the same as in the integer commitments, cf. §B.3.

. Now, the different Σ-protocols are combined by the Boolean connectives as specified by the
predicate φ. See [24] and §B.4 for details.
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. As a fifth step, the Σ-protocol is transformed into an Ω-protocol [32,33]. This is achieved by
Paillier-encrypting the witnesses quantified by K[54], and proving that the encrypted witnesses
are the same as in the integer commitments. See §B.5 for details of this step.

. Finally, using a simulation sound trapdoor commitment [49] and the committed-proof idea

of [37], the Ω-protocol is transformed into a protocol UC-emulating FR,R
′

gZK . For details, see §B.7.

If the initial proof goal did not contain any secret values quantified by E, one can show that the

resulting protocol UC-emulates the ideal functionality FR,R
′

ZK with respect to adaptive corruptions
if securely erasing data is possible. If this is not the case the protocol is still secure for static
party corruptions. On a very high level, the idea is that the required simulator can simulate a run
of the Ω-protocol for the challenge received from the verifier, and then use the trapdoor of the
commitment scheme to open its commitment in the correct way. See [49] for a full proof.

If the initial proof goal contains E-quantifiers, the resulting protocol can be used as an instan-

tiation of the gullible zero-knowledge functionality FR,R
′

gZK , cf. Theorem 4.3.

Let us discuss the potential speed-up and the semantical consequences coming along with the
usage of the E-quantifier by means of our two running examples.

Example 5.1 (Running Example 1). For being able to see the speed-up, we first have to resolve
the polynomial relation of Example 3.1. Using the technique from [46], we obtain the following
equivalent proof specification:

K{ρi}4i=1 ∈ I∗(bn/4c), {χi}4i=1 ∈ I∗(b
√
T c), ρ′ ∈ I∗((4b

√
T c+ 1)bn/4c) :

4∧
i=1

yi = gχihρi ∧ y = yχ1
1 yχ2

2 yχ3
3 yχ4

4 hρ
′

Now one can see that if one additionally proves knowledge of ω, ρ, the quantifiers of all χi, ρi and
ρ′ can be changed to existence quantifiers without changing the semantics, as the existence of all
these values follows from Lagrange’s Four Square Theorem and they can be computed efficiently
from ω, ρ by using the algorithm of Rabin and Shallit [61]. We thus obtain the following proof
specification:

Kω ∈ I∗(T ), ρ ∈ I∗(bn/4c) : E{ρi}4i=1 ∈ I∗(bn/4c), {χi}4i=1 ∈ I∗(b
√
T c),

ρ′ ∈ I∗((4b
√
T c+ 1)bn/4c) : y = gωhρ ∧

4∧
i=1

yi = gχihρi ∧ y = yχ1
1 yχ2

2 yχ3
3 yχ4

4 hρ
′

While not touching the semantics of all, this last rewriting yields a significant efficiency speedup,
as only Paillier encryptions for 2 instead of 9 values are required. Overall, the prover thus saves
14 Paillier encryptions and evaluations of the integer commitment scheme. Similarly, the verifier’s
computational complexity is reduced by 7 such operations. ut

In this example, changing from the K- to the E-quantifier is a purely syntactical step, which
increases the efficiency of the protocol. This can be seen by considering the underlying Ω-protocol
as f -extractable, where f(w) = (w,A(w)) and A is the algorithm of [61]. However, in general it is
not possible to efficiently compute the witnesses quantified by E, and even their existence cannot
be verified efficiently, as is illustrated by the following example.
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Example 5.2 (Running Example 2). The following specification is sufficient for proving the required
wellformedness of the ciphertext:

Kα ∈ Zq : Eρ ∈ Zq : u1 = gρ ∧ u2 = hρ ∧ e = gρcα .

This observation reduces the complexity of the prover’s first algorithm in the resulting protocol
by 2 Paillier encryptions (namely, that of ρ and the corresponding randomness in the underlying
Σ-protocol), and 2 evaluations of the integer commitment scheme. ut

Here, the underlying Ω-protocol is f -extractable, where f is of the form f(w1, . . . , wn) =
(w1, . . . , wk) for k < n, such that the remaining wi cannot be computed. This implies that in
general it is not possible to construct an ideal functionality which captures the semantics of an
expression such as (2), as it would have to run in probabilistic polynomial time by definition [17].

6 Enhancing the Basic Language

Even if the basic language presented in §3 allows one to describe almost arbitrary algebraic prop-
erties of and relations among the secret values, the corresponding specifications sometimes become
hard to interpret, as these properties may not be specified explicitly. Also, the requirements that
all witnesses must be integer exponents, and that the groups orders must not have small divisors,
may seem overly restrictive.

For those reasons we next give some enhancements of our basic language, which allow one to
drop any of these conditions. More precisely, we will first define a set of macros for specifying
algebraic properties of the secret witnesses, and then give conditions under which knowledge of
group elements can be proved instead of integers. Finally, we show how small divisors in the group
order can be handled by loosing the soundness guarantees of the protocol slightly.

6.1 Using Macros to Specify Algebraic Properties of Witnesses

The language described in §3 does not allow to directly specify algebraic properties of the secrets or
algebraic relations among them, and thus it becomes inconvenient to use for complex proof goals.
We therefore extend the set of atomic predicates by so-called macros, which allow one to directly
describe algebraic properties of the integer witnesses ωi. In particular, we allow additional atomic
predicates of the following forms, all of which can easily be translated into polynomial relations:

. ω ≥ 0. Such statements can easily be translated into statements of the above form by proving
knowledge of integers χ1, . . . , χ4 such that ω =

∑4
i=1 χ

2
i , see [46].

More generally, we also allow expressions of the form ω ∈ [a, b], where a, b ∈ Z are public. Such
an expression is equivalent to ω − a ≥ 0 ∧ b− ω ≥ 0. If b− a is even, this can be rewritten to
the even more efficient proof goal (ω −m)2 ≥ d2, where m = a+b

2 and d = b−a
2 .

If the length of the interval is very small, i.e., b − a ≈ 5, it might even be more efficient to
perform an OR-proof, and to show that ω = a ∨ ω = a+ 1 ∨ · · · ∨ ω = b.

. gcd(ν1, ν2) = 1, where each ν1, ν2 can be either public or private. As before, such expressions
can be rewritten to a polynomial form by introducing additional integers α1, α2 and proving
knowledge of α1, α2, ν1, ν2 such that α1ν1 + α2ν2 = 1.

. ν1|ν2, where ν1, ν2 can be either public or private. By introducing an additional secret δ, such
relations can be expressed in polynomial form as δν1 − ν2 = 0.
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Example 6.1 (Running Example 1). Using the first of our specific macros, a protocol for proving
knowledge of a non-negative opening of the integer commitment y can be described as follows:

Kω ∈ I∗(T ), ρ ∈ I∗(bn/4c) : y = gωhρ ∧ ω ≥ 0 ut

Before moving to the next extension of our basic language, we point out that using macros
impedes the possibility of estimating the computational costs of the protocol from its specification,
which was a favorable property of our basic language. This can be seen by comparing Example 6.1 to
Example 3.1: the seemingly simple macro w ≥ 0 entails 5 atomic predicates, and 9 secret witnesses,
and thus conceals very much of the computational costs of the resulting protocol.

As an important remark we note that every auxiliary variables χi, which has to be introduced
when resolving any of these macros, can be quantified by E. This can easily be seen by noting
that considering the resulting Ω-protocol as f -extractable for f(w) = (w,A(w)), where A is the
algorithm the honest prover used to compute the χi from ω.

6.2 Proving Knowledge of Group Elements

Sometimes it is required to prove knowledge of group elements instead of integers, which is not
possible in our basic language. For instance, one might be interested in proving possession of a
digital signature on a given message, which, in the case of CL-signatures [14], essentially boils
down to proving knowledge of a group element ω such that e(ω, z) = y, where e is a bilinear map,
and y, z are publicly known.

We thus also allow one to specify protocols proving knowledge of a preimage ω ∈ G under
some group homomorphism ψ : G → H, if ψ satisfies two basic properties: (i) the finite group G
comes along with a generator g and an upper bound B on its order, and (ii) the discrete logarithm
problem is hard in H. Then expressions of the following form, which, of course, can arbitrarily be
combined with expressions of the basic language, may be used:

Kω ∈ G : y = ψ(ω) .

When compiling protocol specifications containing such expressions, one first has to perform
the following steps, and then proceeds as in §5. The idea of the construction is to first blind the
secret preimage ω using g, and then to prove knowledge of the blinding:

1. Set m′ = 2lB, where B is the given upper bound on ordG, and l is a security parameter.

2. Choose ω′ ∈R I(m′), and set u = gω
′
ω, where g is a generator of G. Further, set y′ = ψ(u)/y,

and g′ = ψ(g).

3. Rewrite the proof goal to

Kω′ ∈ I∗(m′) : y′ = g′ω
′
,

and add u to the commitment of the underlying Σ-protocol.

6.3 Allowing Small Divisors in the Group Order

In certain situations, in particular when extending an existing system, it might not be possible to
use groups the order of which has large prime divisors only. Let consequently be H the group used
in some atomic predicate, and let d be such that (ordH)/d only has large divisors, i.e., let d be the
product of all (not necessarily distinct) small primes dividing ordH.
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The protocol resulting from the construction in §5 now convinces the verifier that the prover
knows secret values ω∗i ∈ I∗(mωi), and that there exists µ ∈ H, such that the following is satisfied:

µ
u∏
i=1

g
li(ω
∗
1 ,...,ω

∗
n)

i = y and µd = 1 .

That is, knowledge of the witnesses is only proved “modulo a factor with small order”.

Example 6.2. Let n = pq be a safe RSA modulus, and let lcm(p − 1, q − 1) = 2. As we have
ordZ∗n = 4p−1

2
q−1

2 , we have d = 4. Thus, the construction of §5 yields protocols that only guarantee
that the prover knows a representation up to a factor of order 4. (Actually we get d = 2 and
soundness modulo a square root of unity by the Carmichael function.) ut

6.4 Using Private Coin System Parameters to Avoid Integer Commitments

In the construction given in §B.5 an integer commitment has to be computed for every secret value
ωi. This was necessary to ensure that the values used in the public values yj and in the Paillier-
encryptions are equal over the integers. In the following we give sufficient conditions under which
these integer commitments can be avoided.

Proposition 6.3. Let, for some secret ωi and every subformula only containing ANDs of predicate
φ, the following condition be satisfied: ωi appears at least once as an exponent in a group, which (i)
can be modeled as a private coin system parameter, and for which (ii) computing the group order
from its description is computationally hard. Then no integer commitment is needed for ωi.

While the second condition is straightforward to check, the former conditions requires some
more discussion. In §2.1 we required all system parameters specifying the binary relation R to
be modeled as public coin system parameters. This implies that random coins for generating the
group description, and thus also the group orders, have to be assumed to be known, and thus the yj
cannot be seen as integer commitments to the ωi, but as commitments modulo the order at most.

In general, modeling the parameters as public coin cannot be avoided, as system parameters
can potentially be used across various protocols of different types. Now, if a group is also used in,
e.g., a signature scheme, then typically the factorization of the group order is known to the signer,
which could lead to serious security issues in the UC-ZK protocols if this factorization is assumed
to be unknown. However, if for instance an RSA modulus n can be assumed to be issued by a
trusted party which does not (have to) give the prime factors of n to any party, then SRn could
safely be modeled as a private coin system parameter.
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A Basics and Definitions

For self-containment we here recapitulate the basic definitions used in the main part of this paper.

A.1 Σ- and Ω-Protocols

We first want to recapitulate the basic notions of Σ- and Ω-protocols, which constitute fundamental
building blocks of the protocols constructed in §5 and §B.

On a high level, a Σ-protocol [22] is a three-move protocol between two parties, which realizes
a zero-knowledge proofs of knowledge with respect to honest-but-curious verifiers in the non-UC
setting:

Definition A.1. Let R be a binary relation, and let LR be the associated language. A Σ-protocol
for R then is a two party protocol ((P1,P2)(w),V)(y, σ) between a prover and a verifier, satisfying
the following properties:

. 3-move form: First, the prover computes (t, r) = P1(y, w, σ), and sends the commitment t to
the verifier, whereas r describes its internal state after executing P1. The verifier draws a random
challenge c from some predefined challenge set C, and sends it to the prover, who replies with
a response s = P2(y, w, c, r, σ). Upon receiving s, the verifier computes a bit b = V(y, t, c, s, σ)
and accepts the protocol run if and only if b = 1.

. Completeness: Whenever both parties follow the protocol and (y, w) ∈ R, the verifier always
accepts.

. Special soundness: There is an efficient algorithm E, which on input y ∈ LR, σ and two
accepting protocol transcripts (t, c1, s1) and (t, c2, s2) satisfying c1 6= c2 outputs w′ such that
(y, w′) ∈ R.

. Special honest-verifier zero-knowledge: There exists an efficient algorithm M such that
the following is satisfied: on input y ∈ LR, σ and c ∈ C, M outputs tuples (t̃, c, s̃) which are
(statistically) indistinguishable from real protocol transcripts with challenge c.

Here, σ denotes a potentially empty common reference string. For the remainder of this paper
we will assume C = [0, 2k−1], where k is a security parameter. Typical values are k = 80 or k = 128.

http://www.cace-project.eu
http://eprint.iacr.org/
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It can be shown that any Σ-protocol satisfies the standard definition of ZK-PoK [4] with knowl-
edge error 1/2k with respect to honest verifiers, e.g., [26]. That is, having rewindable black box
access to a prover making the verifier accept with probability larger than 1/2k, it is possible to
compute the witness in a time proportional to the prover’s advantage. Yet, in the UC model the no-
tion of rewindable blackbox access is not applicable any more. Thus, it must be possible to extract
the prover’s private input already after one successful execution of the protocol. To circumvent this
problem, Garay et al. introduced the notion of Ω-protocols in [32]. On a high level, an Ω-protocol
is a Σ-protocol using a common reference string for which there is a trapdoor τ to σ which allows
one to extract witness without having to rewind the prover.

Definition A.2. Let R be a binary relation. A two party protocol ((P1,P2)(w),V)(y, σ) is called
an Ω-protocol for R, if it is a Σ-protocol which additionally satisfies the following requirements:

. Common reference string: A common reference string σ is drawn according to some prede-
fined distribution, and is given to (P1,P2) and V as an additional common input.

. Trapdoor extraction: There exists a pair of algorithms (E1,E2) satisfying the following two
conditions: (i) algorithm E1 outputs pairs (σ′, τ ′), such that the distribution of σ′ is statistically
indistinguishable from that of uniformly chosen common reference strings, and (ii) if for some
t there exist two accepting transcripts (t, c1, s1) and (t, c2, s2) satisfying c1 6= c2, we have that
(y,E2(y, τ ′, σ′, t, c, s)) ∈ R for all c, s such that V(y, t, c, s, σ′) = 1.

We call an Ω-protocol f -extractable, if algorithm E2 does not output a witness for y, but only
f(w) for some w satisfying (y, w) ∈ R. By allowing this relaxation we will show how to achieve
higher efficiency in the resulting protocols, while still ensuring appropriate security guarantees for
many practical applications.

A.2 The Concept of UC-Emulation

After having given an informal definition of UC-emulation in the main part of the paper, let us now
describe formally what it means that a protocol ρ UC-emulates another protocol φ. Namely, for
every efficient attacker A on ρ, there has to be an efficient simulator S for φ such that no efficient
environment Z can distinguish whether it is interacting with ρ and A, or with φ and S. That is,
the simulator S performs an equivalent attack on φ as A did on ρ.

Let EXEC(ρ,A,Z) denote the random variable given by the output of Z when interacting with
ρ and A, and let EXEC(φ,S,Z) be defined analogously.

Definition A.3. For PPT protocols ρ and φ we say that ρ UC-emulates φ, if for any PPT adver-
sary A there exists a PPT simulator S such that for any PPT environment Z it holds that

EXEC(ρ,A,Z)
s
≈ EXEC(φ,S,Z) .

When proving that ρ UC-emulates φ, it is sufficient to show that there exists a PPT simulator
for the dummy adversary A∗, which often simplifies the security analysis significantly [17]. The
dummy adversary is an adversary which is completely under control of the environment Z and only
forwards messages from Z to the parties participating in ρ and vice versa.

Now, the following composition theorem guarantees that a protocol ρ UC-emulating φ can
securely be used instead of φ in arbitrary contexts [17], whenever ρ and φ are subroutine respecting,
i.e., whenever no sub-party of ρ respectively φ accepts inputs (or passes outputs) from (or to) any
party which is not a sub-party of ρ respectively φ itself.



A Framework for Practical Universally Composable Zero-Knowledge Protocols 19

The authenticated channel functionality Fach

1. Wait for an input (send, x) from P and ready from Q, and send (send, x) respectively ready to A.
2. Wait for a message deliver from A and send (deliver, x) to Q.

Corruption rules:

. If P gets corrupted after sending (send, x) and before Step 2, A is allowed to change the value of x at any
time before Step 2.

Fig. 4: The authenticated channel functionality Fach.

The secure channel functionality Fsch

1. Wait for an input (send, x) from P and ready from Q, and send (send, `(x)) respectively ready to A.
2. Wait for a message deliver from A and send (deliver, x) to Q.

Corruption rules:

. If P gets corrupted after sending (send, x) and before Step 2, A learns x and is allowed to change its value
any time before Step 2.

Fig. 5: The secure channel functionality Fsch.

Theorem A.4. Let π, φ, ρ be PPT protocols such that ρ UC-emulates φ, and φ, ρ are subroutine
respecting. Then πρ/φ UC-emulates π, where πρ/φ denotes the same protocol as π with all instances
of φ being substituted by instances of ρ.

Typically, one assumes that the communication channel being used is at least authenticated,
but not necessarily private. That is, the functionality Fach delivers a message together with the ID
of its sender to the receiver. The attacker is only allowed to change the content (but not the ID of
the sender) for corrupted parties. See Figure 4 for a formal description of Fach. Secure (or private)
channels are realized by the functionality Fsch (cf. Figure 5) in which an attacker does not even
learn the content of a message, but only some information leakage `(x) (such as the length of x,
etc.).

A.3 The Group of Signed Quadratic Residues

Let n be a Blum integer, i.e., n = pq where p, q are primes congruent 3 modulo 4, and let elements
of Z∗n be represented by elements of the set {−n−1

2 , . . . , n−1
2 }. The signed quadratic residues modulo

n [29,36], denoted by SRn, are then given by

SRn = {|x| : x = y2 for some y ∈ Z∗n} ,

where |.| denoted the absolute value. The group operation is then defined by

(gh)SRn := |(gh)Z∗n | .

We will omit the subscripts if there is no danger of confusion.
It is well known that SRn is a group of order p−1

2
q−1

2 , which does not contain small prime factors
if n is a safe RSA modulus, i.e., p, q are each twice a prime plus 1, and p 6= q. Further, in contrast
to the QRn, the group of signed quadratic residues is efficiently recognizable. More precisely, we
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have that SRn consists of all elements in {0, . . . , n−1
2 } whose Jacobi symbol is equal to 1. See [62]

for how to compute the Jacobi symbol. We finally note that SRn is a cyclic group whenever QRn
is, and that for a generator g of QRn we have that |g| generates SRn.

For a detailed discussion of the group of signed quadratic residues we refer to [36].

B Compilation Details

In the following we show how proof specifications are compiled into concrete protocols. We consider
a specification of the form

Kω1 ∈ I∗(mω1), . . . , ωn ∈ I∗(mωn) : Eχ1 ∈ I∗(mχ1), . . . , χn′ ∈ I∗(mχn′ ) :

φ(ω1, . . . , ωn, χ1, . . . , χn′) .

B.1 Resolving Algebraic Relations to Discrete Logarithm Based Proofs

In a first step, all non-linear polynomial relations occurring in the exponents of atomic predicates
have to be resolved. Principally, this can be done using either standard technique found in the
literature, e.g., [6,23,27,30,46,63]. However, in many of these constructions the computationally
inexpensive E-quantifier can be used for certain auxiliary witnesses.

In particular, this is the case for all randomnesses which are used to blind additional commit-
ments when resolving multiplicative relations. As an example, consider the case where one wants to
prove knowledge of the square root contained in a Pedersen commitment [56]. That is, one wants
to perform the following proof:

Kω, ρ ∈ Zq : y = gω
2
hρ .

Standard techniques resolve this polynomial expression to

Kω, ρ1, ρ2 ∈ Zq : y′ = gωhρ2 ∧ y = y′ωhρ1 .

However, it is easy to see that the following statement would still be equivalent to the original proof
goal, which saves the evaluation of two integer commitments and Paillier encryptions, as will be
shown in the following sections:

Kω, ρ1 ∈ Zq : Eρ2 ∈ Zq : y′ = gωhρ2 ∧ y = y′ωhρ2 .

Furthermore, if working over the integers, auxiliary commitments may already be computed using
the common reference string used in §B.2, and can then be reused there without any further
computations.

After this step, all atomic predicates in the reformulated proof specification are of the form

y =

u∏
i=1

g
lj(ω1,...,ωn,χ1,...,χn′ )
j

for homogeneous linear functions lj(ω1, . . . , ωn, χ1, . . . , χn′), where the ωi are quantified by K, and
the χj by E.
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B.2 Computing Integer-Commitments

Next, an integer commitment ỹωi has to be computed for each secret witness ωi. To this end, we
assume the availability of a common reference string σ̃ of the following form:

. A triple (ñ, g̃, h̃) where ñ is a safe RSA modulus of unknown factorization, and g̃, h̃ are generators
of the signed quadratic residues modulo ñ, such that their relative discrete logarithms are also
unknown [27,30].

Then the following computations are performed:

. For each witness ωi, the prover draws w̃i ∈R [−bñ/4c, bñ/4c] and computes ỹi = g̃ωi h̃w̃i . It sets
ỹ = (ỹ1, . . . , ỹn) and similarly for w̃. Here and in the following, bac denotes the largest integer
smaller then a.

Clearly, if in the previous step a commitment of this form has already been introduced in the
rewriting process, it can be reused here, and no new commitment has to be computed.

B.3 From Predicates to Σ-Protocols

The construction proposed in this section has to be performed for each conjunctive clause, i.e., for
each subformula of φ which only contains Boolean ANDs:

Kω1 ∈ I∗(mω1), . . . , ωn ∈ I∗(mωn) : Eχ1 ∈ I∗(mχ1), . . . , χn′ ∈ I∗(mχn′ ) :

v∧
j=1

yj =

uj∏
i=1

g
lji(ω1,...,ωn,χ1,...,χn′ )
ji (3)

Consider next a relation as (3). We now construct a corresponding Σ-protocol, which in addition
proves that the integer commitments ỹi are indeed well formed. The protocol therefore takes σ̃ =
(ñ, g̃, h̃) as additional input.

. In its first round, the prover computes (t, r) = P1(y, w, x, σ̃) as follows:
− It computes {w̃i}ni=1, {ỹi}ni=1 as in §B.2 by using σ̃.
− It draws randomnesses ri ∈R [−2l+kmωi , 2

l+kmωi ] for i = 1, . . . , n, where l is a security
parameter controlling the tightness of the zero-knowledge property. It further draws r′i ∈R
[−2l+kmχj , 2

l+kmχj ] for j = 1, . . . , n′ and r̃i ∈R [−2l+kbñ/4c, 2l+kbñ/4c] for all i;

− it computes commitments for each yj by setting tj =
∏uj
i=1 g

lij(r1,...,rn,r′1,...,r
′
n′ )

ij for j = 1, . . . , v;

further, commitments for all ỹi are computed as t̃i = g̃ri h̃r̃i .
− it outputs r = (r1, . . . , rn, r

′
1, . . . , r

′
n′ , r̃1, . . . , r̃n, w̃1, . . . , w̃n)

and t = (t1, . . . , tv, t̃1, . . . , t̃v, ỹ1, . . . , ỹn).
. Upon receiving c ∈ C, the prover computes s = P2(y, w, x, c, r, σ̃) as follows:
− It sets si = ri + cωi for i = 1, . . . , n and s′j = r′j + cχj for j = 1, . . . , n′;
− it computes s̃i = r̃i + cw̃i for i = 1, . . . , n;
− it outputs s = (s1, . . . , sn, s

′
1, . . . , s

′
n′ , s̃1, . . . , s̃n).

. The algorithm V outputs 1 if and only if the following five conditions are satisfied:

− For all j = 1, . . . , u it holds that tjy
c
j =

∏uj
i=1 g

lji(s1,...,sn,s
′
1,...,s

′
n′ )

ji , and

− for all i = 1, . . . , n it holds that t̃iỹ
c
i = g̃si h̃s̃i , and

− for all i = 1, . . . , n we have si ∈ [−2l+kmωi − (2k − 1)mωi , 2
l+kmωi + (2k − 1)mωi ];
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− for all j = 1, . . . , n′ we have s′j ∈ [−2l+kmχj − (2k − 1)mχj , 2
l+kmχj + (2k − 1)mχj ];

− for all i = 1, . . . , n we have s̃i ∈ [−2l+kbñ/4c − (2k − 1)bñ/4c, 2l+kbñ/4c+ (2k − 1)bñ/4c].

Of course, integer commitments for witnesses which are not occurring in the considered subfor-
mula can be ignored in this construction.

From the third step of the verifier’s algorithm, and from the standard knowledge extractor for
Σ-protocols [27], one can infer that the prover supplied witnesses satisfying ω∗i ∈ [−2l+kmωi−(2k−
1)mωi , 2

l+kmωi + (2k − 1)mωi ], while we insist that honest parties supply witnesses ωi ∈ I(mωi).
We thus get that the parameter t introduced in §3 is given by

t := 2l+k + (2k − 1) ≈ 2l+k .

If for some witness we have ωi ∈ Zq, all intervals in the construction above can just be replaced
by Zq, and accordingly the computation of si in P2 is also modulo q. It is easy to see that in this
case we obtain t = 1. In particular we note that t only depends on the security parameters l and
k, and on whether the group order is known or not, but not on the concrete group or the value of
mω.

B.4 Combining Σ-Protocols by Boolean Connectives

For self-containment, we want to give a brief overview of how Σ-protocols can be combined by
the Boolean ANDs and ORs. More advanced approaches for Boolean formulae of certain types are
given in [24].

If the predicate φ is built from atomic predicates by nested ANDs and ORs, then the following
composition techniques have to be applied recursively. For instance, if ψ1, ψ2, ψ3 are the atomic
predicates, and φ is given by φ = (ψ1 ∧ ψ2) ∨ ψ3, the AND composition is performed to obtain a
Σ-protocol for ψ1 ∧ ψ2, which is then connected to ψ3 by the OR composition technique.

Composing Σ-protocols by Boolean ANDs. Let be given Σ-protocols ((Pi1,Pi2)(ωi),Vi)(yi)
for i = 1, . . . , n, and let one be interested in proving knowledge of all witnesses ω1, . . . , ωn simulta-
neously. This can be achieved by running the following Σ-protocol:

. In its first move, the prover performs the following computations.
− It sets (ti, ri) := Pi1(yi, ωi) for all i = 1, . . . , n.
− It sets t = (t1, . . . , tn) and r = (r1, . . . , rn).

. Upon receiving c ∈ C, the prover computes its response as follows.
− It sets si := Pi2(yi, ωi, c, ri) for all i = 1, . . . , n.
− It output s := (s1, . . . , sn)

. The verifier accepts the proof, if and only if V(yi, t1, c, si) = 1 for all i.

Composing Σ-protocols by Boolean ORs. Proving knowledge of at least one out of a set
{ω1, . . . , ωn} of witnesses is a bit more involved. Let therefore Si denote the simulator of the ith

Σ-protocol to combine. The following construction then realizes an OR composition:

. In its first move, the prover
− For the known secret ωj , set (tj , rj) := Pj1(yi, ωj).
− Set (ti, ci, si) = Si(yi, ci), set ri := (ci, si) for all i 6= j.
− Output t = (t1, . . . , tn) and r = (r1, . . . , rn).
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. Upon receiving c ∈R C, the prover proceeds as follows.
− It sets cj = (c⊕

⊕
i 6=j ci).

− It computes sj = Pj2(yj , ωj , cj , rj).
− It outputs s = (s1, . . . , sn, c1, . . . , cn).

. The verifier accepts the proof, if and only if the following conditions are satisfied:
− The challenge cj was computes correctly, i.e., c =

⊕n
i=1 ci, and

− all triples (ti, ci, si) are accepting communication transcripts, i.e., Vi(yi, ti, ci, si) = 1 for all
i = 1, . . . , n.

B.5 From Σ-Protocols to Ω-Protocols

As discussed in §A.1, Σ-protocols are not applicable for ZK proofs in the UC model, as their security
guarantees rely on rewindable blackbox access to malicious provers. We therefore next explain how
the obtained Σ-protocols can be transformed into efficient Ω-protocols, cf. Definition A.2.

The idea of the construction is to Paillier encrypt the witnesses ωi, and to send these encryptions
ŷi to the verifier. Then it is proved that the values inside the ŷi are satisfying the relation (3). Using
the integer commitments computed in §B.2, the problem of different orders of the groups used in
the predicate and for the Paillier encryptions can be circumvent. Now, the private key of the Paillier
scheme forms the trapdoor required in Definition A.2: if it is known, the witnesses can efficiently
be extracted by decrypting the ŷi.

The common reference string σ̄ of the resulting Ω-protocol is given by the CRS of the underlying
Σ-protocol, and a public key of the Paillier encryption scheme [54]. That is, it is given by:

. A common reference string σ̃ = (ñ, g̃, h̃) as in §B.2.

. a pair (n̂, ĝ), where n̂ is a safe RSA modulus, and ĝ ∈ Z∗n̂2 such that the order of ĝ is a multiple
of n̂. If the prime factors of n̂ are of equivalent length, one can choose ĝ = n̂ + 1. Further, we
require that n̂

2 > maxi(tmωi).

The trapdoor τ̄ consists of the factorizations of ñ and n̂.
For describing the prover’s and verifier’s algorithms, we denote the algorithms of the underlying

Σ-protocol be given by (PΣ1 ,P
Σ
2 ) and VΣ , respectively.

. In its first step, the prover computes (t, r) = P1(y, w, x, σ̄) as follows. It computes
− (tΣ , rΣ) = PΣ1 (y, w, x, σ̃);
− Paillier-encryptions for all ωi. That is, it draws ŵi ∈R Z∗n̂ and sets ŷi = ĝωiŵn̂

i mod n̂2;
− further, it draws r̂i ∈R Z∗n̂ and computes t̂i = ĝr̄i r̂n̂i ;

− it sets t̄i = g̃r̄i h̃r̄i for r̄i ∈R [−2l+kbñ/4c, 2l+kbñ/4c];
− Finally, it sets t = (tΣ , {ŷi}ni=1, {̂ti}ni=1, {̄ti}ni=1), and r = (rΣ , {ŵi}ni=1, {r̄i}ni=1, {r̂i}ni=1).

. Upon receiving a challenge c ∈R C, the prover computes s = P2(y, w, c, r, σ̄) as follows. It
computes
− sΣ = PΣ2 (y, w, x, c, rΣ , σ̃);
− ŝi = r̂iŵ

c
i for all i;

− s̄i = r̄i + cωi for all i = 1, . . . , n.
− s̃i = r̄i + cw̃i for all i = 1, . . . , n.
− It outputs s = (sΣ , {ŝi}ni=1, {s̄i}ni=1, {s̄i}ni=1).

. The verifier accepts, i.e., V(y, t, c, s, σ̄) = 1, if and only if the following conditions are satisfied:
− VΣ(y, tΣ , c, sΣ , σ̃) = 1;
− the ŷi are valid Paillier-encryptions of the witnesses, i.e., t̂iŷ

c
i = ĝs̄i ŝn̂i for all i = 1, . . . , n;

− for all i = 1, . . . , n we have s̃i ∈ [−2l+kbñ/4c − (2k − 1)bñ/4c, 2l+kbñ/4c+ (2k − 1)bñ/4c];
− for all i = 1, . . . , n it holds that t̄iỹ

c
i = g̃s̄i h̃s̃i , and

For more details on this construction we refer to the original work of Garay et al. [32,33].
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B.6 Optimizations

We briefly want to discuss an optimization of the techniques presented so far in the case that the
predicate φ does not contain any Boolean OR connectives. Namely, in §B.2, a single joint integer
commitment can be computed for all witnesses as ỹ = g̃ω1

1 . . . g̃ωn
n h̃w̃, where w̃ ∈R [−bñ/4c, bñ/4c].

This joint integer commitment can then be used in §B.3 instead of ỹ1, . . . , ỹn. Further, the techniques
in §B.3 and §B.5 can be combined into one step, which avoids proving knowledge of the preimage
of ỹ twice.

Similar optimizations can be performed in the case that, in a Boolean formula containing ORs,
every secret is only used within one conjunctive term, i.e., no two atomic predicates connected
by an OR are using a shared secret ωi. In this case, the above optimization can be done for each
conjunctive subformula of φ.

B.7 From Ω-Protocols to UC-ZK Protocols

The protocols obtained so far admit some attacks which have to be prevented when aiming for

protocols realizing the ideal functionality FR,R
′

ZK :

. First, Ω-protocols are only zero-knowledge against honest verifiers. That is, if the verifier does
not choose its challenge c uniformly from C, but, e.g., depending on the commitment t, there
does not exist an efficient algorithm simulating protocol transcripts any more. This issue can be
solved by not sending t in the clear in the prover’s first move, but by changing the protocol flow
as follows: the prover first sends a commitment to t to the verifier, who then sends a challenge
c back to the prover. The prover now responses with the response s, together with an opening
of the commitment (including t) to the verifier, who additionally checks this opening is valid.

. Second, a malicious party could run two instances of the Ω-protocol in parallel, acting as a
verifier in the first, and acting as a prover in the second instance. By simply forwarding the
commitment from the first instance in the second, using the challenge from the second instance
in the first, and again by forwarding the response from the first instance in the second, it could
convince a verifier in the second instance that it knows the secret witnesses without actually
doing so. This problem can be tackled by introducing a tag, which binds each message to a
unique prover/verifier pair.

. Finally, in the constructed Ω-protocol the public value y is given as a common input to both

parties, whereas in the ideal functionality FR,R
′

ZK the verifier only learns y after the proof has
been performed.

The following construction realizes the above observation, and shows how Ω-protocols can be

transformed into protocols that UC-emulate the ideal functionality FR,R
′

ZK . The construction was
first proposed in [49], with the committed proof idea stemming from [37], and is based on the
Digital Signature Algorithm (DSA) [53]. Although this construction works independently from the
underlying Ω-protocol, using the techniques from §B.5 is crucial for the optimizations presented
in §4 to work.

The presented UC-ZK protocol is secure for adaptive corruptions, assuming that data can be
erased securely and efficiently. If this is not the case, [49] also show that the resulting protocol is
secure in the static corruptions model. The protocol uses a common reference string σ which is
given by (σ̄, g, p, q, y), where

. σ̄ is the common reference string of the underlying Ω-protocol, as described at the onset of §B.5,
and
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. (g, p, q, y) is a public DSA key. That is, p, q are prime such that q|(p − 1). Further, g, y ∈ Zp

with ord g = q and y = gx for some secret x ∈ Zq.

The trapdoor τ of the protocol is given by τ = (τ̄ , x), where τ̄ is the trapdoor of the Ω-protocol,
and x is the secret discrete logarithm of y in base g.

The protocol still consists of three messages being exchanged, and makes use of a cryptographic
hash function H. The prover’s and verifier’s algorithms are detailed in the following:

. In its first move, the prover performs the following computations. It
− computes (tΩ, rΩ) = PΩ1 (y, w, x, σ̄) as in the underlying Ω-protocol;
− sets tag = (PIDP , P IDV ), and m = H(y‖ỹ‖tΩ);
− draws a, b ∈R Zq and computes g′ = ga and h = gH(tag)yg

′
. Finally, it sets c = g′bhm, and

− sends (g′, c) to the verifier.
. Upon receiving c ∈ C, the prover
− computes sΩ = PΩ2 (y, w, x, c, rΩ, σ̄),
− deletes all local data stemming form the protocol, in particular rΩ and all quantities intro-

duced in the reformulation in §B.1, and
− sends (y, ỹ, tΩ, sΩ, b) to the verifier.

. The verifier accepts the protocol run, if and only if the following two conditions are satisfied:
− VΩ(y, tΩ, c, sΩ, σ̄) = 1;
− it holds that c = g′bhm, where tag = (PIDP , P IDV ), m = H(y‖ỹ‖tΩ) and h = gH(tag)yg

′
.

Theorem B.1. Let spec be a proof specification without any quantities being quantified by E, and

let R = R(spec), R′ = R′(spec), and π = π(spec). Then π UC-realizes FR,R
′

ZK with respect to
adaptive corruptions, assuming that securely erasing data is possible. If this is not the case, it still

UC-realizes FR,R
′

ZK with respect to static corruptions.

The proof of this theorem follows immediately from [49]. What is actually shown there is that the

resulting protocols multi-realize FR,R
′

ZK with joint access to the common reference string σ in the
Fach-hybrid model [21].

B.8 Estimating the Computational Costs

When designing protocols it is often helpful if the computational costs of a protocol can already
be roughly estimated at an early stage. We thus want to support a protocol designer by listing the
accruing costs of a UC-ZK protocol here. The only compilation step that has to be done before
being able to read off the costs from a proof specification in the basic language is to resolve all
polynomial relations in the exponents of atomic predicates to at most linear ones.

The computational costs of the prover are now given by:

. 2 evaluations of the Paillier-homomorphism (for the encryption itself and the proof of its cor-
rectness) per secret witness quantified by K.
Typical length of modulus: 4096 bit (n̂2 for a 2048 bit safe RSA modulus n̂)

. For predicates φ of the form (1):
− 2 computations of integer commitments of the form gwhr (for the commitment itself and

the proof of its correctness) per secret witness quantified by K.
− 1 integer commitment of the form gwhr per secret witness quantified by Kin each conjunctive

clause.
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The equality testing functionality Feq

1. Wait for an input (left-input, u) from P and (right-input, v) from Q, and send left-input respectively
right-input to A.

2. Wait for a message lock from A and set res = 1 if u = v, and res = 0 otherwise.
3. Wait for a message deliver-left from A and send (return, res) to P . Wait for a message deliver-right

from A and send (return, res) to Q.

Corruption rules:

. If P (Q) gets corrupted between Steps 1 and 2, A is given u (v) and is allowed to change this value at any
time before Step 2.

. If P (Q) gets corrupted between Steps 2 and 3, A is given u (v).

Fig. 6: The equality testing functionality Feq.

If the optimization of §B.6 can be applied:

− 2 computations of multi integer commitments of the form gw1
1 . . . gwn

n hr (for the commitment
itself and the proof of its correctness) for each conjunctive clause in φ, where the wi are only
quantities of which knowledge has to be proved.

Typical length of modulus: 2048 bit

. 1 evaluation of each atomic predicate in the predicate φ.
Typical length of modulus: depending on proof goal

. 3 exponentiations in the DSA group specified by the common reference string.
Typical length of modulus: 1024 bit (cf. [53])

The costs of the verifier can be estimated similarly by inspecting the constructions given in §B.2
to §B.7. In particular one can see here that the Paillier-encryptions can be avoided for all values
quantified by E, which typically poses the most expensive part of the proof because of the lengths
of its modulus.

C An Example

In this section we give an example how our composition theorem can be applied in the analysis of
higher-level protocols. We therefore chose the ideal equality testing functionality Feq, which expects
inputs u from P , and v from Q and which outputs 1 if and only if u = v, cf. Figure 6.

The ideal functionality as well as the following protocol realizing it are taken from [11], where
they are used in the context of credential authenticated identification. The protocol assumes that
the inputs α and β of P and Q, respectively, are encoded as elements of Zq for some prime number
q. Furthermore, it makes use of a group G of order q, in which the Decisional Diffie-Hellman problem
is assumed to be computationally infeasible, and a generator g of G.

On a high level, the idea of the protocol is the following. First, P computes an encryption of gα

under the semantically secure version of the Cramer-Shoup encryption schemes [25,37]. Then, Q
uses the homomorphic property of the scheme to obtain a random encryption of gσ(α−β) for some
random σ ∈ Zq. Finally, P decrypts this value and raises it to a random power ζ, yielding gζσ(α−β),
which is equal to 1 if and only if α = β.

All messages are accompanied by proofs showing that they were computed correctly. For these
proofs, the gullible zero-knowledge functionality FgZK for the respective relations is used.
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1. P computes:
h ∈R G, χ1, χ2, ρ ∈R Zq
c = gχ1hχ2 , u1 = gρ, u2 = hρ, e = gαhρ,

and proves the following statement to Q using FR,R
′

gZK :

Kα ∈ Zq : Eρ ∈ Zq : u1 = gρ ∧ u2 = hρ ∧ e = gαcρ .

Note that h, c, u1, u2, e are delivered to Q via FR,R
′

gZK after erasing ρ.

2. Q computes:
σ ∈R Zq \ {0}, τ ∈R Zq,
ũ1 = uσ1g

τ , ũ2 = uσ2h
τ , ẽ = eσg−βσcτ ,

and proves the following statement to P using FR,R
′

gZK :

Kβ ∈ Zq : Eσ, τ ∈ Zq : ũ1 = uσ1g
τ ∧ ũ2 = uσ2h

τ ∧ ẽ = eσg−βσcτ ∧ gcd(σ, q) = 1 .

Note that ũ1, ũ2, ẽ are delivered to P via FR,R
′

gZK after erasing σ, τ .

3. P computes:
ζ ∈R Zq \ {0},
d = ẽζ ũ−ζχ1

1 ũ−ζχ2
2 ,

and proves the following statement to Q using FR,R
′

gZK :

Eχ1, χ2, ζ ∈ Zq : c = gχ1hχ2 ∧ d = ẽζ ũ−ζχ1
1 ũ−ζχ2

2 ∧ gcd(ζ, q) = 1 .

Again, note that d is delivered to Q via FR,R
′

gZK after erasing χ1, χ2, ζ.

4. After erasing all local data, both parties output 1 if d = 1, and 0 otherwise.

Theorem C.1. The Fsch-hybrid protocol π described above UC-emulates Feq with respect to adap-
tive corruptions, assuming that the Decisional Diffie-Hellman Problem is hard in G, and that se-
curely erasing data is possible.

A sketch of the following proof without the E-optimization in the proof protocols can also be found
in [11].

Proof. By Theorem 4.3 we have to show that the Fsch,FgZK-hybrid version of π UC-emulates Feq

with respect to the dummy adversary and nice environments. That is, we have to show that for
every nice environment Z, there exists an efficient simulator S such that for the dummy adversary
A∗ we have that

EXEC(π,A∗,Z) ≈ EXEC(Feq,S,Z) .

We start with some basic observations:

. We may assume that the environment Z always requires A∗ to send correct statements to FgZK,
and not only with overwhelming probability. It can easily be seen that the probability distribu-
tions of EXEC(π,A∗,Z) and EXEC(Feq,S,Z) are only altered negligibly by this modification.

. Simulation is trivial in the case that neither P nor Q are corrupted, as we are using secure
channels. Namely, in this case, the adversary only sees notifications without content. All mes-
sages received from the adversary (i.e., lock, deliver-left, deliver-right) by S are just
forwarded to its internal copy of Feq.
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. In the case where (at least) one of the parties gets corrupted, we can assume that either P or
Q has already been corrupted at the beginning of the protocol run: if this is not the case, the
simulator can just start the party’s execution using its inputs until the point it actually gets
corrupted. This works because of the usage of secure channels, and the structure of FgZK (the
statement to be proved is only revealed in the last step). However, we have to deal with the
possibility that the other party gets corrupted at any time during the execution of the protocol.

Let us now describe the simulator for the case where Q is corrupt.

1. If P is already corrupted before the lock message is sent by the adversary, S obtains P ’s input
α to Feq, and proceeds as described in the protocol. Otherwise, S chooses

ρ1, µ1, µ2 ∈R Zq, ω ∈R Zq \ {0}, ρ2 ∈R Zq \ {ρ1} ,

and uses the fact that the semantically secure version of the Cramer-Shoup encryption scheme
is receiver-non-committing to compute a fake encryption of the unknown α which can later be
opened correctly to any α, cf. [37]:

h = gω, u1 = gρ1 , u2 = gρ2 , c = gµ1 , e = gµ2 .

Whenever P gets corrupted in the subsequent, S obtains α from Feq and computes a valid
internal state χ1, χ2, α of P consistent to g, h, u1, u2, c, e by computing χ1, χ2 such that

χ1 + ωχ2 = µ2 and ρ1χ1 + ρ2ωχ2 = µ1 − α .

2. As Q is corrupt, S gets Q’s input β to FgZK, as well as the outputs ũ1, ũ2, ẽ. Then, S submits
β as Q’s inputs to its internal copy of Feq.

3. If P gets corrupted before the lock message was sent by the adversary, S gets α, χ1, χ2 as
described in Step 1, and draws ζ ∈R Zq \ {0}. Otherwise, S sets d = 1 if res = 1, and
d ∈R G \{1} if res = 0. It then requests Feq to deliver the output to Z after the protocol ended.

We now have to show that the output of this simulator is indeed indistinguishable from real protocol
runs.

We first note that under the Decisional Diffie-Hellman assumption for G, the environment cannot
distinguish between correctly computed tuples (g, h, u1, u2, e) and faked ones as has be shown in [37,
Lemma 5]. By the same result, if P gets corrupted at any later point in time, (α, χ1, χ2) cannot
be distinguished from correct openings of the encryption. The correctness of the first step of the
simulation finally follows from the fact that in the protocol ρ = logg u1 = logh u2 is deleted before
delivering h to Q. Namely, the simulator does not have to provide ρ to Z upon corruption of P ,
and thus Z cannot test whether the discrete logarithms are equal.

In the second step, as Z is nice by assumption, we have that (ũ1, ũ2, ẽ) really satisfies the
relation claimed by Q, and thus that β is indeed the correct input of Z. Note that the plain UC-ZK

functionality FR,R
′

ZK would also hand back σ and τ to S here.
As in the first step, the distribution of (α, χ1, χ2, ζ ∈R Zq \ {0}) in the last step is computation-

ally close to that in the real protocol run. Similarly, as in the real protocol d = 1 happens if and
only if b− a = 0 as g has prime order, and d ∈R G otherwise. Thus, the last step of the simulation
is indistinguishable from the real protocol as well. Note again that, as χ1, χ2, ζ are quantified by

E, they never have to be given to the adversary after calling FR,R
′

gZK .

Even though not being symmetric, the simulation and proof work similar for the case that P
starts corrupted. ut
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If in the first step of the above protocol we had that knowledge of ρ must be proved, then
it is crucial that our formulation of the ideal UC-ZK functionality only delivers the statement
to prove in the last step. Assume for a moment that the protocol was built using the standard
formulation found, e.g., in [17,28,49], where the attacker already learns y in the first step of the ideal
functionality. Then, if P gets corrupted during the proof of the first step from above, the simulator
would have to reveal α, ρ satisfying the relation on the right-hand side for fixed u1, u2, e. However,
this could not be done, because u1, u2 were chosen by the simulator such that logg u1 6= logh u2.
If on the other hand our ideal functionality FZK had been used, the simulator had the possibility
to change u1, u2, e such that α, ρ satisfy the claimed relation, as it is not committed to any values
before the last message in the functionality. While multiple further examples for such applications
of FZK can be found in [11], we are not aware of any situations where our formulation can not be
used instead of the standard formulation.
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