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Abstract. A new fundamental and secure group key management ap-
proach with a group controller GC using the theory of polynomial func-
tions over a vector space over finite field is developed, where each mem-
ber in the group corresponds to a vector in the vector space and the GC
computes a central vector, whose inner product with every member’s ID
vector are identical. The central vector is published and each member
can compute a common group key via inner product. The security relies
on the fact that any illegitimate user cannot calculate this value with-
out the legitimate vector, therefore cannot derive the group key. This
approach is secure and its backward and forward secrecy can be guar-
anteed. The performance of our approach is analyzed to demonstrate its
advantages in comparison with others, which include: 1) it requires both
small memory and little computations for each group member; 2)it can
handle massive membership change efficiently with only two re-keying
messages, i.e., the central vector and a random number; 3) it is very ef-
ficient and very scalable for large size groups. Our experiments confirm
these advantages and the implementation of our prototype presents very
satisfactory performance for large size groups.

Keywords: key management, group communication, linear geometry,
security

1 Introduction

With the rapid expansion of Internet technology and the popularization of multi-
cast, group-oriented applications, such as video conference, network games, and
video on demand, etc., play more and more important roles. How to protect the
communication security of these applications is critical. A secure group commu-
nication system should not only provide data confidentiality, user authentication,
and information integrity, but also good scalability. For a secure group communi-
cation system, a secure, efficient, and robust group key management approach is
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essential. Key management of secure group communication can be divided into
three different categories: the first is called a centralized scheme with a central
group controller (GC), the second is called a distributed scheme that without
GC, and the third is called a decentralized scheme that can be regarded as the
mix of previous two [1]. In this paper, we focus on the first category.

For the key management of secure group communication, there are many
different approaches. In this paper, we will look the problem from a very different
angle from before, namely a very fundamental mathematical point of view.

Let us assume that we have a GC and n members in our group. Clearly GC
must assign each member an identifier to manage them, which we call V1,...,Vn.
From a mathematical point of view, we can assume that each identifier is a
vector (which we call the ID vector) in a vector space over a finite field F with
q elements, namely:

Vi = (vi,1, vi,2, · · · , vi,m),

where each vi,j is an element in the finite field F. Such ID vector should surely
be kept secure for each member. To derive common key for the group, clearly the
GC must develop a mechanism such that each member can use its information
– the ID vector to derive the common key. Such a mechanism can be viewed as
a functions f . Then we know this function must have the property:

f(V1) = f(V2) = · · · = f(Vn) = k,

where k is the common key.

From the theory of finite field, we know that this function must be a poly-
nomial function, since every function over a field is a polynomial function. Due
to the efficiency consideration, we would like to start with the simplest function,
namely the linear function. In this paper, we develop such a new secure group
key management approach based on linear geometry, where the function f can
be geometrically interpreted as the inner product of two vectors:

f(Vi) = Xi ×AT ,

where Xi is a vector derived from Vi, A is a vector selected by GC, and AT is
the transpose of the vector A.

Fig. 1 illustrates the geometrical interpretation of inner product of two vec-
tors when we consider F to be the field of real number.
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Fig. 1. The geometrical interpretation of inner product of two vectors over real number
field

In this scheme, each key is completely independent from any previous used
and future keys, therefore the backward and forward secrecy can be guaranteed.

We systematically analyze this construction. The new scheme has the advan-
tages of efficient computations with small memory for each group member and
efficient massive membership updates.

The rest of this paper is organized as follows. We first present a brief summary
of related schemes on secure group key management in Section II. The proposed
secure group key management approach is constructed in Section III. Section
IV discusses and analyzes the security and the performance of new scheme.
Experiments are also presented in Section IV. Finally, Section V summarizes
the major contributions of this paper.

2 Previous Work

There are various approaches on the key management of secure group commu-
nication. Rafaeli and Hutchison[1] presented a comprehensive survey on this
area. The schemes can be divided into three different categories: centralized,
distributed, and decentralized schemes.

Some typical schemes in the centralized category include Group Key Man-
agement Protocol (GKMP)[2, 3], Secure Lock (SL)[4], Logical Key Hierarchy
(LKH)[5], etc. A brief survey of these schemes is summarized as follows. Here-
after, suppose n is the number of members in the group.

The Group Key Management Protocol (GKMP) [2, 3] is a direct extension
from unicast to multicast communication. It is assumed that there exists a secure
channel between the GC (Group Controller) and every group member. Initially,
The GC selects a group key K0 and distributes this key to all group members
via the secure channel. Whenever a member joins, the GC selects a new group
key KN , and encrypts the new group key with the old group key yielding K ′ =
EKN

(K0), then broadcasts K ′ to the group. Moreover, the GC sends KN to the
joining member via the secure channel between the GC and the new member.
Obviously, the solution is not scalable, and there is no solution for keeping the
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forward secrecy property when a member leaves the group except to recreate an
entirely new group without that member [1].

The Secure Lock (SL) scheme [4] takes advantage of Chinese Remainder
Theorem (CRT) to construct a secure lock to combine all the re-keying messages
into one while the group key is updated. However, CRT is a time-consuming
operation. As mentioned in [4], the SL scheme is efficient only when the number
of users in a group is small, since the time to compute the lock and the length
of the lock (hence the transmission time) is proportional to the number of users.

The Logical Key Hierarchy (LKH) scheme [5] adopts tree structure to orga-
nize keys. The GC maintains a virtual tree, and the nodes in the tree are assigned
keys. The key held by the root of the tree is the group key. The internal nodes
of the tree hold key encryption keys (KEK). Keys at leaf nodes are possessed
by individual members. Every member is assigned the keys along the path from
its leaf to the root. When a member joins or leaves the group, its parent node’s
KEK and all KEKs held by nodes in the path to the root should be changed. The
number of keys which need to be changed for a joining or leaving is O(log2 n),
and the number of encryptions is O(2 × log2 n). But if there are a great deal
of members join or leave the group, then the re-keying overhead will increase
proportionally to the number of members changed.

There are some other schemes that adopt tree structures, for example, OFT
(One-way Function Tree)[6], OFCT(One-way Function Chain Tree)[7], Hierar-
chical a-ary Tree with Clustering[8], Efficient Large-Group Key[9], etc. They can
be regarded as the similarity or improvement of LKH.

The features of distributed schemes are that there is no explicit GC, and
the key generation can be either contributory or done by one of the members
[1]. Some typical schemes include: Burmester and Desmedt Protocol[12], Group
Diffie–Hellman key exchange[13], Octopus Protocol[14], Conference Key Agree-
ment[15], Distributed Logical Key Hierarchy[16], Distributed One-way Function
Tree[17], Diffie–Hellman Logical Key Hierarchy[18, 10], Distributed Flat Table
[19], etc. Recent references paid more attentions to contributory and collabora-
tive group key agreement, for example: [20–25], etc.

In the decentralized architectures, the large group is split into small sub-
groups. Different controllers are used to manage each subgroup[1]. Some typ-
ical schemes include: Scalable Multicast Key Distribution[26], Iolus[27], Dual-
Encryption Protocol[28], MARKS[29], Cipher Sequences[30], Kronos[31], Intra-
Domain Group Key Management[32], Hydra[33], etc.

The secure group key management approaches can be applied to a lot of
application areas. For example: wireless/mobile network[34, 35, 37–40], wireless
sensor network[36], storage area networks[41], etc.

3 Approach Based on Linear Geometry

3.1 Notation

The following notations are used throughout the remainder of this paper.
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GC the group controller, who manages the group initialization, member
joining/leaving operations

F a finite field
g a secure hash function over F without any algebra features, like SHA-1
n number of members in the group
m the dimension of group member’s private vectors, and 2 ≤ m ≤ n
r a random number (public information)
A central vector (public information)
Vi member ui’s ID vector (private information)
J (i) member ui’s position set (private information)
k the group key (secret information)

F, g, n, m, r and A are public. Vi and J (i) are member ui’s private informa-
tion. The group key k is a secret shared by all members. It is assumed that all
computations hereafter are over the finite field F.

3.2 Generation of Group Key

Suppose there are n members in the group, and the set of members are denoted
by U = {u1, u2, ..., un}. The GC chooses an integer m, where 2 ≤ m ≤ n.
The parameter m should be fixed during the whole procedure of initial group
key generation, adding members, removing members, and massive adding and
removing. The process to construct the group key includes the following steps.

Step 1. For each member u ∈ U , the GC assigns an unique integer i as
u’s ID, where 1 ≤ i ≤ n . For i = 1, 2, ..., n, the GC selects m random
numbers vi,1, vi,2, ..., vi,m ∈ F , and constructs m-dimensional vector Vi =
(vi,1, vi,2, · · · , vi,m) over the finite field F. The vectors V1, ..., Vn should satisfy
Vy 6= Vz if y 6= z , where 1 ≤ y, z ≤ n . The vector Vi is called ui’s private vector
(or ID vector).

The ID i and private vector Vi should be kept secret.
Step 2. The GC selects random number r ∈ F .
Step 3. The GC maps m-dimensional private vectors Vi to n-dimensional

vectors Xi via the following computations.
For i = 1, 2, ...,m, the GC lets j(i)1 = 1, j(i)2 = 2, ..., and j

(i)
m = m.

For i = m + 1, ..., n, the GC lets j
(i)
1 = i; randomly selects an integer j

(i)
2

satisfying 1 ≤ j
(i)
2 < i ; and randomly selects different integers j

(i)
3 , j

(i)
4 , ..., j

(i)
m

satisfying 1 ≤ j
(i)
y ≤ n and j

(i)
y 6= j

(i)
z if y 6= z , where 1 ≤ y, z ≤ m.

Denote the set of j(i)1 , j
(i)
2 , ..., j

(i)
m by J (i) = {j(i)1 , j

(i)
2 , ..., j

(i)
m }. J (i) is called

ui’s non-zero position set, or position set for short, which is used to store the
non-zero positions of vector Xi in the following steps.

For i = 1, 2, ..., n,
for y = 1, 2, ...,m, the GC computes

x
i,j

(i)
y

= g(g(vi,y)⊕ r),
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where g(vi,1), g(vi,2), ..., g(vi,m) can be pre-computed and stored for later use.
For each j /∈ {j(i)1 , j

(i)
2 , ..., j

(i)
m }, the GC lets

xi,j = 0.

Then the GC constructs new vectors

X1 = (x1,1, x1,2, · · · , x1,n),
......,

Xn = (xn,1, xn,2, · · · , xn,n)

over the finite field F.
Step 4. The GC judges whether X1, ..., Xn are linearly independent or not.

If they are linearly independent, then proceed to Step 5; otherwise, repeat Steps
2 - 4.

Note that since r and vectors Vi are all randomly selected, it is very easy to
get a set of linearly independent vectors X1, ..., Xn.

Step 5. The GC delivers each member’s private vector Vi and the position
set J (i) to the member ui individually via a secure channel, where i = 1, 2, ..., n.

Note that the private vector Vi and the position set J (i), including the ID i,
are the member ui’s private information and should be kept secret.

Step 6. The GC chooses a random number k ∈ F as the group key. Suppose
a1, a2, ..., an are unknown parameters. The GC attempts to solve a1, a2, ..., an
from the following system of linear equations.

x1,1a1 + x1,2a2 + ...+ x1,nan = k
x2,1a1 + x2,2a2 + ...+ x2,nan = k

......
xn,1a1 + xn,2a2 + ...+ xn,nan = k

(1)

Let vector K = (k, k, ..., k), A = (a1, a2, ..., an), and let matrix

X =


X1

X2

...
Xn

 =


x1,1 x1,2 ... x1,n

x2,1 x2,2 ... x2,n

... ... ... ...
xn,1 xn,2 ... xn,n

 ,

then the system of linear equations in (1) can be represented as vector expression:

X ×AT = KT (2)

Since X1, X2, ..., Xn are linearly independent vectors, the determinant of co-
efficient matrix |X| 6= 0. Therefore, the set of equations in (2) or (1) has unique
solutions A = (a1, a2, ..., an) .

Step 7. The GC broadcasts vector A = (a1, a2, ..., an) and random number
r to all group members via open channel.

Step 8. After receiving A = (a1, a2, ..., an) and r, each member ui will firstly
map its m-dimensional private vector Vi to a n-dimensional vector Xi.
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By retrieving the first element j
(i)
1 from the set J (i) , the member ui can

know its ID i.
For y = 1, 2, ...,m, the member ui computes

x
i,j

(i)
y

= g(g(vi,y)⊕ r),

where g(vi,1), g(vi,2), ..., g(vi,m) can be pre-computed and stored for later use.
For each j /∈ {j(i)1 , j

(i)
2 , ..., j

(i)
m }, the member ui lets

xi,j = 0.

Then each member ui can construct the vector

Xi = (xi,1, xi,2, · · · , xi,n),

and calculate the group key k via the following equation, whose value is the
inner product of two vectors Xi and A:

k = Xi ×AT = xi,1a1 + xi,2a2 + ...+ xi,nan
= x

i,j
(i)
1
a
j
(i)
1

+ x
i,j

(i)
2
a
j
(i)
2

+ ...+ x
i,j

(i)
m
a
j
(i)
m

(3)

Obviously, we learn from (1) that each ui can yield the same value k via (3),
where i = 1, ..., n.

3.3 Membership Changing and Re-keying

If there are members need to join or leave the group, then the old group key
should be discarded and a new group key should be generated to guarantee the
backward and forward secrecy.

When adding new members, the steps are similar to the ones in the previous
sub-section. In brief, the GC assigns new IDs and selects new private vectors Vis
for new members in Step 1, and re-chooses a random number r in Step 2. Then
the GC maps new private vectors Vi to vectors Xi and determines if X1, . . . , Xn

are linearly independent or not in Step 3 and 4. After that, the GC delivers new
private vectors and new position sets to each new member individually via a
secure channel in Step 5. The GC re-selects a new group key k and re-calculates
the public central vector A in Step 6, then broadcasts central vector A and
random number r to all group members via open channel in Step 7. Finally,
each legal member can compute the common group key k by using its position
set J (i) and private vector Vi in Step 8.

When removing members, the GC deletes the leaving members’ private vec-
tors and the position sets in Step 1. Other steps are similar to the ones in the
previous sub-section except that each member has already owned its private in-
formation Vi and J (i), then it is not necessary to re-send the private information
by the GC again.

Massive adding and removing, where a lot of members join the group and
other members leave the group at the same time in batch mode, can be regarded
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as the combination of adding operation and removing operation. There is only
one re-keying operation for massive adding and removing regardless the number
of members changed.

4 Security, Performance Analysis and Experiments

4.1 Security Analysis

1) Any illegitimate user who is not the group member cannot derive
the group key. The group key k is calculated via (3), which is the inner product
of the group member ui’s vector Xi and the group’s public vector A. The vector
Xi is derived by invoking ui’s private vector Vi , the position set J (i), and the
random number r. Any illegitimate user, who is not the group member, cannot
calculate Xi without the knowledge of legitimate vector Vi and the set J (i),
therefore cannot derive the group key k.

2) Forward and backward secrecy is provided. Backward secrecy is
used to prevent a new member from decoding messages exchanged before it
joined the group [10, 11, 1]. In this paper, a new group key k is randomly gen-
erated when a new member joins, therefore it is not able to decrypt previous
messages by the new members even if earlier messages enciphered with the old
group key have been stored.

Forward secrecy is used to prevent a leaving or expelled group member to
continue accessing the group’s communication (if it keeps receiving the messages)
[10, 11, 1]. In this paper, the group key is changed each time when a member
leaves, then the leaving or expelled member will not be able to decrypt group
messages enciphered with the new group key.

3) It is extremely difficult for an attacker to derive member ui’s
private vector Vi. The attacker might be a legitimate member or an illegitimate
user. If the attacker isn’t a group member, since any illegitimate user will know
less information than group member, it will be more difficult to break others’
private information. Then we can assume that the attacker is the legitimate
member uj , and tried to derive other member ui’s private vector Vi . The security
is discussed from the following aspects.

The attacker is unable to get other member ui’s private information
Vi and J (i) through network communication. Each group member ui’s
private vector Vi is randomly generated by the GC, and ui’s private position set
J (i) is assigned by the GC. The GC sends the member ui’s private information
Vi and J (i) via secure channel, therefore other members or illegitimate users
cannot get Vi and J (i) through network communication.

The attacker is unable to solve member ui’s secret vector Xi =
(xi,1, xi,2, · · · , xi,n) from (3), then unable to derive ui’s private vector
Vi via Xi. The attacker uj can compute the group key k, and might try to
derive member ui’s information xi,1, xi,2, ..., xi,n from (3). Even though there
are (n − m) zero elements among xi,1, xi,2, ..., xi,n, where m ≥ 2, but no one
can uniquely solve m unknowns x

i,j
(i)
1
, x

i,j
(i)
2
, ..., x

i,j
(i)
m

from one linear equation.
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Therefore, the attacker cannot solve ui’s secret vector Xi, then cannot compute
ui’s private vector Vi via the Xi.

The attacker cannot derive ui’s private vector Vi by recording a
series of public parameters A and r at different time period. The attacker
uj might record a series of public central vectorA and random number r. Suppose
that the central vector and random number recorded by uj at time t1 is denoted
by A(1) and r(1) , where A(1) = (a

(1)
1 , a

(1)
2 , ..., a

(1)
n ), and the group key at time

t1 is k(1); the central vector and random number recorded by uj at time t2 is
denoted by A(2) and r(2) , where A(2) = (a

(2)
1 , a

(2)
2 , ..., a

(2)
n ), and the group key

at time t2 is k(2); and so on. Then the attacker uj can have a series of equations:

k(1) = x
(1)

i,j
(i)
1

a
(1)

j
(i)
1

+ x
(1)

i,j
(i)
2

a
(1)

j
(i)
2

+ ...+ x
(1)

i,j
(i)
m

a
(1)

j
(i)
m

= g(g(vi,1)⊕ r(1))a
(1)

j
(i)
1

+ ...+ g(g(vi,m)⊕ r(1))a
(1)

j
(i)
m

,

k(2) = x
(2)

i,j
(i)
1

a
(2)

j
(i)
1

+ x
(2)

i,j
(i)
2

a
(2)

j
(i)
2

+ ...+ x
(2)

i,j
(i)
m

a
(2)

j
(i)
m

= g(g(vi,1)⊕ r(2))a
(2)

j
(i)
1

+ ...+ g(g(vi,m)⊕ r(2))a
(2)

j
(i)
m

,

...... (4)

In order to solve the unknowns vi,1, vi,2, ..., vi,m from the above series of
equations, the attacker uj has to solve two difficult problems at the same time:
1) can uj derive x from y = g(x) by knowing y ? where g is a secure hash function
without any algebra features, like SHA-1; 2) can uj know the values of j(i)1 , ..., j

(i)
m

? where the position set J (i) = {j(i)1 , ..., j
(i)
m } is ui’s private information and is

unknown to uj .
For the first problem, the properties of secure hash function guarantee that

it is computationally infeasible to derive x from y = g(x) by knowing y.
For the second problem, the attacker uj might try to guess the value of each

element of the set J (i) = {j(i)1 , ..., j
(i)
m } , the probability to have a successful guess

is

P =
1

n
× 1

n/2
× 1

Cm−2
n−2

=
2(m− 2)!(n−m)!

n2(n− 2)!
(5)

By observing (5), we know that the greater n is, the smaller P is; and for
2 ≤ m ≤ n

2 − 1, the greater m is, the smaller P is. The value of P in (5) reflects
the difficulty of guess, i.e., the smaller P is, the more difficult for the attackers
to have a successful guess.

Therefore, even with the knowledge of a series of equations about vi,1, vi,2,
..., vi,m in (4), when facing the two difficult problems at the same time, the
attacker uj is still extremely difficult to solve member ui’s private information
vi,1, vi,2, ..., vi,m .

The member ui’s private vector Vi cannot be broken even a lot of
attackers collude. Even though a lot of attackers collude, they cannot know
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more information then the attacker uj to solve member ui’s private information
vi,1, vi,2, ..., vi,m . Therefore, group member ui’s private vector Vi is extremely
difficult to be derived by the attackers.

4) Brute force attack to explore the group key is extremely difficult.
The group key k is randomly selected from the finite field F. As long as the
number of elements in the field is larger than a certain constant, e.g., 2128, then
it will be very difficult to explore the group key by brute force attack.

5) The trade-off between security and performance. As analyzed
above, our scheme is secure for all m that satisfies 2 ≤ m ≤ n. From per-
formance perspective, the greater m will increase the storage and computation
overhead, therefore, we can have a better performance for a small m, especially
m = 2 will become an optimized and secure model. From security perspective,
for 2 ≤ m ≤ n

2 − 1, the greater m is, the more difficult for the attacker to break
our scheme.

4.2 Performance Analysis

The performance discussed hereafter is aimed at the optimized model where
m = 2. Suppose it requires L bits to represent an element in the finite field F.

Storage for secret information. Each member needs only to store its
private two-dimensional vector Vi and the set J (i) with two elements. The GC
should store all the group members’ private two-dimensional vectors V1, V2, ..., Vn,
and the position sets J (1), J (2), ..., J (n). Then the storage for each member is 4L
bits, and the one for the GC is 4nL bits.

Computation. The computation by each member is to calculate vector Xi

in Step 8, and to compute the group key via (3). The values of g(vi,1) and g(vi,2)
can be pre-computed, then the computation by each member includes two XOR
operations, two g hash functions, two multiplications and one addition over finite
field.

The computation for the GC is to solve a system of linear equations in (1).
Since the coefficient matrix in (1) is sparse and like a triangular matrix when
m = 2, the computation overhead of solving (a0, a1, . . . , an) from (1) includes 2n
times of g hash function, (3n+8) multiplications, (n+1) multiplicative reverses,
and (n+ 3) additions over the finite field F.

Number and size of re-keying message. The total number of re-keying
messages is two, one is the vector A, another is the random number r. The size
of re-keying messages is (n+ 1)L bits. The re-keying messages are broadcasted
or multicasted via open channel.

Batch processing for massive membership change. If there are a lot
of users joining and leaving simultaneously, only one batch processing is needed.

A summary of the performance requirements for both GC and members is
presented in Table 1.
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Table 1. Performance requirements by the GC and members

GC Member
Storage (bits) 4nL 4L

Computation overhead 2nG+ (3n+ 8)M + (n+ 3)A+ (n+ 1)R 2G+ 2M +A

Re-keying Number 2 0
messages Size (bits) (n+ 1)L 0

Notation for Table 1:
n number of members in the group
L the max length in bits to represent an element in F
G average time required by a g hash function
M average time required by a multiplication over F
A average time required by an addition over F
R average time required by a multiplication reverse over F

4.3 Experiments

Our experiments are conducted on a 2.33GHz Intel Xeon quad-core dual-processor
PC server with 4GB memory for GC, and a HP XW4600 Workstation with
2.33GHz Intel dual-processor with 2GB memory for a member of the group.
The programs are written in C/C++. We select m = 128, and F to be of 128
bits, i.e., L = 128. Each experiment is repeated 20 times. The results presented
are the average, and the difference between the same experiments is less than
2%. For the GC computation, OpenMP is used to speed up the computation by
utilizing 8 parallel threads in dual quad-core processors. The summary of the
experimental results are presented in Table 2 and 3.

Table 2. Storage and computation required by the members

Size of group Storage (bytes) Computation (ms)
10 64 0.0002
100 64 0.0002
1,000 64 0.0002
10,000 64 0.0002
100,000 64 0.0002
1,000,000 64 0.0002
10,000,000 64 0.0002

Table 2 shows that the storage and the computation cost does not increase
at all for each group member even when the group size increases, which is very
desirable.
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Table 3. Storage and computation required by the GC

Size of group Storage (bytes) Computation (ms)
10 640 0.1512
100 6,400 0.4096
1,000 64,000 2.4139
10,000 640,000 16.5994
100,000 6,400,000 79.0096
1,000,000 64,000,000 555.8474
10,000,000 640,000,000 4,011.9175

In Table 3, the first column represents the size of the group; the second, the
storage for the computation, and the third, the computation time with using
OpenMP. The GC needs only 4,011 ms or 4.011 seconds to process each re-
keying for a group of size n = 107. Therefore, the GC can manage a large group
efficiently.

The experimental results confirm that our scheme is very scalable and very
efficient for large group.

Table 4. Feature and computation complexity comparison among schemes

GKMP LKH Secure Lock This Paper
Major principle adopted Encryption Tree Chinese Remainder Linear

structure Theorem geometry
Secrecy No Yes Yes Yes

Strong encryption needed Yes Yes Yes No
Efficient for very large group No Yes No Yes

Scalable to massive No No Yes Yes
membership change

Number of re-keying messages n O(log2 n) O(1) O(1)
Member computation O(1) O(log2 n) O(1) decryptions and O(1) linear

complexity decryptions decryptions modular operations operations
GC computation O(n) O(2 log2 n) O(n) encryptions and O(n) linear

complexity encryptions encryptions modular operations operations

5 Comparison with Related Work

A summary of the comparison results are presented in Table 4 and 5.
GKMP (Group Key Management Protocol) is a simple extension from unicast

to multicast, but not scalable and very inefficient, which also requires strong sym-
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Table 5. GC’s Computation comparison between Secure Lock and our scheme

Secure Lock This Paper
Computation nE + 2nM + nA+ 2nR 2nG+ (3n+ 8)M
overhead +(n+ 3)A+ (n+ 1)R

Computation E · O(n) +M · O(2n) 2G · O(n) +M · O(3n)
complexity +A · O(n) +R · O(2n) +A · O(n) +R · O(n)
Difference E · O(n) +R · O(n) 2G · O(n) +M · O(n)

between schemes

metric encryption and decryption functions. The major disadvantage of GKMP
is its lack of the forward secrecy property [1]. Table 4 clearly shows that our
scheme overwhelms GKMP with respect to both secrecy and performance.

The LKH (Logical Key Hierarchy) scheme can be considered to be the rep-
resentative of tree-based schemes, including OFT [6], OFCT [7], Hierarchical
a-ary Tree with Clustering[8], Efficient Large-Group Key[9], etc. Hence, we only
compare our scheme with LKH, but the results are similar to other tree-based
schemes.

The LKH scheme also requires strong symmetric encryption and decryption
functions. The advantages of our scheme overwhelming the LKH are as follows:
1) our scheme requires no encryption functions; 2) our scheme is scalable for
massive membership change; 3) the number of re-keying messages is O(1) in our
scheme, but is O(log2 n) in LKH; 4) the computation complexity of each member
is O(1) in our scheme, but is O(log2 n) in LKH.

The major differences between our scheme and LKH are that: 1) the prin-
ciples behind are different: linear geometry is adopted in our scheme, but tree
structure is adopted in LKH; 2) The computation complexity by the GC in our
scheme is O(n) linear operations, but the one in LKH is O(2 × log2 n) encryp-
tions. In average conditions, the computation of linear operations can be much
faster than encryptions.

Note that tree structure can also be applied to our scheme to divide the
members into different sub-trees and to further speed up our scheme. We will
explore this direction in our future research.

The SL (Secure Lock) is based on Chinese Remainder Theorem (CRT), which
is a time-consuming operation. Hence, the SL scheme is applicable only for small
groups [4].

There are some similarities between SL and our scheme: 1) both schemes
can be regarded as flat structure, that is, no hierarchical structures, such as tree
structure, are adopted; 2) the numbers of re-keying messages in both schemes
are O(1); 3) the computation complexity by each member in both schemes are
also O(1); 4) the computation complexity by the GC in both schemes are O(n).

Table 5 compares the computation by the GC in SL and our scheme. The
first row shows the computation overhead. The one in SL is based on an opti-
mized CRT [4]. The second row presents the computation complexity. And the
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third row shows the difference of computation complexity of two schemes by
omitting the identical items in the second row. The complexity differences are:
E · O(n) + R · O(n) in SL, and 2G · O(n) + M · O(n) in our scheme, where n
is the number of members in the group, E,R,G and M are average time re-
quired by encryption, modular multiplication reverse, g mapping, and modular
multiplication, respectively. The mapping g is a simple mapping and can be com-
puted extremely fast, so E � 2G. Modular reverse operation over finite field is
a time-consuming computation, thus R > M , and then

E · O(n) +R · O(n)� 2G · O(n) +M · O(n),

or

E · O(n) +M · O(2n) +A · O(n) +R · O(2n)

� 2G · O(n) +M · O(3n) +A · O(n) +R · O(n)

Therefore, the computation of our scheme is much faster than SL.
The advantages of our scheme overwhelming the SL include: 1) our scheme

requires no encryption functions; 2) our scheme is efficient for very large group;
3) the performance by each member and the GC in our scheme is much better
than the ones in SL.

6 Conclusions

In this paper, we study the problem of group key management from a very differ-
ent angle than before, namely a very fundamental mathematical point of view. A
family of new and simple secure group key management schemes based on pure
linear geometry is constructed, where each member in the group corresponds to
a vector in the vector space ( which we call the ID vector) and the group con-
troller (GC) computes a public central vector, whose inner product with every
member’s private ID vector are identical. The central vector is published and
each member can compute a common group key via the inner product.

We demonstrate that our new approach is secure, and its backward and
forward secrecy can be guaranteed. The security of our approach relies on the
fact that any illegitimate user cannot compute the correct inner product without
the legitimate vector, therefore cannot derive the group key.

The advantages of our scheme include: 1) it is not necessary to invoke strong
encryption algorithm, the re-keying messages can be broadcast or multicast via
open channel, and the secure channel is required only for the initialization when
members register to form the group or new members join in; 2) it is very efficient
and scalable for large size groups, and can handle massive membership change
efficiently with only two re-keying messages, i.e., the central vector and a random
number; 3) the storage and the computation overhead of each member are both
small, which will not increase as the group size grows; 4) the GC’s storage and
computation cost is also low, and parallel programming can be used to speed up
the GC’s computation.
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The performance estimates are confirmed by our experiments. For example,
in the case of a group of size n = 107, the storage for each member’s private
information is 64 bytes, and the time for each member to compute the group key
is 0.0002 ms or 2×10−7 seconds, and the time for the GC to process membership
change is 4011 ms or 4.011 seconds on a 2.33 GHz Intel Xeon quad-core dual-
processor PC server.
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