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Abstract. Since the discovery of identity based cryptography, a number of identity based signature
schemes were reported in the literature. Although, a lot of identity based signature schemes were
proposed, the only identity based deterministic signature scheme was given by Javier Herranz. This
signature scheme uses Schnorr signature scheme for generating the private key of the users and uses
BLS short signature scheme for generating users signature. The security of this scheme was proved
in the random oracle model using forking lemma. In this paper, we introduce a new identity based
deterministic signature scheme and prove the security of the scheme in the random oracle model,
without the aid of forking lemma. Hence, our scheme offers tighter security reduction to the underlying
hard problem than the existing identity based deterministic signature scheme.
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1 Introduction

The concept of using the identity of an entity for deriving the public key is known as Identity Based
Cryptography (IBC). This technique was introduced by Adi Shamir in his seminal paper [15] in 1984. This
paved way for eliminating the use of certificates for authenticating the public keys of a user (in PKI based
system). In identity based system, a trusted authority called Private Key Generator (PKG) generates the
private key for the users. The PKG possesses a master public key and master private key and uses the master
private key to generate the private key of the users registered with the system. The private key of the user
is the signature on the identity of the user (as message) generated by the PKG with the master private key.
The user makes use of his/her private key to generate a signature on a message.

Thus the complete description of an identity based signature scheme can be conveniently split as the
description of the signature scheme employed by the PKG to create private keys for the users and description
of signature generation algorithm executed by a user on a message. The signature schemes used in these
two parts may resemble some well known signature schemes or customized signature scheme or they may be
deterministic or probabilistic. For example, the identity based signature scheme by Cha and Cheon [5] may be
viewed as BLS [4] + a customized scheme, where the BLS signature scheme is used by the PKG to generate
private keys of users and users themselves use the customized scheme to produce signed documents. For this
scheme, the private key generation is deterministic while the signature generation process is probabilistic.
As another example, the scheme by Galindo et al. [6] uses Schnorr signature for private key generation (by
PKG) and again a Schnorr signature scheme [14] for the signature generation (by a user). For this scheme, the
private key generation as well as signature generation is probabilistic. The scheme by Javier Herranz [9] uses
Schnorr signature for private key generation (by PKG) and BLS signature scheme for the signature generation
(by a user). Thus in this scheme, the private key generation is probabilistic and the signature generation is
deterministic. Table-1 gives a summary of properties of existing identity based signature schemes.
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Scheme Private Signing Type of Pairing
Key Algorithm Scheme Computation

Key Sign Sign Verify
Cha-Cheon [5] BLS Custom D P No Yes
Sakai [13] BLS Custom D P No Yes
Barreto [1] [16] Custom D P No Yes
Galindo [6] Schnorr Schnorr P P No No
Javier [9] Schnorr BLS P D No Yes
Ours BasicSign custom P D No Yes

Table-1: Properties of ID-Based Signatures
P - Probabilistic Signature, D - Deterministic Signature, Custom - Custom designed signing algorithm

Tightness of Security Reduction: In the computational model, proof of security for a signature follows
if there does not exist a polynomial time algorithm with the following ability:

The reduction algorithm makes use of a polynomial time algorithm that forges a signature, to construct
a polynomial time algorithm that solves the computational hard problem. If there is no polynomial time
algorithm for solving the computational hard problem then the existence of such reduction implies that the
signature scheme is not breakable in polynomial time.

This security argument is asymptotic. In CDH based signature schemes, forging signatures is infeasible
in prime order groups where the size of the security parameter is above some threshold value. For practice,
we should exactly know what should be the constraint on security parameter to impose a sufficient infeasible
computational bound on the adversary.

Bellare and Rogaway [3] gave the method for exact security analysis that focuses on the computational
efficiency of the reduction algorithm. This allows one to quantify the relation between the difficulty of forging
a signature and hardness of the underlying hard problem. The relative hardness of forging the signature to
that of breaking the computational assumption can be loose, close or tight as pointed out by Micali and
Reyzin [10]. In [7], Goh et al. showed that the application of forking lemma [12], for proving security of
Fiat-Shamir based signatures makes it inefficient by imposing an increase in the length of the modulus p.
In any discrete-log based system of a prime field Zp, breaking the discrete-log in the index-calculus method
works in O(exp( 3

√
|p|)). Thus, a factor α increase in the security parameter implies a α3 increase in the size

of the modulus p. This is why, the reduction with forking lemma for Schnorr signature scheme implies that
the scheme is secure only with a field modulus 8000 bits, if we consider that discrete-log problem is hard for
1000 bit modulus. In Table-2, we do not consider the schemes reported in [5, 13, 1, 6] because they are all
probabilistic signature schemes. We consider the scheme in [9] for comparing with our scheme.

Scheme Tightness Implication on size of |p| Size of one Type
Key Sign Key Size Sign Size group element

Javier [9] NT NT 8*320=2560† 8*320=2560† 2560 D
Ours T T 320 320 320 D

Table-2: Tightness Comparison with the Existing Scheme
T - Tight, NT - Not Tight (uses forking-lemma), P - Probabilistic Signature, D - Deterministic Signature,
† - The eight fold increase is due to loose reduction through forking lemma, We consider Elliptic Curve

CDH is hard in 320 bits.

Application: Aggregation of several signatures is an important computation done on several signatures in
order to optimize communication, computation and storage costs. Depending on the size of the aggregated
output, we refer a particular aggregation scheme as Naive, Partial or Full aggregation. By using the identity
based signature scheme by Herranz [9] partial aggregation is possible. His scheme allows a more compact
aggregation where the length of the resulting aggregate signature will not depend on the number of signed
messages, but on the number of signers. This improvement, is considered to be a major improvement in [9]
because in situations where devices have to store many signatures coming from a small set of users, the size of
the aggregate signature gets compact. This is because, the key generation is probabilistic and the randomness
used to compute the key can be stored by the verifier and since the signature is deterministic, there is no



randomness to be propagated with the signature and hence the aggregate signature is more compact than
the aggregate signatures generated by probabilistic identity based signature schemes.
Our Contribution: Our first contribution is a novel probabilistic PKI based signature scheme (and this is
of independent interest) described in section 4. PKG uses this to generate the private keys for users. The next
section (section 5) contains the details of an identity based deterministic signature scheme, and again this
scheme is different from all the existing ones. Our scheme does not use pairing in the generation process. Of
course, in the verification process, we employ pairing computations. The significant advantage of our scheme
is that it allows a tight reduction to the GDH problem. For all the schemes that are available so far, the
reduction is not tight. However, we show a tight reduction of the security of our scheme to the GDH problem.
Ours is the first and only system with this property. Due to this property both the key size and signature size
are substantially smaller than the best previously known schemes. Since our identity based signature scheme
offers tight reduction to the GDH problem, it can be used to generate more compact aggregate signatures
using smaller security parameter values.

2 Preliminaries

Bilinear Pairing: Let G1 be an additive cyclic group generated by P , with prime order q, and G2 be a
multiplicative cyclic group of the same order q. A bilinear pairing is a map ê : G1 × G1 → G2 with the
following properties.

– Bilinearity. For all P,Q,R ∈ G1,
• ê(P + Q, R) = ê(P,R)ê(Q,R)
• ê(P,Q + R) = ê(P,Q)ê(P,R)
• ê(aP, bQ) = ê(P,Q)ab [Where a, b ∈R Zp]

– Non-Degeneracy. There exist P,Q ∈ G1 such that ê(P,Q) 6= IG2 , where IG2 is the identity element of
G2.

– Computability. There exists an efficient algorithm to compute ê(P,Q) for all P,Q ∈ G1.

Computational Assumptions: In this section, we review the computational assumptions related to bilinear
maps that are relevant to the protocol we discuss.

Definition 1. Computation Diffie-Hellman Problem (CDHP): Given (P, aP, bP ) ∈ G3
1 for unknown a, b ∈

Zp, the CDH problem in G1 is to compute abP . The advantage of any probabilistic polynomial time algorithm
A in solving the CDH problem in G1 is defined as:

AdvCDH
A = Pr [A(P, aP, bP ) = abP | a, b ∈ Zp]

The CDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvCDH
A is

negligibly small.

Definition 2. Decisional Diffie-Hellman Problem (DDHP): Given (P, aP, bP,Q) ∈ G4 for unknown a, b ∈
Zp, the DDH problem in G is to check whether Q

?= abP . The advantage of any probabilistic polynomial time
algorithm A in solving the DDH problem in G1 is defined as:

AdvCDH
A = |Pr [A(P, aP, bP,Q) = 1]− Pr [A(P, aP, bP, abP ) = 1] | a, b ∈ Zp|

The DDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvDDH
A is

negligibly small. Here G is a multiplicative group

Definition 3. Gap Diffie-Hellman Problem (GDHP) [11][5]: We call G a GDH group if DDHP can be
solved in polynomial time but no probabilistic algorithm can solve CDHP with non-negligible advantage within
polynomial time.

3 Identity Based Signature Scheme

In this section, we describe the generic frame work for an identity based signature scheme. The frame work of
an identity based deterministic signature scheme consists of the algorithms described below, namely Setup,
Extract, Sign and Verify. An identity based signature scheme is deterministic if the signature on a message
by the same user is always the same.



3.1 Definition:

– Setup: The private key generator (PKG) provides the security parameter κ as the input to this algorithm,
generates the system parameters params and the master private key msk. PKG publishes params and
keeps msk secret.

– Extract: The user provides his identity ID to the PKG. The PKG runs this algorithm with identity ID,
params and msk as the input and obtains the private key D. The private key D is sent to user through
a secure channel.

– Sign: For generating a signature on a message m, the user provides his identity ID, his private key D,
params and the message m as input. This algorithm generates a valid signature σ on message m by the
user.

– Verify: This algorithm on input a signature σ on message m by the user with identity ID, params,
checks whether σ is a valid signature on message m by ID. If true it outputs “V alid”, else it outputs
“Invalid”.

3.2 Security Model for Existential Unforgeability

An IBDS scheme is secure against existential forgery under adaptive chosen identity and message attack, if
no probabilistic polynomial time algorithm F has non-negligible advantage in the following game.

– Setup phase: The challenger C runs the setup algorithm and generates the system public parameters
params and the master secret key msk. Now, C gives params to the forger F and keeps msk secret.

– Training phase: After the setup is done, F starts interacting with C by querying the various oracles
provided by C in the following way:
• KeyGen oracle: When F makes a query with an identity ID as input, C outputs D, the private

key of ID to F , provided C knows the private key for the queried identity.
• Signing oracle: When F makes a signing query with identity ID and message m, C outputs a valid

signature σ on m by ID.
– Forgery phase: F identifies an identity, message pair (IDT ,m∗), where

• F has not queried the KeyGen query on IDT and
• F has not asked the signature for the pair (IDT ,m∗).

F outputs a signature σ, with IDT as signer, and on message m∗. F wins the game if σ is a valid
signature.

AdvIBDS
F = {Pr[V erify(σ) = valid]}

3.3 Existing Identity Based Signatures

Here, we review the most important identity based signature schemes.

Scheme Master key Private Key Signature
Cha-Cheon [5] MSK = s DA = sQA ∈ G1 r ∈R Z∗q

MPK = sP QA = Ĥ(IDA) ∈ G1 U = rQA ∈ G1, h = H̄(m,U) ∈ Z∗q
V = (r + h)DA ∈ G1, σ = 〈U, V 〉

Sakai [13] MSK = s DA = sQA ∈ G1 r ∈R Z∗q
MPK = sP QA = Ĥ(IDA) ∈ G1 U = rP ∈ G1,H = H̄(m,U) ∈ G1

V = rH + DA ∈ G1, σ = 〈U, V 〉
Barreto [1] MSK = s DA = 1

s+qA
P ∈ G1 r ∈R Z∗q

MPK = sP qA = Ĥ(IDA) U = rP ∈ G1, h = H̄(m,U) ∈ Z∗q
V = (r + h)DA ∈ G1, σ = 〈U, V 〉

Galindo [6] MSK = s xA ∈R Z∗q , XA = xAP r ∈R Z∗q
MPK = sP dA = xA + sqA ∈ Z∗q XA, U = rP, h = H̄(m,U) ∈ Z∗q

qA = Ĥ(IDA, XA) V = rh̄ + dA ∈ G1, σ = 〈XA, U, V 〉
Javier [9] MSK = s xA ∈R Z∗q , XA = xAP XA

MPK = sP dA = xA + sqA ∈ Z∗q U = dAH̄(m) ∈ G1

qA = Ĥ(IDA, XA) σ = 〈XA, U〉
Table-3: Brief Survey of existing schemes

MSK - Master Private Key, MPK - Master Public Key, Ĥ, H̄ - Cryptographic hash functions



4 Basic Signature Scheme (BasicSign)

We now construct a fully secure public key signature scheme in the random oracle model under the GDH
assumption and without using forking lemma. This is a PKI based signature scheme and this will be used
by the PKG to generate the private key for the users of our identity based system.
Scheme: Let G1, G2 be cyclic prime order groups of order p, where G1 is an additive group and G2 be
a multiplicative group. Let P ∈R G1 be the generator of G1, ê : G1 × G1 → G2 be a bilinear map and
H1(.),H2(.) be two cryptographic hash functions defined by,

H1: {0, 1}lm ×G1 → G1 and H2: {0, 1}lm × G1 → Zp, where lm is length of message

– User KeyGen: Let UA be a user with public key PKA = 〈P1, P2〉 = 〈s1P, s2P 〉, where s1, s2 are
random elements from Zp. Here, the private key of user UA is SKA = 〈s1, s2〉.

– Sign: To generate the signature on message m, the user UA executes this algorithm:
• Pick r randomly from Zp.
• Compute Ym = rP2

• Compute Xm = rH1(m,Ym).
• Find qm = H2(m,Xm).
• Compute dm = qms1 + rs2 mod p.
• Output the signature σ = 〈Xm, dm〉

Important Note: The value Ym is not sent along with the signature because it can be computed from
the second component of σ as follows and the hash value qm is computable by any one on knowing m
and Xm:

Ym= dmP − qmP1 = qmP1 + rP2 − qmP1 = rP2

The tuple 〈P2, H1(m,Ym), Ym, Xm〉 = 〈P2, H1(m,Ym), rP2, rH1(m,Ym)〉 is a DH tuple. We verify if
〈P2, H1(m,Ym), Ym, Xm〉 is a DH tuple by testing ê(Xm, P2)

?= ê(H1(m,Ym), Ym). This suggests the
following verification algorithm.

– Verify:
• On receiving σ = 〈Xm, dm〉, compute qm = H2(m,Xm) and Ym = dmP − qmP1.
• Check if ê(Xm, P2)

?= ê(H1(m,Ym), Ym).
If the above check holds accept the signature as “V alid” else return “Invalid”.

4.1 Security

We prove the security of the signature scheme against existential forgery under adaptive chosen-message
attacks in the random oracle model. The following theorem shows that the BasicSign scheme is secure and
the security of the scheme follows from the GDH assumption in (G1, G2)

Theorem 1. Suppose (G1, G2) be a (τ, t′, ε
′
)-GDH group pair of order p. Then the BasicSign signature

scheme on (G1, G2) is (t, qSign, qH1 , qH2 , ε)-secure against existential forgery under adaptive chosen-message
attack in the random oracle model, for all t and ε, that satisfies

ε ≤ ε
′
and t ≥ t′ − (qH1 + qH2 + qSign +O(1))

Proof: Let us assume, F is a forger algorithm that (t, qSign, qH1 , qH2 , ε)-breaks the BasicSign signature
scheme on (G1, G2). We show how to construct a t′-time algorithm C that solves GDH on (G1, G2) with
probability at least ε

′
.

Let P be the generator of G1. Algorithm C is provided with the challenge instance (P, aP, bP ) ∈ G1. The
goal of C is to output abP ∈ G1. Algorithm C simulates the challenger and interacts with F in the following
way:

– Setup: Challenger C starts by giving F the common reference string (P , G1, G2) and the public key
(P1 = aP, P2 = s2P ), where s2 is chosen at random from Zp. The private key corresponding to the public
keys (P1 = aP, P2 = s2P ) are (a, s2). Note that, C does not know one of the private keys namely a.



– Training Phase: During this phase F has access to the following oracles:
• H1 Queries: Forger F is allowed to query the H1 oracle at any time. To handle these queries C

maintains a list which is defines as 〈m,Ym, h,Hm〉 and we refer this list as L1 − list. Initially,
this list is empty and will be updated as explained below. When F queries the oracle H1 with
(m ∈ {0, 1}lm , Ym ∈ G1) as input, C responds as follows:
∗ If (m,Ym) already exists as a tuple of the form 〈m,Ym, h,Hm〉 in L1 − List, then C responds

with H1(m,Ym) = Hm ∈ G1.
∗ Otherwise, C picks a new random h ∈ Zp and sets Hm = hbP .
∗ C stores the tuple 〈m,Ym, h,Hm〉 in L1 − List and responds with H1(m, Ym) = Hm ∈ G1.

• H2 Queries: F can query this oracle at any time and C maintains a list of tuples 〈m, Xm, qm〉. This
list is called L2 − list. When F issues a query for (m, Xm) to the H2 oracle, F responds in the
following way:
∗ If (m, Xm) already appears in L2−list as a tuple 〈m, Xm, qm〉, then C responds with H2(m, Xm) =

qm ∈ Zp.
∗ Otherwise, C randomly picks a new qm ∈ Zp, stores the tuple 〈m, Xm, qm〉 in L2 − list and

responds with H2(m, Xm) = qm ∈ Zp.
• Signature Queries: When a signature query is issued by F for message m, C does the following:

1. C randomly picks fresh dm, qm, h ∈ Zp.

2. C sets Hm = hP , Ym = dmP − qmP1 ∈ G1 and Xm =
(

h

s2

)
Ym ∈ G1.

3. C intents to set H1(m,Ym) = Hm and include the tuple 〈m, Ym, h, Hm〉 in L1− list. However if a
tuple of the form 〈m, Ym, h, H ′

m〉 of 〈m, Ym, h′, Hm〉 is already available in L1 − list, including
〈m, Ym, h, Hm〉 in L1 − list is incorrect and hence GOTO step 1 for fresh random values. If
no such tuples are in L1 − list, then C sets H1(m,Ym) = Hm and includes 〈m, Ym, h, Hm〉 in
L1 − list and GOTO step 4.

4. C intends to set H2(m,Xm) = qm. However, if there is a tuple of the form 〈m, Xm, q′m〉 for some
q′m 6= qm is already in L2 − list, then, including 〈m, Xm, qm〉 in L2 − list is incorrect and hence
GOTO step 1 for some fresh random values. If no tuple of the form 〈m, Xm, q′m〉 exist, then C
seta H2(m,Xm) = qm and includes 〈m, Xm, qm〉 in L2 − list and GOTO step 5.

5. C sends σ = 〈Xm, dm〉 as signature of m to F .
After receiving σ = 〈Xm, dm〉 as signature of m, F will execute the verification algorithm.
1. F asks H2(m,Xm) query to C and C after looking in the L2 − list returns qm as response. Thus

H2(m,Xm) = qm.
2. After receiving qm, F computes Ym = dmP − qmP1 and this is identical to the Ym computed by
C in its signature generation algorithm.

3. F now queries H1(m,Ym) to C and C, after looking into L1− list, returns Hm as response. Thus,
H1(m,Ym) = Hm = hP .

4. Now, F has all values needed for verification test. Hence F will carry out the test ê(Xm, P2)
?=

ê(H1(m,Ym), Ym). We now show that the test will pass as the equation is satisfied. In fact,
LHS = ê(Xm, P2) = ê(( h

s2
)Ym, P2) = ê(( h

s2
)Ym, s2P )

= ê(hYm, P ) = ê(Ym, hP ) = ê(Ym,H1(m,Ym))
= ê(H1(m,Ym), Ym), Since ê is symmetric = RHS

Thus, the (simulated) signature generated and sent by C to F will be accepted by F . In other words, C
can give perfect training to F during the training phase without any aborting etc.

– Forgery: On getting sufficient training, algorithm F produces a message-signature pair (m∗, σ∗ =〈X∗
m, d∗m〉)

such that σ∗ is not the output generated by sign oracle for message m∗ and σ∗ is valid. Now, C may com-
pute the solution to the hard problem as given below. For the system the public key is (P1, P2)=(aP, s2P )
and secret key (a, s2). Here a is not known to C but s2 is chosen by C. For the message m∗, the forgery
(Xm

∗, dm
∗) is produced by forger F and given to C.

(Xm
∗, dm

∗) is a valid forgery implies that,

ê(Xm
∗, P2) = ê(H1(m∗, Ym

∗), Ym) (1)

where,
Ym

∗ = dm
∗P − qm

∗P1 (2)



and
qm

∗ = H2(m∗, Xm
∗) (3)

Note that C can compute qm
∗ and Ym

∗ and using this C can obtain the value,

H1(m∗, Ym
∗) = h∗bP (4)

for some h∗ known to C.
From equation (1), it follows that there exists a value r∗ satisfying,

Xm
∗ = r∗H1(m∗, Ym

∗) (5)

and
Ym

∗ = r∗P2 (6)

Using equation (4) and (5), C concludes that,

Xm
∗ = r∗h∗bP (7)

Note that in equation(7), C knows the value h∗, but C does not know the values r∗ and b. However, C
knows bPas bP is the input of the GDH problem that C wants to solve.
Using equation(2) and (6), C concludes that ,

r∗P2 = dm
∗P − qm

∗P1

That is,

r∗s2P = dm
∗P − qm

∗aP

which implies that,
dm

∗ = aqm
∗ + s2r

∗ (8)

Now, C computes,

δ =
1

qm
∗

(
dm

∗(bP )− s2

h∗
Xm

∗
)

(9)

Observe that δ can be computed by C because C knows the values qm
∗, h∗, s2 and bP , and dm

∗ and Xm
∗

are the components of the forgery produces by forger F and given to C.
In fact,

δ =
1

qm
∗

(
dm

∗(bP )− s2

h∗
Xm

∗
)

=
1

qm
∗

(
(aqm

∗ + s2r
∗) (bP )− s2

h∗
r∗h∗(bP )

)
from (7) and (8).

=
1

qm
∗ (aqm

∗(bP ))

= abP .

Thus, we have shown that there is no forgery possible in polynomial time with non negligible advantage.

Now, we have to show that C solves the GDH problem on (G1, G2) with probability at least ε
′
. Note that,

in this simulation there is almost no aborting scenario for training phase and forgery phase. Hence C solving
the GDH problem happens almost with the same advantage of F .

The hard problem is solved after qH1 queries to the H1 oracle, qH2 queries to the H2 oracle and qSign sign
oracle queries and getting the forged signature. The challenger has to spend O(1) computation to extract the
solution to GDH problem from the forgery generated by the adversary. Therefore the total time t taken for
solving the hard problem is given by t ≤ t′ + (qH1 + qH2 + qSign +O(1)). If t′ were polynomial, that would
imply that t is also polynomial, and this is a contradiction to the assumption (G1, G2) is a GDH group pair.
�



5 Identity Based Deterministic Signature Scheme (Det-IBS)

Inspired by the impact of tightness of security reduction for a signature scheme, we present the first identity
based deterministic signature scheme with tight security reduction to GDH problem. The only identity based
deterministic signature by Herranz [9], employs Schnorr signature scheme for generating the private key of
the user and uses BLS short signature scheme for producing signature on the message by the user. This
system was shown to be secure under GDH problem on (G1, G2). The reduction given for the scheme in
[9] use forking lemma and hence considered to be loose. We present a signature that works on GDH group
pair (G1, G2). We prove the security of the scheme in the random oracle model and show how it leads to
a tight reduction. The scheme uses BasicSign signature scheme for generating the private key of users and
BLS short signature for generating the signature on message.

Scheme: Let (G1, G2) be a (t, ε)-GDH group pair with same prime order p and ê be a bilinear map defined
by G1 ×G1 → G2. The signature scheme comprises of setup, extract, sign and verify algorithms. The scheme
makes use of three cryptographic hash functions H1 : {0, 1}l1 × G1 → G1, H2 : {0, 1}l1 × G1 → Zp and
H3 : {0, 1}lm+1 × {0, 1}l1 → G1, where l1 is the size of the identity string and lm is the size of the message.

– Det-IBS.Setup: PKG picks at random s1, s2 ∈ Zp, and P ∈ G1, sets P1 = s1P ∈ G1, and P2 =
s2P ∈ G1. The master public key is (P1, P2). The master private key is (s1, s2).

– Det-IBS.Extract: Given the master private (s1, s2), and the user identity IDA ∈ {0, 1}l1 , perform the
following:
• Pick rA ∈R Zp.
• Compute YA = rAP2 ∈ G1.
• Find HA = H1(IDA, YA) and set XA = rAHA ∈ G1.
• Compute dA = s1qA + s2rA mod p, where qA = H2(IDA, XA).
• The private key is DA = 〈dA, XA, YA〉.

Note: However, in our identity based deterministic signature scheme, we provide YA explicitly along
with the private key How ever YA is computable by the user with identity IDA on knowing dA and XA.

– Det-IBS.Sign: Given a message m, user identity IDA ∈ {0, 1}l1 and the user private key DA = 〈dA ∈
Zp, XA ∈ G1, YA ∈ G1〉, choose λ ∈R {0, 1}, compute Hm = H3(m‖λ, IDA) and V = dAHm. The
signature is σ = 〈V, λ , XA , YA〉 ∈ G1 × {0, 1} × G2

1.
Note: λ can be generated using a pseudo-random function with the identity IDA, message m and the
private key of the user as input. This helps to preserve the determinism because each time a message is
signed by a user, the bit λ is going to be the same. (Goh et al. [8]).

– Det-IBS.Verify: Given an identity IDA ∈ {0, 1}l1 , a message m ∈ {0, 1}lm , and a signature σ =
〈V ∈ G1, λ ∈ {0, 1}, XA ∈ G1, YA ∈ G1〉, compute qA = H2(IDA, XA), HA = H1(IDA, YA), and
Hm = H3(m‖λ, IDA) and check,

ê(V, P ) ?= ê(Hm, qAP1 + YA) —–(a)
ê(XA, P2) = ê(HA, YA) —–(b)

If both the check passes, output “V alid”; if not, output “Invalid”

Theorem 2. The signature scheme Det-IBS is consistent

Proof: We need to show that, for all private key tuples , and for all messages, any signature generated by
the signing algorithm verifies as a valid signature under the respective user identity. Indeed, we have for
equation (a)

LHS = ê(V, P ) = ê(dAHm, P ) = ê((qAs1 + rAs2 )Hm, P )
= ê(Hm, (qAs1 + rAs2 )P ) = ê(Hm, qAP1 + rAP2)
= ê(Hm, qAP1 + YA) = RHS

and also, for equation (b)

LHS = ê(XA, P2) = ê(rAHA, P2) = ê(HA, rAP2) = ê(HA, YA) = RHS.



5.1 Security

We prove the security of the identity based deterministic signature scheme against existential forgery under
adaptive chosen-message attacks in the random oracle model. The following theorem shows that the Det-IBS
scheme is secure and the security of the scheme follows from GDH assumption on the groups (G1, G2)

Theorem 3. Let (G1, G2) be a (τ1, t1, ε1) GDH group pair of order p then the identity based deterministic
signature scheme on (G1, G2) is (t2, qs, qH1 , qH2 , qH3 , ε2) - secure against existential forgery under an adaptive
chosen message attack in random oracle model, for all t2 and ε2 satisfying:

ε2 ≥ 2qH1ε1 and t2 ≤ t1 − (qH1 + qH2 + qH3 + 2qs +O(1))

Here, qH is the total number of identities generated.

Proof: Consider F to be a forger that is assumed to (t2, qs, qH1 , qH2 , qH3 , ε2) - break the signature scheme.
We show how to construct an algorithm C that solves GDHP on (G1, G2) with probability at least ε1. This
will contradict the fact that (G1, G2) is a GDH group pair.

For doing this, let us assume P be the generator of G1 and (P, aP, bP ) ∈ G3
1 be the GDH problem instance

given to C. The goal of C is to find abP ∈ G1. C simulates the challenger and interacts with F as defined in
the EUF-CMA game. The game is viewed as given below:

– Setup: C starts interaction with F by providing P ∈ G1, P1 = aP ∈ G1 and P2 = s2P , where s2 ∈R Zp.
Here, the master private key a is not known to C. C also chooses 1 ≤ T ≤ qH randomly and sets the
T th unique identity queried to the H1 hash oracle as the target identity. Without loss of generality, we
assume IDT to be the target identity (not known to F and C at the start of the game.)

– Training Phase: C interacts with F in the following manner:
H1 Oracle: F queries to this oracle with inputs 〈IDi, Yj〉. C maintains the list LH1 , consisting of tuples
of the form 〈IDi, Yj ,Hj , x̂j〉 and responds to F ’s queries in the following way:
• If the tuple 〈IDi, Yj ,Hj , x̂j〉 is already available in the LH1 list, retrieve and return Hj .
• If i 6= T , choose x̂j ∈R Zp and set Hj = x̂jP ∈ G1. Store the tuple 〈IDi, Yj ,Hj , x̂j〉 to LH1 and

return Hj .
• If i = T , choose x̂j ∈R Zp and set Hj = x̂j(bP ). Store the tuple 〈IDi, Yj ,Hj , x̂j〉 to LH1 and return

Hj to F .
H2 Oracle: To respond to the queries by F , C maintains the list LH2 , consisting of tuples of the form
〈IDi ∈ {0, 1}l1 , Xj ∈ G1, qj ∈ Zp〉. The list is initially empty. When F queries with (IDi, Xj), C responds
as follows:
• If the tuple 〈IDi, Xj , qj〉 already exists in LH2 list, retrieve and return qj corresponding to (IDi, Xj)

to F .
• Else, pick qj ∈R Zp store (IDi, Xj , qj) in LH2 list and return qj to F .

H3 Oracle: The input to this oracle are mj‖λ, IDi, where λ ∈ {0, 1}. To respond to the queries by F , C
maintains the list LH3 , consisting of tuples of the form 〈mj , λ, IDi,Hj,λ, yj,λ, ?〉. Here ? is either ‘⊥’ or
‘>’, where ‘⊥’ represents Hj,λ = yj,λP and ‘>’ represents Hj,λ = yj,λbP . C respond to F in the following
way:
• If the tuple 〈mj , λ, IDi,Hj,λ, yj,λ, ?〉 is already there in the list LH3 , retrieve and respond with the

corresponding Hj,λ.
• Else,

∗ Pick yj,0, yj,1 ∈R Zp.
∗ Flip a coin c ∈ {0, 1}.
∗ Set Hj,c = yj,cbP and store the tuple 〈mj , c, IDi,Hj,c, yj,c,>〉 in list LH3 .
∗ Set Hj,c = yj,cP and store the tuple 〈mj , c, IDi,Hj,c, yj,c,⊥〉 in list LH3 .
∗ If c = λ, return Hj,c else, return Hj,c.

Note that Hj,λ is uniform in G1 and is independent of F ’s current view as required.
Extract Oracle: To respond to this query, C maintains the LE list, consisting of tuples of the form
〈IDi, di, Xi, Yi〉. When F makes a query with IDi as input, C checks whether i = T , if so aborts.
Otherwise, C performs the following:



• Choose di, qi ∈R Zp.
• Compute Yi = diP − qiP1 = (di − aqi)P .
• If 〈IDi, Yi,Hi, x̂i〉 in LH1 then

∗ Compute Xi = dix̂i

s2
P − qix̂i

s2
P1 = (di − aqi) 1

s2
Hi

∗ If there is a tuple of the form 〈IDi, Xi, ?〉 in list LH2 then start the process again.
∗ Store the tuple 〈IDi, Xi, qi〉 in LH2 list, the tuple 〈IDi, di, Xi, Yi〉 in LE list and return (di, Xi, Yi)

as the private key corresponding to IDi.
• Else,

∗ Choose a random x̂i ∈ Zp.
∗ Compute Hi = x̂iP
∗ Compute Xi = dix̂i

s2
P − qix̂i

s2
P1 = (di − aqi) 1

s2
Hi

∗ If there is a tuple of the form 〈IDi, Xi, ?〉 in list LH2 then start the process again.
∗ Store the tuple 〈IDi, Yi,Hi, x̂i〉 in LH1 , the tuple 〈IDi, Xi, qi〉 in LH2 list, the tuple 〈IDi, di, Xi, Yi〉

in LE list and return (di, Xi, Yi) as the private key corresponding to IDi.
Without loss of generality, we assume that any identity is queried only once to this oracle.
Signature Oracle: Let (mj , IDi) be the message identity pair for which F request the signature. C
performs the following:
• If there are no entries corresponding to mj‖0, IDi and mj‖1, IDi in the list LH3 , then query the H3

oracle with input mj‖0, IDi.
• Retrieve the entries corresponding to mj‖0, IDi and mj‖1, IDi in list LH3 . Let the two tuples

retrieved be 〈mj , λ, IDi,Hj,λ, yj,λ,⊥〉 and 〈mj , λ, IDi,Hj,λ, yj,λ,>〉 (Note that according to the
definition of the H3 oracle, one of the entries will have ⊥ and the other one will have > as the last
entry in the tuple.). Pick the entry corresponding to ⊥, here 〈mj , λ, IDi,Hj,λ, yj,λ,⊥〉 is the required
tuple.

• If i 6= T , then perform the following:
∗ Set Hm = Hj,λ

∗ Set V = diHm. (Note that C knows the private key di corresponding to IDi)
• If i = T , then perform the following:

∗ Set yj = yj,λ

∗ Set V = yj(qT P1 + xT P2). (Notice that V = yj(qT P1 + xT P2) = (qT s1 + xT s2)yjP = dT yjP =
dT Hm and, XT = xT HT and YT = xT P2 .)

• Return σ = 〈V,Xi, Yi, λ〉 as the signature on the message mj .
This is indeed a valid signature and satisfies the verification algorithm. The details are given below,
Correctness of the test ê(V, P ) ?= ê(Hm, qT P1 + YT )

LHS = ê(V, P ) = ê(yj(qT P1 + xT P2), P ) = ê((qT s1 + xT s2 )yjP, P )
= ê(yjP, (qT s1 + xT s2 )P )
= ê(Hm, (qT s1 + rT s2 )P ) = ê(Hm, qT P1 + rT P2)
= ê(Hm, qT P1 + YT ) =RHS of equation (a)

Correctness of the test ê(XA, P2) = ê(HA, YA)

LHS = ê(XT , P2) = ê(xT HT , P2) = ê(HT , xT P2) = ê(HT , YT ) = RHS.

– Forgery: Eventually, after getting enough training, F produces a forgery m∗, IDS , σ∗ = (V,XS , YS , λ).
C aborts if any of the following is true:
• S 6= T (i.e., IDS is not the target identity set by the challenger).
• The last field of the tuple corresponding to m∗‖λ, IDS in list LH3 is⊥ (i.e., 〈m∗, λ, IDS ,Hj,λ, yj,λ,⊥〉 ∈

LH3).
• σ∗ corresponding to m∗ is illegal. (Since it is a deterministic signature, m∗ should not be queried to

the sign oracle with IDS as the signer.)
Otherwise, C does the following:
• Find qS = H2(IDT , XS), HS = H1(IDT , YS).
• Retrieve x̂S corresponding to 〈IDT , YS ,HS , x̂S〉 in the list LH1 .
• Compute ∆ = [q−1

S y−1
S (V − s2yS x̂−1

S XS)] = abP .



Note that C can solve the GDH problem instance irrespective of XS and YS , that is XS = XT or
XS 6= XT and YS = YT or YS 6= YT

Lemma 1. Let 〈m∗, λ, IDS ,Hj,λ, yj,λ,>〉 be the tuple in the list LH3 corresponding to m∗‖λ, IDS and yS =
yj,λ. If (IDS , σ∗) is a valid forgery on m∗ then q−1

S y−1
S (V − s2yS x̂−1

S XS) = abP with P1 = aP , P2 = s2P ,
H1(IDS , YS) = x̂SbP and Hm∗ = H3(m∗, IDS) = ySbP .

Proof: The proof is straight forward and is given below:

LHS= q−1
S y−1

S (V − s2yS x̂−1
S XS)

= q−1
S y−1

S (dSHm∗ − s2yS x̂−1
S XS)

= q−1
S y−1

S ((xSs2 + aqS)Hm∗ − s2yS x̂−1
S xS x̂SbP )

= q−1
S y−1

S (xSs2ySbP + aqSySbP − s2ySxSbP )
= q−1

S y−1
S (qSySabP ) = abP = RHS

�

Now, we show how C solves the GDH instance (P, aP, bP ) with probability at least ε1. For showing this we
have to analyze the probability related to the following events:

– E1 : C does not abort as a result of Extract query
– E2 : F generates a valid message - signature forgery (m∗, σ∗) for IDS = IDT .
– E3 : This event occurs for m∗‖λ, IDS such that the last field of the tuple corresponding to m∗‖λ, IDS

in list LH3 is > (i.e., 〈m∗, λ, IDS ,Hj,λ, yj,λ,>〉 ∈ LH3).

Let qH1 and qE denote the number or queries made to the H1 and Extract oracles. The probability of the
above events to occur is discussed below:

– Probability of C aborting during an extract query is 1
qH1

. There are totally qE extract queries. Thus the

probability that C does not abort in any of the extract queries is 1− qE

qH1
(i.e., Pr[E1] =

(
1− qE

qH1

)
)

– There are totally qH1 − qE identities are the eligible entities for being a valid IDS and thus IDS = IDT

happens with probability 1
qH1−qE

(i.e., Pr[E2] = 1
qH1−qE

)
– Assuming E2 has happened, the probability that the message m∗‖λ being a fruitful instance (i.e.,
〈m∗, λ, IDS ,Hj,λ, yj,λ,>〉 ∈ LH3) is 1

2(qH1−qE) (i.e.,Pr[E3|E2] = 1
2(qH1−qE) ). Note that every message

corresponding to IDS carries the hard problem instance bP with probability 1
2 .

Now, the probability of C solving the GDH is ε1 ≤ ε2

(
1

2(qH1−qE)

) (
1− qE

qH1

)
= ε2

(
1

2qH1

)
.

Important Remark: The generic method given by Bellare et al. [2] to construct an identity based signature
scheme is to use certificate for the public key PK and the identity ID of the user, and then use the certificate
and the private key SK corresponding to the public key PK for signing the message. Using this approach,
to construct a deterministic identity based signature we require two invocations of BLS signature [4]. The
first application of BLS signature is by the PKG to sign ID and PK, and the second BLS signature is by
the user to sign the message m using SK. Let the scheme described above be denoted as Γ . While proving
the security of the scheme Γ , the advantage of C in solving the GDH problem is given as ε2 ≤ ε1

1
q2

H1

, where

ε1 is the advantage of the forger in breaking the signature scheme Γ . This bound can be further improved
with the help of Goh et al.’s [8] technique which leads to a boost in the advantage, which is ε2 ≤ ε1

1
2qH1

.
Thus the security bounds for the scheme Γ and for our new scheme are equivalent, our scheme achieves this
bound without certificates. Also, the size of the signature generated are the same. The signature size of both
the schemes will be G3 + |ID|.

6 Application to Efficient Signature Aggregation

The aggregate signatures generated using our identity based deterministic signature scheme produces an
aggregate signature similar to the aggregate signatures described in [9]. The size of the aggregate signature



depends on the number of distinct signers and not the number of messages signed. The scheme in [9] uses
multiple forking-lemma and hence the size of the security parameter should be increased to achieve sufficient
security. Since our scheme does not require forking-lemma in the reduction, the security parameter need not
be blown-up as in [9] and as a result we have signature schemes with small size. The details of our aggregate
signature scheme follows:
The Setup, Extract, Sign algorithm are the same as Det-IBS.Setup, Det-IBS.Extract and Det-IBS.Sign
algorithms. The algorithms aggregate sign and aggregate verify are explained below:

– Det-IBS.AggSign: Given n signatures σ1 = 〈V1, X1, Y1〉, . . . , σn = 〈Vn, Xn, Yn〉 on n messages m1, . . . ,mn

by users with identities ID1, . . . , IDt, where t < n and a list L which provides the details about which
message is signed by whom, the aggregate signature σAgg is computed as follows:

• Computes VAgg =
n∑

i=1

Vi and sets σAgg = 〈VAgg, X1, . . . , Xt, Y1, . . . , Yt〉

– Det-IBS.AggVerify: Given an aggregate signature σAgg on n messages m1, . . . ,mn by users with
identities ID1, . . . , IDt, where t < n and a list L, σAgg is verified as follows:
Perform the following checks:

ê(VAgg, P ) ?=
n∏

i=1

(ê(H3(mi, IDi), qiP1 + Yi)) —–(3)

ê(
t∑

j=1

Xj , P2) =
t∏

j=1

ê(H1(IDj , Yj), Yj) —–(4)

If the checks in (3) and (4) pass, output “V alid”; if not, output “Invalid”

Note that in the first verification, if a signer has signed more than one message (This will be documented
in the list L), the corresponding Yi and identity IDi will be reused along with the corresponding message
mi. The second verification needs to be done only for t values as the number of distinct signers is only t. If
a single signer, say UA with identity IDA signs more than one message, our aggregate signature scheme can
be used to generate very efficient aggregate signatures with only three group elements namely, VAgg, XA and
YA. This optimizes the storage and communication complexity of signatures generated and communicated by
a single user. This cannot be achieved by any of the probabilistic identity based aggregate signature schemes.
We argue the proof of security of the aggregate signature scheme informally. Consider the forger sends an
aggregate signature (with one of the signatures that is aggregated as a signature by the target identity and
the sign oracle was not queried by the adversary with the corresponding message with the target identity as
the signer), as the forgery in the EUF-CMA (Existential Unforgeability) game. The challenger can remove
all other signatures except the one corresponding to the target identity from the aggregate signature by
generating them using the values the challenger has obtained from the random oracle lists. Now, the resulting
signature is a valid individual signature by the target identity on the target message and that will be a forgery
to the basic identity based signature scheme. This is a contradiction since the basic identity based signature
scheme is EUF-CMA secure the aggregate signature is also secure.

7 Conclusion

In this paper, we have designed an identity based deterministic signature scheme that has tight reduction to
GDH problem. Our scheme is completely different from all the existing schemes. The PKG uses a novel PKI
based signature scheme to generate the private keys for users and the PKI based signature scheme itself is
of independent interest. We have also proposed a novel scheme for the users to generate signed documents.
Both the schemes allow tight reductions and this results in substantially smaller keys and signatures than
the ones of the only other identity based deterministic signature scheme by Javier Herranz [9]. Improving
the tightness by avoiding the abort scenario during the extract phase in the deterministic identity based
signature scheme is considered to be an open challenge and an interesting direction to proceed.
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