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Abstract. In this work we propose a new cryptographic primitive called Delegatable Homomorphic Encryption (DHE).
This allows a Trusted Authority to control/delegate the capability to evaluate circuits over encrypted data to untrusted work-
ers/evaluators by issuing tokens. This primitive can be both seen as a public-key counterpart to Verifiable Computation,
where input generation and output verification are performed by different entities, or as a generalisation of Fully Homomor-
phic Encryption enabling control over computations on encrypted data.
Our primitive comes with a series of extra features as follows: 1) there is a one-time setup procedure for all circuits;
2) senders do not need to be aware of the functions which will be evaluated on the encrypted data, nor do they need
to register keys; 3) tokens are independent of senders and receiver; and 4) receivers are able to verify the correctness of
computation given short auxiliary information on the input data and the function, independently of the complexity of the
computed circuit.
We give a modular construction of such a DHE scheme from three components: Fully Homomorphic Encryption (FHE),
Functional Encryption (FE), and a (customised) MAC. As a stepping stone, we first define Verifiable Functional Encryption
(VFE), and then show how one can build a secure DHE scheme from a VFE and an FHE scheme. We also show how to
build the required VFE from a standard FE together with a MAC scheme. All our results hold in the standard model.
Finally, we show how one can build a verifiable computation (VC) scheme generically from a DHE. As a corollary, we get
the first VC scheme which remains verifiable even if the attacker can observe verification results.

Keywords. Homomorphism Delegation. Homomorphic Encryption. Functional Encryption. Verifiable Computation. Public-
Key Cryptography. Provable Security.

1 Introduction

Consider a public-key encryption scenario where Alice (the sender) and Bob (the receiver) are both resource-
constrained. Alice holds message m and Bob is supposed to receive f(m) – for some function f – but neither is
able to perform the associated computations. It could be the case that Alice is not even aware of which function
is supposed to be applied on m, and Bob might not want to know the details of how that function is implemented.
Carol is an untrusted service provider that wishes to sell computing power to Alice and/or Bob. Finally, TA is a
trusted authority that is willing to take on the responsibility of approving a concrete circuit for f put forth by Carol.
When function f is approved, the TA issues to Carol a token3 TKf that enables her to compute f on behalf of Alice
and Bob, and publishes a short description hf of the functionality provided by f to let Alice and Bob know that
this is the case.

When Alice encrypts a message m to Bob, the following guarantees are expected:

– If Alice and Bob are honest, then no one else will learn anything about m, as expected from a normal public-key
encryption scheme (we call this property input/output privacy). Note that this should be the case even if the TA
is honest-but-curious.

– If the TA is honest, then no one except Alice will learn anything about m, except what is leaked by f (we call
this property evaluation security). Note that this should be the case even if Bob and Carol collude.

3 Our use of the term token in this paper aims to distinguish secret keys associated with functions, from those associated with users.



– Furthermore, if the TA is honest, then a successful decryption by Bob assures him that the recovered value was
indeed correctly computed as f(m) (we call this property verifiability).

In all cases Carol is considered to be potentially dishonest and colluding with other dishonest service providers.
For concreteness, we can picture Bob as managing the IT infrastructure in a company, and wishing to outsource

e-mail filtering services to Carol. Ideally, Alice should be able to encrypt her messages to Bob, regardless of the e-
mail filtering operations that will take place. Furthermore, Carol should be able to perform e-mail filtering without
requiring any pre-processing assistance from Bob: Alice could even pass encrypted messages directly to Carol.
Here Bob is not interested in the details of the e-mail filtering algorithm (which might not be public) and need only
specify it using a short and high-level description. Furthermore, Bob will be satisfied with assurance from the TA
that function f computed by Carol indeed satisfies this specification. In a natural generalisation of this scenario,
multiple service providers offer different e-mail filtering algorithms (or other data processing functionalities) and
are all competing for Bob’s preference.

In the example above, Alice could be completely oblivious of the functionality computed over her encrypted
data, but this may not always be the case. In a different scenario, Bob could work for a research institute collecting
health-related statistical information. Alice, working in an hospital, would be willing to collaborate with Bob and
send him an encrypted database with patients’ health records. However, she will only do so if she is assured
that only the outputs of certain statistical measures are provided to Bob. Since neither Alice nor Bob possess the
computational resources to carry out the necessary computations, they need to resort to Carol. In this case, Alice will
need to rely on the TA to guarantee that tokens are only issued for functions that implement statistical measures that
do not leak sensitive information about patients. Obviously, input/output confidentiality is an additional requirement
of central importance in this setting. Furthermore, Bob’s results will only be trustworthy if he can verify that Carol
extracted relevant information correctly. This is also a necessary condition to assure Bob that Carol is not cheating
and that she is spending the charged resources on evaluating real statistical data.

In this paper we propose and realise a new cryptographic primitive that we call Delegatable Homomorphic
Encryption (DHE). The DHE primitive targets the scenarios described above, providing the required functionality
and security features that permit satisfying the trust relations between Alice, Bob and Carol. This new primitive
can be seen as extensions of a number of previously known cryptographic primitives: a) as a public-key counterpart
to Verifiable Computation [7]; b) as a generalisation of Fully Homomorphic Encryption [8] (FHE) that enables
control over the Evaluation operation; and c) as a delegatable (and verifiable) variant of Functional Encryption [13]
(FE) which achieves both input and output privacy. Before presenting the DHE concept in more detail, we will
explain why none of these primitives (nor trivial combinations thereof) completely solves the problems raised by
the scenarios described above.

FULLY HOMOMORPHIC ENCRYPTION. Recent breakthroughs [8] in public-key cryptography have made computing
over encrypted data using homomorphic encryption a real technologic possibility. In simplistic terms, FHE allows
Alice to encrypt data to Bob in such a way that Carol, knowing only the ciphertext and Bob’s public key, is able
to compute an arbitrary function over the encrypted plaintext without learning anything about its actual value.
Confidentiality is guaranteed, and Alice does not need to be aware of the concrete functions that will be computed.
Unfortunately, FHE is not intended to guarantee that Carol computes f(m) correctly, and also does not aim to
protect Alice from a collusion between Carol and Bob revealing more than f(m).

VERIFIABLE COMPUTATION. Verifiable Computation [7] is a cryptographic primitive that takes advantage of FHE
to address the important problem of computation delegation to an untrusted worker. The goal is for the Client (Bob)
to delegate to the Worker (Carol) the non-interactive computation of a pre-specified function f with both confiden-
tiality and verifiability guarantees. Bob is resource-constrained and yet should be able to: 1) prepare new inputs to
the system; and 2) verify that f was correctly computed over them. This means that input preparation and output
verification should involve a much lower computational cost than that required required to compute f unilaterally.
Also, the computational load imposed on Carol should not be prohibitive when compared to that required to com-
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pute f(m) in the clear. Finally, Bob should have guarantees that the data over which the computation is performed
remains secret. The major difference to the DHE scenario above is that VC was designed as a symmetric primitive
where Bob acts as both sender and receiver of the encrypted data. Bob can rely on a Trusted Authority to set-up the
system on his behalf, but it is still assumed that Bob must be aware of the function that is being computed by Carol
when he prepares new inputs to the system.

FUNCTIONAL ENCRYPTION. The DHE scenario also shares similarities with functional encryption [13]. This prim-
itive is a generalisation of other cryptographic notions, including Predicate Encryption (PE) and Attribute-Based
Encryption, where ciphertexts and secret keys are associated with extra information in order to exert fine-grained
control over who has access to encrypted data. In the view of FE closest to the DHE scenario [4], Alice hides a
message m inside the ciphertext. Decryption is then accessible only to Bob if he holds a token TKf associated
with an arbitrary function f of his choice (mapping bit-strings to bit-strings) issued by a Trusted Authority. When
invoked on a valid token TKf , decryption returns f(m). Bob should learn nothing more about the hidden mes-
sage than that which is leaked by f(m). Unfortunately, FE also comes short of solving the problems raised by the
DHE scenario. The problem is that the roles of Bob and Carol are combined into a single entity, which means that
Carol is essentially a trusted party if Bob is honest. Put differently, Bob is forced to either evaluate f(m) through
decryption, or he must delegate the decryption operation to Carol himself.

THE DHE ARCHITECTURE. The DHE architecture is similar to the (1-hop) FHE scenario4, extending it with the
ability to control which computations can be carried out over encrypted data, and verifying their results. The DHE
architecture is as follows.

– Receivers (Bob) generate and publish public keys that can be used by senders (Alice) to prepare encrypted
inputs to the system.

– Many senders can independently encrypt inputs to the same receiver. Encryption is independent of the concrete
functions that may be computed over encrypted data, and also of the evaluators (Carol) that may compute it.

– The TA is responsible for assigning computation abilities to evaluators. To enable some evaluator (Carol) to
carry out computation of a specific function over encrypted data, the TA provides her with a token. This token
depends only on the function that originated it, and is independent of senders and receivers.

– When running encryption, Alice computes some auxiliary information about the input. If securely shared with
Bob, this permits achieving verifiability of the computed results (without leaking additional information about
the original input). We discuss verifiability in more detail below.

– Finally, it is assumed that Alice and Bob are constrained in terms of computation resources, when compared
to the TA and Carol. This means that encryption and decryption should be much cheaper to compute than
generating tokens and evaluating functions over encrypted inputs.

Verifiability of a decryption result must be considered in the context of a specific input and a specific function. In
the DHE architecture this is captured by providing two additional inputs to decryption that set-up this context:

– The first is a short description hf of the function f that was supposedly evaluated over the encrypted data.
This is published by the Trusted Authority, and essentially binds Carol to evaluating a function f that the TA
approved. In practice this short description can be a hash or an identifier of a function that the TA has delegated.

– The second is a short piece of information returned by encryption and transferred securely from Alice to Bob.
This auxiliary information should not reveal anything about the input data in addition to that which is revealed
by the output of the computation (this is another important distinction to the VC scenario). For verifiability
to be meaningful, this information must be transferred authentically. In our work we further assume that the

4 We consider only the case where functions computed over ciphertexts take a single input. A more general scenario where different
ciphertexts (possibly from different senders) can be fed to evaluation could be considered, although it is not clear what verifiability
would mean in this case).
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auxiliary information is also transferred confidentially (e.g. using a combination of standard signature and
encryption schemes), and leave the case where it can be known to evaluators for future work5.

DHE CONSTRUCTION AND VERIFIABLE FUNCTIONAL ENCRYPTION. FE comes as a natural stepping stone to-
wards realising our notion of a DHE. Indeed, FE already provides a means to control the functions that can be
computed over encrypted data, as well as restricting the information that is leaked by decryption. However, as we
described above, the features offered by FE fall short of what we require for DHE. To solve this problem, we need
to consider the FE setting where decryption is no longer performed by Bob (the receiver), but is carried out on
a separate module (Carol). Bob, however, must be able to efficiently check that this decryption was carried out
honestly, with some help from Alice. We call this new primitive Verifiable Functional Encryption (VFE).

We construct a VFE from a standard FE scheme. The construction is intuitive – we add redundancy to function
inputs and outputs to enable verification – but it is non-trivial in its realisation. Alice encrypts a MAC key k together
with the message m. The tokens for a function f are now issued for a new function f? which computes f(m) and
attaches a MAC of the result under key k. However, the security of the underlying FE scheme together with un-
forgeability of the MAC does not seem to be enough to ensure verifiability. Indeed we need special properties from
the MAC scheme in order to prove that the FE scheme is preserving its authentication properties in a meaningful
way. Our notion of VFE also allows for a clearer modular presentation of our results and, as we shall see, it is
helpful in building VC schemes where input/output privacy is not needed.

Verifiable FE provides only a limited form of input privacy and no output privacy (with respect to Carol and the
TA). To obtain a DHE scheme we therefore wrap the VFE scheme inside an FHE layer. This technique is similar
to those used in [7,5] where Yao’s garbled circuits and cut-and-choose protocols (instead of functional encryption)
are used in conjunction with FHE. Note that although in this setting the FHE scheme must support the decryption
circuit of the verifiable functional encryption scheme, it is not essential in guaranteeing verifiability. This is where
the flexibility of our scheme resides.

SECURE VERIFIABLE COMPUTATION. A DHE scheme can be seen as a generalisation of VC where the Client
functionality is now carried out by three different parties: the TA carries out the pre-computation stage, Alice
prepares the inputs and Bob recovers and verifies the outputs. Not surprisingly, DHE implies a strong form of VC.
In particular, the results in this paper solve two open problems identified in [7]. Firstly, any DHE scheme which is
secure in the sense that we propose in this paper can be easily converted into a VC scheme that remains verifiable
even if the worker (Carol) can observe the outputs of verification and adaptively choose new inputs. Secondly, if
one is willing to waive input/output privacy, our construction of a VFE yields the first VC scheme that does not
require FHE to achieve verifiability.

STRUCTURE OF THE PAPER. We start by review the related work in the next section. We fix notation in Section 3
before defining the syntax and three security models for DHEs in Section 4. We introduce verifiable functional
encryption in Section 5, and give a generic construction from a standard FE scheme and a (customised) MAC.
In Section 6 we build a DHE scheme from a verifiable functional encryption scheme and a fully homomorphic
encryption scheme. Relation to verifiable computation is discussed in Section 7. We conclude the paper in Section 8
by discussing the instantiation/efficiency of our construction and providing directions for future research.

2 Related Work

Verifiable Computation was proposed in [7] as a solution to the growing need for cryptographic mechanisms that al-
low a weak computational device to outsource computing to a more powerful and untrusted computational device6.

5 Note that although we do not consider this aspect in this paper, the hint could be anonymous in the sense that it reveals nothing about the
sender. Our construction actually achieves this.

6 We refer the interested reader to [7] for a good description of prior work in cryptography and complexity theory related to VC.
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The first proposed VC construction combines FHE with Yao’s garbled circuits [14]. Unfortunately, this construction
only guarantees confidentiality and verifiability if the system is rebooted after an unsuccessful verification. Chung
et al. [5] propose a new VC scheme that improves on the efficiency of the construction in [7]. The central idea in this
construction is to use a cut-and-choose mechanism whereby the Client randomly mixes pre-chosen inputs with the
fresh input to the computation. Since the function values on the pre-chosen inputs can be pre-computed, the Client
can check whether the Worker computed the function correctly on all inputs with high probability. The authors also
propose a pipelining solution to minimise the limitation of the original VC scheme, whereby one needs to reboot the
system after a cheating worker is first detected. This essentially consists of requiring Client and Worker to maintain
a state that they gradually update as several computations are successfully delegated. However, the scheme still
falls short of preserving its security properties when the attacker has access to a verification oracle. Our scheme
improves on previous VC constructions by preserving verifiability in this scenario. Recently and independently,
Benabbas et al. [2] proposed a VC scheme aiming at the same level of security as the one adopted in this paper, but
for a restricted class of functions (high degree polynomial functions).

Significant advances have recently taken place in the areas of Functional Encryption and Fully Homomorphic
Encryption. In this work we use both of these primitives in a black-box way, and so we only briefly refer the most
relevant contributions. The first fully homomorphic encryption scheme, where the evaluation algorithm produces
ciphertexts whose size is independent of the evaluated circuit, was presented in [8]. An alternative and conceptually
simpler construction was subsequently proposed in [19]. The authors in [18,9] consider efficiency improvements
and implementation aspects over the previous FHE constructions.

The view of FE that we adopt in this paper is closely related to attribute-hiding predicate-only Predicate En-
cryption [11]. Indeed, any PE scheme with these characteristics provides exactly the FE functionality for functions
(predicates) outputting a single bit. Not surprisingly, a simple transformation suffices to construct the FE we re-
quire from a predicate-only attribute-hiding PE (we return to this issue later in the paper). Fully secure predicate
encryption schemes for inner products using the dual system encryption technique over composite-order pairing
groups and dual pairing vector spaces have been presented in [13]. Prior solutions, e.g. that in [11], offered only
selective security, where the adversary must commit to the target of its attack before seeing the public parameters
for the scheme. Recently, a fully secure PE scheme for a larger class of predicates has been proposed in [6]. Under
this scheme, any k-CNF or k-DNF predicate, for a fixed k, can be associated to the secret key. We discuss possible
instantiations of our construction and their efficiency in our concluding remarks.

RELATION TO YAO’S GARBLED CIRCUITS. One of the questions that may arise when analysing the DHE con-
struction proposed in this paper is whether such a scheme can be constructed by adapting the VC construction
from [7]. In a nutshell, that construction works as follows.

– The Client creates a Yao circuit for function f as its public key, keeping the input and output labels as her secret
key. This is the pre-processing stage.

– For each new input, a new FHE key pair is created and used to encrypt the subset of input wires that encodes
the fresh input x.

– The Worker evaluates the circuit in encrypted form using FHE and returns the encrypted output wires to the
Client.

– The Client decrypts the output wires, checks that they are correct, and decodes the output.

Intuitively, one-time verifiability comes from the observation that the output wires come from an exponentially
large space, which means that the Worker has a negligible probability of forging a new valid output. FHE enables
reusing the Yao circuit multiple times.

An adaptation of this approach to the DHE setting would follow a reasoning along the following lines.

– The Yao circuit is the natural choice for the token to be generated by the TA. It could be provided to the
Evaluator either in the clear or in encrypted form. This means that the TA must know the input and output wires
for the circuit. Again, these can be provided to the TA in the clear or in encrypted form.
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– The sender must know the input wires (in the clear or in encrypted form) in order to encode the input.
– The receiver must know the output wires in the clear in order to decrypt and verify the result. This means that

any form of FHE encryption applied in the process must be under a public key for which the receiver knows
the corresponding secret key.

One possibility to meet these restrictions would be to share the output wires between TA and receiver and
publish the input wires encrypted under the receiver’s FHE public key. This would allow the sender to homomor-
phically encode an input, and also the TA to homomorphically construct the Yao circuit. However, if the Worker
knows all of the input wires in encrypted form, this allows him to homomorphically fully open the circuit: it can
homomorphically maul the outputs without being detected.

This observation indicates that the VC construction seems to impose a necessary restriction on the use of the
Yao circuit in order to obtain verifiability: the Evaluator must never see more than one encoded input for the Yao
circuit under the same FHE public key. In conclusion, achieving DHE security using a Yao circuit in this manner
seems to imply that input wires are sender-specific and secretly shared with the TA. Similarly, output wires would
be receiver-specific and secretly shared with the TA. As a corollary senders should be registered, and tokens will
be sender and receiver specific.

SECURITY NOTIONS FOR FUNCTIONAL ENCRYPTION. Recently and independently of this work, Boneh, Sahai and
Waters [4] and O’Neill [15] have analysed the subtleties in defining syntax and security of functional encryption
schemes. Although we have not carried out an in-depth analysis of these issues, our work can now (a posteriori) be
related to the conclusions of the referred works. The syntax we have defined for functional encryption is similar to
that adopted in [15]. Furthermore, our definition of security is identical to IND-FULL (or IND-TNA for the non-
adaptive case) proposed in the same work, and similar to the indistinguishability notion studied in [4]. A limitation
has been identified in this definition, in that the adversary may be too restricted (even totally prevented from making
a challenge query) for specific functionalities.

In the above mentioned works [4,15] simulation-based notions of security for functional encryption schemes
(which are in some sense more natural) are introduced to overcome the said limitations. It is shown in [15] that for
pre-image samplable functions the simulation-based and indistinguishability-based notions are equivalent under
non-adaptive token extraction attacks. Our use of n-key-chameleon MACs relates to this result in the following
ways. First, this is deemed necessary by our need to rely on the FE scheme to preserve security properties of the
MAC circuit associated with the secret key, which as discussed in [4] raises subtle problems. Second, it allows us
to employ a proof-technique similar to that used in [15] to reduce the security of our VFE construction to that of
the underlying FE scheme. Finally, our extended functionalities, which include a MAC tag to ensure verifiability,
actually preserve the pre-image samplability of the original function. This in particular means that equivalence to
simulation-based notions can be considered for the resulting DHE in the same terms as for the underlying FE. We
leave extending our results to directly deal with simulation-based notions as a direction for future work.

i-HOP HOMOMORPHIC ENCRYPTION. It is interesting to see how our DHE notion relates to i-hop homomorphic
encryption as proposed in [10]. There, the main concern is whether one can keep computing on evaluated cipher-
texts. In other words, an i-hop homomorphic encryption allows one to call the evaluation procedure on its own
output up to i times, while still being able to decrypt the result. The authors in [10] use bootstrapping techniques to
convert any (1-hop) homomorphic encryption scheme into an i-hop scheme preserving the function-privacy and/or
compactness of the underlying schemes. In DHE we do not (yet) consider function privacy, and our aim is to restrict
computation over encrypted data to specific functions in a verifiable manner. To meet these requirements, a DHE
scheme must actually ensure that verifiable computation is restricted to one hop. In other words, any Evaluator that
is able to convince the receiver to accept the result of composing two (authorised) computations would contradict
verifiability in our model. We leave the study of i-hop DHE schemes for future research.
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A PARTIAL SOLUTION FROM HOMOMORPHIC SIGN-THEN-ENCRYPT. Homomorphic signatures allow a signer
to produce signatures over messages so that any one is able to compute a function f on these messages and a new
signature. The new signature authenticates, not only the result (i.e. that it was computed starting from correctly
signed data) but also the correctness of the computation (i.e. the signature is also bound to the specific circuit f
computed over the signed messages). Recent developments in homomorphic signature schemes [3] have produced
solutions that can deal with reasonably complex circuits, which permit considering a partial solution to the DHE
problem. Indeed, a Sign-Then-Encrypt construction using FHE and homomorphic signatures would allow satisfy-
ing the confidentiality and verifiability requirements in the DHE primitive. The evaluator would homomorphically
compute both the result and the signature over the encrypted data and, upon decryption, the receiver could take
advantage of the correctness assurance provided by the homomorphic signature scheme to verify the result. Unfor-
tunately, such a construction does not provide any protection to the sender if the receiver and the evaluator collude:
both will learn everything about the encrypted data, as the receiver’s secret key reveals the originally encrypted
plaintext.

3 Notation

We write x← y for assigning value y to variable x. We write x←$ X for sampling x from set X uniformly at random.
If A is a probabilistic algorithm we write y←$ A(x1, . . . , xn) for the action of running A on inputs x1, . . . , xn with
random coin chosen uniformly at random, and assigning the result to y. For a random variable X we denote by [X]
the support of X, i.e. the set of all values that X takes with non-zero probability. We also denote the empty string
by ε and use PPT for probabilistic polynomial-time. We say η(λ) is negligible if |η(λ)| ∈ λ−ω(1). Throughout the
paper we view functions f as circuits. We call a function space FunSp(P) and a message space MsgSp(P), both
parameterised by P, compatible if, for any P and for any f ∈ FunSp(P), the domain of f is MsgSp(P).

In this paper we will be using the code-based game-playing language [1]. Each game has an Initialize and a
Finalize procedure. It also has specifications of procedures to respond to an adversary’s various oracle queries.
A game Game is run with an adversary A as follows. First Initialize runs and its outputs are passed to A. Then
A runs and its oracle queries are answered by the procedures of Game. When A terminates, its output is passed to
Finalize which returns the outcome of the game y. This interaction is written as GameA ⇒ y. In each game, we
restrict attention to legitimate adversaries, which is defined specifically for each game.

4 Delegatable Homomorphic Encryption

We are now ready to formally present the syntax of a DHE scheme.

SYNTAX. A delegatable homomorphic encryption (DHE) scheme is specified by six PPT algorithms as follows.

1. DHE.Setup(1λ): This is the setup algorithm and is run by the TA. On input a security parameter, it generates
a master secret key Msk and a master public key Mpk. We assume Mpk also contains a pair of compatible
message and function spaces DHE.MsgSp(Mpk) and DHE.FunSp(Mpk).

2. DHE.Gen(Mpk): This is the key-generation algorithm and is run by the receiver. On input the master public
key, it outputs a receiver key-pair (sk, pk).

3. DHE.TKGen(f,Msk): This is the token generation algorithm and is run by the TA. On input a (description of
a) circuit f and the master key Msk, it generates a token TK for f and a short description of f denoted hf . For
simplicity, we restrict our attention to schemes for which hf is deterministically generated from f and unique
with overwhelming probability (e.g. using a collision-resistant hash function).

4. DHE.Enc(m, pk): This is the encryption algorithm and is run by the sender. On input a message m, and a
receiver’s public key pk it returns a ciphertext c, and some auxiliary information aux.
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5. DHE.Eval(c,TK, pk): This is the evaluation algorithm and is run by the evaluator. On input a ciphertext c, a
token TK, and a public key pk, it returns a ciphertext cevl.

6. DHE.Dec(cevl, aux, hf , sk): This is the deterministic decryption algorithm and is run by the receiver. On input
an evaluated ciphertext cevl, auxiliary information aux, a short description of a function hf , and a secret key sk,
it returns either a message m or a special failure symbol ⊥.

Recall that we assume that the TA publishes the short descriptions hf so that they are publicly available, and that
aux is supposed to be transferred securely from Alice to Bob in order to ensure verifiability.

CORRECTNESS. A DHE scheme is correct if for any λ ∈ N, any (Msk,Mpk) ∈ [DHE.Setup(Mpk)], any (sk, pk) ∈
[DHE.Gen(Mpk)], any m ∈ DHE.MsgSp(1λ) and any f ∈ DHE.FunSp(Mpk) we have that

Pr

 (TK, hf ) ←$ DHE.TKGen(f,Msk)
(c, aux) ←$ DHE.Enc(m, pk)

cevl ←$ DHE.Eval(c,TK, pk)
: f(m) = DHE.Dec(cevl, aux, hf , sk)

 = 1.

COMPACTNESS. Intuitively, in a compact DHE scheme the evaluation algorithm takes on the computational load of
evaluating circuits over the data. This requirement, as in fully homomorphic encryption, rules out trivial construc-
tions where evaluation appends the circuit to ciphertexts, and it is the decryption which bears the computational
load. More formally, a DHE scheme is compact if there is a fixed polynomial B(·) such that for any (Msk,Mpk) ∈
[DHE.Setup(1λ)], any f ∈ DHE.FunSp(Mpk), any (sk, pk) ∈ [DHE.Gen(Mpk)], any m ∈ DHE.MsgSp(Mpk),
any (TK, hf ) ∈ [DHE.TKGen(f,Msk)], any (c, aux) ∈ [DHE.Enc(m, pk)], and any cevl ∈ [DHE.Eval(c,TK, pk)],
the size of (cevl, aux, hf , sk) is at most B(λ+ |f(m)|) (independently of the size of f ).

OUTSOURCEABILITY. Roughly speaking, this requirement rules out schemes which pre-compute functions at the
encryption stage. Formally, a DHE scheme is outsourceable if for any c > 0 and sufficiently large λ, we have that for
any (Msk,Mpk) ∈ [DHE.Setup(1λ)], any (sk, pk) ∈ [DHE.Gen(Mpk)], and any message m ∈ DHE.MsgSp(Mpk),
and any f ∈ DHE.FunSp(Mpk), the time-complexity of DHE.Enc(m, pk) is at most c times the time-complexity
of f(m).

INPUT/OUTPUT PRIVACY. We formulate a notion of input/output privacy that requires no party (including an
honest-but-curious TA) except possibly the sender or the receiver should learn anything about the data enclosed
in DHE ciphertexts. Formally, the TA-IND-CPA security of a DHE scheme requires the advantage of any PPT
adversary A defined by

Advta-ind-cpa
DHE,A (λ) := 2 · Pr

[
TA-IND-CPAADHE(λ)⇒ T

]
− 1,

to be negligible, where game TA-IND-CPA is shown in Figure 1. Note that the adversary receives Msk, which
enables it to extract tokens for all functions. Also note that the adversary is not given the auxiliary information
aux that is used to ensure verifiability. This is consistent with the assumption in this model that the sender and the
receiver are trusted.

proc. Initialize(λ):
b←$ {0, 1}
(Msk,Mpk)←$ DHE.Setup(1λ)
(sk, pk)←$ DHE.Gen(Mpk)
Return (Msk,Mpk, pk)

proc. Left-Right(m0,m1):
(c, aux)←$ DHE.Enc(mb, pk)
Return c

proc. Finalize(b′):
Return (b = b′)

Fig. 1: Game defining the TA-IND-CPA security of a DHE scheme. An adversary is legitimate if it calls Left-Right exactly once on two
messages of equal length. 8



VERIFIABILITY. Verifiability for DHEs essentially requires an evaluator to be unable to convince the sender and the
receiver (sharing a secret aux that contextualises a concrete input) that it has honestly computed an incorrect value.
We capture this by allowing the adversary to obtain a polynomial number of tokens for functions of its choice. We
also allow the attacker to obtain a polynomial number of encrypted inputs for messages of her choice. The goal
of the adversary is then to produce a ciphertext that is accepted and decrypts to an incorrect value. The model is
strengthened by introducing a decryption oracle that captures the possibility that the evaluator observes the results
of decryptions (verifications) executed by the receiver. More formally, the VRF-CCAx security of a DHE scheme
for x ∈ {1, 2} requires the advantage of any PPT adversary A defined by

Advvrf-ccax
DHE,A (λ) := Pr

[
VRF-CCAxADHE(λ)⇒ T

]
to be negligible, where game VRF-CCAx is shown in Figure 2.

proc. Initialize(λ):
List← {}; TKList← {}; i← 0

(Msk,Mpk)←$ DHE.Setup(1λ)
(sk, pk)←$ DHE.Gen(Mpk)
Return (Mpk, pk)

proc. Token(f):
(TK, hf )←$ DHE.TKGen(f,Msk)
TKList← TKList ∪ {(f, hf )}
Return (TK, hf )

proc. Decrypt(c, i, hf ):
Let (m, aux) be s.t. (i,m, aux) ∈ List
m← DHE.Dec(c, aux, hf , sk)
Return m

proc. Encrypt(m):
(c, aux)←$ DHE.Enc(m, pk)
i← i+ 1; List← List ∪ {(i,m, aux)}
Return c

proc. Finalize(c?, i, hf ):
If (i, ?, ?) 6∈ List Return F
If (?, hf ) 6∈ TKList Return F
Let (m, aux) be s.t. (i,m, aux) ∈ List
Let (f, hf ) be s.t. (f, hf ) ∈ TKList
m? ← DHE.Dec(c?, aux, hf , sk)
If m? =⊥ Return F
Return (m? 6= f(m))

Fig. 2: Game defining the VRF-CCAx security of a DHE scheme. An adversary is legitimate if: 1) it calls Decrypt with an i such that
(i, ?, ?) ∈ List; and 2) it does not call Token after calling Encrypt when x = 1.

A natural question that arises after introducing the previous models is how does verifiability relate to IND-CPA
security. We clarify this issue in Appendix A by introducing an IND-CCA security model for DHEs. In this model,
where TA, Alice and Bob are assumed to be honest, the decryption oracle mimics the actions of Bob, knowing the
correct secret aux for the challenge ciphertext and the set of valid function descriptions published by the TA. We
show that verifiability and I/O privacy jointly imply IND-CCA security. Note that this does not mean that the DHE
retains its I/O privacy in the presence of a verification oracle: the decryption oracle in the CCA security model does
not allow the adversary to infer the verification result from the oracle output.

Another important feature of DHE schemes is that they provide a reduced level of security to Alice even when
Carol and Bob collude. We consider this situation next.

EVALUATION SECURITY. Evaluation security aims to guarantee senders that no information about encrypted mes-
sages beyond that which can be obtained from evaluations and decryptions for authorised functions is leaked. This
means that, even if an evaluator and a receiver collude (note that the attacker gets to see aux and the receiver’s
secret key) they cannot obtain more information about the original message than they should. In addition to a
Left-Right oracle, the adversary gets a token extraction oracle to which it can only query functions that do not
allow for trivial distinguishing attacks. Furthermore, the adversary may observe evaluations under other functions
for all ciphertexts except the challenge. Under this notion of security, a collusion of evaluators and receivers cannot
misuse their resources to compute unauthorised functions. In other words the scheme provides resource protection.
Formally, the IND-EVALx security of a DHE scheme for x ∈ {1, 2} requires the advantage of any PPT adversary
A defined by

Advind-evalx
DHE,A (λ) := 2 · Pr

[
IND-EVALxADHE(λ)⇒ T

]
− 1

to be negligible, where game IND-EVALx is shown in Figure 3.
9



proc. Initialize(λ):
b←$ {0, 1}; List← {}; TKList← {}
(Msk,Mpk)←$ DHE.Setup(1λ)
(sk, pk)←$ DHE.Gen(Mpk)
Return (Mpk, sk, pk)

proc. Token(f):
(TK, hf )←$ DHE.TKGen(f,Msk)
TKList← TKList ∪ {f}
Return (TK, hf )

proc. Evaluate(c, f):
(TK, hf )←$ DHE.TKGen(f,Msk)
cevl ←$ DHE.Eval(c,TK, pk)
Return cevl

proc. Left-Right(m0,m1):
(c, aux)←$ DHE.Enc(mb, pk)
List← List ∪ {(c, aux)}
Return (c, aux)

proc. Finalize(b′):
Return (b = b′)

Fig. 3: Game defining the IND-EVALx security of a DHE scheme. An adversary is legitimate if: 1) it calls Left-Right exactly one on two
messages of equal length; 2) it never queries Token with an f such that f(m0) 6= f(m1); 3) it never calls Evaluate with a c such that
(c, ?) ∈ List; and 4) it does not call Evaluate or Token after calling Left-Right when x = 1.

5 Verifiable Functional Encryption

As a stepping stone towards realising our DHE notion, we first introduce Verifiable Functional Encryption (VFE).
Our discussion is based on the definitions of standard functional encryption presented in Appendix B.3.

SYNTAX. The syntax of a VFE scheme is similar to that of an FE scheme with the caveat that additional parameters
are returned by the encryption, decryption and token generation algorithms that can be fed to a new verification
algorithm. The verification algorithm allows anyone who is given an output of decryption to verify that it was
honestly computed with the additional help of contextual information that binds the check to a specific encryption
operation and a specific function that was supposedly computed over the encrypted data. Concretely, a verifiable
functional encryption (VFE) scheme is defined through the following PPT algorithms.

1. VFE.Setup(1λ): This is the setup algorithm. On input a security parameter 1λ, it outputs a master public key
Mpk, and a master secret key Msk. We assume Mpk also contains a pair of compatible message and function
spaces VFE.MsgSp(Mpk) and VFE.FunSp(Mpk).

2. VFE.TKGen(f,Msk): This is the token generation algorithm. On input the master secret key Msk and a function
f , it outputs a token TK and a short identifier hf for f . For simplicity, we restrict our attention to schemes for
which these identifiers are deterministically generated from f and unique with overwhelming probability (e.g.
using a collision-resistant hash function).

3. VFE.Enc(m,Mpk): This is the verifiable encryption algorithm. On input a message m, it outputs a ciphertext c
and a key k. The returned key will allow a sender to verify an output of decryption using VFE.Ver.

4. VFE.Dec(c,TK,Mpk): This is the deterministic decryption algorithm. On input a token TK, a ciphertext c, and
a master key Mpk, it outputs a range point/tag pair (y, t), or a special failure symbol ⊥.

5. VFE.Ver((y, t), hf , k,Mpk): This is the deterministic verification algorithm. On input a range point/tag pair
(y, t), a fingerprint value hf and keys k and Mpk, it returns a decision value T or F. We also require the
verification algorithm to accept only one tag for each (y, hf , k) input.

CORRECTNESS. A VFE scheme is correct if for any λ ∈ N, any (Mpk,Msk) ∈ [VFE.Setup(1λ)], any f ∈
VFE.FunSp(Mpk), and any m ∈ VFE.MsgSp(Mpk), we have that

Pr

 (TK, hf ) ←$ VFE.TKGen(f,Msk)
(c, k) ←$ VFE.Enc(m,Mpk)
(y, t) ←$ VFE.Dec(c,TK,Mpk)

: f(m) = y ∧ VFE.Ver((y, t), hf , k,Mpk) = T

 = 1.

OUTSOURCEABILITY. A VFE scheme is outsourceable if for every c > 0 and sufficiently large λ we have that for
any (Msk,Mpk) ∈ [VFE.Setup(1λ)], any message m ∈ VFE.MsgSp(Mpk), and any f ∈ VFE.FunSp(Mpk), the
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time-complexity of VFE.Enc(m,Mpk) is at most c times the time-complexity of f(m). Put differently, for every
f , the time-complexity of VFE.Enc(·, ·) is o(|f |), where |f | denotes the number of gates that f contains (circuit
size of f ). This requirement rules out trivial constructions of functional cryptosystems which pre-compute f during
encryption.

PLAINTEXT SECURITY. The IND-CCAx security of a VFE scheme for x ∈ {0, 1, 2} is defined similarly to that of
a standard FE scheme (see Figure 14), with the difference that the Left-Right procedure now returns (c, k). Note
that this definition essentially requires the scheme to leak nothing about the challenge except f(mb) for all f for
which the receiver obtains a token, even if the attacker is given k as auxiliary information.

VERIFIABILITY. The intuition here is similar to that in the DHE scenario: correctness of outsourced decryption
should be checkable. More precisely, the VRF-CCAx security of a VFE scheme for x ∈ {1, 2} requires the advan-
tage of any PPT adversary A defined by

Advvrf-ccax
VFE,A (λ) := Pr

[
VRF-CCAxAVFE(λ)⇒ T

]
,

to be negligible, where game VRF-CCAx is shown in Figure 4.

proc. Initialize(λ):
List← {}; TKList← {}; i← 0

(Msk,Mpk)←$ VFE.Setup(1λ)
Return Mpk

proc. Token(f):
(TK, hf )←$ VFE.TKGen(f,Msk)
TKList← TKList ∪ {(f, hf )}
Return (TK, hf )

proc. Decrypt(c, f):
(TK, hf )←$ VFE.TKGen(f,Msk)
(y, t)← VFE.Dec(c,TK,Mpk)
Return (y, t)

proc. Encrypt(m):
(c, k)←$ VFE.Enc(m,Mpk)
i← i+ 1; List← List ∪ {(i,m, k)}
Return c

proc. Finalize((y, t), i, f):
If (i, ?, ?) 6∈ List Return F
If (f, hf ) 6∈ TKList Return F
Let (m, k) be s.t. (i,m, k) ∈ List
If VFE.Ver((y, t), hf , k,Mpk) = F

Return F
Return (y 6= f(m))

Fig. 4: Game defining the VRF-CCAx security of a VFE scheme. An adversary is legitimate it does not call Token or Decrypt after
calling Encrypt when x = 1.

5.1 Constructing a Verifiable FE Scheme

ADDING VERIFIABILITY TO FUNCTIONS. In our construction of a VFE we use a transformation which given a
pair of compatible spaces FunSp(1λ) and MsgSp(1λ) constructs a new function family that enables verifiability
without loss of functionality – we will call this the verifiable function family. The intuition behind this construction
is simple: we extend any function f(m) to a function f?(m, k) that takes also a secret key and computes (f(m), t)
where t authenticates f(m) under k.

Formally, in order to establish a verification context that is a binding both to a concrete function and a concrete
input, we take a collision resistant hash function family (CRH) and a MAC scheme (possibly with a global set-up
procedure and a trapdoor). We use CRH to derive function fingerprints from function descriptions, and define

f?(m, k) := (f(m),MAC.Tag((f(m), hf ), k,mk)), where hf ← CRH.H(〈f〉, hk).

We note that function identifiers (or fingerprints) will be unique with overwhelming probability, and that one can
verify that function f? was correctly computed simply by checking that MAC.Tag((y, hf ), k,mk) = t.

Also note that since MAC and CRH are deterministic the above transformation enjoys the property that f?(m0, k) =
f?(m1, k) if and only if f(m0) = f(m1). Furthermore given f?(m, k) one can read off f(m) in time equal to |f(m)|.

THE VFE CONSTRUCTION. Our construction is simple but somewhat surprising in its capabilities. We start with
any FE scheme accepting circuits for the verifiable function family that we defined above. We then show that
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encrypting a fresh secret key for the MAC along with the input to the function we want to compute is enough to
achieve verifiability. Although this technique is intuitive, it has proven to be elusive to formalise and prove secure.
It is clear that the MAC scheme must be unforgeable for one to have any hope of proving this result. However, it is
not trivial to prove that including a MAC key inside a ciphertext, and issuing tokens for arbitrary functions in the
above verifiable function family, does not enable the adversary to forge a new MAC on the same key.

To better see where the problem arises, note that IND-CCA security of the FE scheme guarantees that no
information about the input (the message and the MAC key) beyond that leaked through the extracted function(s) is
leaked to an adversary. Hence, before one can reduce the verifiability of the FE to the unforgeability of the MAC one
must first have a meaningful reduction to the IND-CCA security of the FE, replacing the MAC key with a different
one that can be embedded in the challenge ciphertext provided to the verifiability adversary (this is because the real
MAC key will not be available in the reduction to unforgeability). The trick is then to find a new key that gives rise
to the same MAC, which can be substituted inside the challenge ciphertext without this being perceptible to the
adversary. To achieve this result we need a MAC with the following property: it is possible to find a key which leads
to identical tags on any n messages, and this key can be given to the adversary without hindering unforgeability.
We call a MAC with this property an n-key-chameleon MAC. In Appendix C we provide the precise definitions
and give an implementation based on an information-theoretically secure MAC.

Note that this proof-technique requires us to restrict ourselves to adversaries that perform at most n token
extraction queries, all before calling the challenge. Fortunately, this is enough to ensure that our results imply a
strongly secure VC scheme, as we will see later in the paper. We now formalise this intuition.

Let FE be a (standard) functional encryption scheme such that for any λ ∈ N and any given compatible spaces
FunSp(1λ) and MsgSp(1λ), we have that FE.FunSp(Mpk) includes f? as defined in the displayed equation above,
for any f ∈ FunSp(1λ), any (Msk,Mpk) ∈ [FE.Setup(1λ)], any hk ∈ [CRH.KeySp(1λ)], and any (td,mk) ∈
[MAC.Setup(1λ)]. We define our verifiable functional encryption scheme VFE as shown in Figure 5. Note that our
construction satisfies the uniqueness requirement on tags accepted by the verification algorithm by recomputing a
deterministic MAC. Security properties of the scheme are stated next, and we refer to Appendices D and E for
precise theorem statements and proofs.

Theorem 1 (Informal). The construction in Figure 5 is IND-CCA if the underlying FE scheme is IND-CCA. It is
also verifiable under non-adaptive bounded attacks if the FE scheme is IND-CCA1 and the MAC is unforgeable.

– VFE.Setup(1λ)
1. (Msk,Mpk)←$ FE.Setup(1λ)
2. (td,mk)←$ MAC.Setup(1λ)
3. hk←$ CRH.Gen(1λ)
4. Return ((Msk,mk, hk), (Mpk,mk, hk))

– VFE.TKGen(f, (Msk,mk, hk))
1. hf ← CRH.H(〈f〉, hk)
2. f?(x1, x2) := (f(x1),MAC.Tag((f(x1), hf ), x2,mk))
3. TK←$ FE.TKGen(f?,Msk)
4. Return (TK, hf )

– VFE.Enc(m, (Mpk,mk, hk))
1. k←$ MAC.KeySp(mk)
2. c←$ FE.Enc((m, k),Mpk)
3. Return (c, k)

– VFE.Dec(c,TK)
1. m← FE.Dec(c,TK)
2. Parse (y, t)← m
3. Return (y, t)

– VFE.Ver((y, t), 〈f〉, k, (Mpk,mk, hk))
1. Return MAC.Tag((y, hf ), k,mk) = t

Fig. 5: A VFE scheme based on a standard FE scheme and an n-key-chameleon MAC.
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6 A Strongly Secure DHE Scheme

We now present a generic construction of a DHE for a given function space. The construction uses the VFE scheme
introduced in the previous section as a building block. The other component in our construction is an FHE scheme.
For the definitions and security models of FHE we refer the reader to Appendix B.1.

Let FHE be a compact homomorphic public-key encryption scheme (supporting arity-1 functions), and let VFE
be an outsourceable verifiable functional encryption scheme for the function family constructed in the previous
section. Suppose also that for any λ ∈ N, any (sk, pk) ∈ [FHE.Gen(1λ)] and any (Msk,Mpk) ∈ [VFE.Gen(1λ)]
we have that: FHE.MsgSp(pk) = VFE.CphSp(Mpk) and VFE.Dec(·, ·) ∈ FHE.FunSp(pk). We construct an out-
sourceable DHE scheme as shown in Figure 6. We define DHE.MsgSp(Mpk) and DHE.FunSp(Mpk) as arbitrary
spaces that may parameterise our function family construction.

– DHE.Setup(1λ)
1. (Msk,Mpk)←$ VFE.Setup(1λ)
2. Return (Msk,Mpk)

– DHE.Gen(Mpk)
1. (sk, pk)←$ FHE.Gen(1λ)
2. Return (sk, (pk,Mpk))

– DHE.TKGen(f,Msk)
1. (TK, hf )←$ VFE.TKGen(f?,Msk)
2. Return (TK, hf )

– DHE.Enc(m, (pk,Mpk))
1. (c, aux)←$ VFE.Enc(m,Mpk)
2. chom ←$ FHE.Enc(c, pk)
3. Return (chom, aux)

– DHE.Eval(chom,TK, (pk,Mpk))
1. c←$ FHE.Eval(chom,VFE.Dec(·,TK), pk)
2. Return c

– DHE.Dec(c, aux, hf , sk,Mpk)
1. m← FHE.Dec(c, sk)
2. Parse (y, t)← m
3. If VFE.Ver((y, t),hf ,aux,Mpk)=F

Return ⊥
4. Return y

Fig. 6: A DHE scheme based on an FHE and a VFE scheme.

The correctness of the above scheme follows from the correctness of the underlying FHE and VFE schemes.
The compactness of the construction follows from the compactness of the underlying FHE scheme, whereas its
outsourceability follows from the outsourceability of the VFE. The security guarantees of the scheme are stated
next. The precise statement and proof of the theorem is presented in Appendices F, G, and H.

Theorem 2 (Informal). The DHE construction in Figure 6 provides input/output privacy, verifiability, and evalu-
ation security if the VFE scheme is IND-CCA and verifiable, and the FHE is IND-CPA.

7 Secure Verifiable Computation from DHE

Converting a DHE scheme to a VC scheme is straightforward. (For background on VC schemes we refer the
reader to Appendix B.2.) Suppose DHE is a delegatable homomorphic encryption scheme. For any λ ∈ N, and any
(Msk,Mpk) ∈ [DHE.Setup(1λ)] set VC.FunSp(1λ) := DHE.FunSp(Mpk) and VC.FunSp(1λ) := DHE.MsgSp(Mpk)
(we assume the spaces returned by DHE depend only on λ). Our construction is given in Figure 7.

– VC.Gen(f, 1λ)
1. (Msk,Mpk)←$ DHE.Setup(1λ)
2. (sk, pk)←$ DHE.Gen(Mpk)
3. (TK, hf )←$ DHE.TKGen(f,Msk)
4. Return ((hf , sk, pk), (TK, pk))

– VC.ProbGen(m, (hf , sk, pk))
1. (c, aux)←$ DHE.Enc(m, pk)
2. Return (c, aux)

– VC.Compute(c, (TK, pk))
1. cevl ←$ DHE.Eval(c,TK, pk)
2. Return cevl

– VC.Verify(cevl, aux, (hf , sk, pk))
1. Return DHE.Dec(cevl, aux, hf , sk)

Fig. 7: A VC scheme based on a DHE scheme.13



The correctness of the above scheme follows from the correctness of the underlying DHE scheme. Outsource-
ability of the VC scheme follows form the compactness and outsourceability of the DHE scheme. The security
properties of this scheme are given next. The precise statements and proofs may be found in Appendices I and J.

Theorem 3 (Informal). The VC scheme in Figure 7 is input/output private and fully verifiable if the underlying
DHE scheme is input/output private and non-adaptively verifiable.

It follows directly from this result that our DHE constructions implies the first VC scheme that preserves
verifiability even if the adversary can adaptively observe verification results. Furthermore, our scheme preserves
verifiability even if one removes the FHE layer. Hence, our results also answer an open question in [7]: it is possible
to obtain a VC scheme without the cost of an FHE scheme, if one is willing to sacrifice I/O security.

REMARK. As for DHEs, we note that the VC scheme above does not provide input/output privacy in the presence
of verification oracle. In scenarios where this level of confidentiality is required, a DHE scheme which provides
CPA security in the presence of a verification oracle is needed. We leave this as a direction for future work.

8 Concluding Remarks

INSTANTIATING OUR DHE CONSTRUCTION. Currently, no fully secure PE scheme for general predicates exists,
and hence our construction can still not be realised in its full generality. The recent scheme of De Caro et al. [6],
however, does allow for the instantiation of our construction for a restricted class of functions. Concretely, the con-
struction in [6] can be used to instantiate an FE scheme for the class Fk(λ) of all functions that can be implemented
as the parallel composition of a polynomial number of k-CNF or k-DNF predicates, for a (globally) fixed k. Then,
for any MAC tag-generation algorithm seen as a family of circuits MACλ indexed by the security parameter, the
class of functions F∗k,MAC(λ) supported by the resulting DHE scheme is defined as

F∗k,MAC(λ) := {f ∈ Fk(λ) : gf ∈ Fk(λ)} where gf (m, k) := MACλ((f(m), hf ), k).

Note that one cannot argue that the construction in [6] leads to an FE scheme for all predicates as the usual
Cook reduction from a CNF to a 3-CNF introduces new literals whose values depend on the input to the CNF. The
input, contrary to an NP-completeness reduction, is not known in the functional encryption setting. This means that
the values of the newly introduced variables cannot be set correctly. We, however, observe that if we fix the MAC
scheme and a function f (or a set of functions) a priori, one can set up the DHE scheme to support gf . In particular,
in the strongly secure VC setting, which is one of our primary use-cases, the delegated function f is fixed at the
set-up phase, and hence the generic construction can be instantiated using the De Caro et al. scheme.

EFFICIENCY CONSIDERATIONS. The complexities of the system setup and token-generation routines of our con-
struction are the same as those in the underlying FE scheme. User key-generation and decryption routines are as
efficient as those in the underlying FHE scheme, and hence relatively efficient (this is particularly important as
the receiver is resource-constrained). The encryption algorithm homomorphically encrypts functional ciphertexts.
Due to message expansion from the functional layer and bit-wise homomorphic encryption, we have a less efficient
encryption/problem generation routine than that in [7]. Evaluation procedure requires homomorphically evaluating
the decryption circuit of the functional encryption scheme. As the latter circuit involves operations such as comput-
ing pairings, and there are overheads associated with homomorphic evaluation, the outsourced computation in no
longer Θ(f) (as required from an ideal scheme). We stress that our scheme is a conceptual solution to a complex
problem, and the greater security guarantees and functionalities offered by our primitive, in our opinion, balance
these efficiency losses. Furthermore, as it is a generic construction, efficiency will benefit from improvements in
the underlying components.

OPEN PROBLEMS. The results in this paper solve some of the open problems in the area of Verifiable Computation.
On the other hand, they open a number of avenues for further research.
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An interesting direction is to uncover solutions that go beyond the non-adaptive and/or bounded token-extraction
level of security that our DHE scheme achieves. Finding secure solutions under stronger models where the adver-
sary maliciously generates keys, or auxiliary information used for verifiability is public, can also be considered.
Simulation-based notions of security, given the impossibility result of Boneh et al. [4], deserve further investigation.

In terms of functionality, the proposed DHE primitive is somewhat limiting in what it offers: it is intrinsically
1-hop, and works only for functions of arity one; its delegation capabilities are not hierarchical; and its encryption
routine is public and cannot offer function privacy for tokens. We leave such extensions of DHE for future work.
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A Chosen-Ciphertext Security for DHEs

The IND-CPA and verifiability security models both assume that the sender and the receiver are able to securely
share aux without leaking it to the TA or to evaluators. It is interesting to analyse what is offered by a DHE
scheme that is secure under both of them. To explore this, and also build confidence on the soundness of the models
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introduced above, we now show that a secure DHE essentially achieves an intermediate level of non-malleability, as
this is defined for public-key encryption schemes. Indeed, one can define an IND-CCA security level, in which the
decryption oracle models an honest receiver (knowing the correct secret aux and a set of valid function fingerprints),
that is satisfied by a DHE scheme that is both verifiable and ensures input/output privacy. This decryption oracle
essentially always decrypts with respect to the fixed aux value, and rejects all ciphertexts encrypting messages that
could have been trivially mauled from the challenge by a dishonest evaluator.

The IND-CCAx security of a DHE scheme for x ∈ {1, 2} requires the advantage of any PPT adversary A
defined by

Advind-ccax
DHE,A (λ) := 2 · Pr

[
IND-CCAxADHE(λ)⇒ T

]
− 1

to be negligible, where game IND-CCAx is shown in Figure 8.

proc. Initialize(λ):
b←$ {0, 1}
TKList← {}
(Msk,Mpk)←$ DHE.Setup(1λ)
(sk, pk)←$ DHE.Gen(Mpk)
Return (Mpk, pk)

proc. Token(f):
(TK, hf )←$ DHE.TKGen(f,Msk)
TKList← TKList ∪ {(f, hf )}
Return (TK, hf )

proc. Decrypt(c, hf ):
m← DHE.Dec(c, aux, hf , sk)
If m ∈ {f(mb) : (f, hf ) ∈ TKList} Return ⊥
Return m

proc. Left-Right(m0,m1):
(c, aux)←$ DHE.Enc(mb, pk)
Return c

proc. Finalize(b′):
Return (b = b′)

Fig. 8: Game defining the IND-CCAx security of a DHE scheme. An adversary is legitimate if: 1) it calls Left-Right exactly once on two
messages of equal length; 2) it never calls Decrypt on a hf such that (?, hf ) 6∈ TKList; and 3) if x = 1 it does not call Token after
calling Left-Right.

The following theorem establishes a relation between the models we have introduced. The intuition behind
this result can also be stated as follows. An attacker against the IND-CCA game can follow one of two strategies.
One strategy is to maul the challenge ciphertext to something different than that which is returned by the extracted
tokens. This is essentially an attack against the TA, which is covered by the verifiability game. Otherwise, it may
simply try to extract tokens that leak information about the challenge messages. But this attack is excluded by CPA
security. It is also interesting to consider what happens if the decryption oracle accepts decryption queries on aux
values other than the fixed one, e.g. if the receiver colludes with the dishonest evaluator. In the case of our concrete
construction, the scheme becomes insecure.

Theorem 4 (VRF-CCAx ∧ TA-IND-CPA ⇒ IND-CCAx). Let DHE be a delegatable homomorphic encryption
scheme. Let A be a IND-CCAx adversary against DHE placing at most QDecrypt

FE,A (λ) queries to its Decrypt
procedure. Then there exists a VRF-CCA2 adversary B, and a TA-IND-CPA adversary C, both against the scheme
DHE, such that for all λ ∈ N we have:

Advind-ccax
DHE,A (λ) ≤ QDecrypt

DHE,A (λ) ·Advvrf-ccax
DHE,B (λ) +Advta-ind-cpa

DHE,C (λ).

Proof. We prove this theorem via a sequence of games. Let Q := QDecrypt
DHE,A (λ). We define Gamei? , for i? =

0, . . . , Q, as follows. In Gamei? the j-th query to Decrypt is answered by ⊥ if j ≤ i?, when j > i? we run the
decryption procedure as in the IND-CCAx game. Note that Game0 is identical to the IND-CCAx game whereas in
GameQ all Decrypt queries are answered by ⊥. We first claim that any adversary A whose behaviour changes
visibly between Gamei? and Gamei?+1 can be converted into an attacker of verifiability B as shown in Figure 9.

We observe that B’s simulation of both games is perfect until A performs the (i? + 1)-st query. This query
will be rejected in Gamei?+1 whereas in Gamei? , adversary A will receive a correct decryption value. These two
answers are different if the honest decryption is not ⊥, and this query would constitute a valid forgery in the
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verifiability game, as it would decrypt correctly under the aux? and hf , but would produce something other than
f(mb) (according to the rules of IND-CCAx game). By the fundamental lemma of game hopping we have:

Pr[Gamei?
A
DHE(λ)⇒ T]− Pr[Gamei?+1

A
DHE(λ)⇒ T] ≤ Pr[VRF-CCAxBDHE(λ)⇒ T].

It follows that:

Pr[IND-CCAxADHE(λ)⇒ T]− Pr[GameQ
A
DHE(λ)⇒ T] ≤ QDecrypt

FE,A (λ) · Pr[VRF-CCAxBDHE(λ)⇒ T].

proc. Initialize(λ):
Get (Mpk, pk) from InitializeDHE(λ)
b← {0, 1}; j ← 0; X ← ε
Return (Mpk, pk)

proc. Token(f):
Query TokenDHE(f) to get (TK, hf )
Return (TK, hf )

proc. Decrypt(c, hf ):
j ← j + 1
If j ≤ i? Return ⊥
If j = i? + 1 Then
X ← (c, 1, hf )
Return ⊥

If j > i? + 1 Then
Query DecryptDHE(c, 1, hf ) to get m
Return m

proc. Left-Right(m0,m1):
Query EncryptDHE(mb) to get c
Return c

proc. Finalize(b′):
Call FinalizeDHE(X)

Fig. 9: Algorithm B against VRF-CCAx security of DHE, interpolating between games i? and i? + 1.

To complete the proof, we note that GameQ is a weaker version of the IND-CPA game for DHE where the
adversary does not receive the master secret key, and is instead allowed to query a token extraction oracle. We
therefore can define an attacker C, shown in Figure 10 such that:

Pr[GameQ
A
DHE(λ)⇒ T] = Pr[TA-IND-CPACDHE(λ)⇒ T].

The theorem follows from the two previous claims.

proc. Initialize(λ):
Get (Msk,Mpk, pk) from InitializeDHE(λ)
Return (Mpk, pk)

proc. Token(f):
(TK, hf )← DHE.TKGen(f,Msk)
Return (TK, hf )

proc. DecryptDHE(c, hf ):
Return ⊥

proc. Left-Right(m0,m1):
Query Left-RightDHE(m0,m1) to get c
Return c

proc. Finalize(b′):
Call FinalizeDHE(b

′)

Fig. 10: Algorithm C against TA-IND-CPA security of DHE.

�

B Background on FHE and VC, and a Formalisation of FE

B.1 Fully Homomorphic Public-Key Encryption

SYNTAX. A homomorphic public-key encryption (HE) scheme is specified by four PPT algorithms as follows.

1. FHE.Gen(1λ): This is the key-generation algorithm and is run by the receiver. On input a security parameter,
it outputs a receiver key-pair (sk, pk). We assume pk also contains a pair of compatible message and function
spaces FHE.MsgSp(pk) and FHE.FunSp(pk).
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2. FHE.Enc(m, pk): This is the encryption algorithm and is run by the sender. On input a message m, and a
receiver’s public key pk, it returns a ciphertext c.

3. FHE.Eval(c, f, pk): This is the evaluation algorithm, and is run by an evaluator. On input a ciphertext c, a circuit
f , and a receiver’s public key pk, it outputs a ciphertext cevl.

4. FHE.Dec(c, sk): This is the deterministic decryption algorithm and is run by the receiver. On input a ciphertext
c, a secret key sk, it returns either a message m or a special failure symbol ⊥.

CORRECTNESS. An HE scheme is correct if for any λ ∈ N, any (sk, pk) ∈ [FHE.Gen(1λ)], any m ∈ FHE.MsgSp(pk),
any c ∈ [FHE.Enc(m, pk)], any function f ∈ FHE.FunSp(pk), and any cevl ∈ [FHE.Eval(c, f, pk)], we have that
FHE.Dec(cevl, sk) = f(m). We do not necessarily require correctness over freshly created ciphertexts.

PLAINTEXT SECURITY. The IND-CPA security of an HE scheme requires the advantage of any PPT adversary A
defined by

Advind-cpa
FHE,A (λ) := 2 · Pr

[
IND-CPAAFHE(λ)⇒ T

]
− 1,

to be negligible, where game IND-CPA is shown in Figure 11.

proc. Initialize(λ):
b←$ {0, 1}
(sk, pk)←$ FHE.Gen(1λ)
Return pk

proc. Left-Right(m0,m1):
c←$ FHE.Enc(mb, pk)
Return c

proc. Finalize(b′):
Return (b = b′)

Fig. 11: Game defining the IND-CPA security of an HE scheme. An adversary is legitimate if it calls Left-Right exactly once on two
messages of equal length.

COMPACTNESS. A homomorphic encryption scheme is compact if there exists a fixed polynomial bound B(·)
so that for any key-pair (sk, pk) ∈ [FHE.Gen(1λ)], any function f ∈ FHE.FunSp(pk), and any message m ∈
FHE.MsgSp(pk), any ciphertext c ∈ [FHE.Enc(m, pk)], and any evaluated ciphertext cevl ∈ [FHE.Eval(c, f, pk)],
the size of cevl is at most B(λ+ |f(m)|) (independently of the size of f ).

FULLY HOMOMORPHIC ENCRYPTION. A homomorphic encryption scheme is called fully homomorphic if for any
λ ∈ N, the function space FHE.FunSp(pk) contains all functions on the message space FHE.MsgSp(pk), and the
latter contains at least two elements.

B.2 Verifiable Computation

In this section we present the notion of an outsourceable and verifiable computation scheme as in [7].

SYNTAX. A verifiable computation (VC) scheme for a pair of compatible spaces VC.MsgSp(1λ) and VC.FunSp(1λ)
is specified by four PPT algorithms as follows.

1. VC.Gen(f, 1λ): This is the key-generation algorithm and is run by the delegator. On input a function f and a
security parameter 1λ, this algorithm returns a key pair (sk, pk)

2. VC.ProbGen(m, sk): This is the problem generation algorithm and is run by the delegator. On input a message
m and a secret key sk, this returns a ciphertext c and some auxiliary information aux.

3. VC.Compute(c, pk): This is the evaluation algorithm and is run by the worker. On input a ciphertext c and a
public key pk, this algorithm outputs a new ciphertext cevl.

4. VC.Verify(cevl, aux, sk): This is the deterministic decryption algorithm and is run by the delegator. On input a
cevl this algorithm outputs a message m or a special failure symbol ⊥.
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CORRECTNESS. A VC scheme is correct if for any λ ∈ N, any f ∈ VC.FunSp(1λ), any (sk, pk) ∈ [VC.Gen(f, 1λ)],
any m ∈ VC.MsgSp(1λ), any (c, aux) ∈ [VC.ProbGen(m, sk)], and any cevl ∈ [VC.Compute(c, pk)], we have that
VC.Verify(cevl, aux, sk) = f(m).

OUTSOURCEABILITY. A VC scheme is outsourceable if:

1. For any c > 0 and sufficiently large λ, we have that for any f ∈ VC.FunSp(1λ), any (sk, pk) ∈ [VC.Gen(f, 1λ)],
any m ∈ VC.MsgSp(1λ), the time-complexity of VC.ProbGen(m, sk) is at most c times the time-complexity of
f(m); and

2. There is a fixed polynomial B(·) such that for any f ∈ VC.FunSp(1λ), any (sk, pk) ∈ [VC.Gen(f, 1λ)], any
m ∈ VC.MsgSp(1λ), and any cevl ∈ [VC.Compute(c, pk)], the sizes of (m, sk) and (cevl, aux, sk) are at most
B(λ+ |f(m)|) (independently of the size of f ).

REMARK. The definition of outsourceability adapted in [7] requires the total time-complexity of VC.Verify(cevl, aux, sk)
to be also o(T ) where T is the time-complexity of f(m). The proposed scheme in [7] as well as our scheme achieve
the slightly different notion of outsourceability defined above.

If we denote a bound on the time-complexity of VC.Verify by B′(·), our outsourceability notion implies that
in [7] as long as the time-complexity of f is at least c · B′(B(λ + |f(m)|)) for any c > 0 and sufficiently large λ.
Note also the converse implication for general f does not hold as the time-complexity of VC.Verify could be o(T )
without having to be bounded by a fixed polynomial B.

INPUT/OUTPUT SECURITY. The IND-CPA security of a VC scheme requires that for any f ∈ FunSp(1λ), the
advantage of any PPT adversary A defined by

Advind-cpa
f,VC,A(λ) := 2 · Pr

[
IND-CPAAf,VC(λ)⇒ T

]
− 1,

to be negligible, where game IND-CPA is shown in Figure 12.

proc. Initialize(f, λ):
b←$ {0, 1}
(sk, pk)←$ VC.Gen(f, 1λ)
Return pk

proc. PubProbGen(m):
(c, aux)←$ VC.ProbGen(m, sk)
Return c

proc. Left-Right(m0,m1):
c←$ VC.ProbGen(mb, sk)
Return c

proc. Finalize(b′):
Return (b = b′)

Fig. 12: Game defining the IND-CPA security of a VC scheme. An adversary is legitimate if it calls Left-Right exactly once and on two
messages of equal length.

VERIFIABILITY. The VRF-CCAx security of a VC scheme for x ∈ {0, 1} requires that for any f ∈ FunSp(1λ), the
advantage of any PPT adversary A defined by

Advvrf-ccax
f,VC,A (λ) := 2 · Pr

[
VRF-CCAxAf,VC(λ)⇒ T

]
− 1,

to be negligible, where game VRF-CCAx is shown in Figure 13.

B.3 Functional Encryption

SYNTAX. A functional encryption (FE) scheme is specified by four PPT algorithms as follows.

1. FE.Setup(1λ): This is the setup algorithm. On input a security parameter 1λ, it outputs a master public key
Mpk and a master secret key Msk. We assume Mpk also contains a pair of compatible message and function
spaces FE.MsgSp(Mpk) and FE.FunSp(Mpk).
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proc. Initialize(f, λ):
List← {}; i← 0

(sk, pk)←$ VC.Gen(f, 1λ)
Return pk

proc. PubProbGen(m):
(c, aux)←$ VC.ProbGen(m, sk)
i← i+ 1
List← List ∪ {(i,m, aux)}
Return c

proc. PubVerify(c, i):
Let (m, aux) be s.t.

(i,m, aux) ∈ List
m← VC.Verify(c, aux, sk)
Return m

proc. Finalize(c?, i):
If (i, ?, ?) 6∈ List Return F
Let (m, aux) be s.t. (i,m, aux)∈List
m? ← VC.Verify(c?, aux, sk)
If m? =⊥ Return F
Return (m? 6= f(m))

Fig. 13: Game defining the VRF-CCAx security of a VC scheme. An adversary is legitimate if: 1) it never calls PubVerify with an i such
that (i, ?, ?) 6∈ List; and 2) it does not call PubVerify when x = 0.

2. FE.TKGen(f,Msk): This is the token generation algorithm. On input a function f , and a master secret key
Msk, it outputs a token TK for f .

3. FE.Enc(m,Mpk): This is the encryption algorithm. On input a message m, it outputs a ciphertext c.
4. FE.Dec(c,TK): This is the deterministic decryption algorithm. On input a ciphertext c, and a token TK, it

outputs a message m or a special failure symbol ⊥.

CORRECTNESS. An FE scheme is correct if for any λ ∈ N, any (Msk,Mpk) ∈ [FE.Setup(1λ)], any m ∈
FE.MsgSp(Mpk), any c ∈ [FE.Enc(m,Mpk)], any f ∈ FE.FunSp(Mpk), and any TK ∈ [FE.TKGen(f,Msk)],
we have that FE.Dec(c,TK) = f(m).

OUTSOURCEABILITY. An FE scheme is outsourceable if for every c > 0 and sufficiently large λ we have that
for any (Msk,Mpk) ∈ [FE.Setup(1λ)], any message m ∈ FE.MsgSp(Mpk), and any f ∈ FE.FunSp(Mpk), the
time-complexity of FE.Enc(m,Mpk) is at most c times the time-complexity of f(m). Put differently, for every f ,
the time-complexity of FE.Enc(·, ·) is o(|f |), where |f | denotes the number of gates that f contains (the circuit size
of f ).

REMARK. Given a function space FunSp containing polynomially many functions, one can trivially construct a
functional encryption scheme supporting FunSp from a standard public-key encryption scheme as follows. A fresh
secret/public key-pair is assigned to each function. To encrypt m one encrypts f(m) for all f ∈ FunSp under f ’s
public key. Decryption is performed using f ’s secret key. Note, however, that this construction (which precomputes
f values locally during encryption) does not satisfy our outsourceability criterion.

FULLY FUNCTIONAL ENCRYPTION. A functional encryption scheme FE is called fully functional if, for any λ ∈ N,
the function space FE.FunSp(Mpk) contains all functions on the message space FE.MsgSp(Mpk), and the latter
has at least two elements.

PLAINTEXT SECURITY. The IND-CCAx security of an FE scheme for x ∈ {0, 1, 2} requires the advantage of any
PPT adversary A defined by

Advind-ccax
FE,A (λ) := 2 · Pr

[
IND-CCAxAFE(λ)⇒ T

]
− 1,

to be negligible, where game IND-CCAx is shown in Figure 14.
A fully functional encryption scheme can be constructed from a predicate-only PE scheme that works for all

predicates in the following way. The global set-up algorithm is the same as that of the PE scheme. Token extraction,
when queried on a function mappingm-bit to n-bit strings, first defines n predicates, where predicate i corresponds
to the i-th output bit of f . It then uses the PE token-generation algorithm to obtain tokens for all n predicates, and
returns them. Decryption simply recovers the result of computing f bit by bit by PE-decrypting the ciphertext with
all the secret keys provided in the token. If the PE scheme is adaptively attribute hiding under CCA attacks, the
CCA security of the resulting FE scheme would also follow from a simple reduction.

We now formalise this folklore construction of a functional encryption scheme from a restricted FE scheme for
0/1-functions. Predicate-only encryption schemes can be seen as an example of such a restricted FE scheme.
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proc. Initialize(λ):
b←$ {0, 1}; List← {}; TKList← {}
(Msk,Mpk)←$ FE.Setup(1λ)
Return Mpk

proc. Token(f):
TK←$ FE.TKGen(f,Msk)
TKList← TKList ∪ {f}
Return TK

proc. Decrypt(c, f):
TK←$ FE.TKGen(f,Msk)
m← FE.Dec(c,TK)
Return m

proc. Left-Right(m0,m1):
c←$ FE.Enc(mb,Mpk)
List← List ∪ {c}
Return c

proc. Finalize(b′):
Return (b = b′)

Fig. 14: Game defining the IND-CCAx security of an FE scheme. An adversary is legitimate if: 1) it calls Left-Right exactly once on two
messages of equal length; 2) it never calls Decrypt with a c ∈ List; 3) It never calls Token with an f such that f(m0) 6= f(m1); 4) if
x = 0 it does not call Decrypt; and 5) if x = 1 it does not call Decrypt after calling Left-Right.

– FE.Setup(1λ)
1. (Msk,Mpk)←$ PE.Setup(1λ)
2. Return (Msk,Mpk)

– FE.TKGen(f,Msk)
1. For i = 1 . . . , n

Define fi := i-th bit off
2. TKi ← PE.TKGen(fi,Msk)
3. Return (TK1, . . . ,TKn)

– FE.Enc(m,Mpk)
1. c←$ PE.Enc(m,Mpk)
2. Return c

– FE.Dec(c, (TK1, . . . ,TKn))
1. For i = 1 . . . , n

mi ← PE.Dec(c,TKi)
2. Return (m1, . . . ,mn)

Fig. 15: An FE scheme based on a PE scheme.

It is easy to check that the FE scheme in Figure 15 is correct if the underlying PE scheme is correct. The security
of the construction is also straightforward to establish.

Theorem 5. Let A be a PPT adversary against the IND-CCAx security of the FE scheme in Figure 15. Then there
exists a PPT adversary B against the IND-CCAx security of the underlying PE scheme such that for all λ ∈ N we
have:

Advind-ccax
FE,A (λ) = Advind-ccax

PE,B (λ).

Proof. Let A be an algorithm as in the statement of the theorem. We construct the algorithm B against the
IND-CCAx security of PE as shown in Figure 16.

proc. Initialize(λ):
Get Mpk from InitializePE(λ)
Return Mpk

proc. Token(f):
For i = 1 . . . , n

Define fi := i-th bit of f
Query Token(fi) to get TKi

Return (TK1, . . . ,TKn)

proc. Left-Right(m0,m1):
Query Left-RightPE(m0,m1) to get c
Return c

proc. Decrypt(c, f):
For i = 1 . . . , n

Define fi := i-th bit of f
Query DecryptPE(c, fi) to get mi

Return (m1, . . . ,mn)

proc. Finalize(b′):
Call FinalizePE(b

′)

Fig. 16: Algorithm B against the IND-CCAx security of PE.

We note that B wins its game exactly when A wins its game. This follows from two observations as follows.
First, if A is legitimate, then so is B: if A always queries its Token oracle with functions f such that f(m0) =
f(m1), then it is necessarily the case that all the bits are also equal, i.e. fi(m0) = fi(m1).

Second, from the description of B it is clear that:

Pr
[
IND-CCAxAFE(λ)⇒ T|b = 1

]
= Pr

[
IND-CCAxBPE(λ)⇒ T|b = 1

]
,
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and
Pr
[
IND-CCAxAFE(λ)⇒ T|b = 0

]
= Pr

[
IND-CCAxBPE(λ)⇒ T|b = 0

]
.

The theorem follows. �

C MACs with Chameleon Keys

We now introduce a new type of message authentication code (MAC), reminiscent of chameleon hashing [12].

SYNTAX. An n-key-chameleon MAC scheme is specified by three PPT algorithms as follows.

1. MAC.Setup(1λ): This is the setup algorithm. On input the security parameter, this algorithm return a pair
(td,mk) consisting of a trapdoor td and public parameters mk. We assume mk also contains a message space
MAC.MsgSp(mk) and a key space MAC.KeySp(mk).

2. MAC.Tag(m, k): This is the deterministic tagging algorithm. On input the global parameters mk, a message m,
and a secret key k, this algorithm returns a tag t.

3. MAC.Col(td,m1, . . . ,mn, k): This is the collision-finding algorithm. On input a trapdoor td, n messages, and
a secret key k this algorithm returns a new secret key k′.

CORRECTNESS. An n-key-chameleon MAC scheme is correct if for any λ ∈ N, any (td,mk) ∈ [MAC.Setup(1λ)],
any mi ∈ MAC.MsgSp(mk) for i = 1, . . . , n, any k ∈ MAC.KeySp(mk), and any k′ ∈ [MAC.Col(td,m1, . . . ,mn, k)]
we have that MAC.Tag(mi, k,mk) = MAC.Tag(mi, k

′,mk) for all i = 1, . . . , n.

UNFORGEABILITY. The UF-CMA security of an n-key-chameleon MAC requires the advantage of any PPT adver-
sary A defined by

Advuf-cma
MAC,A(λ) := Pr

[
UF-CMAAMAC(λ)⇒ T

]
,

to be negligible, where game UF-CMA is shown in Figure 17. Note that this is essentially a slightly stronger version
of a non-adaptive chosen message attack, as k′ allows the adversary to compute a tag on the chosen messages.

proc. Initialize(λ):
(td,mk)←$ MAC.Setup(1λ)
k←$ MAC.KeySp(mk)
Return mk

proc. Collision(m1, . . . ,mn):
k′ ← MAC.Col(td,m1, . . . ,mn, k)
Return k′

proc. Finalize(m, t):
If m ∈ {m1, . . . ,mn} Return F
Return (MAC.Tag(m, k,mk) = t)

Fig. 17: Game defining the UF-CMA security of an n-key chameleon MAC. An adversary is legitimate if it calls Collision exactly once.

REMARK. Note that adversary gets to see a key that collides with the challenge key on all tags that it sees, but still
this should not help her forge a new tag.

BUILDING AN n-KEY CHAMELEON MAC. One can build an n-key-chameleon MAC from the n-time information-
theoretically secure MAC with tagging algorithm MAC.Tag(m, (an, . . . , a0),mk) :=

∑n
i=0 aim

i with ai,m ∈ Zp
for a prime p. There is no need for global parameters (except for the appropriate message and key space definitions)
and no need for a trapdoor. Key generation returns a random n + 1 tuple (an, . . . , a0). To find a colliding key
k′ = (a′n, . . . , a

′
0) given n messages, as required by the correctness condition, one solves the system of n equations

in n + 1 unknowns. Since this system is under-defined, the new computed key can be made to look completely
random. Hence, providing this key to the adversary leaks no information. A forgery as required by the game above
thus translates to an n-time forgery, which is infeasible in the information-theoretical sense.
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D Indistinguishability of the VFE Construction

Theorem 6 (Indistinguishability). Let A be a PPT adversary against the IND-CCAx security of the VFE scheme
in Figure 5. Then there exists a PPT adversary B against IND-CCAx security of the FE scheme that such that for
all λ ∈ N we have:

Advind-ccax
VFE,A (λ) = Advind-ccax

FE,B (λ).

Proof. LetA be an algorithm as in the statement of the theorem. We construct an algorithmB against the IND-CCAx
security of the underlying functional encryption scheme as shown in Figure 18.

proc. Initialize(λ):
Get Mpk from InitializeFE(λ)

(td,mk)←$ MAC.Setup(1λ)
hk←$ CRH.Gen(1λ)
Return (Mpk,mk, hk)

proc. Token(f):
hf ← CRH.H(〈f〉, hk)
f?(x1, x2) := (f(x1),MAC.Tag((f(x1), hf ), x2,Mpk))
Query TokenFE(f

?) to get TK
Return (TK, hf )

proc. Decrypt(c, f):
hf ← CRH.H(〈f〉, hk)
f?(x1, x2) := (f(x1),MAC.Tag((f(x1), hf ), x2,Mpk))
Query DecryptFE(c, f

?) to get m
Parse (y, t)← m
Return (y, t)

proc. Left-Right(m0,m1):
k←$ MAC.KeySp(mk)
Query Left-RightFE((m0, k), (m1, k)) to get c
Return (c, k)

proc. Finalize(b′):
Call FinalizeFE(b

′)

Fig. 18: Algorithm B against the IND-CCAx security of FE.

From the description of B it is clear that, if A is a legitimate adversary then so is B, and furthermore:

Pr
[
IND-CCAxAVFE(λ)⇒ T|b = 1

]
= Pr

[
IND-CCAxBFE(λ)⇒ T|b = 1

]
,

and
Pr
[
IND-CCAxAVFE(λ)⇒ T|b = 0

]
= Pr

[
IND-CCAxBFE(λ)⇒ T|b = 0

]
.

The theorem follows. �

E Verifiability of the VFE Construction

Theorem 7 (Verifiability). Let A be a PPT adversary against the VRF-CCA1 security of the VFE scheme in
Figure 5 placing at most QEncrypt

VFE,A (λ) queries to its Encrypt procedure, and at most n (non-adaptive) queries to
its Token procedure. Then there exists a PPT adversary B against the IND-CCA1 security of the FE scheme and
a PPT adversary C against the UF-CMA security of the n-key-chameleon MAC such that for all λ ∈ N we have:

Advvrf-cca1
VFE,A (λ) ≤ QEncrypt

VFE,A (λ) · (Advind-cca1
FE,B (λ) +Advuf-cma

MAC,C(λ)).

Proof. Recall that we are assuming a non-adaptive token attack where the adversary must make all his token
extraction queries before calling encryption.

The proof of this theorem proceeds through a sequence of games as follows. We let Game′0 to be identical to
the VRF-CCA1 security game for VFE. We modify Game′0 to Game0 by introducing a simple change. We select a
random encryption query i? and allow the adversary to win only when attacking the associated ciphertext. We note
that i? is completely hidden from A’s view in Game′0. Furthermore, observing that the probability that i = i? is
1/QEncrypt

VFE,A (λ), accounts for the multiplicative factor in the Theorem statement.

For Game1 we introduce an additional change in the encryption oracle. For query i?, a key k′ is generated through
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proc. Initialize(λ):
i? ←$ {1, . . . , Q}
Other steps as in VRF-CCA1

proc. Token(f):
As in VRF-CCA1

proc. Decrypt(c, f):
As in VRF-CCA1

proc. Encrypt(m):
k←$ MAC.KeySp(mk)
If i 6= i? Then
c←$ FE.Enc((m, k),Mpk)

If i = i? Then
Let {f1, . . . , fn} = TKList
k′ ← MAC.Col(td, f1(m), . . . , fn(m), k)
c←$ FE.Enc((m, k′),Mpk)

i← i+ 1; List← List ∪ {(i,m, k)}
Return c

proc. Finalize((y, t), i, f):
If i 6= i? Return F
Other steps as in VRF-CCA1

Fig. 19: Game1 for VFE verifiability proof.

the collision algorithm of MAC and is included in the ciphertext. However, we still keep the original key k in List
and hence also use this original key in Finalize. See Figure 19, where Q := QDecrypt

VFE,A (λ).
We show that the advantages of any PPT adversary A in Game0 and Game1 are negligibly different. To this

end, we construct an algorithm B which interpolates between the two games and attacks the IND-CCA1 security of
the underlying FE scheme. This algorithm is shown in Figure 20.

proc. Initialize(λ):
Get Mpk from InitializeFE(λ)
i? ←$ {1, . . . , Q}
List← {}; TKList← {}; i← 0

(td,mk)←$ MAC.Setup(1λ)
hk←$ CRH.KeySp(1λ)
Return (Mpk,mk, hk)

proc. Token(f):
hf ← CRH.H(〈f〉, hk)
f?(x1, x2) := (f(x1),MAC.Tag((f(x1), hf ), x2,Mpk))
Query TokenFE(f

?) to get TK
TKList← TKList ∪ {(f, hf )}
Return (TK, hf )

proc. Decrypt(c, f):
hf ← CRH.H(〈f〉, hk)
f?(x1, x2) := (f(x1),MAC.Tag((f(x1), hf ), x2,Mpk))
Query DecryptFE(c, f

?) to get m
Parse (y, t)← m
Return (y, t)

proc. Encrypt(m):
i← i+ 1
k←$ MAC.KeySp(mk)
If i 6= i? Then
c←$ FE.Enc((m, k),Mpk)

If i = i? Then
Let {f1, . . . , fn} = TKList
k′ ← MAC.Col(td, f1(m), . . . , fn(m), k)
Query Left-RightFE((m, k), (m, k

′)) to get c
List← List ∪ {(i,m, k)}
Return c

proc. Finalize((y, t), i, f):
If i 6= i? Call FinalizeFE(1)
If (i, ?, ?) 6∈ List Call FinalizeFE(1)
Let (m, k) be s.t. (i,m, k) ∈ List
If (f, hf ) 6∈ TKList Call FinalizeFE(1)
If MAC.Ver((y, hf ), t, k,mk) = F Call FinalizeFE(1)
If (f(m) = y) Call FinalizeFE(1)
Call FinalizeFE(0)

Fig. 20: Algorithm B against IND-CCAx security of FE.

Note that adversary B will never query Token with an f? such that f?(m, k) 6= f?(m, k′). To check this note
the first component of the output will be equal to f(m) and that k′ is constructed in a chameleon way with respect
to k, resulting in the same tag.

Now, if the bit chosen in the IND-CCA1 game is 0, algorithms B runs A in an environment identical to Game0,
and furthermore it will return 0 iff the adversary wins this game. We can therefore write:

Pr
[
IND-CCA1BFE(λ)⇒ T|b = 0

]
= Pr

[
Game0

A
VFE(λ)⇒ T

]
.
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Furthermore, if the bit chosen in the IND-CCA1 game is 1, algorithm B runs A in an environment identical to
Game1 as k′ is used in both cases. Furthermore, it return 1 iff the adversary loses this game. We therefore have:

Pr
[
IND-CCA1BFE(λ)⇒ T|b = 1

]
= 1− Pr

[
Game1

A
VFE(λ)⇒ T

]
.

From definition of advantage, it follows that

Advind-cca1
FE,B (λ) = Pr

[
Game0

A
VFE(λ)⇒ T

]
− Pr

[
Game1

A
VFE(λ)⇒ T

]
Based on adversary A in Game1, we construct an adversary C against the UF-CMA security of MAC as shown

in Figure 21.

proc. Initialize(λ):
Get mk from InitializeMAC(λ)
List← {}; TKList← {}; i← 0
i? ←$ {1, . . . , Q}
(Msk,Mpk)←$ FE.Setup(1λ)
hk←$ CRH.KeySp(1λ)
Return (Mpk,mk, hk)

proc. Token(f):
hf ← CRH.H(〈f〉, hk)
f?(x1, x2) := (f(x1),MAC.Tag((f(x1), hf ), x2,Mpk))
TK←$ VFE.TKGen(f?,Msk)
TKList← TKList ∪ {(f, hf )}
Return (TK, hf )

proc. Encrypt(m):
i← i+ 1
k←$ MAC.KeySp(mk)
If i 6= i? Then
c←$ FE.Enc((m, k),Mpk)
List← List ∪ {(i,m, k)}

If i = i? Then
Let {f1, . . . , fn} = TKList
Query CollisionMAC(f1(m), . . . , fn(m)) to get k′

c←$ FE.Enc((m, k′),Mpk)
List← List ∪ {(i,m, k′)}

Return c

proc. Decrypt(c, f):
hf ← CRH.H(〈f〉, hk)
f?(x1, x2) := (f(x1),MAC.Tag((f(x1), hf ), x2,Mpk))
TK←$ VFE.TKGen(f?,Msk)
m← VFE.Dec(c,TK)
Parse (y, t)← m Return (y, t)

proc. Finalize((y, t), i, f):
If i 6= i? Call FinalizeMAC(ε)
If (i, ?, ?) 6∈ List Call FinalizeMAC(ε)
Let m be s.t. (i,m, k) ∈ List
If (f, hf ) 6∈ TKList Call FinalizeMAC(ε)
If (f(m) = y) Call FinalizeMAC(ε)
Call FinalizeMAC((y, hf ), t)

Fig. 21: Algorithm C against UF-CMA security of n-key chameleon MAC.

Adversary C runs A in the environment of Game1. Furthermore, if A is successful then so is C. This follows
directly from the construction of our VFE scheme. Therefore:

Pr
[
UF-CMACMAC(λ)⇒ T

]
= Pr

[
Game1

A
VFE(λ)⇒ T

]
.

The theorem now follows. �

F Input/Output Privacy of the DHE Construction

Theorem 8 (Input/output privacy). Let A be a PPT adversary against the TA-IND-CPA security of the DHE
scheme in Figure 6. Then there exists a PPT adversary B against the IND-CPA security of the HE scheme such that
for all λ ∈ N we have:

Advta-ind-cpa
DHE,A (λ) = Advind-cpa

FHE,B (λ).
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proc. Initialize(λ):
Get pk from InitializeFHE(λ)

(Msk,Mpk)←$ VFE.Setup(1λ)
Return (Msk,Mpk, pk)

proc. Left-Right(m0,m1):
(c0, aux0)←$ VFE.Enc(m0,Mpk)
(c1, aux1)←$ VFE.Enc(m1,Mpk)
Query Left-RightFHE(c0, c1) to get chom
Return chom

proc. Finalize(b′):
Call FinalizeFHE(b

′)

Fig. 22: Algorithm B against the IND-CPA security of FHE.

Proof. LetA be an algorithm as in the statement of the theorem. We construct algorithm B that attacks the semantic
security of the underlying FHE scheme as shown in Figure 22.

From the description of B it is clear that:

Pr
[
TA-IND-CPAADHE(λ)⇒ T|b = 1

]
= Pr

[
IND-CPABFHE(λ)⇒ T|b = 1

]
,

and
Pr
[
TA-IND-CPAADHE(λ)⇒ T|b = 0

]
= Pr

[
IND-CPABFHE(λ)⇒ T|b = 0

]
.

The theorem follows. �

G Verifiability of the DHE Construction

Theorem 9 (Verifiability). Let A be a PPT adversary against the VRF-CCAx security of the DHE scheme in
Figure 6, placing at most QDecrypt

DHE,A (λ) queries to its Decrypt procedure. Then there exists a PPT adversary B
against the VRF-CCAx security of the VFE scheme such that for all λ ∈ N we have:

Advvrf-ccax
DHE,A (λ) ≤ (QDecrypt

DHE,A (λ) + 1) ·Advvrf-ccax
VFE,B (λ).

Proof. We prove this theorem via a sequence of games. Let Q := QDecrypt
DHE,A (λ). We define Gamei? , for i? =

0, . . . , Q, as follows. Game0 is identical to the VRF-CCAx game. In Gamei? , we change the behaviour of the
decryption algorithm as follows:

– When j > i?, the j-th query to Decrypt is answered as in the VRF-CCAx game.
– For j ≤ i?, and on input (c, i, hf ):
• We first strip the homomorphic layer in the queried ciphertext to obtain a value (y′, t′);
• We then recover the ciphertext c′ that we have provided to the adversary in encryption query i;
• We also recover the token TK corresponding to the provided hf .
• Then we recompute the correct value of (y, t) by decrypting c′ using TK;
• If (y, t) 6= (y′, t′) we simply reject the query.
• Otherwise we return y.

We note that this alternative decryption procedure will only be inconsistent if (y′, t′) differs from the honestly com-
puted (u, t), but still accepted by the verification algorithm of the VFE. Given the characteristics of the verification
algorithm (uniqueness of tags), this can only occur if y′ 6= y, which immediately leads to an attack on verifiability.
More formally, we claim that any adversary A whose behaviour changes visibly between Gamei? and Gamei?+1

can be converted into an attacker of VFE verifiability B as shown in Figure 23.
We observe that B’s simulation of both games is perfect until A performs the (i? + 1)-st query: this query

might be rejected in Gamei?+1 whereas in Gamei? adversary A could receive a decryption value. Furthermore, if
this event occurs B returns a valid forgery in the verifiability game. Hence, by the fundamental lemma of game
hopping we have:

Pr[Gamei?
A
DHE(λ)⇒ T]− Pr[Gamei?+1

A
DHE(λ)⇒ T] ≤ Pr[VRF-CCAxBVFE(λ)⇒ T].
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proc. Initialize(λ):
Get Mpk from InitializeVFE(λ)

(sk, pk)←$ FHE.Gen(1λ)
TKList′ ← {}; List′ ← {}
i, j ← 0; X ← ε
Return (Mpk, pk)

proc. Token(f):
Query TokenVFE(f) to get (TK, hf )
TKList′ ← TKList′ ∪ {(f, hf ,TK)}
Return (TK, hf )

proc. Decrypt(c′, i, hf ):
j ← j + 1
If (i, ?, ?) 6∈ List′ Return ⊥
If (f, hf ,TK) 6∈ TKList′ Return ⊥
Let (m, c) be s.t. (i,m, c) ∈ List′

m← FHE.Dec(c′, sk)
Parse (y′, t′)← m
(y, t)← VFE.Dec(c,TK)
If (y, t) 6= (y′, t′)

If j ≤ i? Return ⊥
If j = i? + 1 Then
X ← ((y′, t′), i, f)
Return ⊥

If j > i? + 1 Return ⊥
Return y

proc. Encrypt(m):
Query EncryptVFE(m) to get (c)
chom ←$ FHE.Enc(c, pk)
i← i+ 1
List′ ← List′ ∪ {(i,m, c)}
Return chom

proc. Finalize(c?, i, hf ):
Call FinalizeVFE(X)

Fig. 23: Algorithm B against the VRF-CCAx security of VFE, interpolating between games i? and i? + 1.

It follows that:

Pr[VRF-CCAxADHE(λ)⇒ T]− Pr[GameQ
A
DHE(λ)⇒ T] ≤ QDecrypt

DHE,A (λ) · Pr[VRF-CCAxBVFE(λ)⇒ T].

To complete the proof, we note that any attacker against GameQ can immediately be converted into an attacker
on the verifiability of VFE. We define this attacker C as shown in Figure 24.

The theorem follows from the observation that C’s simulation is perfect and whenever A wins GameQ, C
succeeds in attacking verifiability:

Pr[GameQ
A
DHE(λ)⇒ T] = Pr[VRF-CCAxCVFE(λ)⇒ T].

proc. Initialize(λ):
Get Mpk from InitializeVFE(λ)

(sk, pk)←$ FHE.Gen(1λ)
TKList′ ← {}; List′ ← {}
i← 0; X ← ε
Return (Mpk, pk)

proc. Token(f):
Query TokenVFE(f) to get (TK, hf )
TKList′ ← TKList′ ∪ {(f, hf ,TK)}
Return (TK, hf )

proc. Decrypt(c′, i, hf ):
If (i, ?, ?) 6∈ List′ Return ⊥
If (f, hf ,TK) 6∈ TKList′ Return ⊥
Let (m, c) be s.t. (i,m, c) ∈ List′

m← FHE.Dec(c′, sk)
Parse (y′, t′)← m
(y, t)← VFE.Dec(c,TK)
If (y, t) 6= (y′, t′) Return ⊥
Return y

proc. Encrypt(m):
Query EncryptVFE(m) to get (c)
chom ←$ FHE.Enc(c, pk)
i← i+ 1
List′ ← List′ ∪ {(i,m, c)}
Return chom

proc. Finalize(c′, i, hf ):
If (i, ?, ?) 6∈ List′ Then

Call FinalizeVFE(ε)
If (f, hf ,TK) 6∈ TKList′ Then

Call FinalizeVFE(ε)
m← FHE.Dec(c′, sk)
Parse (y′, t′)← m
Call FinalizeVFE((y

′, t′), i, f)

Fig. 24: Algorithm C against the VRF-CCAx security of VFE.

�

H Evaluation Security of the DHE Construction

Theorem 10 (Evaluation security). Let A be a PPT adversary against the IND-EVALx security of the DHE
scheme in Figure 6. Then there exists a PPT adversary B against IND-CCAx security of the FE scheme that, for all
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λ ∈ N we have:
Advind-evalx

DHE,A (λ) = Advind-ccax
VFE,B (λ).

Proof. LetA be an algorithm as in the statement of the theorem. We construct an algorithmB against the IND-CCAx
security of VFE as shown in Figure 25.

proc. Initialize(λ):
Get Mpk from InitializeVFE(λ)

(sk, pk)←$ FHE.Gen(1λ)
Return (Mpk, sk, pk)

proc. Token(f):
Query TokenVFE(f) to get (TK, hf )
Return (TK, hf )

proc. Evaluate(c, f):
c′ ← FHE.Dec(c, sk)
Query DecryptVFE(c

′, f) to get m
c′′ ←$ FHE.Enc(m, pk)
Return c′′

proc. Left-Right(m0,m1):
Query Left-RightVFE(m0,m1) to get (c′, aux)
c←$ FHE.Enc(c′, pk)
Return (c, aux)

proc. Finalize(b′):
Call FinalizeVFE(b

′)

Fig. 25: Algorithm B against the IND-CCAx security of VFE.

From the description of B it is clear that if A is a legitimate adversary then so is B, and furthermore if A does
not extract a token for an illegal function f such that f(m0) 6= f(m1), then B also does not. This means that

Pr
[
IND-EVALxADHE(λ)⇒ T|b = 1

]
= Pr

[
IND-CCAxBVFE(λ)⇒ T|b = 1

]
,

and
Pr
[
IND-EVALxADHE(λ)⇒ T|b = 0

]
= Pr

[
IND-CCAxBVFE(λ)⇒ T|b = 0

]
.

This proves the theorem. �

I Input/Output Privacy of the VC Construction

Theorem 11 (Input/output privacy). Let A be a PPT adversary against the IND-CPA security of the VC scheme
in Figure 7. Then there exists a PPT adversary B against the TA-IND-CPA security of the underlying DHE scheme
such that for any f ∈ FunSp(1λ) and for all λ ∈ N we have:

Advind-cpa
f,VC,A(λ) = Advta-ind-cpa

DHE,B (λ).

Proof. Let A be an algorithm as in the statement of the theorem. We construct the algorithm B against the
TA-IND-CPA security of DHE as shown in Figure 26.

proc. Initialize(f, λ):
Get (Msk,Mpk, pk) from InitializeDHE(λ)
(TK, hf )←$ DHE.TKGen(f,Msk)
Return (TK, pk)

proc. PubProbGen(m):
(c, aux)←$ DHE.Enc(m, pk)
Return c

proc. Left-Right(m0,m1):
Query Left-RightDHE(m0,m1) to get c
Return c

proc. Finalize(b′):
Call FinalizeDHE(b

′)

Fig. 26: Algorithm B against the TA-IND-CPA security of DHE.

From the description of B it is clear that:

Pr
[
IND-CPAAf,VC(λ)⇒ T|b = 1

]
= Pr

[
TA-IND-CPABDHE(λ)⇒ T|b = 1

]
,
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and
Pr
[
IND-CPAAf,VC(λ)⇒ T|b = 0

]
= Pr

[
TA-IND-CPABDHE(λ)⇒ T|b = 0

]
.

The theorem follows. �

J Verifiability of the VC Construction

Theorem 12 (Verifiability). Let A be a PPT adversary against the VRF-CCA1 security of the VC scheme in
Figure 7. Then there exists a PPT adversary B against the VRF-CCA1 security of the underlying DHE scheme
which makes only a single (non-adaptive) Token query, and such that for any f ∈ FunSp(1λ) and for all λ ∈ N
we have:

Advvrf-cca1
f,VC,A (λ) = Advvrf-cca1

DHE,B (λ).

Proof. LetA be an algorithm as in the statement of the theorem. We construct the algorithmB attacking VRF-CCA1
security of DHE as shown in Figure 27.

proc. Initialize(f, λ):
Get (Mpk, pk) from InitializeDHE(λ)
Query TokenDHE(f) to get (TK, hf )
Return (TK, pk)

proc. PubProbGen(m):
Query EncryptDHE(m) to get c
Return c

proc. PubVerify(c, i):
Query DecryptDHE(c, i, hf ) to get m
Return m

proc. Finalize(c?, i):
Call FinalizeDHE(c

?, i, hf )

Fig. 27: Algorithm B attacking VRF-CCA1 security of DHE.

From the description of B it is clear that:

Pr
[
VRF-CCA1Af,VC(λ)⇒ T

]
= Pr

[
VRF-CCA1BDHE(λ)⇒ T

]
,

as B perfectly simulates the VRF-CCA1 forA. Note that B makes exactly one query to Token before its Encrypt
queries. The theorem follows. �
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