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Abstract. The Fiat-Shamir (FS) transform is a popular tool to produce
particularly efficient digital signature schemes out of identification pro-
tocols. It is known that the resulting signature scheme is secure (in the
random oracle model) if and only if the identification protocol is secure
against passive impersonators. A similar results holds for constructing
ID-based signature schemes out of ID-based identification protocols.
The transformation had also been applied to identification protocols with
additional privacy properties. So, via the FS transform, ad-hoc group
identification schemes yield ring signatures and identity escrow schemes
yield group signature schemes. Unfortunately, results akin to those above
are not known to hold for these latter settings and the security of the
resulting schemes needs to be proved from scratch, or worse, it is often
simply assumed. Therefore, the security of the schemes obtained this
way does not clearly follow from that of the base identification protocol
and needs to be proved from scratch. Even worse, some papers seem to
simply assume that the transformation works without proof.
In this paper we provide the missing foundations for the use of the FS
transform in these more complex settings. We start with defining a formal
security model for identity escrow schemes (a concept proposed earlier
but never rigorously formalized). Our main result constists of necessary
and sufficient conditions for an identity escrow scheme to yield (via the
FS transform) a secure group signature schemes. In addition, we discuss
several variants of this result that account for the constructions of group
signatures that fulfill weaker notions of security. In addition, using the
similarity between group and ring signature schemes we give analogous
results for the latter primitive.

1 Introduction

Background. A canonical identification scheme is a three-move two-party pro-
tocol: the prover first sends a commitment Cmt to the verifier, the verifier picks
and returns a random string Ch as a challenge. After receiving the challenge,



the prover outputs a response Rsp which is derived from the commitment, the
challenge, and the secret of the prover. The verifier checks that the resulting
transcript (Cmt,Ch,Rsp) satisfies a certain property, in which case we say
that the transcript is accepting and the verifier outputs one, otherwise the ver-
ifier outputs zero. The Fiat-Shamir transform [19] takes as input a canonical
identification protocol and produces a digital signature scheme. The transform
essentially removes the interaction in such protocols, and in doing so it involves
an arbitrary message M . This results in the following signing algorithm. To sign
a message M the signer computes the commitment Cmt as the prover does in
the identification scheme, then hashes Cmt and the message M using a hash
function H to obtain a challenge Ch = H(Cmt||M). The signer finally com-
putes a response Rsp according to the underlying identification protocol. The
resulting signature is (Cmt,Rsp). To verify the signature, one recomputes Ch
as H(Cmt||M) and verifies that the transcript (Cmt,Ch,Rsp) is an accepting
identification transcript.

The transform is particularly popular since it yields some of the most efficient
digital signature schemes known to date. Unsurprisingly, the transformation had
been extensively studied. There are negative results that explain the difficulty of
instantiating the hash function used in the transformation in a way that ensures
the security of signature scheme in the standard model [17, 21]. Also, there are
positive results relating the security of the underlying identification protocol to
that of the resulting signature scheme in the random oracle model [1, 32, 33]. The
best known such result is due to Abdalla et al. [1] who prove that the resulting
signature scheme is secure in the random oracle model, if and only if the starting
identification protocol is secure against passive impersonators. An important
consequence of such general results is that they entail modular security proofs
for signature schemes. First, prove the security of the identification protocol (this
step is sometimes quite simple – for example it may immediately follow from
existing known result, e.g. the identification protocol being honest-verifier zero-
knowledge). Then conclude, via the general result, the security of the signature
scheme. This path was advocated and used by Bellare, Namprempre, and Neven
in a later paper where they prove (among other results) the soundness of the FS
transform when applied to ID-based identification schemes to obtain ID-based
signature schemes [7].

The Fiat-Shamir transform had been used as a design tool in other contexts
where canonical three-move identification protocol occur. Notable examples in-
clude the construction of group signature schemes out of group identification
schemes and the construction of ring signature schemes out of ad-hoc group
identification. Unfortunately, unlike for digital signatures [1] no results formally
relate the security of the underlying group/ad-hoc group identification scheme
with that of the resulting group/ring signature scheme. In this cases, e.g. [2–5,
12–15], the security of the signature scheme needs to be proved from scratch.
Unfortunately, it is simply assumed that the transformation “works”. In this
paper we investigate the use of the transform in the construction of group and
ring signature schemes. We detail our results next.



Our results. We start by formalizing the notion of group identification (or
identity-escrow). The primitive had been proposed by Kilian and Petrank [23]
but its security had never been rigorously defined. Recall that an identity escrow
scheme allows users to (interactively) prove membership in a group in a way that
hides their individual identities. In case of misuse however, anonymity can be
revoked by a group opener who is in possession of a secret opening key. Such
schemes are therefore the interactive counterpart of group signature schemes.
We take advantage of progress on security models for group signatures [6, 9] and
adapt existing security notions for this primitive to group identification. Our
models consider the case of monotonic dynamic groups (where users can be added
to the group by a group manager). We define three distinct security notions.
Two notions refer to adversaries that attempt to impersonate group members
and here we distinguish between impersonators that frame other honest group
members, and impersonators who produce transcripts that cannot be traced.
By analogy with the corresponding notions in group signatures the resulting
notions are non-frameability and traceability. A third requirement, anonymity
demands that executing the identification protocols hides the user identity: an
adversary is not able to tell apart runs of the identification protocol of different
users. Finally, we also formalize as a game the correctness of group identification
schemes. We give the details of the models for the case of passive adversaries
(adversaries that only observe executions of the identification protocols of honest
parties, but are not allowed to interact with them). Furthermore, the models are
for canonical identification schemes (schemes where the identification protocol
has the three-move structure outlined at the beginning of the introduction).
We make these restrictions for simplicity: our theorems are only for canonical
identification protocols and relate the security of the resulting group signature
scheme with that of the underlying identification protocol under passive attacks.
Nevertheless, the extension of our definitions to arbitrary group identification
schemes and active adversaries is immediate.

Our main result is that the group signature obtained via the FS transform
from a canonical identity-escrow scheme is correct, anonymous, traceable, and
non-frameable if and only if the underlying group identification is, respectively,
correct, anonymous, traceable, and non-frameable under passive (i.e., eavesdrop-
ping only) attacks.

Our theorem yields group signature schemes that meet the strongest possible
notion of security. However, the literature for group signatures contains a large
number of variations on this security model. The reason is that weaker, but still
quite reasonable security requirements often allow for significantly more efficient
schemes. Examples of restrictions include considering static groups, merging the
group opener and the group manager, or disallowing the adversary to ask open-
ings of arbitrary transcripts. These weaker notions are usually obtained by simply
imposing restrictions on how the adversary interacts with the oracles defining
the security game. In the reduction that proves our main theorem we show how
to build an adversary against the underlying group identification scheme out of
an adversary for the resulting group signature scheme. In this reduction, the



restrictions that the former adversary has on using his oracles translate into
similar restrictions on how the latter adversary is allowed to use his own oracles.
We therefore obtain analogue versions of our result that relates correspondingly
weaker notions of group identification and group signatures by observing how
the restrictions between the two settings translate through our reduction.

We take advantage of the similarities between group and ring identifica-
tion/signature schemes and extend our results to this latter primitive. In this
extended abstract we give the theorem that we prove but leave the details for
the full version.

Finally, we also investigate the use of the FS transform to obtain ring sig-
nature schemes out of ad-hoc group identification schemes. In an ad-hoc group
identification scheme a user proves (interactively) that he has the secret key that
corresponds to one of several public keys selected by the user. The group is thus
chosen ad-hoc. It is desired that the privacy of the user is preserved (and notice
that in this case there is no possibility of opening an identification transcript
as there is not protocol through which users are added to a group.) The non-
interactive version of ad-hoc group identification are thus ring signatures. From
this brief description, it is clear that the security models for these two primitive
are close to those for group signature and group identification, respectively. In-
deed, the difference is that there is no need for a group manager (as the group is
decided by the user that proves membership) and there is no opening manager
(anonymity here is not revocable). Our main result then applies with little mod-
ification to the construction of ring signatures out of ad-hoc group identification
schemes via the Fiat-Shamir transform.
Notation We end this introduction by covering some basic notation which will
be used throughout this paper. If S is a set then s← S means that s is selected
uniformly at random from S. Let A(·, · · · , ·;R) be a randomized algorithm with
coins R, then y ← A(x1, . . . , xnR) means on input of x1, . . . , xn and coins R, the
value y is the unique output of the algorithm. The notation y ← A(x1, . . . , xn) is
shorthand for first selecting a random R and then setting y ← A(x1, . . . , xn;R).
We let Coins(A) denote the space which R is drown from for the algorithm A.
An algorithm A run on input x1, . . . , xn with access to oracles O1, . . . ,Om will
be denoted by A(x1, . . . , xn : O1, . . . ,Om), so as to avoid too many superscripts
and subscripts.

2 Group Identification Schemes

In this section we formalize group identification schemes. These schemes were
introduced by Kilian and Petrank [23] under the name identity escrow schemes.
We use these two names interchangeably.
Syntax. Group identification schemes allow a user to prove membership in
a group in such a way that his personal identity is protected. Using special
secret keys, a group manager can add users whereas a group opener can revoke
anonymity of any identification transcript. Since group identification schemes are
the interactive counterparts of group signature schemes we make use of progress



in the formalization of the latter concept. In particular, we follow the model
proposed by Bellare, Shi, and Zhang [9].

A group identification scheme is given by the tuple of algorithms GID =
(GKgGID,UKgGID, JoinGID, IssGID, (PGID,VGID),OpenGID, JudgeGID), where
the functionality of these algorithms is as follows:

– GKgGID: A setup program running a probabilistic key generation algorithm.
It takes a security parameter 1k and outputs the secret-public key pair
(gmsk, gmpk) for the group managerM, and a secret key osk for the opener
Op. The key gmpk is the public key for the group.

– UKgGID: This is a probabilistic algorithm to generate user public/private
key pairs. When run by user i, on input of 1k, this outputs a user’s key pair
(ski, pki).

– (JoinGID, IssGID): This is an interactive protocol between a new group mem-
ber i and the group managerM. Each of the algorithms take as input a state
and produce a new state plus a decision {accept, reject, cont}. The initial state
of JoinGID is the private key of the user ski, whilst that of IssGID is gmsk and
the public key of the user. If the issuer group manager (running IssGID) ac-
cepts then the final output is assigned to Infi (where i is the index/identity
of the user). This is information that is to be passed to the group opener
(who will later use it to open transcripts produced by user i). If the user i
accepts then the final state of JoinGID is assigned to gski.

– (PGID,VGID): An interactive protocol between a prover and a verifier. The
prover’s input a value gski, whereas the verifier’s input is gmpk.

– OpenGID: A deterministic algorithm, on input of a transcript T of the
(PGID,VGID) protocol, the values Inf∗ and the opening key osk. The al-
gorithm outputs a pair (i, τ), where i ≥ 0. If i = 0 then the algorithm is
claiming that no group member was authenticated using the transcript T ,
when i ≥ 1 the algorithm is claiming that the group member with identity i
was the prover in the transcript T . In the latter case the value τ is a proof
of this claim.

– JudgeGID: This algorithm takes as input gmpk, an integer j, the public key
pkj , a transcript T and a proof τ . It’s goal is to check whether τ is a proof
that j produced T .

The above syntax is for general group identification scheme. Our results are for
a special class of such schemes which we call (following [1]) canonical. For ease
of exposition we give the security definition for group identification schemes for
these class of schemes. The extension to general group identification is immedi-
ate.
Canonical Group Identification Scheme. A canonical group identifica-
tion scheme is a group identification scheme as above, except that now the
(PGID,VGID) protocol is given by a three-move protocol of the commit-challenge-
response variety. In the first move the prover sends a commitment Cmt to ver-
ifier, the verifier then responds with a random string Ch ∈ {0, 1}c as the chal-
lenge. Then the prover outputs a response Rsp which is derived from the com-
mitment Cmt, the challenge Ch and their key gski. Finally, the verifier verifies



the response and outputs a final decision to decide whether i is in the authorized
group. In this case a transcript of the execution is given by T = (Cmt,Ch,Rsp).
The verifier algorithm is then of the simplified form VGID(T ) and it returns a
single value in {0, 1}.
Security of Canonical Group Identification Scheme. Following the
treatment of [9] for group signatures we present notions of security, which we call
anonymity, traceability and non-frameability for canonical group identification
schemes. All our security models are for passive adversaries: while the adver-
sary can obtain transcripts of the identification protocol run by honest users,
he cannot directly interact with these users playing the role of the verifier. As
explainer earlier, we focus on this setting since our theorems require security in
this weaker sense. The extension of the definitions to active adversaries who can
also interact with honest users is immediate.

Our definition use a set of oracles which we define in Figure 1. All oracles (and
the underlying experiments) maintain the following global variables: a set HU of
honest users, a set CU of corrupted users and a set TL of transcripts, all of which
are assumed to be initially empty. Figure 1 shows what and how these oracles
work in detail. Informally, the adversarial abilities that these oracles model are
as follows.

– AddU(i): The adversary can use this oracle to add an honest user i to the
group.

– CrptU(i, pk): The adversary can create a corrupt user i and set the users
public key to pk.

– SndToI(i,M): The adversary can use this oracle to engage as a corrupt user
in a group-join protocol with the honest, Iss-executing issuer.

– SndToU(i,M): This oracle models the situation that the adversary has cor-
rupted the issuer. The adversary can use this oracle to engage in the group-
join protocol with the honest, Join-executing user.

– USK(i): The adversary can call this oracle and obtain both the private secret
key and group signing key of an honest user i.

– Exec(i): This oracle allows the adversary to obtain transcripts of runs of the
identification protocol between the honest prover i and an honest verifier.

– CHb(i0, i1): This oracle is a left-right oracle for defining anonymity. The
adversary sends a couple of honest identities (i0, i1) to the oracle and gets
back a transcript T of the identification protocol executed by user ib.

– Open(T ): The adversary can query this oracle to obtain the output of the
opening algorithm on T , as long as T was not returned as a response to the
CHb oracle.

Using these oracles we can now define our security and correctness notions
for canonical group identification scheme. We note that we only require secu-
rity under passive attacks for our application, i.e. the attacker can obtain valid
transcripts, but is not able to interact with individual provers. Hence, security
is defined for this restricted notion of attack, the generalisation to active attacks
is obvious. We also assume that the adversary is not able to read or write the



AddU(i) :

– If i ∈ HU ∪ CU then return ⊥.
– HU← HU ∪ {i}.
– (ski, pki)← UKg(1k).
– deci ← cont, gski ←⊥.
– Sti

J ← (gmpk, pki, ski).
– Sti

I ← (gmpk, gmsk, pki), MJ ←⊥.
– (Sti

J , MI , deci)← JoinGID(§iJ , MJ).
– While (deci = cont) do
• (Sti

I , MJ , deci)← IssGID(Sti
I , MI , deci).

• If deci = accept then Infi ← Sti
I .

• (Sti
J , MI , deci)← JoinGID(Sti

J , MJ).
– gski ← StJ .
– Return ski.

SndToI(i, M):

– If i 6∈ CU then return ⊥.
– (Sti

I , M ′, deci)← IssGID(Sti
I , M, deci).

– If deci = accept then Infi ← Sti
I .

– Return M ′.

SndToU(i, M):

– If i 6∈ HU then
• HU← HU ∪ {i}.
• (ski, pki)← UKg(1k).
• gski ←⊥, M ←⊥.
• Sti

J ← (gmpk, pki, ski).
– (Sti

J , M ′, deci)← JoinGID(Sti
J , M)

– if deci = accept then gski ← Sti
J .

– Return (M ′, deci).

CHb(i0, i1):

– If i0 6∈ HU or gski0
=⊥ then return ⊥.

– If i1 6∈ HU or gski1
=⊥ then return ⊥.

– T ← Exec(ib).
– TL← TL ∪ {T }.
– Return T .

CrptU(i, pk):

– If i ∈ HU ∪ CU then return ⊥.
– CU← CU ∪ {i}.
– pki ← pk.
– deci ← cont
– Sti

I ← (gmpk, gmsk, pki).
– Return 1.

USK(i):

– If i 6∈ HU then return ⊥.
– Return (gski, ski).

Open(T ):

– If T ∈ TL then return ⊥
– Return OpenGID(T , osk, Inf∗).

Exec(i):

– If i 6∈ HU or gski =⊥ then return ⊥.
– R← Coins(PGID).
– Cmt← PGID(gski; R).
– Ch← {0, 1}c.
– Rsp← PGID(gski,Cmt,Ch, R).
– T ← (Cmt,Ch,Rsp).
– Return T .

Fig. 1. Oracles defining security for canonical group identification schemes

table Inf∗ which the opener uses to identify provers (this corresponds to the
RReg and WReg oracles of [9]). This is purely for syntactic convenience, and
this assumption can be removed in the standard way. We do not describe this
in detail. To know the detail, please refer to [9].



Experiment Expcorr
GID,A(k)

– (gmpk, gmsk, osk)← GKgGID(1k).
– CU, HU← ∅.
– i← A(gmpk : AddU(·)).
– If i 6∈ HU then return 0.
– If gski =⊥ then return 0.
– T ← Exec(i).
– If VGID(gmpk, T ) = 0 then return 1.
– (j, τ)← OpenGID(T , osk, Inf∗).
– If i 6= j then return 1.
– If JudgeGID(gmpk, i, pki, T , τ) = 0 then return 1.
– Return 0.

Experiment Expanon-b
GID,A(k)

– (gmpk, gmsk, osk)← GKgGID(1k).
– CU, HU, TL← ∅.
– d← A(gmpk, gmsk : SndToU(·, ·), CrptU(·, ·), USK(·), Open(·), CHb(·, ·)).
– Return d.

Experiment Exptrace
GID,A(k)

– (gmpk, gmsk, osk)← GKgGID(1k).
– CU, HU← ∅.
– (Cmt, state)← A1(gmpk, osk : AddU(·), SndToI(·, ·), CrptU(·, ·), USK(·)).
– Ch← {0, 1}c.
– Rsp← A2(Ch, state : AddU(·), SndToI(·, ·), CrptU(·, ·), USK(·)).
– T ← (Cmt,Ch,Rsp).
– If VGID(gmpk, T ) = 0 then return 0.
– (i, τ)← OpenGID(T , osk, Inf∗).
– If i = 0 or JudgeGID(gmpk, i, pki, T , τ) = 0 then return 1.
– Return 0.

Experiment Expnon-frame
GID,A (k)

– (gmpk, gmsk, osk)← GKgGID(1k).
– CU, HU← ∅.
– (Cmt, state)← A1(gmpk, gmsk, osk : SndToU(·, ·), CrptU(·, ·), USK(·), Exec(·)).
– Ch← {0, 1}c.
– (Rsp, i, τ)← A2(Ch, state : SndToU(·, ·), CrptU(·, ·), USK(·), Exec(·)).
– T ← (Cmt,Ch,Rsp).
– If VGID(gmpk, T ) = 0 then return 0.
– If the following are all true then return 1 else return 0.
• JudgeGID(gmpk, i, pki, T , τ) = 1 and i ∈ HU and gski 6=⊥.
• A did not query USK(i) and T was not produced by Exec(i).

Fig. 2. Security experiments for canonical group identification schemes

Correctness: We require that transcripts produced by honest users are ac-
cepted by the verifiers, and that the opening algorithm correctly identifies the



user that produced a transcript. To formalise this we associate to the group
identification scheme GID, any adversary A and any k ∈ N the experiment
Expcorr

GID,A(k) defined in Figure 2 where the adversary may want to make a valid
transcript cannot be accepted by the verifiers, or make opener cannot correctly
identify the prover, or let the proof τ cannot be correctly judge. We define

Advcorr
GID,A(k) = Pr[Expcorr

GID,A(k) = 1],

and we say that the scheme is correct if Advcorr
GID,A(k) = 0 for all adversaries A

and all k ∈ N.

Anonymity: Let A be an adversary performing anonymity experiment given
in Figure 2 for b ∈ {0, 1}. The goal of the adversary is to determine which of two
identities has engaged in a run of the identification protocol. In this experiment,
the adversary can access the SndToU, CrptU, USK, and Open oracles to get some
state information. The adversary uses queries to the CHb oracle to determine the
hidden bit b and hence break the anonymity of GID. We define

Advanon
GID,A(k) =

∣∣Pr[Expanon-1
GID,A(k) = 1]− Pr[Expanon-0

GID,A(k) = 1]
∣∣ .

and we say that the scheme has anonymity if Advanon
GID,A(k) is a negligible function

of k for any polynomial time adversary A.

Traceability: Let A be an adversary, running in two stages, performing the
traceability experiment given in Figure 2. The goal of the adversary is to produce
a transcript that is either declared by the opener to be un-openable, or the opener
believes they have identified the opener but they cannot produce a valid proof
of this. In this experiment, the adversary can first access the AddU, SndToI,
CrptU, USK oracles to obtain state information and then output a commitment
Cmt. After the verifier has outputted the challenge Ch, the adversary queries
the above oracles and finally outputs a response Rsp associated with Cmt and
Rsp. The transcript T is (Cmt,Ch,Rsp). We define

Advtrace
GID,A(k) = Pr[Exptrace

GID,A(k) = 1],

and we say that the scheme has traceability if Advtrace
GID,A(k) is a negligible function

of k for any polynomial time adversary A.

Non-Frameability: Let A be an adversary, also running in two stages, per-
forming the non-frameability experiment given in Figure 2. The goal of the ad-
versary is to output a new transcript which the judge will accept as belonging to
an honest user i, where i did not produce this transcript. In this experiment, the
adversary can first access the SndToU, CrptU, USK and Exec oracles to obtain
state information and it then outputs a commitment Cmt. After the verifier
has outputted the challenge Ch, the adversary queries the above oracles and



finally outputs a response Rsp associated with Cmt and Rsp. The transcript T
is (Cmt,Ch,Rsp). We define

Advnon-frame
GID,A (k) = Pr[Expnon-frame

GID,A (k) = 1],

and we say that the scheme has non-frameability if Advnon-frame
GID,A (k) is a negligible

function of k for any polynomial time adversary A.
Model Variations. Our main results relate the security of group signature
schemes with the security of the group identification schemes from which they
are obtained via the FS transform. The notions that we use are those defined
above.

The group signature literature contains other, still reasonable security notions
that we weaker. Our results extend to this setting. Via the FS transform one
obtains group signature schemes that satisfies weaker notions of security from,
correspondingly weakend group identification schemes. Below we sketch these
weaker notions by analogy with those for group signatures.

First we note that the above definitions capture the notion of dynamic
groups. In the case of a static groups we may have no UKgGID algorithm and no
(JoinGID, IssGID) protocol for joining a group. Instead, the generation of user se-
cret keys gski is assumed to be done by the setup algorithm GKgGID, and is done
once and for all on system setup. The experiments then need to be altered slightly
in the obvious way, mainly to remove adversarial calls to the AddU,SndToU and
SndToI oracles. In analogy with the definitions from [6] in many schemes the
openers secret key osk is identical to the group managers secret key gmsk. We
say that such system have an opener-manager. In another variant, also consid-
ered in [6], the algorithm OpenGID does not output a proof of correctness of the
opening (to be verified by a judge) but simply outputs the identity i. These are
schemes with non-verified opening. Again the security experiments need to be
slightly modified with respect to how OpenGID and JudgeGID work, since there
is now no proof and so no need of the JudgeGID algorithm.

Finally, a scheme which does not allow the adversary to query the opening
oracle in the anonymity experiment is said to be weakly secure, or simply CPA
secure. One can think of the identity information within the transcript used by
the opener as an encryption of this identity. Thus giving the adversary access or
not to the opening oracle is akin to giving access to a decryption oracle in the
security model for encryption schemes – hence the name.

3 Group Signature Schemes

In this section we describe the syntax and security notions for group signature
schemes. The presentation follows closely [9], which also served as guidance for
our model for group identification schemes. As such, there is a lot of commonality
between the two presentations so we only stress the main differences.
Syntax. A group signature scheme is given by a tuple of algorithms: GS =
(GKgGS ,UKgGS , JoinGS , IssGS , GSig,GVf,OpenGS , JudgeGS). The functionality



the algorithms GKgGS ,UKgGS , JoinGS and IssGS is identical to those for the group
identification schemes considered earlier. What is different is that the prover
and verifier interactive algorithms are replaced with a signing algorithm GSig
and a verification algorithm GVf. The syntax demanded from the algorithms for
opening and judging OpenGS and JudgeGS is slightly modified to take this into
account. Specifically:

– GSig: Is a probabilistic signing algorithm taking input a group signing key
gski and a message m, returning a signature σ.

– GVf: Is a deterministic verifying algorithm which takes input the group pub-
lic key gmpk, a group signature σ a message m. It then returns a Boolean
decision to demonstrate whether the group signature is accepted or rejected.

– OpenGS : This is as before except it takes as input a message and a signature
instead of a transcript.

– JudgeGS : Again, this is as before except it takes as input a message and a
signature instead of a transcript.

Security notions. The games that define correctness, anonymity, traceabil-
ity and non-frameability for group signature schemes are essentially the non-
interactive versions of the games we have defined for identification schemes. The
schemes make use of a modified set of oracles. The modifications are as follows:

The oracles used by the adversary are changed from that for canonical group
identification schemes in the following ways:

– Open(σ,m): This oracle takes as input a signature σ and a message m and
returns the result of running the opening algorithm (i.e. the identity of the
user plus the associated proof).

– CHb(i0, i1,m): This oracle is a left-right oracle for defining anonymity. The
adversary sends a couple of honest identities (i0, i1) and a message m to
the oracle and gets back a signature σ of the signature scheme executed by
signer ib. In addition, in CHb and the game for anonymity we replace the list
of transcripts TL by a list of signatures SL issued by the oracle CHb.

– Sign(i,m): This oracle allows the adversary to obtain signatures of the sig-
nature scheme executed by a valid group member. This oracle takes as input
the identity of the group member i and message m, and finally outputs a
group signature of the member i.

The changes in games account for the fact that we replace identification with
signing. In addition, we are only concerned with schemes secure in the random
oracle model (as those obtained via the FS transform) so the algorithms and the
adversary have access to oracle H defined in the standard way. Specifically, the
oracle H(·) maintains an internal list, H-List, of pairs (x, h) with the meaning
that h was the answer that the oracle returned when it was previously queried
with input x. When H receives an input x, it then returns h if (x, h) in H-List.
Otherwise, it selects a random h ∈ {0, 1}c, adds the entry (x, h) to H-List, and
returns h.

The formal games for security are in Figure 3, with the associated advantage
functions being defined in the obvious manner.



Experiment Expcorr
GS,A(k)

– (gmpk, gmsk, osk)← GKgGS(1k).
– CU, HU← ∅.
– (i, m)← A(gmpk : AddU(·)).
– If i 6∈ HU then return 0.
– If gski =⊥ then return 0.
– σ ← GSig(gski, m).
– If GVf(gmpk, σ, m) = 0 then return 1.
– (j, τ)← OpenGS(σ, m, osk, Inf∗).
– If i 6= j then return 1.
– If JudgeGS(gmpk, i, pki, σ, m, τ) = 0 then return 1.
– Return 0.

Experiment Expanon-b
GS,A (k)

– (gmpk, gmsk, osk)← GKgGS(1k).
– CU, HU, SL← ∅.
– d← A(gmpk, gmsk : H(·), SndToU(·, ·), CrptU(·, ·), USK(·), Open(·), CHb(·, ·)).
– Return d.

Experiment Exptrace
GS,A(k)

– (gmpk, gmsk, osk)← GKgGS(1k).
– CU, HU← ∅.
– (σ, m)← A(gmpk, osk : H(·), AddU(·), SndToI(·, ·), CrptU(·, ·), USK(·)).
– If GVf(gmpk, σ, m) = 0 then return 0.
– (i, τ)← OpenGS(σ, m, osk, Inf∗).
– If i = 0 or JudgeGS(gmpk, i, pki, σ, m, τ) = 0 then return 1.
– Return 0.

Experiment Expnon-frame
GS,A (k)

– (gmpk, gmsk, osk)← GKgGS(1k).
– CU, HU← ∅.
– (σ, m, i, τ)← A(gmpk, gmsk, osk : H(·), SndToU(·, ·), CrptU(·, ·), USK(·), Sign(·)).
– If GVf(gmpk, σ, m) = 0 then return 0.
– If the following are all true then return 1 else return 0.
• JudgeGS(gmpk, i, pki, σ, m, τ) = 1 and i ∈ HU and gski 6=⊥.
• A did not query USK(i) and σ was not produced by a call to Sign(i, m).

Fig. 3. Security experiments for group signature schemes

As for group identification, one can define weaker notions of security for group
signature schemes by appropriate restrictions and syntactic modifications. The
standard examples from the literature include moving to static groups, CPA
security, non-verified opening and schemes with an opener-manager.

4 From Group Identification to Group Signature Schemes

In this section we formally define the Fiat-Shamir transform for group signature
and prove that it leads to secure schemes.



The Fiat-Shamir transform. The Fiat-Shamir transform for standard digi-
tal signature schemes works if the underlying identification protocol is such that
the first message (the commitment) has sufficient entropy. To make the transfor-
mation applicable to a larger class of identification protocols, one workaround is
to “artificially” append a random string to the commitment. Abdalla et al. [1]
call this the extended Fiat-Shamir transform. We adapt this more general trans-
formation to the setting of group identification/signatures. Similarly to [1], our
security results would then subsume the case when the commitment of the orig-
inal scheme has sufficient entropy.

The transformation essentially removes the interaction in the identification
protocol of the group identification scheme, very much like it does when applied
to standard identification protocols.

Let GID = (GKgGID,UKgGID, JoinGID, IssGID, (PGID,VGID), OpenGID,
JudgeGID) be a canonical group identification scheme, and s : N → N be a
function which defines a seed length s(k) given the security parameter k. We
select a hash function H : {0, 1}∗ → {0, 1}c at random from the set of all maps
{0, 1}∗ → {0, 1}c, where c is the bit length of the challenge Ch in the canonical
group identification scheme we will be using. From these we construct a group sig-
nature scheme GS = (GKgGS ,UKgGS , JoinGS , IssGS ,GSig,GVf,OpenGS , JudgeGS)
as follows. We let GKgGS = GKgGID, UKgGS = UKgGID, JoinGS = JoinGID and
IssGS = IssGID. The functions GSig,GVf,OpenGS and JudgeGS are defined as in
Figure 4. We call the resulting group signature scheme FS(GID).

GSig(gski, m):

– RP ← Coins(PGID).
– Cmt← PGID(gski; RP ).
– R← {0, 1}s(k).
– Ch← H(R‖Cmt‖m).
– Rsp← PGID(gski,Cmt,Ch, RP ).
– σ ← (R,Cmt,Rsp).
– Return σ.

GVf(gmpk, σ, m):

– Parse σ as (R,Cmt,Rsp).
– Ch← H(R‖Cmt‖m).
– T ← (Cmt,Ch,Rsp).
– Return VGID(gmpk, T ).

OpenGS(σ, m, osk, Inf∗):

– Parse σ as (R,Cmt,Rsp).
– Ch← H(R‖Cmt‖m).
– T ← (Cmt,Ch,Rsp).
– Return OpenGID(T , osk, Inf∗).

JudgeGS(gmpk, i, pki, σ, m, τ):

– Parse σ as (R,Cmt,Rsp).
– Ch← H(R‖Cmt‖m).
– T ← (Cmt,Ch,Rsp).
– Return JudgeGID(gmpk, i, pki, T , τ).

Fig. 4. Construction of a group signature scheme from a group identification scheme

Security results. Since the security of the resulting group signature schemes
relies on the entropy of the commitment we recall the necessary notion. Security
of the above construction relies on the random oracle model. In addition it relies
on the values of the constants s(k) and c. In particular the associated min-



entropy, defined below, of the commitment generated by the prover needs to be
large enough.

Definition 1 (Min-Entropy of Commitments). Let GID be a canonical
group identification scheme. Let k ∈ N and (ski, pki) be the key pair generated
by key generation algorithm UKgGID on input of 1k. We denote by C(ski) ={
Cmt = PGID(ski, RP )

}
be the set of all possible commitments associated with

ski. We define the maximum probability that a commitment takes on a particular
value via

α(ski) = max
Cmt∈C(ski)

{
Pr

[
PGID(ski, RP ) = Cmt : RP ← Coins(PGID)

]}
.

Then the min-entropy function associated with GID is defined as follows:

β(k) = min
ski

{
log2

(
1

α(ski)

)}
where minimum is taken over all key pairs (ski, pki) generated by UKgGID(1k).
We say that GID is non-trivial if β(·) = ω(log(·)) is super-logarithmic.

Our results show a tight connection between the security of the underlying
group identification schemes and the group signature scheme obtained via the FS
transform. If the starting group signature scheme is secure (it has the four prop-
erties that we have defined earlier), then the resulting group signature scheme
is also secure. This result is captured by the following theorem.

Theorem 1. (Secure GID ⇒ secure GS) Let GID be a canonical group identi-
fication scheme and GS = FS(GID). If GID has the properties of correctness,
anonymity, traceability and non-frameability under passive attacks, then GS also
has the above properties.

We also show that security against passive adversaries for the underlying
group identification scheme is also necessary. Specifically, we have the following
theorem.

Theorem 2. (Secure GID ⇐ secure GS) Let GID be a canonical group iden-
tification scheme and GS = FS(GID). If GS has the properties of correctness,
anonymity, traceability and non-frameability, then GID is correct, anonymous,
traceable and non-frameable under passive attacks.

Model variations. As remarked earlier different authors have used differ-
ent notions of security for group signature schemes. Each of these different no-
tions is obtained by appropriate restrictions on the powers of the adversary in
the standard security games. Unsurprisingly for both group identification and
signature schemes, the restrictions are essentially the same (modulo the parts
that are different). For example, in both cases, CPA-security is obtained by
not providing the adversary with an oracle for opening transcripts and signa-
tures, respectively. Since this is true for all of the oracles which our reductions



preserve essentially unchanged, our proofs easily extend to these variations in
models. Specifically, we have the following: If X is one of the properties in the
set {correctness, anonymity, traceability, non-frameability,CPA-secure,CCA-secure}
then, if GID has property X, then GS = FS(GID) has property X. This is
true for both static and dynamic groups. In the following table we summarize
the security models used in prior work on group signatures that appeared after
2003.

Dynamic CCA Has Opener 6= Standard
Secure Judge Manager Model

BMW[6] 4
BBS[5],BS[8]
BW[10, 11] 4 4
MU[26],ZZW[35],NF[27],HWL[22] 4
LCSL[25] 4 4 4
NKHF[30],NS[31] 4 4
NFHF[28],KY[24] 4 4
FI[18] 4 4 4
WYZ[34] 4 4 4 4
BSZ[9],G[20] 4 4 4 4 4

5 Proof of the Construction

5.1 Proof of Theorem 1

The concept of our proof for Theorem 1 is as follow: if GS = FS(GID) is
insecure (i.e., there exists an algorithm A which can break the security of GS
with non-negligible advantage), then there exists a algorithm B which can break
the security of GID with non-negligible advantage. We now prove Theorem 1
via Lemma 1 to Lemma 4.

Lemma 1. Let GID be a group identification scheme and GS = FS(GID). Let
A be an adversary attacking the correctness of the group signature in the random
oracle model. Then there is an adversary B against the correctness of GID such
that Advcorr

GID,B ≥ Advcorr
GS,A.

Proof. Assume B is an algorithm attacking the correctness of GID and A is an
algorithm against anonymity of GS. The goal of B is to use A to gain advantage
when it runs Expcorr

GID,B(k) and accesses the associated oracle AddUGID(i,M).
To achieve this goal, B should run the algorithm A, simulate the environment
of A in Expcorr

GS,A(k) with the AddUGID(i,M) oracle in Expcorr
GID,B(k). We now

construct the algorithm B running A to gain advantage against GID. Sup-
pose B plays the correctness game, runs Expcorr

GID,B(k) and accesses the oracle
of AddUGID(i,M). First, B runs A and simulates the oracle for A. Then B just
needs to set AddUGS(i,M) = AddUGID(i,M). Therefore, we can easily have
Advcorr

GID,B ≥ Advcorr
GS,A.



Lemma 2. Let GID be a group identification scheme and GS = FS(GID). Let
s(·) be a seed length and β(·) be the min-entropy function associated with GID.
Let A be an adversary attacking the anonymity of the group signature in the
random oracle model, making qh hash-oracle queries. Then there is an adversary
B against the anonymity of GID such that Advanon

GID,B ≥ Advanon
GS,A −

qh

2s(k)+β(k) .

Proof. Assume B is an algorithm attacking the anonymity of GID and A is
an algorithm against anonymity of GS. The goal of B is to use A to gain
advantage when it runs Expanon-b

GID,B(k) and accesses the associated oracles. To
achieve this goal, B should run the algorithm A, simulate the environment of
A in Expanon-b

GS,A (k) with the oracles in Expanon-b
GID,B(k). We now construct the al-

gorithm B running A to gain advantage against GID. Suppose B plays the
anonymity game, runs Expanon-b

GID,B(k) and accesses the oracles of SndToUGID(i,M),
SndToIGID(i,M), CrptUGID(i, pk), USKGID(i), OpenGID(T ) and CHGIDb (i0, i1).
First, B runs A and simulates the oracles for A. Then B defines SndToUGS(i,M),
SndToIGS(i,M), CrptUGS(i, pk), and USKGS(i). to be the equivalent oracles in the
GID game. Then B constructs H(x) and OpenGS(σ,m) oracles for A as follows:

H(x):

– Maintain the H-List of pairs (x, h).
– When A queries x, return H(x) if it is defined.
– Pick y at random from {0, 1}c.
– H(x)← y, return H(x).

OpenGS(σ,m)

– Parse σ as R, CMT , RSP .
– Look-up H(R‖Cmt‖m), if it is not in the table then return ⊥.
– Ch← H(R‖Cmt‖m).
– T ← (Cmt,Ch,Rsp)
– Return Open(T ).

When A makes one of the above oracles queries, Algorithm B answers A
with its own queries according the above simulation. Then A makes one chal-
lenge oracle query, which B answers by calling its oracle and return a signature
according to the following CHGSb (i0, i1,m) simulation:

– T ← CHGIDb (i0, i1).
– Parse T as Cmt∗, Ch∗, Rsp∗.
– R∗ ← {0, 1}s(k).
– If H(R∗‖Cmt∗‖m) is in H-List then abort.
– Add (H(R∗‖Cmt∗‖m),Ch∗) to the H-List.
– Patch H-list such that Ch = H(R∗‖Cmt∗‖m).
– σ ← (R,Cmt,Rsp).
– Return σ.



Finally, A outputs a decision bit d for the Experiment Expanon-b
GS,A (k). Al-

gorithm B returns d as the answer to its own challenge for the Experiment
Expanon-b

GID,B(k). Let F be the event that A wins the anonymity game and S be the
event that A aborts during the simulation of the challenge oracle for A. In other
words, S is the event that A had queried R∗‖Cmt∗‖m to the oracle before. We
first give the upper bound on Pr[S]. If qh is the number of oracle queries made
by A, the H contains at most qh execution times. Since Ch∗ is chosen uniformly
at random from {0, 1}β(k) and R∗ is chosen uniformly at random from {0, 1}s(k),
a simple union bound gives that Pr[S] ≤ qh

2s(k)β(k) . If the simulation is perfect,

B wins the anonymity game whenever A wins in the Experiment Expanon-b
GS,A (k)

simulation. If S occurs, then the simulation aborts. Therefore, the advantage of
B can be bounded by

Advanon
GID,B ≥ Pr[F ∧ ¬S]

So, we can derive the advantage of B

Advanon
GID,B ≥ Pr[F ∧ ¬S] ≥ Pr[F ](1− Pr[S]) ≥ Pr[F ]− Pr[S]

≥ Advanon
GS,A −

qh

2s(k)+β(k)
.

Lemma 3. Let GID be a group identification scheme and GS = FS(GID). Let
s(·) be a seed length and β(·) be the min-entropy function associated with GID.
Let A be an adversary attacking the traceability of the group signature in the
random oracle model, making qh hash-oracle queries. Then there is an adversary
B against the traceability of GID such that Advtrace

GID,B ≥ Advtrace
GS,A −

qh

2s(k)+β(k) .

Proof. Let B be an algorithm attacking traceability of GID by running algo-
rithm A and simulating the Exptrace

GS,A(k) environment for A. We assume that B
has access to the oracles AddUGID(i,M), SndToIGID(i,M), CrptUGID(i, pk) and
USKGID(i) for the GID game. We now construct the algorithm B as follows: B
begins with the initialization: hc← 0, fp← {1, ..., qh}. Next, B runs A and simu-
lates the following oracles for A, AddUGS(i,M), SndToIGS(i,M), CrptUGS(i, pk),
and USKGS(i). using the equivalent oracles in the GID game. When A makes
hash oracle queries, B constructs H(x) and answers A as follows:

H(x):
– Maintain the H-List of pairs (x, h).
– If hc 6= fp
• If there exists (x, h) in H-List then return h.
• hc← hc + 1.
• Select y at random from {0, 1}c.
• Add (x, y) to H-List.
• Return y.

– Parse x as R, Cmt∗, Rsp.
– Send Cmt∗ to the verifier and get back Ch∗.
– Add (R||Cmt∗||Ch∗) to H-List.



– Return Ch∗.

Finally, A outputs a forgery (R,Cmt,Rsp). B sends Rsp to the verifier as the
response. Let j be that Q[j] = R||Cmt||m. If j = fp, then the transcript between
B and the verifier is Cmt||Ch∗||Rsp. In this case, Ch = Ch∗. Algorithm B wins
the traceability game when either

VGID(gmpk, (Cmt,Ch∗,Rsp)) = 1

or
JudgeGID(gmpk, i, pki, (Cmt,Ch∗,Rsp), τ) = 1.

Let F be the event that A wins the traceability game and S be the event of hash
collusion. We give the upper bound on Pr[S]. If qh is the number of oracle queries
made by A, the H colludes at most qh execution times. Since Ch∗ is chosen
uniformly at random from {0, 1}β(k) and R∗ is chosen uniformly at random
from {0, 1}s(k), a simple union bound gives that Pr[S] ≤ qh

2s(k)β(k) . Therefore,
the advantage of B can be bounded by B can be bounded by

Advtrace
GID,B ≥ Pr[F ∧ ¬S] ≥ Pr[F ](1− Pr[S]) ≥ Pr[F ]− Pr[S]

So, we can derive the advantage of B

Advtrace
GID,B ≥ Pr[F ]− Pr[S] ≥ Advtrace

GS,A −
qh

2s(k)+β(k)
.

Lemma 4. Let GID be a group identification scheme and GS = FS(GID). Let
s(·) be a seed length and β(·) be the min-entropy function associated with GID.
Let A be an adversary attacking the non-frameability of the group signature in
the random oracle model, making qh hash-oracle queries and qs signature oracles.
Then there is an adversary B against the non-frameability of GID such that
Advnon-frame

GID,B ≥ Advnon-frame
GS,A (k)− 1

qh
· qs(qh+qs−1)

2s(k)+β(k) .

Proof. Let B be an algorithm attacking non-frameability of GID by running
algorithm A and simulating the Expnon-frame

GS,A (k) environment for A. Suppose
B accesses the oracles of SndToUGID(i,M), CrptUGID(i, pk) and USKGID(i),
USKGID(i) and ExecGID(i). B begins with the initialization: hc ← 0, sc ← 0,
fp← {1, ..., qh}. Next, B runs A and sets SndToUGS(i,M) = SndToUGID(i,M),
CrptUGS(i, pk) = CrptUGID(i, pk), and USKGS(i) = USKGID(i).

When A makes above oracle queries, B answers by calling its own appropri-
ate queries. When A makes hash oracle queries and signing oracle queries, B
constructs H(x) and Sign(i,m) for A as follows:

H(x):
– Maintain H-List (x, h).
– If hc 6= fp
• If there exists (x, h) in H-List then return h.
• hc← hc + 1.



• Select y at random from {0, 1}c.
• Add (x, y) to H-List.
• Return y.

– Parse x as R, Cmt∗, Rsp.
– Send Cmt∗ to the verifier and get back Ch∗.
– Add (R||Cmt∗||Ch∗) to H-List.
– Return C∗

H .

SignGS(i,m)

– Maintain S-List (i,m, σ).
– When A queries (i,m) then hs← hs + 1.
– T ← Exec(i).
– Parse T as (Cmt,Ch,Rsp).
– R← {0, 1}s(k).
– Patch Ch← H(R‖Cmt‖m).
– σ ← (R,Cmt,Rsp).
– Return σ.

Finally,A outputs a forgery (R,Cmt,Rsp). If the tuple (i,m, (R,Cmt,Rsp))
is not in the S-List, algorithm B sends Rsp to the verifier as the response. Let
j be that Q[j] = R||Cmt||m. If j = fp, then the transcript between B and the
verifier is Cmt||Ch∗||Rsp (In this case, Ch = Ch∗). If B does not abort during
the simulation, then the algorithm A’s view is identical to its view in the real
attack. Suppose F be the event that A wins the non-frameability game. S be the
event that hc = fp and H(Q[fp]) = H(R||Cmt∗||m) is already defined when
querying sign oracle. The advantage of B can be bounded by

Advnon-frame
GID,B ≥ Pr[F ∧ ¬S] ≥ Pr[F ](1− Pr[S]) ≥ Pr[F ]− Pr[S]

The probability of F in the i− th signature query is at most

1
qh
· qh + (i− 1)

2s(k)+β(k)
,

because A has made qh hash queries, and (i− 1) times signing queries. So,

Pr[F ] ≤
qs∑

i=1

1
qh
· qh + (i− 1)

2s(k)+β(k)
=

1
qh
· qsqh + qs(qs − 1)/2

2s(k)+β(k)
≤ 1

qh
· qs(qh + qs − 1)

2s(k)+β(k)
.

We now bound the advantage of B,

Advnon-frame
GID,B ≥ Pr[F ]− Pr[S] ≥ Advnon-frame

GS,A (k)− 1
qh
· qs(qh + qs − 1)

2s(k)+β(k)
.

By combining Lemmas 1, 2, 3 and 4, Theorem 1 is proved.



5.2 Proof of Theorem 2

The idea behind the proof for Theorem 2 is as follow: if GID is insecure (i.e.,
there exists an algorithm A which can break the security of GID with non-
negligible advantage), then there exists a algorithm B which can break the secu-
rity of GS = FS(GID) with non-negligible advantage. We now prove Theorem
2 via Lemma 5 to Lemma 8.

Lemma 5. Let GID be a group identification scheme and GS = FS(GID). Let
A be an adversary attacking the correctness of the group identification in the
random oracle model. Then there is an adversary B against the correctness of
GS such that Advcorr

GS,B ≥ Advcorr
GID,A.

Proof. Assume A is an algorithm attacking the correctness of GID and B is an
algorithm against correctness of GS. The goal of B is to use A to gain advan-
tage when it runs Expcorr

GS,B(k) and accesses the associated oracle AddUGS(i,M).
To achieve this goal, B should run the algorithm A, simulate the environ-
ment of A in Expcorr

GID,A(k) with the AddUGS(i,M) oracle in Expcorr
GS,B(k). We

now construct the algorithm B running A to gain advantage against GS. Sup-
pose B plays the correctness game, runs Expcorr

GS,B(k) and accesses the oracle of
AddUGS(i,M). First, B runs A and simulates the oracle for A. Then B just
needs to sets AddUGID(i,M) = AddUGS(i,M). Therefore, we can easily have
Advcorr

GS,B ≥ Advcorr
GID,A.

Lemma 6. Let GID be a group identification scheme and GS = FS(GID). Let
A be an adversary attacking the anonymity of the group identification. Then there
is an adversary B against the anonymity of GS such that Advanon

GS,B ≥ Advanon
GID,A.

Proof. Assume A is an algorithm attacking the anonymity of GID and B is an
algorithm against anonymity of GS. The goal of B is to use A to gain advan-
tage when it runs Expanon-b

GS,B (k) and accesses the associated oracles. To achieve
this goal, B should run the algorithm A, simulate the environment of A in
Expanon-b

GID,A(k) with the oracles in Expanon-b
GS,B (k). We now construct the algorithm

B runningA to gain advantage against GS. Suppose B plays the anonymity game,
runs Expanon-b

GS,B (k) and accesses the oracles of SndToUGS(i,M), SndToIGS(i,M),
CrptUGS(i, pk), USKGS(i), OpenGS(σ,m) and CHGSb (i0, i1,m). First, B runs A
and simulates the oracles for A. Then B sets SndToUGS(i,M), SndToIGS(i,M),
CrptUGS(i, pk), and USKGS(i) to their equivalent oracles in the GID game. Then
B constructs OpenGID(T ) oracle for A as follow:

OpenGID(T )
– Parse T as Cmt, Ch, Rsp.
– Generate a message m and a random R.
– Ch← H(R‖Cmt‖m).
– σ ← (R,Cmt,Rsp)
– Return OpenGS(σ,m).



When A makes one of the above oracles queries, Algorithm B answers A
with its own queries according the above simulation. Then A makes one chal-
lenge oracle query, which B answers by calling its oracle and return a transcript
according to the following CHGIDb (i0, i1) simulation:

– σ ← CHGSb (i0, i1,m).
– Parse σ as R∗, Cmt∗, Rsp∗.
– Ch∗ ← H(R∗‖Cmt∗‖m).
– T ← (Cmt∗,Ch∗,Rsp∗).
– Return T .

Finally, A outputs a decision bit d for the Experiment Expanon-b
GID,A(k). Al-

gorithm B returns d as the answer to its own challenge for the Experiment
Expanon-b

GS,B (k). Therefore, we have Advanon
GS,B ≥ Advanon

GID,A

Lemma 7. Let GID be a group identification scheme and GS = FS(GID). Let
A be an adversary attacking the traceability of the group identification. Then
there is an adversary B against the traceability of GS such that Advtrace

GS,B ≥
Advtrace

GID,A.

Proof. Let B be an algorithm attacking traceability of GS by running algorithm
A and simulating the Exptrace

GID,A(k) environment for A. We assume that B has ac-
cess to the oracles AddUGS(i,M), SndToIGS(i,M), CrptUGS(i, pk) and USKGS(i)
for the GS game. We now construct the algorithm B as follows: B begins with
the initialization: m ← 0. Next, B runs A and simulates the following oracles
for A: AddUGS(i,M) = AddUGID(i,M), SndToIGS(i,M) = SndToIGID(i,M),
CrptUGS(i, pk) = CrptUGID(i, pk), and USKGS(i) = USKGID(i). When A makes
above oracle queries, B answers by calling its own appropriate queries. When
A outputs a commitment Cmt, B increases m ← m + 1, selects a random R
and then sets Ch ← H(R‖Cmt‖m). Next, B sends Ch to A, and A finally
outputs a response Rsp. Algorithm B sets σ ← (R,Cmt,Rsp) and then out-
puts (σ,m). Since the messages in the algorithm are always new, the forgery
has never been queried to the signing oracle in the past. Therefore, we have
Advtrace

GS,B ≥ Advtrace
GID,A.

Lemma 8. Let GID be a group identification scheme and GS = FS(GID).
Let A be an adversary attacking the non-frameability of the group identifica-
tion. Then there is an adversary B against the non-frameability of GS such that
Advnon-frame

GS,B ≥ Advnon-frame
GID,A .

Proof. Let B be an algorithm attacking non-frameability of GS by running al-
gorithm A and simulating the Expnon-frame

GID,A (k) environment for A. Suppose B
accesses the oracles of SndToUGS(i,M), CrptUGS(i, pk) and USKGS(i), USKGS(i)
and SignGS(i,m). B begins with the initialization: m ← 0. Next, B runs A and
sets SndToUGS(i,M) = SndToUGID(i,M), CrptUGS(i, pk) = CrptUGID(i, pk),
and USKGS(i) = USKGID(i).



When Amakes above oracle queries, B answers by calling its own appropriate
queries. When A queries transcript oracles, B constructs Exec(i) for A as follow:

Exec(i)
– m← m + 1.
– σ ← Sign(i,m).
– Parse σ as (R∗,Cmt∗,Rsp∗).
– Ch∗ ← H(R∗‖Cmt∗‖m).
– T ← (Cmt∗,Ch∗,Rsp∗).
– Return T .

When A outputs a commitment Cmt, B increases m ← m + 1, selects a
random R, and sets Ch← H(R‖Cmt‖m). Then, B sends Ch to A and gets back
a response Rsp. Finally, B sets σ ← (R,Cmt,Rsp) and outputs (σ,m). Since the
messages in the algorithm are always new, the forgery has never been queried to
the signing oracle in the past. Therefore, we have Advnon-frame

GS,B ≥ Advnon-frame
GID,A .

By combining Lemmas 5, 6, 7 and 8, Theorem 2 is proved.

6 From Ad-hoc Group Identification to Ring Signatures

An ad hoc group identification scheme is an identification protocol in which
a prover can anonymously prove she is a valid number of an ad hoc group.
Based on the underlying PKI, arbitrary ad hoc groups of a user population
can be formed without the help of a group manager. In [16], the authors give
a formal model of an ad hoc identification scheme which is a six-tuple of al-
gorithms (Setup,Register,Make-GPK,Make-GSK,Anon-IDP,Anon-IDV). However,
in this paper, we slightly modify the notations of the model of [16] in order to
suit with the model and notations of our ring signature RS.

An ad hoc group identification scheme is given by the tuple of algorithms
AHID = (UKgAHID, GPKgAHID,GSKgAHID, (PAHID,VAHID)). The func-
tionality of these algorithms is as follows:

– UKgAHID: This is a probabilistic algorithm to generate user public/private
key pairs. When run by user i, on input of 1k, this outputs a user’s key pair
(ski, pki).

– (GPKgAHID,GSKgAHID): The ad hoc group public key generation algo-
rithm and the ad hoc group secret key generation algorithm. The algorithm
GPKgAHID is a deterministic algorithm which combines a set of user public
keys S into a single ad hoc group public key gpk. The deterministic algo-
rithm GSKgAHID takes as input a user secret/public key pair (ski, pki) and
a set of user public keys S, it outputs an ad hoc group secret key gski which
associates with the ad hoc group public key gpk.

– (PAHID,VAHID): An interactive protocol between a prover and a verifier.
The prover’s input is a value gski, whereas the verifier’s input is gpk.



As before we shall focus purely on canonical ad hoc group identification schemes,
where the (PAHID,VAHID) protocol is given by three-move protocol of the
commit-challenge-response variety.

We now present a security model for such ad-hoc group identification schemes,
and an analogous model for ring signatures. We then formalise the construc-
tion of ring signatures from ad-hoc group identification schemes via the Fiat–
Shamir transform. Finally, an analogous theorem to the earlier one can be proved,
namely:

Theorem 3. Let AHID be a canonical ad-hoc group identification scheme and
RS = FS(AHID). The derived ring signature scheme RS has the proper-
ties of correctness, anonymity and unforgeability against chosen-message attacks
if and only if AHID has the properties of correctness, anonymity, and non-
impersonation under passive attacks.

6.1 Security of Ad hoc Canonical Group Identification Scheme

We now present notions of security for canonical ad hoc group identification
schemes, which we call anonymity and non-impersonation, under passive attacks.
Before doing so we first define some oracles, in Figure 5, which will be used by
our adversaries in attacking ad hoc canonical group identification schemes. All
oracles (and the underlying experiments) maintain the following global variables:
a set HU of honest users, a set CU of corrupted users, a set S of an arbitrary ad
hoc group public keys set, and a set TL of transcripts, all of which are assumed
to be initially empty.

Using these oracles we can now define our security notions and correctness
notions for canonical ad hoc group identification scheme. This is done via the
experiments in Figure 6. We note that we only require security under passive
attacks for our application, i.e. the attacker can obtain valid transcripts, but is
not able to interact with individual provers. Hence, security is defined for this
restricted notion of attack, the generalisation to active attacks is obvious.

Correctness: We require that transcripts produced by honest users should be
accepted by the verifiers. We define

Advcorr
AHID,A(k) = Pr[Expcorr

AHID,A(k) = 1],

and we say that the scheme is correct if Advcorr
AHID,A(k) = 0 for all adversaries A

and all k ∈ N.

Anonymity: Let A be an adversary performing anonymity experiment given
below for b ∈ {0, 1}. The goal of the adversary is to determine which of two
identities has engaged in a run of the identification protocol. We define

Advanon
AHID,A(k) =

∣∣Pr[Expanon-1
AHID,A(k) = 1]− Pr[Expanon-0

AHID,A(k) = 1]
∣∣ .

and we say that the scheme has anonymity if Advanon
AHID,A(k) is a negligible

function of k for any polynomial time adversary A.



AddU(i) :

– If i ∈ HU ∪ CU then return ⊥.
– HU← HU ∪ {i}.
– (ski, pki)← UKg(1k).
– Return (ski, pki).

Exec(i, S):

– If i 6∈ HU or pki 6∈ S then return ⊥
– gski ← GSKgAHID(ski, pki, S).
– R← Coins(PAHID)
– Cmt← PAHID(gski; R)
– Ch← {0, 1}c
– Rsp← PAHID(gski,Cmt,Ch, R)
– T ← (Cmt,Ch,Rsp).
– Return T

CrptU(i, pk):

– If i ∈ HU ∪ CU then return ⊥.
– CU← CU ∪ {i}.
– Return 1.

USK(i, S):

– If pki 6∈ S then return ⊥.
– gpk← GPKgAHID(S).
– gski ← GSKgAHID(ski, pki, S).
– Return (gski, gpk, ski).

CHb(i0, i1, S):

– If i0 6∈ HU or ski0 6∈ S then return ⊥.
– If i1 6∈ HU or ski1 6∈ S then return ⊥.
– T ← Exec(ib, S).
– TL← TL ∪ {(S, T )}.
– Return T .

Fig. 5. Oracles required to define security for canonical ad hoc group identification
schemes

Non-impersonation: Let A be an adversary performing non-impersonation
experiment given below. The goal of the adversary is to produce a valid transcript
belongs to an ad hoc group, however, A is not in the group. We define

Advnon-imp
AHID,A(k) = Pr[Expnon-imp

AHID,A(k) = 1],

and we say that the scheme is secure against impersonation if Advnon-imp
AHID,A(k) is

a negligible function of k for any polynomial time adversary A.

6.2 Ring Signature

A ring signature scheme has the form RS = (UKgRS ,RPKgRS ,RSKgRS ,RSig,
RVf). The functionality the algorithms UKgRS ,RPKgRS and RSKgRS are iden-
tical to those for the ad hoc group identification schemes considered earlier.
However, the prover and verifier interactive algorithms have now been replaced
with a signing algorithm RSig and a verification algorithm RVf. In particular we
have:

– GSig: Is a probabilistic signing algorithm taking input a ring signing key gski

and a message m, returning a signature σ.
– RVf: Is a deterministic verifying algorithm which takes input the ring public

key gpk, a group signature σ and a message m. It then returns a Boolean
decision to demonstrate whether the group signature is accepted or rejected.

We can define the properties of correctness, anonymity almost the same as
for ad hoc identification schemes. Unforgeability under chosen-message attacks



Experiment Expcorr
AHID,A(k)

– CU, HU← ∅.
– (i, S)← A(AddU(·)).
– If i 6∈ HU or ski 6∈ S then return 0.
– T ← Exec(i, S).
– gpk← GPKgAHID(S).
– If VAHID(gpk, T ) = 0 then return 1.
– Return 0.

Experiment Expanon-b
AHID,A(k)

– CU, HU, TL← ∅.
– d← A(CrptU(·, ·), USK(·), Exec(·, ·), CHb(·, ·)).
– Return d.

Experiment Expnon-imp
AHID,A(k)

– CU, HU← ∅.
– (Cmt, S, state)← A1(CrptU(·, ·), USK(·)).
– Ch← {0, 1}c.
– Rsp← A2(Ch, state : CrptU(·, ·), USK(·)).
– T ← (Cmt,Ch,Rsp).
– gpk← GPKgAHID(S).
– If VAHID(gpk, T ) = 0 then return 0.
– If the following are all true then return 1 else return 0.
• i ∈ HU and gski 6=⊥.
• A did not query USK(i) and T was not produced by a call to

Exec(i, S).

Fig. 6. Security experiments for canonical ad-hoc group identification schemes

is also like the non-impersonation for group identification schemes. Firstly, the
oracles are changed in the following ways:

– The Exec(i, S) oracle is now replaced by a signature oracle Sign(i,m, S)
– In CHb and the game for anonymity we replace the list of transcripts TL by

a list of signatures SL issued by the oracle CHb. The oracle CHb now also
takes an additional input, which is an adversarially chosen message m.

– We need a hash oracle H which is the same as in the game for group signa-
tures.

Secondly, the games are slightly changed as we no longer are talking about an
interactive protocol and we need to sign a message. In particular the experiments
become as in Figure 7, with the advantages being defined in the obvious manner.

6.3 Construction from Ad Hoc Group Identification to Ring
Signatures

We now construct a ring signature scheme from a canonical ad hoc group iden-
tification scheme, using the generalised Fiat–Shamir transform. Let AHID =



Experiment Expcorr
RS,A(k)

– CU, HU← ∅.
– (i, m, S)← A(AddU(·)).
– If i 6∈ HU or ski 6∈ S then return 0.
– σ ← Sign(i, m, S).
– gpk← GPKgAHID(S).
– If RVfRS(gpk, σ, m) = 0 then return 1.
– Return 0.

Experiment Expanon-b
RS,A (k)

– CU, HU, TL← ∅.
– d← A(H(·), CrptU(·, ·), USK(·), Sign(·, ·, ·), CHb(·, ·, ·)).
– Return d.

Experiment Expuf-cma
RS,A (k)

– CU, HU← ∅.
– (σ, m, S)← A(H(·), CrptU(·, ·), USK(·), Sign(·, ·, ·)).
– gpk← GPKgAHID(S).
– If RVf(gpk, σ, m) = 0 then return 0.
– If the following are all true then return 1 else return 0.
• i ∈ HU and gski 6=⊥.
• A did not query USK(i) and σ was not produced by a call to

Sign(i, m, S).

Fig. 7. Security experiments for ring signature schemes

(UKgAHID, GPKgAHID,GSKgAHID, (PAHID,VAHID) be a canonical ad hoc
group identification scheme, and s : N → N be a function which defines a
seed length s(k) given the security parameter k. We select a hash function
H : {0, 1}∗ → {0, 1}c at random from the set of all maps {0, 1}∗ → {0, 1}c,
where c is the bit length of the challenge Ch in the canonical group identification
scheme we will be using. From these we construct ring signature scheme RS =
(UKgRS ,RPKgRS ,RSKgRS ,RSig,RVf) as follows. We let UKgRS = UKgAHID,
RPKgRS = GPKgAHID, RSKgRS = GSKgAHID. Then the functions RSig and
RVf are defined as in Figure 8

The Security of the Construction The security proof of the construction is
very similar to the one of GID-to-GS given in the main body of the paper. The
main differences are that the AHID/RS algorithms are setup-free and there
are no opening and judge oracles in AHID/RS models. Moreover, the oracles
restrictions are almost the same between the security game for AHID and the
security game for RS. Hence, we do not present the proof in detail as it can be
derived as an easy exercise for the reader.



RSig(gski, m):

– RP ← Coins(PAHID).
– Cmt← PAHID(gski; RP ).
– R← {0, 1}s(k).
– Ch← H(R‖Cmt‖m).
– Rsp← PAHID(gski,Cmt,Ch, RP ).
– σ ← (R,Cmt,Rsp).
– Return σ.

RVf(gpk, σ, m):

– Parse σ as (R,Cmt,Rsp).
– Ch← H(R‖Cmt‖m).
– T ← (Cmt,Ch,Rsp).
– Return VAHID(gpk, T ).

Fig. 8. Construction of a ring signature from a canonical ad hoc identification scheme
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