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Abstract. The SHA-3 competition organized by NIST [1] aims to find
a new hash standard as a replacement of SHA-2. Till now, 14 submis-
sions have been selected as the second round candidates, including Skein
and BLAKE, both of which have components based on modular addi-
tion, rotation and bitwise XOR (ARX). In this paper, we propose im-
proved near-collision attacks on the reduced-round compression functions
of Skein and a variant of BLAKE. The attacks are based on linear dif-
ferentials of the modular additions. The computational complexity of
near-collision attacks on a 4-round compression function of BLAKE-32,
4-round and 5-round compression functions of BLAKE-64 are 221, 216

and 2216 respectively, and the attacks on a 24-round compression func-
tions of Skein-256, Skein-512 and Skein-1024 have a complexity of 260,
2230 and 2395 respectively.
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1 Introduction

Hash function, a very important component in cryptology, is a function of cre-
ating a short digest for a message of arbitrary length. The classical security
requirements for such a function are preimage resistance, second-preimage resis-
tance and collision resistance. In other words, it should be impossible to find a
collision in less hash computations than birthday attack, or a (second)-preimage
in less hash computations than brute force attack.

In recent years, the popular hash functions (MD4, MD5, RIPEMD, SHA-0
and SHA-1) have been seriously attacked [2–5]. As a response to advances in the
cryptanalysis of hash functions, NIST launched a public competition to develop
a new hash function called SHA-3. Till now, 14 submissions have been selected
as the second round candidates.

Skein and BLAKE are two of the second round candidates of SHA-3. Skein
uses the UBI chaining mode, while BLAKE uses HAIFA approach. Both of them
are of the ARX (Addition-Rotate-XOR) type. More specifically, their design
primitives use only addition, rotation and XOR.



Previous works studied the linear differential trails of non-linear operations
such as boolean functions and modular additions. Linear differential trails can be
constructed to find near-collisions of these hash functions [7, 9, 10, 13]. Recently,
linear differential attacks have been applied to many SHA-3 candidates, such as
EnRUPT, CubeHash, MD6, and BLAKE [8–10].

In this paper, we further study the linear differential techniques and propose
near-collision attacks on the reduced-round compression functions of Skein and
BLAKE. Our strategy to find optimal linear differential trails can be described in
three steps. First, linear approximations of reduced-round compression functions
of Skein and BLAKE is constructed. In this step, all the addition modulo 264

components of Skein and BLAKE are approximated by bitwise XOR of the
inputs. Second, a difference with low hamming weight in some intermediate
state as a starting point is placed. Third, the difference above propagates in
both forward and backward directions until the probability becomes too small
to obtain near collisions. Table 1 summarizes our attack along with the previously
known ones on the reduced-round compression functions of Skein and BLAKE.

Table 1. Comparison of results on the reduced-round compression functions of Skein
and BLAKE

Target Rounds Time Memory Type Authors

Skein-512 17 224 - 434-bit near-collision [12]

Skein-256 24 260 - 236-bit near-collision X
Skein-512 24 2230 - 374-bit near-collision X
Skein-1024 24 2395 - 740-bit near-collision X
BLAKE-32 4 256 - 232-bit near-collision [13]

BLAKE-32 4 221 - 152-bit near-collision X
BLAKE-64 4 216 - 396-bit near-collision X
BLAKE-64 5 2216 - 306-bit near-collision X

The paper is organized as follows. In Section 2, we describe Skein and BLAKE
hash functions. In Section 3, the linear differential technique is applied to Skein
and present near-collisions for Skein’s compression function with reduced-round
Threefish-256, Threefish-512 and Threefish-1024. In Section 4, we apply the lin-
ear differential technique to BLAKE and obtain near-collisions for reduced-round
compression functions of BLAKE. Finally, Section 5 summarizes this paper.

2 Description of Skein and BLAKE

2.1 Skein

Skein is a family of hash functions based on the tweakable block cipher Threefish,
which has equal block and key size of either 256, 512, or 1,024 bits. The MMO



(Matyas-Meyer-Oseas) mode is used to construct the Skein compression function
from Threefish. The format specification of the tweak and a padding scheme
defines the so-called Unique Block Iteration (UBI) chaining mode. UBI is used
for IV generation, message compression, and as output transformation.

Threefish consists of a number of similar rounds, which is based on three
simple operations: Addition modulo 264, Rotation and XOR. The intermediate
state of Threefish is organized as a number of 64-bit words. The letter ∆ stands
for a difference in the most significant bit (MSB), i.e., ∆ = 0x8000000000000000.
Subkeys are derived from the cipher key K and tweak T = (t0, t1) through a
simple key schedule.

Let Nw denote the number of words in the key and the plaintext block, Nr

be the number of rounds. For Threefish-256, Nw = 4 and Nr = 72. Let vd,i be
the value of the ith word of the encryption state after d rounds. The procedure
of Threefish-256 encryption is:

1. (v0,0, v0,1, · · · , v0,Nw−1) := (p0, p1, · · · , pNw−1), where (p0, p1, p2, p3) is the
256-bit plaintext.

2. For each round, we have

ed,i :=

{
(vd,i + kd/4,i) mod 264 if d mod 4=0,

vd,i otherwise.

Where kd/4,i is the i-th word of the subkey added to the d-th round. For i =
0, 1, · · · , Nw − 1, d = 0, 1, · · · , Nr − 1.

3. Mixing and word permutations followed:

(fd,2j , fd,2j+1) :=MIXd,j(ed,2j , ed,2j+1), j = 0, · · · , Nw/2− 1,

vd+1,i :=fd,π(i), i = 0, · · · , Nw − 1,

where the MIX operation depicted in Figure 1 transforms two of these 64-bit
words and is common to all Threefish variants, with Rd,i rotation constant de-
pending on the Threefish block size, the round index d and the position of the
two 64-bit words i in the Threefish state. The permutation π(.) and the rotation
constant Rd,i can be referred to [14].

<<<Rr,i

Fig. 1. The MIX function



After Nr rounds, the ciphertext C = (c0, c1, · · · , cNw−1) is given as follows:

ci := (vNr,i + kNr/4,i) mod 264 for i = 0, 1, · · · , Nw − 1.

The s-th keying (d = 4s) uses subkeys ks,0, · · · , ks,Nw−1. These are derived
from the key k0, · · · , kNw−1 and from the tweak t0, t1 as follows:

ks,i :=k(s+i) mod (Nw+1) for i = 0, · · · , Nw − 4
ks,i :=k(s+i) mod (Nw+1) + ts mod 3 for i = Nw − 3
ks,i :=k(s+i) mod (Nw+1) + t(s+1) mod 3 for i = Nw − 2
ks,i :=k(s+i) mod (Nw+1) + s for i = Nw − 1

where kNw
:= b264/3c ⊕⊕Nw−1

i=0 ki and t2 := t0 ⊕ t1.

2.2 BLAKE

The BLAKE family of hash functions is designed by Aumasson et al. [11] and
follows HAIFA structure [6] with internal wide-pipe design strategy. Two versions
of BLAKE are available: a 32-bit version (BLAKE-32) for message digests of 224
bits and 256 bits operates on 32-bit words, and a 64-bit version (BLAKE-64) for
message digests of 384 bits and 512 bits operates on 64-bit words.

BLAKE operates on a large inner state v which is represented as a 4 × 4
matrix of words. The compression function consists of three steps: Initialization,
14 iterations of Rounds and Finalization as illustrated in Figure 2.

t M
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S

Fig. 2. Overall Structure of Compression Function of BLAKE

During the First step, the inner state v is initialized from 8 words of the
chaining value h = h0, · · · , h7, 4 words of the salt S and 2 words of block index
(t0, t1) as follows:




v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15


 ←−




h0 h1 h2 h3

h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3

t0 ⊕ c4 t0 ⊕ c5 t1 ⊕ c6 t1 ⊕ c7






Then, a series of 14 rounds is performed. Each round is based on the stream
cipher ChaCha [15] and consists of the eight round-dependent transformations
G0, · · · , G7. Figure 3 and Figure 4 show the G function of BLAKE-32 and
BLAKE-64 for index i respectively, where σr is a fixed permutation used in
round r, Mσr

are message blocks and Cσr
are round-dependent constants. The

Gi(0 ≤ i ≤ 7) function takes 4 registers and 2 message words as input and out-
puts the updated 4 registers. A column step and diagonal step update the four
columns and the four diagonals of matrix v respectively as follows:

G0(v0, v4, v8, v12) G1(v1, v5, v9, v13) G2(v2, v6, v10, v14) G3(v3, v7, v11, v15)
G4(v0, v5, v10, v15) G5(v1, v6, v11, v12) G6(v2, v7, v8, v13) G7(v3, v4, v9, v14)
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Fig. 3. The G function of BLAKE-32 for index i
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Fig. 4. The G function of BLAKE-64 for index i

In the last step, the new chaining value h′ = h′0, · · · , h′7 is computed from
the internal state v and the previous chain value h (Finalization step):



h′0 ← h0 ⊕ s0 ⊕ v0 ⊕ v8

h′1 ← h1 ⊕ s1 ⊕ v1 ⊕ v9

h′2 ← h2 ⊕ s2 ⊕ v2 ⊕ v10

h′3 ← h3 ⊕ s3 ⊕ v3 ⊕ v11

h′4 ← h4 ⊕ s4 ⊕ v4 ⊕ v12

h′5 ← h5 ⊕ s5 ⊕ v5 ⊕ v13

h′6 ← h6 ⊕ s6 ⊕ v6 ⊕ v14

h′7 ← h7 ⊕ s7 ⊕ v7 ⊕ v15

3 Near-Collisions for the Reduced-Round Compression
Function of Skein

Skein is based on the UBI (Unique Block Iteration) chaining mode that uses
Threefish block cipher to build a compression function. The compression function
outputs Ek(t,m)⊕m, where E is Threefish.

Since the MIX function is the only non-linear component in the Threefish
block cipher, the first step is to linearize the MIX function to obtain linear ap-
proximations of the Compression Function of Skein. To Linearize the MIX func-
tion, We replace the modular addition with XOR. The linearized MIX function
is illustrated in Figure 5.

<<<Rr,i

Fig. 5. linearized MIX function in Threefish

3.1 Near Collisions for the 24-Round Compression Function of
Skein-256

After linearizing the Compression Function of Skein-256, we need to choose the
starting point. Since Skein-256 has 72 rounds, there are 72 ≈ 26 possible choices.
Then we place one or two bits of differences in the message blocks and certain
round of the intermediate state at the starting point. Since compression function
of Skein-256 uses 256-bit message and 256-bit state, there are

(
512
1

)
+

(
512
2

) ≈ 217

choices of positions for the one or two bits above. Therefore, the search space is
less than 223, which can be searched exhaustively.

Our aim is to find one path with the highest probability in the search space.
As introduced in [9], we can calculate probability of one differential trail by
counting hamming weight of the differences. We search for 24-round differential
trail and the results are introduced as follows.



The difference ∆ in k2, k3, t0 and t1 gives a difference (0, 0, 0,∆) at the third
subkey, and (0, 0, 0, 0) after the fourth. The difference in the state of round 20 is
canceled out at the third subkey which is then turned into an eight-round local
collision from round 21 to round 28. After 24 rounds, the hamming weight of
the difference becomes too large to obtain near collisions. In the 35-th round,
after adding the final subkey and feedforward value, one obtains a collision on
256 − 20 = 236 bits. Table 2 shows the corresponding differential trail of the
key and the tweak from the 12-th round to the 35-th round. Table 3 presents
the corresponding trail from the 12-th round to the 35-th round. In the table,
the probability for all rounds are given, except for the first round, which are
indicated with M as we will use message modification techniques to make sure
the first round of the trail fulfills.

Table 2. Details of the subkeys and of their differences of Skein-256, given a difference
in k2, k3, t0 and t1.

Rd d ks,0 ks,1 ks,2 ks,3

3 12 k3 k4 + t2 k0 + t0 k1

∆ ∆ ∆ 0

4 16 k4 k0 + t0 k1 + t1 k2

0 ∆ 0 ∆

5 20 k0 k1 + t1 k2 + t2 k3

0 0 0 ∆

6 24 k1 k2 + t2 k3 + t0 k4

0 0 0 0

7 28 k2 k3 + t0 k4 + t1 k0

∆ 0 0 0

8 32 k3 k4 + t1 k0 + t2 k1

∆ 0 ∆ 0

9 36 k4 k0 + t2 k1 + t0 k2

0 ∆ ∆ ∆

The message modification are applied to the most expensive part in our trail,
namely the first round. Freedom degrees in chaining value and the message can
be used to fulfill the first round of the trail. We use techniques introduced in
[9] to derive sufficient conditions for each modular addition of the first round of
the trail. Then the message block and the chaining value are chosen according
to the conditions.



Table 3. Differential trail used for near collision of a 24-round compression function
of Skein-256, with probability of 2−60.

Rd Difference Pr

12 2a0344037023028a 60c217767a8a8080 ee8002206ae20266 7e23020a22014e01 -

13 c0a3442714a300aa 4ac153750aa9820a 4ea102204ac10264 10a3002a48e34c67 M

14 8a2246035a02028a 8a6217521e0a82a0 1e02020a0a620642 5e02020a02224e03 M

15 8040414144008002 004051514408802a 4000000000404041 4000000008404841 M

16 0000000000080028 8000101000080028 0010104008002800 0000000008000800 M

17 0000101000000020 0000101000000000 0010104000000000 8010104000002000 2−27

18 0000000000000020 0000000000000020 0000004000002000 8000000000002000 2−7

19 0000000000000000 0000000000000000 0000004000000000 8000004000000000 2−3

20 0000000000000000 0000000000000000 0000000000000000 8000000000000000 2−1

no differences in round 21 - 28 1

29 0000000000000000 8000000000000000 8000000080000000 0000000000000000 1

30 0000000000000000 8000000000000000 8000000000000000 8000000080000000 2−1

31 0000000000000000 8000000000000000 8000000000000000 0000000080000000 2−1

32 8000000000000000 8000000000000000 8000000000000000 8000000080000000 2−1

33 8000000080000000 8000000000000000 8000000000000000 8000000080000000 2−2

34 0000000080002000 0000000080000000 0000800080008000 0000000080000000 2−2

35 2000a00020008000 0000000000002000 0000800020002000 0000800000008000 2−5

36 200008002800a000 2000a0002000a000 80008000a0008000 000000002000a000 2−10

3.2 Near Collisions for the 24-Round Compression Functions of
Skein-512 and Skein-1024

Ideas for near collision attacks on the reduced-round compression functions of
Skein-512 and Skein-1024 are similar to the one of Skein-256. So we skip expla-
nations here. In Table 4 and Table 5, we propose difference in the key schedule
of Skein-512 and Skein-1024. The differential trails for them are illustrated in
Table 6 and Table 7 in the appendix.

4 Near Collisions for the Reduced-Round Compression
Function of BLAKE

4.1 Linearizing G function of BLAKE-32 and BLAKE-64

In order to linearize the G function, modular additions are replaced with XORs.
Near collision attack for a 4-round compression function of BLAKE-32 in [13]
also uses the linearization technique. The cyclic rotation constants in BLAKE-
32 are 16,12,8,7. Notice that three of the constants 16,12 and 8 have a greatest
common divisor 4, so difference 0xAAAAAAAA is cyclic invariant with these
rotation constants, where A is a 4-bit value. In the linearized BLAKE-32, if all
differences in registers are restricted to this pattern, cyclic rotations difference
>>> 16, >>> 12 and >>> 8 can be removed. If zero differences pass through



Table 4. Details of the subkeys and of their differences of Skein-512, given a difference
in k4, k5 and t0 (leading to a differences in t2).

Rd d ks,0 ks,1 ks,2 ks,3 ks,4 ks,5 ks,6 ks,7

5 20 k5 k6 k7 k8 k0 k1 + t2 k2 + t0 k3 + 5

∆ 0 0 0 0 ∆ ∆ 0

6 24 k6 k7 k8 k0 k1 k2 + t0 k3 + t1 k4 + 6

0 0 0 0 0 ∆ 0 ∆

7 28 k7 k8 k0 k1 k2 k3 + t1 k4 + t2 k5 + 7

0 0 0 0 0 0 0 ∆

8 32 k8 k0 k1 k2 k3 k4 + t2 k5 + t0 k6 + 8

0 0 0 0 0 0 0 0

9 36 k0 k1 k2 k3 k4 k5 + t0 k6 + t1 k7 + 9

0 0 0 0 ∆ 0 0 0

10 40 k1 k2 k3 k4 k5 k6 + t1 k7 + t2 k8 + 10

0 0 0 ∆ ∆ 0 ∆ 0

Table 5. Details of the subkeys and of their differences of Skein-1024, given a difference
in k0, k2 and t1 (leading to a differences in t2).

Rd d ks,0 ks,1 ks,2 ks,3 ks,4 ks,5 ks,6 ks,7 ks,8 ks,9 ks,10 ks,11 ks,12 ks,13 ks,14 ks,15

0 0 k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 + t0 k14 + t1 k15

∆ 0 ∆ 0 0 0 0 0 0 0 0 0 0 0 0 0

1 4 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 + t1 k15 + t2 k0

0 ∆ 0 0 0 0 0 0 0 0 0 0 0 ∆ ∆ 0

2 8 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 + t2 k0 + t0 k1

∆ 0 0 0 0 0 0 0 0 0 0 0 0 ∆ 0 ∆

3 12 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k0 + t0 k1 + t1 k2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 16 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k0 k1 + t1 k2 + t2 k3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∆ ∆

5 20 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k0 k1 k2 + t2 k3 + t0 k4

0 0 0 0 0 0 0 0 0 0 0 0 ∆ ∆ ∆ 0



>>> 7, the only possible difference pattern in registers is either 0xAAAAAAAA
or zero which can be indicated as 1-bit value. So the linear differential trails with
this difference pattern form a small space of size 232, which can be searched by
brute force. The linear differential trail in [13] is the best one in this space. But
this attack doesn’t work on BLAKE-64, because the cyclic rotation constants
are different. BLAKE-64 uses the number of rotations 32, 25, 16 and 11. Two of
them are not multiples of 4, which implies more restrictions of the differential
trail.

To obtain near collisions for a reduced-round compression function of BLAKE-
64 and improve the previous near-collision attack on a reduced-round compres-
sion function of BLAKE-32 in [13], we have to release the restrictions. This can
be done in two ways: using non-linear differential trail instead of linear one, or
still using linear differential trail but releasing restrictions on the differential
pattern. In this paper, we use linear differential trail and try to release restric-
tions on the differential pattern. Instead of using cyclic invariant differences, we
use a random difference of hamming weight less than or equal to two in the
intermediate states.

Since we intend to release restrictions on the differential pattern, the cyclic
invariant differential pattern in previous works is not used. So the cyclic rotations
can not be removed.

Figure 6 and Figure 7 show the linearized G function of BLAKE-32 and
BLAKE-64 respectively.
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Fig. 6. linearized G function in BLAKE-32

4.2 Searching for Differential Trails with High Probability

We need to choose the starting point after linearizing G function. Since BLAKE-
32 has 10 rounds and BLAKE-64 has 14 rounds, there are less than 24 possible
choices. Then we place one or two bits of differences in the message blocks and
certain round of the intermediate state at the starting point. Because compres-
sion function of BLAKE-32 uses 512-bit message and 512-bit state and compres-
sion function of BLAKE-64 uses 1024-bit message and 1024-bit state, there are
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Fig. 7. linearized G function in BLAKE-64
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) ≈ 221 choices of positions for the pair
of bits on BLAKE-32 and BLAKE-64 respectively. Therefore, the search spaces
for BLAKE-32 and BLAKE-64 are less than 223 and 225 respectively, which can
be explored exhaustively.

Our aim is to find one path with the highest probability in the search space.
Furthermore, following Section 3.1, we calculate probability of one differential
trail by counting hamming weight in the differences. We search for differential
trails of 4-round compression function of BLAKE-32, 4-round and 5-round com-
pression functions of BLAKE-64. And the results are introduced in the following
sections.

4.3 Near Collision for 4-Round Compression Function of BLAKE-32

We search with the configuration where differences are in m[0] = 0x80008000
and v[0, 2, 4, 8, 10] and find that a starting point at round 4 leads to a linear
differential trail whose total hamming weight is 21. We don’t need to count for
the last round, since it can be fulfilled by message modifications with similar
techniques used in attacks on Skein.

So, This trail can be fulfilled with probability of 2−21. Complexity of this
attack is 221 with no memory requirements. With assumption that no differences
in the salt value, this configuration has a final collision on 256− 104 = 152 bits
after the finalization. Table 8 in the appendix demonstrates how differences
propagate in intermediate chaining values from round 4 to 7.

4.4 Near Collision for the 4-Round Compression Function of
BLAKE-64

We search with the configuration where differences are in m[11] = 0x80000000
80000000 and v[0, 2, 4, 8, 10] and find that a starting point at round 7 leads to
a linear differential trail whose total hamming weight is equal to 16. We don’t
need to count for the last round, since it can be fulfilled by message modifications
with similar techniques used in attacks on Skein.

So, This trail can be fulfilled with probability of 2−16. Complexity of this
attack is 216 with no memory requirements. With assumption that no differences



in the salt value, this configuration has a final collision on 512− 116 = 396 bits
after the finalization. Table 9 in the appendix demonstrates how differences
propagate in intermediate chaining values from round 7 to 10.

4.5 Near Collision for the 5-Round Compression Function of
BLAKE-64

Then we search for 5-round differential trails, with the configuration where dif-
ferences are placed in m[11] = 0x8000000080000000 and v[0, 2, 4, 8, 10]. We find
that a starting point at round 7 leads to a linear differential trail whose to-
tal hamming weight is 216. This trail with probability of 2−216 is illustrated in
Table 10 of the appendix, which leads to a 512 − 206 = 306-bit collision after
feedforward. The message modifications are also applied to the last round.

5 Conclusion

In this paper, we revisited the linear differential techniques and applied it to
two ARX-based hash functions: Skein and BLAKE. Our attacks include near-
collision attacks on the 24-round compression functions of Skein-256, Skein-512
and Skein-1024, the 4-round compression function of BLAKE-32, and the 4-
round and 5-round compression functions of BLAKE-64. Future works might
apply some non-linear differentials for integer addition besides XOR differences
to improve our results.
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A Differential Trails of Reduced-Round Skein and
BLAKE



Table 6. Differential trail used for near collision of 24-round Skein-512, with probability
of 2−230.

Rd Difference Pr

20 177363f900ab3668 36ed5b708e227114 55bc1c3e7881275c 4e65052fe03ee6b3
-

8ca8e770541856b3 36a6043068ef74e1 821adaa76647acf8 d0857e4c77f10cb0

21 1bd9191198bfc1ef 0af0294dc0abc1a1 3a0ee3403cf72252 2e074b0908d70142
M

d29fa4eb11b6a048 a21e22e38124a488 a19e38898e89477c 811420858c004114

22 1409a84934202310 1400884920202110 70818608909204c0 6181000c80a00440
M

208a180c02890668 080a080c02002648 1129305c5814004e 110110541804004c

23 1100860410320080 1100040410220080 2880100000892020 2080100040882200
M

0028200840100002 00a0200800100000 0009200014000200 0001000010000200

24 0800000040010220 0080000440000220 0088000040000002 0008000000000002
M

0008200004000000 8008200000000000 0000820000100000 8000820000000000

25 0080000040000000 0000000040000000 0000000004000000 0000000004000000
2−43

0000000000100000 0000000000100000 0880000400010000 0080000000010000

26 0000000000000000 0000000000000000 0000000000000000 0000000000000000
2−8

0800000400000000 0800000000000000 0080000000000000 0080000000000000

27 0000000000000000 0000000000000000 0000000400000000 0000000400000000
2−3

0000000000000000 0000000000000000 0000000000000000 0000000000000000

28 0000000000000000 0000000000000000 0000000000000000 0000000000000000
2−1

0000000000000000 0000000000000000 0000000000000000 8000000000000000

no differences in round 29 - 36 1

37 0000000000000000 0000000000000000 8000000000000000 0000000000000000
1

0000000000000000 8000000000000000 0000000000000000 0000000000000000

38 8000000000000000 0000000000000000 8000000000000000 0000000000000000
1

0000000000000000 8000000000002000 0000000000000000 8000000000000000

39 8000000000000000 8000000000000000 8000000000002000 8000020000000000
2−1

8000000000000000 8000000008000000 8000000000000000 8000000000000000

40 0000020000002000 0000000100000000 0000000008000000 0000020000000000
2−3

0000000000000000 0000020008002000 0000000000000000 0000020004002010

41 8000020008000000 0002020100002000 8000020008002000 80100a0004012012
2−24

8000020004002010 0002020008000000 0000020100002000 800102000c000000

42 001008000c010012 8400000148002004 800200000c002010 800100410c812006
2−26

800100010c002000 000200000c200010 8002000108002000 4035082018010810

43 0003004100810016 8412980104082816 8003000100202010 c0b300010a85381c
2−47

c037082110012810 4203010100002010 8410080144012016 400e004300031914

44 40b000000aa5180c b413905054a42025 8234092010010800 c592826243021882
2−74

c41e084244023902 8236082430311810 8411984004892800 308981660aa70d06



Table 7. Differential trail used for near collision of Skein-1024, of probability 2−395.

Rd Difference Pr

0 19784dd0abac34ae 195468f0130f00ce 1866a2c424af0b54 fc2f300ca644975c

-
724160f9fbe7774d 354b6cea52cf6b59 b7e8d028e7ee826b c80d060ce08aa6aa
9e01dc1568d478f3 6c62c73d18ea1df5 9c52d04d61b020b8 90f0436baf866419
c56a33799988135a 4620157d0e931057 fc472494ac63eae4 7839420c8263b374

1 802c2520b8a33460 90a426309a23906a 644992c882eb9c08 dc0982c082ca8b08

M
7fe5d624076424c1 8a75cc2a06056541 470a0c13a9281c14 4808081729281800
0ca29326ce3644a1 2cb0b22284625484 834a2604971b030d 824806001000038d
047e66982e005990 0c66e64166434521 f2631b28703e6506 703f2a2076ba6008

2 108803102280a40a 90a0038028009409 b840100800211700 9841100800000508

M
0f02040480000414 0d02000480000410 f5901a0e01614180 5510300601614100
01022004871b0080 03022000840b9080 081880d948431cb1 8818005151400c81
825c31080684050e 805c30080404000a 201221044a541025 201220804810002c

3 802800900a803003 0020008008801003 2001000000211208 0001000000201208

M
a0802a0800000080 80a2220800000000 0200040000000004 0200040000000000
8000808819031030 0000008018030030 0200010002800504 0200000000800100
0000018402441009 0000008000041009 0200000403109000 0000000403109000

4 8008001002002000 8000001002002000 2000000000010000 2000000000000000

M
0000000000000004 0000000000000004 2022080000000080 6012000000000080
0000010002000404 0000010002000004 0000010402400000 0000000402400000
0200000000000000 8200000000000000 8000800801001000 0000800001000000

5 8008000000000000 0008000002000000 0000000000010000 0000000000010000

2−714030080000000000 0010080000000000 0000000000000000 0000000000000000
0000010000000000 0000010000000000 0000000000000000 0000000000000000
0000000800001000 0000000000001000 0000000000000400 0000000000000400

6 8000000002000000 0000000002000000 0000000000000000 0000000000000000

2−110000000000000000 0000000000000000 4020000000000000 4000000000000000
0000000000000000 0000000000000000 0000000800000000 0000000800000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

7 8000000000000000 0000000000000000 0000000000000000 0000000000000000

2−40020000000000000 0020000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

8 8000000000000000 0000000000000000 0000000000000000 0000000000000000

2−10000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 8000000000000000 0000000000000000 8000000000000000

no differences in round 9 - 16 1

17 0000000000000000 0000000000000000 0000000000000000 0000000000000000

1
0000000000000000 0000000000000000 0000000000000000 0000000020000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

18 0000000000000000 0000000000000000 0000000000000000 0000000000000000

2−10000000020000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 1000000020000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

19 0000000000000000 1000020020000100 0000000000000000 0000000000000000

2−30000000000000000 0000000000000000 0000000020000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000020000000 1000000020000000 0000000000000000

20 1000020020000100 0000000000000000 0000000000000000 0000000020000200

2−80000000020000000 0000000000000000 0000000000000000 1000000020000000
0000000000000000 0000000020000000 0000000020000000 0000000000000000
1000000020000000 0000000000000000 0000000000000000 1002022020040140

21 1000020020000100 0000000220000000 0000000020000200 1000020020000000

2−421000000020000000 0000000020000000 0000000020000000 9800820024004100
0000000020000000 1000800020010000 1000000020000000 8000080020000200
9002022020040140 0000000020000000 0000000020000000 1000020020000100

22 1000020200000100 1008800200110001 1000020000000200 90020220000401c0

2−399800820004004100 d010080100040200 1000000000000000 1002022000040140
9000080000000200 9004420414016102 9002022000040140 9000020040000a00
1000020000000100 1000000000200000 1000800000010000 1002220200000100

23 0008820000110101 00406a455417732b 80020020000403c0 8000024000200100

2−740002022000040140 40100020000c0b41 48108a0104044300 0000a22204450500
0002002040040b40 0a02823011040160 0000020000200100 80120722400c0b40
0002a20200010100 48c09a0905044702 00044a0414016302 800a821100101109

24 0048e8455406722a aa28a11141401c20 00020260002402c0 59de3128076d6216

2−1414810282300414600 e8020762a4640bc1 4012020000080a01 a02cdb150115500b
80120522402c0a40 6010282611516428 48c2380b05054602 0082066200240bc0
800ec8151411720b 015212002008060a 0a00821051000a20 6a0dbc52272d726a



Table 8. Differential trail used for near collision of 4-round BLAKE-32, with proba-
bility of 2−21.

Rd Difference Pr

4 88008800 00000000 80008000 00000000

88008800 00000000 00000000 00000000
-

80008000 00000000 80008000 00000000

00000000 00000000 00000000 00000000

5 00000000 00000000 80008000 00000000

00000000 00000000 00000000 00000000
2−12

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

6 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
2−1

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

7 80088008 00000000 00000000 00000000

00000000 11101110 00000000 00000000
2−8

00000000 00000000 88008800 00000000

00000000 00000000 00000000 08000800

8 28222822 18981898 11111111 19181918

33123312 44414441 02230223 32233223
M

91919191 10101010 28222822 08080808

89918991 08800880 89918991 08880888

Table 9. Differential trail used for near collision of 4-round BLAKE-64, with proba-
bility of 2−16.

Rd Difference Pr

7 8100000081000000 0000000000000000 8000000080000000 0000000000000000

8100000081000000 0000000000000000 0000000000000000 0000000000000000
-

8000000080000000 0000000000000000 8000000080000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

8 0000000000000000 0000000000000000 8000000080000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000
2−12

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

9 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000
2−1

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

10 8000000080000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000001000000010 0000000000000000 0000000000000000
2−3

0000000000000000 0000000000000000 0000800000008000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000800000008000

11 8240204082402040 a8402040a8402040 0850085008500850 2850200028502000

0a0002000a000200 0004400400044004 0010080000100800 0a110a010a110a01
M

8850081088500810 2010285020102850 2240000022400000 a0002840a0002840

2840a0002840a000 0040000000400000 2840200028402000 2040804020408040



Table 10. Differential trail used for near collision of 5-round BLAKE-64, with proba-
bility of 2−216.

Rd Difference Pr

7 8100000081000000 0000000000000000 8000000080000000 0000000000000000

8100000081000000 0000000000000000 0000000000000000 0000000000000000
-

8000000080000000 0000000000000000 8000000080000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

8 0000000000000000 0000000000000000 8000000080000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000
2−12

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

9 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000
2−1

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

10 8000000080000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000001000000010 0000000000000000 0000000000000000
2−3

0000000000000000 0000000000000000 0000800000008000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000800000008000

11 8240204082402040 a8402040a8402040 0850085008500850 2850200028502000

0a0002000a000200 0004400400044004 0010080000100800 0a110a010a110a01
2−200

8850081088500810 2010285020102850 2240000022400000 a0002840a0002840

2840a0002840a000 0040000000400000 2840200028402000 2040804020408040

12 8a14284d8a14284d 8285222482852224 c2a442e0c2a442e0 4881023048810230

001d0aac001d0aac 1b001a111b001a11 4aa500044aa50004 0c284c3c0c284c3c
M

6ab4c0e56ab4c0e5 c26048d1c26048d1 2851a04d2851a04d 0a6122d00a6122d0

0081aa700081aa70 28c0209128c02091 2885223428852234 0091a8950091a895


