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1 Introduction

Recently, pairing-based cryptosystems have been one of the most attrac-
tive research topics in public-key cryptography since the proposals of
some useful cryptographic schemes, such as the identity-based key agree-
ment, the tripartite Diffie–Hellman key exchange, and the identity-based
encryption schemes [3], [9], [14]. With respect to the efficient implementa-
tion of pairing-based cryptographic schemes, the computation of pairings,
such as the Weil and Tate pairings, is the bottleneck. Currently, the most
suitable pairing for the efficient implementation of pairing-based crypto-
graphic schemes is the Tate pairing. Therefore, many algorithms for the
efficient computation of the Tate pairing and some of its variants have
been proposed, including the ηT [1], Duursma–Lee [6], Ate [8], Atei [19],
R-Ate [10], and optimal [20] pairings.

A standard algorithm for computing pairings is Miller’s algorithm
[11], [12]. A generic implementation of Miller’s algorithm uses a classical
double-and-add line-and-tangent method. Therefore, the time required
using Miller’s algorithm is linear with respect to the size of some input
parameter r, as well as depending on the Hamming weight of r. Most
improvements of pairing computation attempt to shorten the number of
iterations of a loop in the algorithm, the so-called Miller loop. In fact, the



Ate, Atei, R-Ate, and optimal pairings are truncated loop variants of the
Tate pairing.

In 2007, Stange [17] defined elliptic nets and proposed an alternative
method for the Tate pairing computation based on elliptic nets. Elliptic
nets are a generalization of elliptic divisibility sequences, which are cer-
tain non-linear recurrence sequences related to elliptic functions. In 1948,
Ward [21] first studied the arithmetic properties of elliptic divisibility se-
quences. As in the case of Miller’s algorithm, a generic implementation
of elliptic net algorithms proposed by Stange uses the double-and-add
method, and so, as in the case of Miller’s algorithm, the time required
using the algorithm is linear with respect to the size of r. Both Millerfs
and elliptic net algorithms include two internal steps, referred to as Dou-
ble and DoubleAdd [17]. In Miller’s algorithm, the cost of DoubleAdd
is about twice that of Double. In contrast, in the elliptic net algorithm,
these two steps require almost the same amount of time. In particular,
the running time is independent of the Hamming weight of r.

Because the efficiency of the algorithm is comparable to that of Miller’s
algorithm, by using further improvements and optimizations, we expect
the elliptic net algorithm to be an efficient alternative to Miller’s algo-
rithm. Therefore, from both theoretical and practical points of view, it is
important to investigate explicit formulae for computing some variants of
the Tate pairing, based on elliptic nets.

In the present paper, we explicitly give formulae based on elliptic nets
for computing the following variants of the Tate pairing: the Ate, Atei,
R-Ate, and optimal pairings.

These pairings are defined as “point-evaluation” pairings, although
the Tate pairing is a “divisor-evaluation” pairing. These point-evaluation
pairings are defined using normalized functions (see §2). Hence, we need
to formulate a normalization of functions for elliptic nets. In the present
paper, we give a normalization of functions for elliptic nets and then the
formulae of the above-listed point-evaluation pairings. We also discuss
their efficiency by using some experimental results.

The remainder of this paper is organized as follows. Section 2 gives
a brief mathematical description of pairings and elliptic nets. Section 3
contains our main results concerning pairings described by elliptic nets.
In Section 4, we will show our experimental results. We draw conclusions
in Section 5.
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2 Mathematical Preliminaries

2.1 Pairings

Let E be an elliptic curve over a finite field Fq with q elements. The
set of Fq-rational points of E is denoted as E(Fq). Let E(Fq)[r] denote
the subgroup of r-torsion points in E(Fq). We write O for the point at
infinity on E. Consider a large prime r such that r | #E(Fq) and denote
the embedding degree by k, which is the smallest positive integer such
that r divides qk−1. Let πq be the Frobenius endomorphism πq : E → E :
(x, y) 7→ (xq, yq). We denote the trace of Frobenius by t, i.e., #E(Fq) =
q + 1− t. Finally, let µr(⊂ F×qk) be the group of r-th roots of unity.

Weil pairing: The Weil pairing er(·, ·) is defined by

er(·, ·) : E(Fqk)[r]× E(Fqk)[r]→ µr,

(P,Q) 7→ er(P,Q) := fr,P (DQ)/fr,Q(DP ),

where DP is a divisor equivalent to (P ) − (O) and fs,P is a rational
function on E such that div(fs,P ) = rDP . Similarly, div(fs,Q) = rDQ,
where DQ is equivalent to (Q) − (O). We assume that DP and DQ are
chosen with disjoint supports.

Note that the Weil pairing does not depend on the choice of DP and
DQ. Furthermore, the Weil pairing is bilinear and non-degenerate.

Tate pairing: Let P ∈ E(Fqk)[r] and Q ∈ E(Fqk). Choose a point
R ∈ E(Fqk) such that the support of div(fr,P ) = r(P )− r(O) and DQ :=
(Q+R)− (R) are disjoint. Then, the Tate pairing is defined by

〈·, ·〉r : E(Fqk)[r]× E(Fqk)/rE(Fqk)→ F×
qk
/(F×

qk
)r,

(P,Q) 7→ 〈P,Q〉r := fr,P (DQ) mod (F×
qk

)r .

It has been shown that 〈P,Q〉r is bilinear and non-degenerate.
For cryptography applications, it is convenient to define pairings whose

outputs are unique values rather than equivalence classes. Thus, herein,
we consider the reduced Tate pairing defined by

τr : E(Fqk)[r]×E(Fqk)/rE(Fqk)→ µr,

τr(P,Q) = 〈P,Q〉(qk−1)/r
r .

We call the operation z 7→ z(qk−1)/r final exponentiation.
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The Weil Tate pairings satisfy that

er(P,Q) =
〈P,Q〉r
〈Q,P 〉r up to r-th powers. (1)

Thus, if the cost of final exponentiation is sufficiently small, the cost of
computing the Tate pairing is almost half of that of computing the Weil
pairing. Because of this, the Tate pairing is widely used in cryptography
and there are numerous improved versions, such as the Ate pairing.

As mentioned in §1, a classical and currently standard algorithm for
computing pairings is Miller’s algorithm [11], [12]. One of the efficiency
benchmarks of pairing computation is based on the Miller loop. The
length of the Miller loop is log2(r) in the case of the Tate pairing 〈·, ·〉r.
Most improvements of pairing computation attempt to shorten the Miller
loop.

Barreto et al. [2] pointed out that τr(P,Q) can be computed by
τr(P,Q) = fr,P (Q)(qk−1)/r if P ∈ E(Fq)[r] and k > 1.

For cryptographic applications, it is usually assumed that points P
and Q are respectively elements in the following groups:

G1 = E(Fq)[r] = E(Fqk)[r] ∩Ker(πq − 1),
G2 = E(Fqk)[r] ∩Ker(πq − q)

Hereafter, we assume that P ∈ G1 and Q ∈ G2.
We give a brief review of the following variants of the Tate pairing: the

Ate [8], Atei [19], R-Ate [10], and optimal [20] pairings. These pairings
are defined on G2 × G1 and G1 × G2. In the present paper, we consider
the case of G2 ×G1. See the appropriate papers cited above for the case
of G1 ×G2. We use normalized functions to define the above pairings on
G2 ×G1; therefore, we will first define this normalization as follows.

Normalization of rational functions: For s ∈ Z, we define fs,Q as the
rational function satisfying the equation div(fs,Q) = s(Q) − (sQ) − (s −
1)(O). This function fs,Q is determined uniquely up to multiplication by
a constant. Uniqueness is obtained by normalization. We will denote the
normalized form of fs,R by fnorm

s,R and refer to the latter as the normalized
function. .

Let uO be a uniformizer of E on O. We may choose as this uniformizer
uO = −x

y . Then the normalized function fnorm
s,R is defined by

fnorm
s,R = fs,R/c, where c = (us−1

O fs,R)(O). (2)
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From now on, we may consider that all Miller functions fs,R are nor-
malized.

Ate pairing: The Ate pairing, proposed by Hess et al. [8], is a general-
ization of the ηT pairing [1]. The Ate pairing can be applied to not only
supersingular but also ordinary elliptic curves.

Let T = t− 1. We choose integers N and L such that N = gcd(T k −
1, qk − 1) and T k − 1 = LN . We assume that r2 does not divide qk − 1.

Then the Ate pairing is defined by fT,Q(P )(Q ∈ G2 and P ∈ G1).
We denote by α(Q,P ) the reduced Ate pairing: α(Q,P ) := fT,Q(P )(qk−1)/r.

The length of the Miller loop for computing the Ate pairing fT,Q(P ) is
log2 |T |.

Atei pairing : The Atei pairing was proposed by Zhao et al. [19]. Let
Ti := qi (mod r) for i = 1, 2, · · · , k−1. For each i, we define the following
quantities similarly to those for the Ate pairing: ai is the smallest positive
integer such that T aii ≡ 1 (mod r), Ni := gcd(T aii − 1, qk − 1), and Li is
the positive integer such that T aii − 1 = LiNi.

The Atei pairing on G2 × G1 is defined by fTi,Q(P )(Q ∈ G2 and
P ∈ G1). Analogous to the case for Ate pairing, we denote by αi(Q,P )
the reduced Atei pairing: αi(Q,P ) := fTi,Q(P )(qk−1)/r. The length of the
Miller loop for computing fTi,Q(P ) is log2(Ti).

If Tn := min{Ti : i = 1, 2, · · · , k − 1, 0 ≤ Ti ≤ r − 1}, then fTn,Q(P )
can be computed faster than the Ate pairing fT,Q(P ).

R-Ate pairing: The R-Ate pairing was proposed by Lee et al. [10] Let
A,B, a, b be integers such that A = aB + b. We define the R-Ate pairing
to be

RA,B(Q,P ) := fa,[B]Q(P ) · fb,Q(P ) ·G[aB]Q,[b]Q(P ),

where GP1,P2 is a rational function on E such that div(GP1,P2) = (P1) +
(P2)− (P3)− (O) (P3 = P1 + P2).

Lee et al. showed that RA,B(Q,P ) is bilinear and non-degenerate un-
der some conditions (see Theorem III.2 of [10]). Furthermore, they also
gave the following examples in which RA,B(Q,P ) is bilinear and non-
degenerate: (A,B) = (qi, r), (A,B) = (q, T1) where q > T1, (A,B) =
(Ti, Tj), and (A,B) = (r, Tj). See Corollary III.3. in [10].
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Optimal pairing: Optimal pairing was proposed by Vercauteren [20].
Optimal pairing can be computed in log2 r/φ(k) + ε(k) Miller loop itera-
tions (φ(k) is the Euler function of k and ε(k) ≤ log2 k).

Theorem 1 ([20] Theorem 1.) Let λ be an integer such that r|λ and
r2 - λ. We express λ as λ =

∑l
i=0 ciq

i. Then

a[c0,c1,··· ,cl] : G2 ×G1 → µr

(Q,P ) 7→
( l∏

i=0

f q
i

ci,Q
(P ) ·

l−1∏

i=0

l[si+1]Q,[ciqi]Q(P )
v[si]Q(P )

) qk−1
r

(where si =
∑l

j=i cjq
j) defines a bilinear map. Furthermore, if

λ

r
kqk−1 6≡ qk − 1

r

l∑

i=0

iciq
i−1 (mod r),

a[c0,c1,··· ,cl](Q,P ) is non-degenerate.

Note that we may consider l = φ(k)−1 because r | Φk(q), where Φk(X) is
the k-th cyclotomic polynomial. The pairing a[c0,c1,··· ,cl](Q,P ) is called the
optimal pairing because it can be computed very efficiently if c0, c1, · · · , cl
can be chosen very small.

2.2 Elliptic Nets

In 2007, Stange [17] defined elliptic nets as maps from Zn to a ring that
satisfy a certain recurrence relation associated with elliptic curves. An
elliptic net W is a map from a finitely generated abelian group A to an
integral domain R such that

W (p+ q + s)W (p− q)W (r + s)W (r)
+ W (q + r + s)W (q − r)W (p+ s)W (p)
+ W (r + p+ s)W (r − p)W (q + s)W (q) = 0

for p, q, r, s ∈ A. Elliptic divisibility sequences arise from an elliptic curve
defined over the rational numbers and a rational point of that curve.
These sequences are strongly related to elliptic functions and the divi-
sion polynomials of an elliptic curve. For cryptographic applications, the
division polynomials of an elliptic curve are the main tools of Schoof’s
algorithm [15]. As we will see later, the division polynomials of an elliptic
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curve also play an important role in the computation of elliptic net-based
pairings.

Stange introduced the concept of elliptic nets associated with elliptic
curves and described Tate pairing by using elliptic nets. In this section,
we briefly review elliptic nets. See [17] for detail.

First, we consider a function, denoted by Ψ , associated with elliptic
curves over C by using an elliptic σ-function. We define an elliptic net W
(in C) using Ψ . Next, we construct a function associated with Ψ , denoted
by Ω, that is defined in finite fields by applying a reduction theorem (see
Theorem 3 in [17]). Thus, we are able to consider W in finite fields and
construct the Tate pairing in finite fields.

To describe the Tate pairing, Stange considered a functionΩ1,v2,v3(−S, P,Q)
whose divisor on a variable S is ([v2]P + [v3]Q) − v2(P ) − v3(Q) − (1 −
v2 − v3)(O), where vi are integers and P,Q are points on an elliptic
curve over a finite field. Next, Stange showed that a function fr,P with

div(fP ) = r(P )−r(O) can be expressed as fr,P =
Ω1,0,0,(−S, P,Q)
Ω1,r,0(−S, P,Q)

. Then,

Stange showed a formula for fr,P (DQ), where DQ is a divisor equivalent
to (−S)− (−S−Q), as a function in variable S. Finally, Stange obtained
the following result by setting S = P .

Theorem 2 ([17]) Let E be an elliptic curve over a finite field K. For
P ∈ E(K)[r], Q ∈ E(K),

fr,P (DQ) =
WP,Q(r + 1, 1)WP,Q(1, 0)
WP,Q(r + 1, 0)WP,Q(1, 1)

, (3)

3 where WP,Q(r + 1, i) = Ω1,r,i(−S, P,Q)|S=P .

Remark 1 By using the above theorem and the equation (1), we can
easily obtain the Weil pairing formula using elliptic nets as the following.
For P,Q ∈ E(Fqk)[r],

er(P,Q) =
WP,Q(r + 1, 1)WQ,P (r + 1, 0)
WP,Q(r + 1, 0)WQ,P (r + 1, 1)

up to r-th powers.

Here, we assume that an elliptic curve E has a Weierstrass equation
of the form Y 2 = X3 + AX + B. Let ψn(x, y) denote the n-th division
polynomial of an elliptic curve. For simplicity, we write WP,Q(i, j) =
W (i, j). Initial values of elliptic nets W (i, 0) and W (i, 1) are obtained

3 Note that we have WP,Q(1, 0) = WP,Q(1, 1) = 1.
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by the following definition (see [17]): if P = (x1, y1) and Q = (x2, y2),
then

W (1, 0) = 1,
W (2, 0) = 2y1,

W (3, 0) = 3x3
1 + 6Ax2

1 + 12Bx1 −A2,

W (4, 0) = 4y1(x6
1 + 5Ax4

1 + 20Bx3
1 − 5A2x2

1 − 4ABx1 − 8B2 −A3),
W (0, 1) = W (1, 1) = 1,

W (2, 1) = 2x1 + x2 − (
y2 − y1

x2 − x1
)2,

W (−1, 1) = x1 − x2,

W (2,−1) = (y1 + y2)2 − (2x1 + x2)(x1 − x2)2.

Elliptic nets W (i, 0) and W (j, 1) can be computed by the following
recursive formulae.

Proposition 1 ([17])

W (2i− 1, 0) = W (i+ 1, 0)W (i− 1, 0)3 −W (i− 2, 0)W (i, 0)3,

W (2i, 0) =
W (i, 0)W (i+ 2, 0)W (i− 1, 0)2 −W (i, 0)W (i− 2, 0)W (i+ 1, 0)2

W (2, 0)
,

W (2i− 1, 1) =
W (i+ 1, 1)W (i− 1, 1)W (i− 1, 0)2 −W (i, 0)W (i− 2, 0)W (i, 1)2

W (1, 1)
,

W (2i, 1) = W (i− 1, 1)W (i+ 1, 1)W (k, 0)2 −W (i− 1, 0)W (i+ 1, 0)W (i, 1)2,

W (2i+ 1, 1) =
W (i− 1, 1)W (i+ 1, 1)W (i+ 1, 0)2 −W (i, 0)W (i+ 2, 0)W (i, 1)2

W (−1, 1)
,

W (2i+ 2, 1) =
W (i+ 1, 0)W (i+ 3, 0)W (i, 1)2 −W (i− 1, 1)W (i+ 1, 1)W (i+ 2, 0)2

W (2,−1)
.

Note thatW (i, 0) = WP,Q(i, 0) is equal to ψi(x1, y1) becauseWP,Q(i, 0) =
ψi(x1, y1) for i = 1, 2, 3, 4 and the recursive formulae for computing
W (2i− 1, 0) and W (2i− 1, 0) are the same as the recursive formulae for
division polynomials. Therefore, if E is defined over K and P ∈ E(K),
WP,Q(i, 0) ∈ K for all i and they vanish by final exponentiation.

See [17] for algorithms for computing elliptic nets.

3 The Main Results

In this section, we describe variants of the Tate pairing, the Ate, Atei,
R-Ate, and optimal pairings by using elliptic nets.
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As seen in §2, these pairings are defined using normalized functions.
Hence, we need to formulate a normalization of functions for elliptic nets.

3.1 Normalization for Elliptic Nets

First, we present the following lemma, which can be proved by using a
straight forward calculation.

Lemma 1 Let ℘(z;Λ) := 1
z2 +

∑
ω∈Λ\{0}(

1
(z−ω)2 − 1

ω2 ) be the Weier-

strass ℘ function and σ(z;Λ) := z
∏
ω∈Λ\{0}(1− z

ω )ez/ω+(1/2)(z/ω)2
be the

Weierstrass σ function on C; then
(

℘(z;Λ)
℘(z;Λ)′σ(z;Λ)

)
(0) = −1

2
.

Next, we show the following equation corresponding to equation (2)
in §2.1.

Proposition 2 Let Λ ∈ C be a lattice corresponding to the elliptic curve
E. Fix w ∈ C \ {0}. For s ∈ Z,

(−℘(z;Λ)/℘(z;Λ)′
)1−s

Ψs,1(w, z)|z=0 = 2s−1Ψs,0(w, z) .

Proof. The proposition follows from Lemma 1 and the following fact:

Ψs,1(w, z) =
σ(sw + z)

σ(w)s2−sσ(w + z)sσ(z)1−s .

The uniformizer uO = −x
y corresponds to − ℘(z)

℘(z)′ . Thus, we have the
following proposition, which gives the normalization for elliptic nets.

Proposition 3 W̃P,Q(s, 1) denotes the normalization for the elliptic
net WP,Q(s, 1). For s ∈ Z, assume [s]P 6= O. Then

W̃P,Q(s, 1) =
WP,Q(s, 1)

2s−1WP,Q(s, 0)
.

For practical uses of pairings, we can assume k > 1. In this case, 2(qk−1)/r =
1, and so we have

W̃P,Q(s, 1)
qk−1
r =

(WP,Q(s, 1)
WP,Q(s, 0)

) qk−1
r
.
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3.2 Elliptic Net-Based Pairings

We explain the key lemma which connects various pairings with elliptic
nets. We use W̃−P,S(s, 1) to denote the normalization for W−P,S(s, 1).

Lemma 2 For s ∈ Z, we assume that the point Q is neither a zero nor
a pole of fs,P . Then

fs,P (Q) = W̃−P,Q(s, 1)
−1
.

Proof. Let W−P,S(s, 1) = Ωs,1(−P, S) be a rational function in variable
S. Similar to in [17], the divisor of W−P,S(s, 1) in S is

divS(Ωs,1(−P, S)) = ([−s](−P ))− s(P )− (1− s)(O)
= −{s(P )− ([s]P )− (s− 1)(O)}
= −divS(fs,P ) .

Hence, fs,P = W̃−P,Q(s, 1)
−1

from the uniqueness of the normalized func-
tion. Finally, we obtain the desired result by taking S = Q.

The following theorem derives formulae for elliptic net-based pairings.

Theorem 3 If the following function on P and Q,

A(P, Q) =
l1∏

i=0

fαiti,P (Q)
l2∏

j=0

G
βj
[uj ]P,[vj ]P

(Q),

is bilinear, then

A(P, Q) =
l1∏

i=0

W̃αi
P,Q(ti, 1)

l2∏

j=0

G
−βj
[−uj ]P,[−vj ]P (Q) .

Proof. Using Lemma 2 and the bilinearity of A(P, Q),

A(P, Q) = A(−P, Q)−1

=
l1∏

i=0

f−αiti,−P (Q)
l2∏

j=0

G
−βj
[−uj ]P,[−vj ]P (Q)

=
l1∏

i=0

W̃αi
P,Q(ti, 1)

l2∏

j=0

G
−βj
[−uj ]P,[−vj ]P (Q) .

ut
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We consider the case of the optimal pairing. In this case, we need to
compute scalar multiplications [ciqi]Q(i = 0, 1, · · · , l) using elliptic nets.

Note that Q := (xQ, yQ) satisfies [ciqi]Q = [qi]([ci]Q) = πiq([ci]Q)
because Q ∈ E(Fqk)[r] ∩Ker(πq − q).

Furthermore, as seen in §2 of [17], WQ,P (n, 0) = ψn(xQ, yQ). Thus, we
are able to express [n]Q in terms of elliptic nets by using the following
famous multiplication formula:

[n](x, y) =
(
x− ψn−1ψn+1

ψ2
n

(x, y),
ψ2
n−1ψn+2 − ψ2

n+1ψn−2

4yψ3
n

(x, y)
)
.

Hence, we obtain [ciqi]Q = πiq([ci]Q) = (xq
i

[ci]Q
, yq

i

[ci]Q
), where

xq
i

[ci]Q
=
(
xQ − WQ,P (ci − 1, 0)WQ,P (ci + 1, 0)

WQ,P (ci, 0)2

)qi
,

yq
i

[ci]Q
=
(
WQ,P (ci − 1, 0)2WQ,P (ci + 2, 0)−WQ,P (ci + 1, 0)2WQ,P (ci − 2, 0)

2WQ,P (2, 0)WQ,P (ci, 0)3

)qi

To summarize, we show formulae of cryptographic pairings:

Theorem 4 Let E be an elliptic curve over a finite field Fq and πq :
(x, y) 7→ (xq, yq) the q-Frobenius endomorphism on E. We assume that
the embedding degree k > 1. Let r be a large prime number with r|#E(Fq)
and (r, q) = 1, and also T ≡ q (mod r) and Ti ≡ qi (mod r). Let λ =∑l

i=0 ciq
i be such that r|λ and r2 - λ. We define si =

∑l
j=i cjq

j.
Then, we have the following.

Tate pairing: For P ∈ E(Fqk)[r] and Q ∈ E(Fqk),

τr(P,Q) = fr,P (Q)
qk−1
r = W̃P,Q(r + 1, 1)

qk−1
r .

variants of the Tate pairing: For P ∈ G1 = E(Fqk)[r] ∩Ker(πq − 1)
and Q ∈ G2 = E(Fqk)[r] ∩Ker(πq − q),

– Ate

α(Q,P ) = fT,Q(P )
qk−1
r = W̃Q,P (T, 1)

qk−1
r ;

– Atei

αi(Q,P ) = fTi,Q(P )
qk−1
r = W̃Q,P (Ti, 1)

qk−1
r ;

11



– R-Ate

RA,B(Q,P )
qk−1
r =

{
fa,[B]Q(P ) · fb,Q(P ) ·G[aB]Q,[b]Q(P )

} qk−1
r

=
{
W̃[B]Q,P (a, 1) · W̃Q,P (b, 1) ·G[−aB]Q,[−b]Q−1(P )

} qk−1
r

,

where A = aB + b;
– optimal

a[c0,c1,...,cl](Q,P ) =
{ l∏

i=0

fci,Q(P )q
i ·

l−1∏

i=0

G[si+1]Q,[ciqi]Q(P )
} qk−1

r

=
{ l∏

i=0

W̃Q,P (ci, 1)q
i ·

l−1∏

i=0

G[−si+1]Q,[−ciqi]Q
−1(P )

} qk−1
r

.

For Tate pairings, we have the following stronger result.

Theorem 5 Let E be an elliptic curve over a finite field Fq. We assume
that the embedding degree k > 1. Let r be a large prime number with
r|#E(Fq) and (r, q) = 1. Then, for P ∈ E(Fq)[r] and Q ∈ E(Fqk),

τr(P,Q) = fr,P (Q)
qk−1
r = WP,Q(r, 1)

qk−1
r . (4)

Proof. Note that Tate pairing fr,P (Q) is uniquely defined over (mod (F×
qk

)r)
even though fr,P is not normalized since P ∈ E(Fq)[r]. Then, just as in
the proof of the Lemma 2,

fr,P (Q) ≡W−P,Q(r, 1)−1 mod (F×
qk

)r .

Therefore, from the bilinearity of τr(P,Q) = fr,P (Q)
qk−1
r ,

τr(P,Q) = τr(−P,Q)−1 = WP,Q(r, 1)
qk−1
r .

Remark 2 The differences between (3) and (4) are explained as follows.
In [17], Stange gave a general formula of the Tate pairing with a param-
eter S by using the divisor DQ. We obtain (3) by putting S = P . On the
other hand, we need to compute only WP,Q(r, 1) because we evaluate the
function fP at the point Q. We can verify WP,Q(r, 1) ≡ WP,Q(r + 1, 1)
(mod (F×

qk
)r) because fr,P (Q) = fr+1,P (Q) if [r]P = O. Since we assume

that P is an Fq rational point on E, we can compute the Tate pairing
〈P,Q〉r by evaluating fr,P at Q. Thus, the equation (4) is a special case
of (3). However, (4) is sufficient and efficient for cryptographic use.
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3.3 Some Remarks

The following are some useful propositions for computing elliptic nets.

Proposition 4 For an integer e ∈ Z,

WP,Q(s, 1) =
WP,Q−eP (s+ e, 1)

WP,Q(e, 1)1−s ·WP,Q(1 + e, 1)s
.

Proof. Proposition 2 of [17] is equivalent to the above Proposition 2 using
the following parameter values.

– z1, z2 correspond to P , Q− eP , respectively.
– v1 = s, v2 = 1.

– T =
(1 e

0 1

)
.

An immediate consequence is the following formula.

Corollary 1 For an integer e ∈ Z,

WP,Q(s, 1) =
WP,Q−eP (s+ e, 1)

WP,Q(e, 1)
·
( WP,Q(−1, 1)e

WP,Q(e, 1) ·WP,P+Q(e, 1)

)s
.

In particular, we apply the corollary for e a power of 2. If the Hamming
weight of s is small, we may compute WP,Q(s, 1) by using the corollary
repeatedly.

4 Implementation

In this section, we will show some experimental results for implementa-
tions of various pairings using elliptic nets.

The computer specifications are the following: CPU, a 2 GHz AMD
Opteron 246; memory, 4 GB; and hard disk, 160 GB. Magma [22] was
used as the software for writing the program.

We used the following elliptic curves for our experiments.

1 y2 = x3 + 4 [4]

k = 12, q = 23498017525968473690296083113864677063688317873484513641020158425447

(224 bit), r = 1706481765729006378056715834692510094310238833 (151 bit), T =

Tn = 203247593908.
2 y2 = x3 + 3 [5]

k = 12, q = 1461501624496790265145448589920785493717258890819 (160 bit),

r = 1461501624496790265145447380994971188499300027613 (160 bit), T = Tn =

1208925814305217958863206.
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3 y2 = x3+2x+255754413175205946479962785093275958147811775836074868254475\
5542022504589304559812663114754842137 [13]

k = 10, q = 269165611404982298837667591457479542280678545574962718143297\
96276308782360965160815950571330669569 (324 bit),

r = 118497265990650143638940886913063255688422174813106568961 (187 bit),

T = −12131133023075412575000611486055266851595610191692815, Tn = 104334294221056.

The Tables 1 and 2 show the experimental results of our implementations.
The column “EN” indicates a computation using elliptic nets. The column
“Miller” indicates a computation using Miller’s algorithm. Note that we
did not use built-in functions in Magma (such as “ReducedTatePairing”)
but rewrote Miller’s algorithm by using the Magma language.

The column “R-Ate (i)” corresponds to the index i in Corollary 3.3
of [10]. Note that showing values in some cells parenthetically indicates
that those values correspond to values in other cells. For example, the
calculation of the Atei pairing is sometimes equivalent to that of the Ate
pairing.

Our experimental results show that pairing computations using el-
liptic nets is comparable to those using Miller algorithm in terms of effi-
ciency. However, our implementations were not optimized, and so we need
to study these algorithms in detail and optimize their implementations of
various pairings.

Table 1. Experimental Results for Tate, Ate, and Atei Pairings

Tate Ate Atei
curve EN[s] Miller[s] EN[s] Miller[s] EN[s] Miller[s]

1 0.19 0.26 0.22 0.19 (0.22) (0.19)
2 0.13 0.21 0.24 0.21 (0.24) (0.21)
3 0.21 0.31 0.39 0.37 0.23 0.22

Table 2. Experimental Results for R-Ate and Optimal Pairings

R-Ate (2) R-Ate (3) R-Ate (4) Optimal

curve EN[s] Miller[s] EN[s] Miller[s] EN[s] Miller[s] EN[s] Miller[s]

1 0.65 0.51 0.38 0.31 0.39 0.32 0.98 0.76
2 0.34 0.27 0.33 0.27 0.34 0.26 0.74 0.56
3 0.73 0.67 0.36 0.34 0.40 0.38 1.07 0.94
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5 Conclusion

In this paper, we explicitly gave normalization of functions for elliptic
nets and gave formulae based on elliptic nets for computing some vari-
ants of the Tate pairing: the Ate, Atei, R-Ate, and optimal pairings. We
also discussed their efficiency by using some experimental results. Further
improvement and optimization of these elliptic net-based algorithms are
expected in future work.

References

1. P.S.L.M. Barreto, S. D. Galbraith, C. ÓhÉigeartaigh, and M. Scott, “Efficient
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