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Abstract. Necessary and sufficient conditions for a connected matroid to be secret
sharing (ss-)representable are obtained. We show that the flat lattices of ss-
representable matroids are closely related with well-studied algebraic objects called
linear lattices. This fact implies that new powerful methods (from lattice theory and
mathematical logic) for investigation of ss-representable matroids can be applied. We
also obtain some necessary conditions for a connected matroid to be ss-representable.
Namely, we construct an infinite set of sentences (like to Haiman’s “higher Arguesian
identities”) which are hold in all ss-representable matroids.

Introduction. In this paper, we present a necessary and sufficient condition
for a connected matroid to be ss-representable.

We assume that the reader is familiar with elementary properties of matroids
and finite lattices (see [1, 2] for complete details), and also with previous works
dealing with the characterization of ss-representable matroids (see [3 — 5] for a
comprehensive survey).

In Section 1, we recall some definitions and known facts on matroids, lattices,
and partitions. Our results are formulated and discussed in Section 2. Finally, in
Section 3, the proof of our Main Theorem is given. The following results
describing the structure of matroid representations by partitions that commute
under the relative product will be published later.

1. Preliminaries. Let M be a connected matroid with ground set
P={1,2,..,n}, the rank function r, and the closure operator

A A={ie P:r(AU{i})=r(4)}, AcCP
such that
D=0, {iy={) forall ieP. (1)

Let’s denote by L(M) the lattice of flats (i.e., closed subsets) of M . The join and
the meet of 4, B € L(M) are defined as follows:

AvB=AUB, ANB=ANB.
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It is well known that L(M) is a geometric (i.e., atomistic and submodular) lattice

that uniquely determines the matroid M (the Bikhoff-Whitney theorem; see, for
example [1], Ch. IT). The submodular law means that for all 4,B € L(M)

r(Av B)+r(AAB)<r(A)+r(B).
We say that (A4, B) is a modular pair in the lattice L(M) and write AMB if
r(Av B)+r(AAB)=r(A)+r(B). (2)

Note that for every A4,B e L(M) the equality (2) is equivalent to the following
implication (see [2], Ch. IV):

VCelM): CcB=>Cv(AAB)=(CvA)AB.

A matroid M is called secret sharing representable (ss-representable) if
there exist a finite set O of cardinality ¢ >2 and a set S < Q" such that for every
A= {il"“’ik} c P

#{(ay,..,a,) € Q" 1a, = Xjjs s Qg =X; fOr some (xy,...,x,) € S} = gD, (3)

In this case S is said to be an ideal secret sharing scheme (ISSS) (or an almost
affine code) representing the matroid M .

The relation between ISSS and matroids was stated by Brikell and Davenport
[6]. Note that the definition of ISSS given above is equivalent to its well-known
ordinary definition (see [6, 7]).

Matu$ [3] has introduced and studied representations of matroids by
partitions.

Let’s denote by Il the partition lattice of a finite set X . We identify a

partition p € I, with the associated equivalence relation on X and write xpy if
x and y are in the same block (i.e., equivalence class) of p. For a equivalence

relation p < X2 let’s denote by X /p the set of all p-equivalence classes; put
n(p) = #(X/p) (the number of the blocks of the partition p). The kernel of a
mapping f : X — Y is the equivalence relation

ker f = {(x.0) € X7 1 f(x)=F(»)}.
Recall that IT y is a submodular lattice with respect to the partial order

PI<py & pCpyin X



(see [1], Ch. II). The greatest element of Il is 1, = X?. We denote by p; vV p,
and p; Ap, respectively the join and the meet of partitions p,,p, € Ily. The
relative product of p, and p, is defined as follows:

propy ={(x,y) e X?| Iz € X :xpz, 2p,)}.

We say that two equivalence relations p, and p, commute if p; cp, =p, op;.

The following statement is well known.
Lemma. Let X be a finite set and p,,p, €Il . Then

Prepr=prop; < prepr €lly < prepy =p;vp,.

In addition, p, and p, commute iff for every blocks U,U,,U, of the partitions
P1 VvV Pa, Py, Po Fespectively the following condition holds:

U,U,cU=>U nNU, #9.

2. Main results. One of the open problems of secret sharing is the
characterization of ss-representable matroids [3 — 7]. It is known that there exist
non-ss-representable matroids [3, 8] but all linearly representable matroids (i.e.,
matroids that can be represented by a matrix over some finite field) are ss-
representable [6].

The following theorem provides a necessary and sufficient condition for a
connected matroid to be ss-representable.

Main Theorem (MT). Suppose the connected matroid M satisfies the
condition (1). Then M is ss-representable iff there exist a finite set X and a
injective mapping ¢ : L(M) — 11 such that for all A,B € L(M)

() 9(4V B) = o(A4) A p(B);

(b) AMB = @(A A B)=¢(A4)° ¢(B).

The proof'is given in Section 3.

It follows directly from (a), (b) that ss-representable martoids are closely
related with linear lattices, which has been extensively studied since 1953 [9 — 15].
A lattice is called linear if it can be represented by a lattice of equivalence relations
that commute under the relative product.

Let L be a finite lattice and L* be the lattice dual to L. Then L* is linear if
there exists an injection ¢ : L — Il such that forall 4,Be L

@) o(4v B)=¢(4) A¢p(B);

(b") p(AAB)=p(4)°p(B).
Thus, the class of ss-representable matroids can be regarded as an extension of
certain subclass of lattices dual to linear (see (b) and (b")). It is not difficult to
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prove that if L(M)* is a linear lattice, then it is isomorphic to the lattice of

subspaces of a finite-dimensional vector space over a finite field and the matroid

M can be represented by the parity-check matrix of the Hamming code over this
field.

An extensive class of sentences (lattice implications and lattice identities)
valid in all linear lattices is known [9 — 11, 14, 15]. In many cases, a slight
modification of these sentences allows to obtain some necessary conditions for a
connected matroid to be ss-representable.

Example 1. A lattice L is called Arguesian if it satisfies

(agvby)n(ayvb)<a,vb, = ¢y <cyve, “4)

where ¢; =(a;vay)n(b;vb,) for {i,j,k}={0,1,2}. It is known that every
linear lattice is Arguesian [9, 10] but the converse is false [12].
Let L=L(M), a; =4;,b; =B, € L(M), i=0,1,2. Then the dual implication

12 71

to (4) can be written as follows:
(g ABo)V (4 AB) 2 A ABy = (4 Ady)V (B ABy))A
/\((Ao/\Az)V(Bo/\Bz))Q(Ao/\AQV(Bo/\BQ- (5)

Corollary 1. Suppose the connected ss-representable matroid M satisfies the
condition (1). Then for all A;, B, € L(M) (i=0,1,2) such that

AyM4,, ByMB,, 4,MB, (6)

the implication (5) holds.
The proof is straightforward: by MT, it is sufficient to prove that under the
condition (6)
(g A By) Vv (4 ABy)) < 0(A; A By)
implies

o((4y A 4p) v (B, /\Bl))S(P((Al AN Ay) v (By ABy)) A((Ag A Ay) Vv (B /\Bz))-

The last statement can be verified directly draw on the conditions (a), (b).
Example 2. Haiman [11, 12] has introduced “higher Arguesian identities”:

m m

ag A bV N\ (@; v b)) |Sayv | (bg Vb A Y (@ v a ) A v b)) | (D)
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(where m > 2 and all indexes are modulo m+1) which hold in all linear lattices.
For the lattice L(M), ay = A4, =, By, =P (the ground set of matroid M ), and

a; = A;,b, = B; e L(M), i =1,m, the dual identity to (7) is

m m

V(4 nB) 2 A AB, ANy A Ay)V (B ABy) |- (8)

The next statement can be proved in the same way as Corollary 1.

Corollary 2. Suppose the connected ss-representable matroid M satisfies the
condition (1). Then for all A4;, B; € L(M) such that AMB, (i=1,m, m2>2) the
inclusion (8) holds.

The list of such examples can be continued. Haiman [11] has developed a
proof theory for implication valid in linear lattices and showed how to characterize
it by an infinite set of universal Horn sentences (note that no finite set of such
sentences can completely characterize linearity [12]). Haiman’s proof theory was
simplified by Finberg, et. al. [13]. Powerful methods for obtaining identities valid
in all (or some) linear lattices are proposed by Mainetti and Yan [14, 15]. It seems
likely that the complete “intrinsic” characterization of ss-representable matroids
can be obtained by the extension of methods described in [11, 13 — 15] to the class
of finite geometric lattices satisfies the conditions of MT.

3. Proof of Main Theorem. Suppose that the matroid M is ss-representable
and let’s denote by S an ISSS satisfying the condition (3). To construct an
injection ¢: L(M)— Il with the properties (a), (b) let’s consider the partition
representation of M described in [3].

Put X =9,
n; =ker f;,ie P, )
n,=/\n;,, ACP, (10)
ied

where the mapping f; : X = Q is defined as follows:

Ji (X5 X,)) =X, (X500 X)) € X .
It follows from (9), (10), and (3) that for all 4,B < P

4
T =T,y ATz, ACB = 1,2mg, n(n,)=q"".

Thus (since 4 < 4 and r(4) = (A4)) we obtain that ny=n forall Ac P.
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Let A,BeL(M) and n, =mnyz. We claim that 4 = B. Indeed, assume that
there exists i € A\ B ; then

Mp =Ty Cm = Tpoy =N AT =Tp= (g ) =n(Tp).
On the other hand,
L _ (B _
r(Bufliy)=r(B)+1 = n(np ;) =q =n(ng)q.

Hence, A < B and by symmetry 4 = B, which we had to proved.
Put
o(A) =, AeL(M).

It follows from above that ¢ is an injective map of L(M) to I1, satisfying the
condition (a).

Let now (4, B) be a modular pair in the lattice L(M). Let us be prove that
o(AAB)=@(A)op(B). By Lemma and the inclusions

O(AAB) 2 0(A)v o(B) 2 p(A)op(B) (in X*)

it is sufficient to prove that for all blocks U,U;,U, of the partitions
o(A A B), p(A), p(B) respectively the following implication holds:

U,U,cU=>U nNU, #9.

To prove this statement fix any blocks U, U, of the partitions ¢(4 A B), ¢(A4)
respectively and let’s calculate the number N(U,U,) of the blocks U, € X /¢(B)

such that
U,cUand U NU, #D. (11)

Observe that there are exactly N =g BB plocks U, € X /¢(B)

contained in U (see Prop. 2 in [7]). On the other hand, there is a one-to-one
correspondence between the blocks U, € X /@(B) satisfying the condition (11)

and all blocks U € X / ¢(A v B) contained in U,. Thus, it follows from Prop. 2 in
[7] and the equality (2) that

NU,U)) = qr(AvB)—r(A) _ qr(B)—r(A/\B) N

Therefore, all blocks U, € X /@(B) contained in U satisfying the condition (11).

This completes the proof of the last statement and so also that of validity of the
condition (b).
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Assume now that there exists an injection ¢ : L(M) — I1, with the properties

(a), (b). Let us prove that M is a ss-representable matroid.
Put

m; =o({i}), ieP,

T4 =(p(2), AcCP.
It is clear that
T # M. (12)

Observe that (4, {i}) is a modular pair for all Ac P and ie P. Thus, it
follows from (a), (b) that

TCAU{I-}ZWA,?]FZ.EZ;TCAOTCl-zTCQ,i]FZ.EZ. (13)

We may assume, without loss of generality, that my =1, (in the opposite case we
can replace X by a block U € X/my that contains two or more blocks of the
partition m, and put n,=mn,NU?, n,=n,"U* for all AcC P, ieP; the
conditions (12), (13) remains true). Thus, we obtain from (12), (13) that

T #]ly, (14)
(T o) = (), if i€ 4, (15)

and (by Lemma) B
n(T o) =n(mdn(n;), if igA. (16)

Since the matroid M is connected it follows from (15), (16) that

n(ny)=n(n,)=...=n(x,). (17)
Finally, put
O =X/mn;,ieP, 0=0,.

Fix any bijection o, :Q; = O and let’s denote by x/=; the =m;-equivalence class
containing any x € X (i € P). It follows directly from (14) — (17) that

S={(o(x/my),...,0,(x/m,)): xe X}

is an ISSS representing the matroid M . This completes the proof of MT.
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