
A Certifying Compiler for Zero-Knowledge Proofs of
Knowledge Based on Σ-Protocols?

(Full Version)

José Bacelar Almeida1, Endre Bangerter2, Manuel Barbosa1,
Stephan Krenn3, Ahmad-Reza Sadeghi4, Thomas Schneider4

1 Universidade do Minho, Portugal
{jba,mbb}@di.uminho.pt

2 Bern University of Applied Sciences, Biel-Bienne, Switzerland
endre.bangerter@jdiv.org

3 Bern University of Applied Sciences, Biel-Bienne, Switzerland, and
University of Fribourg, Switzerland

stephan.krenn@bfh.ch
4 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany

{ahmad.sadeghi,thomas.schneider}@trust.rub.de

Abstract. Zero-knowledge proofs of knowledge (ZK-PoK) are important building blocks
for numerous cryptographic applications. Although ZK-PoK have very useful properties,
their real world deployment is typically hindered by their significant complexity compared
to other (non-interactive) crypto primitives. Moreover, their design and implementation is
time-consuming and error-prone.
We contribute to overcoming these challenges as follows: We present a comprehensive spec-
ification language and a certifying compiler for ZK-PoK protocols based on Σ-protocols
and composition techniques known in literature. The compiler allows the fully automatic
translation of an abstract description of a proof goal into an executable implementation.
Moreover, the compiler overcomes various restrictions of previous approaches, e.g., it sup-
ports the important class of exponentiation homomorphisms with hidden-order co-domain,
needed for privacy-preserving applications such as idemix. Finally, our compiler is certify-
ing, in the sense that it automatically produces a formal proof of security (soundness) of
the compiled protocol (currently covering special homomorphisms) using the Isabelle/HOL
theorem prover.
Key words: Zero-Knowledge, Protocol Compiler, Formal Verification

1 Introduction

A zero-knowledge proof of knowledge (ZK-PoK) is a two-party protocol between a prover
and a verifier, which allows the prover to convince the verifier that he knows a secret
value that satisfies a given relation (proof of knowledge or soundness property), without
the verifier being able to learn anything about the secret (zero-knowledge property). For
a formal definition we refer to [17]. Fundamental results show that there are ZK-PoK for
all languages in NP [47]. The corresponding protocols are of theoretical relevance, but
are much too inefficient to be used in practice.

? This work was in part funded by the European Community’s Seventh Framework Programme (FP7)
under grant agreement no. 216499. An extended abstract of this work is given in [2].

2 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

Beside these generic protocols of mainly theoretical interest there are various proto-
cols which are efficient enough for real world use. Essentially, all these practically relevant
ZK-PoK protocols are based on the so called Σ-protocols. What is typically being proved
using a basic Σ-protocol is the knowledge of a preimage under a homomorphism (e.g.,
a secret discrete logarithm). These preimage proofs can then be combined to consider-
ably more complex protocols. In fact, many systems in applied cryptography use such
proofs as building blocks. Examples include voting schemes [50,52], biometric authentica-
tion [18,54], group signatures [29], interactive verifiable computation [33], e-cash [24,31]
and secure multiparty computation [56].

While many of these applications only exist on specification level, a direction of applied
research has produced first systems using ZK-PoKs that are deployed in the real world.
The probably most prominent example is Direct Anonymous Attestation (DAA) [27], a
privacy enhancing mechanism for remote authentication of computing platforms, which
was adopted by the Trusted Computing Group, an industry consortium of many IT
enterprises. Another example is the idemix anonymous credential system [30], which IBM
released into the Eclipse Higgins project, an open source effort dedicated to developing
software for user-centric identity management.

Up to now, design, implementation and verification of the formal cryptographic se-
curity properties (i.e., zero-knowledge and soundness) as well as code security properties
(e.g., security against buffer overflows, side channel vulnerabilities, etc.) is done “by
hand”. In fact, past experiences, e.g., made when realizing DAA and idemix, have shown
that this is a time consuming and error prone task. This is certainly due to the fact that
ZK-PoK are considerably more complex than other non-interactive crypto primitives such
as encryption schemes.

In particular, the soundness property needs to be proved for each ZK-PoK protocol
from scratch. The proofs are often not inherently complex, but nevertheless require an
intricate knowledge of the techniques being used. This is obviously a major hurdle in the
real world adoption of ZK-PoK, since even experts in the field are not immune to protocol
design errors. In fact, minor flaws in protocol designs [3,11,45] (which can be fixed easily
once detected) can lead to serious security flaws [36,41,55].

In this paper we describe languages, a compiler and integrated tools that support
and partially automate the design, implementation and formal verification of ZK-PoK
based on Σ-protocols. The goal of our research is to overcome the difficulties mentioned
concerning the design and implementation of ZK-PoK, and thus to bring ZK-PoK to
practice by making them accessible to crypto and security engineers.

1.1 Our Contributions

In a nutshell, we present a toolbox that takes an abstract description of the proof goal5 of
a ZK-PoK as input, and produces a provably sound implementation of a suitable protocol
in the C language.

5 By proof goal, we refer to what a prover wants to demonstrate in zero-knowledge. For instance, the
proof goal can be to prove knowledge of a discrete logarithm.

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 3

More precisely, we extend previous directions with the following functionalities of
practical and theoretical relevance:

– We present a comprehensive protocol specification language and compiler which sup-
port most relevant Σ-protocols and composition techniques found in the literature,
including basic protocols for proving knowledge in arbitrary groups, AND and OR com-
positions, and techniques for proving linear relations among secret pre-images (e.g.,
equality of two discrete logarithms). A comprising summary of these techniques can
be found in [70].

Examples of protocols that can be automatically generated by our compiler include
[1,18,24,27,29,32,30,31,33,50,52,54,56,57,66,68].

– Our compiler also absorbs certain design-level decisions. For instance, it automatically
chooses certain security parameters and intervals used in the protocols to assert the
statistical zero-knowledge property of discrete log proofs in hidden order groups. It
thus eliminates the potential of security vulnerabilities resulting from inconsistent
parameter choices. Further, the compiler has capabilities to automatically rewrite the
proof goal to reduce the complexity of the generated protocol.

– Last but not least, our compiler partially alleviates the implementor from the respon-
sibility to establish a theoretical security guarantee for the protocol, by producing
a formal proof of the theoretical soundness6 property. Technically, the compiler pro-
duces a certificate that the protocol generated by the compiler fulfills its specification.
The validity of the certificate is then formally verified by the Isabelle/HOL formal
theorem prover [65]. That is, our tool can be seen as a certifying compiler. This formal
verification component currently only supports a subset of the protocols for which our
compiler can generate code. Yet, it already covers a considerable class of applications,
such as [24,66,68].

Related Work. Compiler based (semi-)automatic generation of cryptographic protocols
has attracted considerable research interest recently, for instance in the field of multi-
party computations [42,58,59].

A first prototype ZK-PoK compiler was developed in [28,34] and extended within the
CACE project [10,9]. Yet, this compiler offers no optimization or verification functional-
ities and can only handle a subset of the proof goals supported by our compiler whose
architecture was presented in [13].

Very recently, Meiklejohn et al. [60] presented another ZK-PoK compiler for spe-
cific applications such as e-cash. To maximize efficiency, their tool generates protocols
which exploit precomputations, a feature which is not yet supported by our compiler.
However, our compiler provides a substantially broader class of proofs goals such as Or-
compositions, and homomorphisms such as RSA [67]. Further, formal verification is left
as an “interesting area of study” in [60].

6 The soundness property is arguably the most relevant security property for many practical applications
of ZK-PoK, as it essentially establishes that it is infeasible to prove an invalid knowledge claim. However,
our tool is currently being expanded to cover other relevant security properties, namely the zero-
knowledge property.

4 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

Symbolic models that are suitable for expressing and formally analyzing protocols that
rely on ZK protocols as building blocks were presented in [5,16]. In [5] the first mechanized
analysis framework for such protocols was proposed by extending the automatic tool
ProVerif [23]. The work in [4] proposed an alternative solution to the same problem based
on a type-based mechanism. Our work does not overlap with these contributions, and can
be seen as complementary. The previous frameworks assume that the underlying ZK-PoK
components are secure under adequate security models in order to prove the security of
higher level protocols. We work at a lower level and focus on proving that specific ZK-
PoK protocols generated by our compiler satisfy the standard computational security
model for this primitive. Recent results in establishing the computational soundness of
ZK-PoK-aware symbolic analysis can be found in [6]. Currently, we do not establish a
connection between the security properties offered by the ZK-PoK protocols produced by
our compiler and the level of security required to enable the application of computational
soundness results.

We follow a recent alternative approach to obtaining computational security guaran-
tees through formal methods: directly transposing provable security arguments to mech-
anized proof tools. This allows to deal directly with the intricacies of security proofs, but
the potential for mechanization is yet to match that of symbolic analysis. In this aspect,
our work shares some of its objectives with parallel work by Barthe et al. [15] describing
the formalization of the theory of ZK-PoK in the Coq-based CertiCrypt tool [14]. This
formalization includes proofs for the general theorems that establish the completeness,
soundness and special honest-verifier ZK properties for Σ-protocols based on homomor-
phisms. Proving that a concrete protocol satisfies this set of properties can then be
achieved by instantiating these general proofs with concrete homomorphisms. Although
not completely automatic, this requires relatively small interaction with the user. In this
work we provide further evidence that the construction of computational security proofs
over mechanized proof tools can be fully automatic. The catch is that our verification
component is highly specialized for (a specific class of) ZK-PoK and relies on in-depth
knowledge on how the protocol was constructed.

Our work is also related to the formal security analysis of cryptographic protocol
implementations. A tool for the analysis of cryptographic code written in C is proposed
in [48]. In [19,20], approaches for extracting models from protocol implementations writ-
ten in F#, and automatically verifying these models by compilation to symbolic models
(resp. computational models) in ProVerif [21] (resp. CryptoVerif [22]), can be found. As
above, the latter works target higher level protocols such as TLS that use cryptographic
primitives as underlying components. Furthermore, the static cryptographic library that
implements these primitives must be trusted by assumption. Our work can be seen as
a first step towards a tool to automatically extend such a trusted computing base when
ZK-PoK protocols for different goals are required.

Structure of this Document. In §2 we recap the theoretical framework used by our
compiler, which we present in §3. Finally, the formal verification infrastructure is ex-
plained in §4.

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 5

2 Preliminaries

We first recap some basic notation and theory underlying ZK-PoK .

2.1 Notation

By s ∈R S we denote the uniform random choice of an element s from set S. The order
of a group G is denoted by ordG. Finally, minDiv(a) is the smallest prime dividing an
integer a.

We use the notation from [35] for specifying ZK-PoK. A term like

ZPK

[
(χ1, χ2) : y1 = φ1(χ1) ∧ y2 = φ2(χ2) ∧ χ1 = aχ2

]
means “zero-knowledge proof of knowledge of values x1, x2 such that y1 = φ1(x1), y2 =
φ2(x2), and x1 = ax2”. Variables of which knowledge is proved are denoted by Greek
letters, whereas all other quantities (known to both parties) are denoted by Latin letters.
Note that this notation specifies a proof goal rather than a protocol: it describes what
has to be proved, but there may be various, differently efficient protocols to do so.

We call a term like y = φ(x) in the proof goal an atomic predicate. A predicate is the
composition of atomic predicates and predicates using arbitrary many (potentially none)
boolean junctors And (∧) and Or (∨).

2.2 Σ-Protocols as ZK-PoK Protocols

Most practical ZK-PoK are based on Σ-protocols. Given probabilistic polynomial time
algorithms P1,P2,V, they have the following form: to prove knowledge of a secret x
satisfying a relation with some public y, the prover first sends a commitment t := P1(x, y)
to the verifier, who then draws a random challenge c from a predefined challenge set C.
Receiving c, the prover computes a response s := P2(x, y, c). Now, if V(t, c, s, y) = true,
the verifier accepts the proof, otherwise it rejects. Whenever the verifier accepts, we call
(t, c, s) an accepting protocol transcript.

Formally, for the protocol to be a proof of knowledge with knowledge error κ, there
must be an algorithm E′ satisfying the following: whenever a (potentially malicious)
prover can make the verifier accept with probability ε > κ, E′ can extract x from the
prover in a number of steps proportional to (ε − κ)−1 [17]. For Σ-protocols, this boils
down to the existence of an efficient knowledge extractor E, which takes as inputs two
accepting protocol transcripts (t, c′, s′), (t, c′′, s′′) with c′ 6= c′′, and y, and outputs a value
x′ satisfying the relation [37,40].

A Σ-protocol satisfies the ZK property, if there is an efficient simulator S, taking c, y
as inputs, and outputting tuples that are indistinguishable from real accepting protocol
transcripts with challenge c [37,40].

6 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

P[y, x] V[y]

P1 r ∈R G
t := φ(r) t - c ∈R C

P2 s := r + c · x c�

s - φ(s)
?
= t · yc V
↓

true/false

Fig. 1: The Σφ-protocol for performing ZPK[(χ) : y = φ(χ)].

2.3 Proving Atomic Predicates

We next summarize the basic techniques for proving atomic predicates.

The Σφ-Protocol. The Σφ-protocol allows to efficiently prove knowledge of preimages
under homomorphisms with a finite domain [68,51]. For instance, it can be used to prove
knowledge of the content of ciphertexts under the Cramer/Shoup [39] or the RSA [67]
encryption schemes, and many others [63,64,43,53,46]. Also, it can be used for all homo-
morphisms mapping into a group over elliptic curves.

The protocol flow, as well as inputs and outputs of both parties, are shown in Fig. 1.
The Σφ-protocol is a ZK-PoK with knowledge error κ = 1/cmax for suitably chosen
challenge set C = {0, . . . , cmax − 1}. Yet, while cmax = 2 can safely be used for any
homomorphism φ, the maximal value of cmax heavily depends on φ. We thus briefly
describe the theory needed for choosing C correctly.

Although finding a preimage x for a given y = φ(x) is usually hard for homomorphisms
φ used in cryptography, it is often easy to find the preimage of a known power of y. Let,
for example, the order q of the domain of φ be known: given y = φ(x) we can efficiently
compute a preimage of yq, as we have yq = 1 = φ(0). Similarly, for homomorphisms
φ : H× G → H : (a, b) 7→ ae · ψ(b) (as used in [67,63,64,43]) a preimage of ye is given by
(y, 0). It turns out that this special property is crucial for reaching high efficiency in the
Σφ-protocol.

Definition 1 (Special Homomorphisms [37]). A homomorphism φ : G → H is spe-
cial, if for any image y ∈ H a pair (u, v) ∈ G×Z\{0} satisfying φ(u) = yv can efficiently
be computed, where the value v has to be the same for all y. We call (u, v) a pseudo
preimage of y under φ, and v the special exponent of φ.

Theorem 2 (Knowledge Error of the Σφ-Protocol [37]). Let φ be a homomorphism
with finite domain. Then the Σφ-protocol using C = {0, . . . , cmax − 1} is a ZK-PoK with
knowledge error κ = 1/cmax, if either cmax = 2, or φ is special with special exponent v
and cmax ≤ minDiv(v).

The ΣGSP- and the Σexp-Protocols. The practically important class of exponentiation
homomorphisms with hidden-order codomain (e.g., φ : Z → Z∗n : a 7→ ga, where n is an
RSA modulus, and g generates the quadratic residues modulo n) cannot be treated with
the Σφ-protocol.

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 7

Two Σ-protocols for such homomorphisms can be found in the literature. The ΣGSP-
protocol generalizes the Σφ-protocol to the case of infinite domains (i.e., G = Z), and
can be used very efficiently if assumptions on the homomorphism φ are made [45,41]. On
the other hand, the so-called Σexp-protocol presented in [10,8] takes away these assump-
tions, by adding an auxiliary construction based on a common reference string and some
computational overhead. Depending on the proof goal and certain implementation issues,
either of these two protocols can be more efficient. We refer to [12] for a detailed security
and efficiency analysis.

2.4 Operations on Σ-Protocols

Next, we briefly summarize some techniques, which allow one to use Σ-protocols in a
more general way than for proving atomic predicates only.

Reducing the knowledge error. The knowledge error of a Σ-protocol can be re-
duced from κ to κr by repeating the protocol r times in parallel. The verifier accepts
the proof, if and only if it accepted all instances [17]. In this way, arbitrarily small
knowledge errors can be achieved.

Boolean composition. In practice, it is often necessary to prove knowledge of multiple,
or one out of a set of, secret values in one step. This can be achieved by performing
so-called And- respectively Or-compositions. While the former requires the prover to
know the secrets for all combined predicates to convince the verifier, he only needs
to know at least one of them for the latter. In this case, the verifier will not be able
to learn which secrets are actually known to the prover [70].
For a Boolean And, the only difference to running the proofs for the combined predi-
cates independently in parallel is, that the verifier only sends one challenge c, which
is then used in all combined predicates.
Combining n predicates by a Boolean Or is a bit more involved. By allowing the prover
to choose the challenges ci for all but one predicate, he can simulate accepting pro-
tocol transcripts for those predicates he does not know the secret for. The remaining
challenge must then be chosen such that

∑n
i=1 ci ≡ c mod cmax. To ensure this, the

prover adds c1, . . . , cn to its response, which is now given by ((s1, c1), . . . , (sn, cn)),
where si is the response of the i-th predicate. In addition to running all verification
algorithms, the verifier also checks that the ci add up to the challenge c.

Threshold composition. For instance, for a contract to become valid it may be re-
quired that at least k out of n board members of a company sign the document. Yet,
the contracting party should not learn the identity of the signers. Performing such
a ZK-PoK by using nested And- and Or-compositions becomes very inefficient if n is
large. A much more efficient way for performing such n-out-of-k threshold composi-
tions is to apply the technique from [38], instantiated with Shamir’s secret sharing
scheme [69].

Non-interactivity. Σ-protocols can be made non-interactive by applying the Fiat-
Shamir heuristic [44]. The idea is that the prover obtains a random challenge c by
hashing its commitment. Additionally to its verification algorithm V, the verifier then
also checks whether c was computed correctly. In this way, only a single message has

8 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

to be sent in the protocol, and the proof can easily be converted into a signature proof
of knowledge.

Algebraic relations among preimages. By re-adjusting the atomic predicates of a
proof goal, virtually any algebraic relations among the preimages can be proven. For
examples we refer to [70,57,25,26].

3 Compiler

In this section we describe our ZK-PoK compiler that automatically generates provably
sound implementations and documentation for specific classes of ZK-PoK protocols from a
high-level specification of the intended protocol. The modularly constructed compiler (cf.
§3.1) is easy to use and can generate code and documentation for many practical ZK-PoK
protocols using arbitrary homomorphisms by applying the built-in techniques presented
in §2 and several automatic optimizations (cf. §3.2). Moreover, it is integrated with a tool
that formally verifies the soundness of generated protocols for special homomorphisms
(cf. §4).

3.1 Architecture

The architecture of our ZK-PoK compiler suite which is built from multiple components
is shown in Fig. 2. This allows to easily extend the compiler via new plugins and backends.
Furthermore, the single components are designed modularly themselves, such that, e.g.,
the mathematical libraries used in the C Backend can be exchanged with minor effort.

BackendsLATEXC

Protocol
Specification

Language (PSL)

Protocol
Compiler

Plugins

Σ2NIZK

Costs

Protocol
Verification

Toolbox

Protocol
Implementation
Language (PIL)

Code Documentation

Proof of
Soundness

Fig. 2: Architecture of our ZK-PoK compiler suite.

Protocol Specification. The user formulates the specification of the intended protocol
in our Protocol Specification Language (PSL). This language is based on the Camenisch-
Stadler notation [35], and extends it to eliminate any equivocation. As a result it allows
to unambiguously specify complex Σ-protocols. On a high level, PSL allows to specify
the inputs and algebraic setting of the proof goal, the types of Σ-protocols to be used,

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 9

and their compositions. In particular, PSL supports all Σ-protocols presented in §2.3 that
can be arbitrarily composed using the composition techniques described in §2.4. We give
more details on PSL later in §3.2.

Protocol Compiler. The Protocol Compiler translates the protocol specification into
the corresponding protocol implementation formulated in our Protocol Implementation
Language (PIL). This language can be thought of as a kind of pseudo-code describing
the protocol, i.e., the sequence of operations computed by both parties (including group
operations, random choices, checks, etc.) and the messages sent between them. Further
details on PIL are given in App. A.

Backends. Backends allow to transform the protocol implementation into various output
languages. The C Backend generates source code in the C programming language for
prover and verifier. By providing the GNU multi-precision arithmetic library [49] this
source code can be compiled into executable code. The LATEX Backend generates a human-
readable documentation of the protocol. An example output generated by the LATEX
backend is given in App. B.

Protocol Verification Toolbox. This formal verification component of our compiler
takes as input the protocol specification (PSL) and implementation (PIL) files from a
compilation run, and extracts from them the relevant information to construct the cor-
responding proof of soundness. The proof is performed automatically using the theorem
prover Isabelle/HOL [61,62] which generates the formal proof and a human-readable doc-
umentation on the soundness guarantees of the generated protocol that can be used for
product certification purposes. More details are given in §4.

Plugins. The protocol implementation of the generated Σ-protocols can be transformed
with plugins. The Σ2NIZK plugin produces a non-interactive ZK-PoK (NIZK) by apply-
ing the Fiat-Shamir transformation [44] (cf. §2.4). The functionality of this plugin could
easily be extended to signature proofs of knowledge. The Costs plugin determines the ab-
stract costs of the generated protocol, i.e., the communication complexity and the number
of operations that need to be performed in each group. This allows to compare the com-
plexity of different protocols on an abstract level and in future releases to automatically
select the most efficient one.

3.2 Protocol Specification Language and Optimizations

Next, we describe the optimizations performed by our compiler and the rationale under-
lying PSL. We show how to use the compiler for the following representative application
example: In the context of a group-oriented application we want to prove the following
informal statement:

“One of two legitimate users has committed to message m without revealing m or
the identity of the user who committed.”

For computing a commitment c to message m with randomness r we use the Pedersen
commitment scheme [66] of the form c = gmhr, where g and h are generators of the group
H of known prime order q (e.g., Z∗p where p is prime and q divides p − 1, or an elliptic

10 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

curve group) and the committer does not know logg h. To authenticate legitimate users
we use Diffie-Hellman keys: each user randomly picks a sufficiently large secret key ski,
computes the public key pki = gski and publishes pki. To ease presentation, we use the
same group H for commitments and keys of users, but the compiler could use different
groups as well.

Now, given the commitment c and the public keys pk1,pk2 of the two legitimate users,
the informal statement translates into this proof goal:

ZPK

[
(µ, ρ, σ1, σ2) : c = gµhρ ∧

(
pk1 = gσ1 ∨ pk2 = gσ2

)]
,

where (µ, ρ, σ1) = (m, r, sk1) or (µ, ρ, σ2) = (m, r, sk2) are possible sets of secrets that
allow to prove the relation. With homomorphisms ψ : (a, b) 7→ gahb and φ : (a) 7→ ga we
rewrite this as

ZPK

[
(µ, ρ, σ1, σ2) : c = ψ(µ, ρ)︸ ︷︷ ︸

P0

∧
(

pk1 = φ(σ1)︸ ︷︷ ︸
P1

∨pk2 = φ(σ2)︸ ︷︷ ︸
P2

)]
,

where the atomic predicates are P0, P1, and P2. This proof goal together with the
underlying algebraic setting can be expressed in PSL as shown in Fig. 3 and described
next. Each PSL file consists of the following sections:

Declarations { Prime(1024) p;

Prime(160) q;

G=Zmod+(q) m, r, sk_1, sk_2;

H=Zmod*(p) g@{order=q}, h@{order=q}, c@{order=q},

pk_1@{order=q}, pk_2@{order=q}; }

Inputs { Public := p,q,g,h,c,pk_1,pk_2;

ProverPrivate := m,r,sk_1,sk_2; }

Properties { KnowledgeError := 80;

ProtocolComposition := P_0 And (P_1 Or P_2); }

GlobalHomomorphisms { Homomorphism (phi : G -> H : (a) |-> (g^a)); }

// Predicates

SigmaPhi P_0 { Homomorphism (psi : G^2 -> H : (a,b) |-> (g^a * h^b));

ChallengeLength := 80; Relation ((c) = psi(m,r)); }

SigmaPhi P_1 { ChallengeLength := 80; Relation ((pk_1) = phi(sk_1)); }

SigmaPhi P_2 { ChallengeLength := 80; Relation ((pk_2) = phi(sk_2)); }

Fig. 3: PSL Example.

Declarations. All variables used in the protocol must first be declared in this section.
PSL supports several data types with a given bit-length such as signed integers (Int)
or primes (Prime). Also intervals ([a,b]) and predefined multiplicative and additive
groups are supported, e.g., Zmod*(p) denotes (Z∗p, ∗) and Zmod+(q) denotes (Zq,+). In
this section, an identifier can be assigned to a group and constants can be predefined.
The compiler also supports abstract groups, which can be instantiated with one’s fa-
vorite group (e.g., such over elliptic curves). The order of elements can be annotated for
verification purposes, e.g., as g@{order=q}.

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 11

Inputs. Here, the inputs of the protocol are assigned to both parties by specifying which
ones are publicly known to both and which are private inputs of the prover. All inputs
must have been declared beforehand.

Properties. This section specifies the properties of the protocol to be generated. For
instance, KnowledgeError := 80 specifies an intended knowledge error κ of 2−80. The
proof goal can be specified by combining the Σ-protocols of the atomic predicates by
arbitrarily nested Boolean And and Or operators. Furthermore, the compiler supports
n-out-of-k-threshold compositions [38] based on Shamir secret sharing [69] as described
in §2.4.

Optimizations. The compiler automatically applies transformations to the proof goal
in order to reduce the complexity of the generated protocol. For instance, an expression
like P_1 Or P_2 Or (P_1 And P_2) is simplified to P_1 Or P_2 which halves the com-
plexity of the resulting protocol. By introspecting the predicates, further optimizations
could be implemented easily.

GlobalHomomorphisms. Homomorphisms that appear in multiple atomic predicates
can be defined as global homomorphisms in this optional section. The description of
a homomorphism in PSL is a natural translation from the mathematical notation for
homomorphisms consisting of name, domain, co-domain, and the mapping function.

Predicates. Finally, the atomic predicates used in the proof goal composition are speci-
fied. Each predicate is proved with a Σ-protocol: one of SigmaPhi, SigmaGSP or SigmaExp.
For each Σ-protocol, the relation between public images and private preimages must be
defined using local or global homomorphisms. ChallengeLength specifies the maximum
challenge length that can be used to prove this atomic predicate with the given Σ-protocol
(cf. §2.3 for details). Note that this value depends, e.g., on the size of the special exponent
of the homomorphism, and thus, in general, cannot be automatically determined by the
compiler, as the factorization of the special exponent might not be available.

Optimizations. The compiler automatically determines the number of repetitions for
each atomic predicate to achieve the intended knowledge error. For proofs in hidden order
groups using theΣexp-protocol the compiler automatically chooses the size of the auxiliary
modulus as described in [12] - the automatic choice of the most efficient protocol Σexp

or ΣGSP described therein is currently being implemented. In future work, the automatic
choice of parameter sizes could be automatically inferred from a higher-level specification
of the intended proof goal.

4 Verification

The Protocol Verification Toolbox (PVT) of our compiler suite (cf. Fig. 2) automatically
produces a formal proof for the soundness property of the compiled protocol. In other
words it formally validates the guarantee obtained by a verifier executing the compiled
protocol: “The prover indeed knows a witness satisfying the proof goal.”

Overview. The internal operation of the PVT is sketched in Fig. 4; the phases (1) to (6)
are explained in the following. As inputs, two files are given: the protocol specification

12 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

Validate PSL/PIL Extract Proof Goal
and Verifier Code

Identity Proof
Template

Instantiate Proof
Template

Generate Isabelle
Input FileRun Isabelle

PSL File PIL File

Accept/Fail

1 2 3

456

Fig. 4: Internal operation of the Protocol Verification Toolbox (PVT).

(a PSL file) that was fed as input to the compiler, and the protocol implementation
description that was produced by the compiler (a PIL file). The PVT first checks (1) the
syntactic correctness of the files and their semantic consistency, e.g., it verifies that the
PSL and PIL files operate on the same groups, and other similar validations. Then, the
information required for the construction of the soundness proof is extracted (2). This
information essentially consists of the proof goal description from the PSL file and the
code for the verifier in the implementation file. In particular, the former includes the
definition of the concrete homomorphisms being used in the protocol, and information
about the algebraic properties of elements, homomorphisms, etc.7.

The reason for the verification toolbox only considering the verifier code is that by
definition [17] the soundness of the protocol essentially concerns providing guarantees for
the verifier, regardless of whether the prover is honestly executing the protocol or not.
Looking at the description of Σ-protocols in §2 and the example PIL file included in
App. C, one can see that the verifier code typically is very simple. The exception is the
final algebraic verification that is performed on the last response from the prover, which
determines whether the proof of knowledge should be accepted. The theoretical soundness
proof that we construct essentially establishes that this algebraic check is correct with
respect to the proof goal, i.e., that it assures the verifier that the prover must know a
valid witness. The soundness proof is then generated in three steps:

a) Firstly, an adequate proof template is selected from those built into the tool (3). If no
adequate template exists for this particular protocol, then the user is notified and the
process terminates.

b) The proof template is instantiated with the concrete parameters corresponding to
the input protocol (4) and translated into an output file (5) compatible with the
Isabelle/HOL proof assistant: a theory file.

c) Finally, the proof assistant is executed on the theory file produced before (6). If the
proof assistant successfully finishes, then we have a formal proof of the theoretical
soundness of the protocol. Furthermore, the Isabelle/HOL framework permits gener-
ating a human-readable version of the proof that can be used for product documen-
tation.

7 This justifies the verification-specific annotations in the PSL file, as described in §3.

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 13

The process is fully automatic and achieving this was a major challenge to our design.
As can be seen in Fig. 4, our tool uses Isabelle/HOL [62] as a back-end (6). In order
to achieve automatic validation of the generated proofs, it was necessary to construct a
library of general lemmata and theorems in HOL that capture, not only the properties
of the algebraic constructions that are used in ZK-PoK protocols, but also the generic
provable security stepping stones required to establish the theoretical soundness property.
We therefore intensively employed and extended the Isabelle/HOL Algebra Library [7],
which contains a wide range of formalizations of mathematical constructs. By relying on
a set of existing libraries such as this, development time was greatly shortened, and we
were able to create a proof environment in which we can express proof goals in a notation
that is very close to the standard mathematical notation adopted in cryptography papers.
More information about Isabelle/HOL can be found in [61,62].

Remark. No verification is carried out at this moment of the executable code that is
generated from the PIL file, but this is a program correctness problem rather than a
theoretical security problem. It thus must be addressed using a different techniques that
we do not cover in this paper.

We next detail the most important aspects of our approach.

Proof strategy. Proving the soundness property of the ZK-PoK protocols produced by
the compiler essentially means proving that the success probability of a malicious prover
in cheating the verifier is bounded by the intended knowledge error. As described in
§2.2, this involves proving the existence of (or simply to construct) an efficient knowledge
extractor.

Our verification component is currently capable of dealing with the Σφ-protocol,
which means handling proof goals involving special homomorphisms (cf. Definition 1) for
which it is possible to efficiently find pseudo-preimages. As all special homomorphisms
used in cryptography fall into one of the two classes described when introducing spe-
cial homomorphisms in §2, the verification toolbox has the ability to automatically find
a pseudo-preimage for any concrete homomorphism that it encounters without human
interaction.

A central stepping stone in formally proving the existence of an efficient knowledge ex-
tractor is the following lemma (which actually proves Theorem 2) that we have formalized
in HOL.

Lemma 3 (Shamir’s Trick [8]). Let (u1, v1) and (u2, v2) be pseudo-preimages of y
under homomorphism φ. If v1 and v2 are co-prime, then there exists a polynomial time
algorithm that computes a preimage x of y under φ. This algorithm consists of the Ex-
tended Euclidean Algorithm to obtain a, b ∈ Z such that av1+bv2 = 1, and then calculating
x = au1 + bu2.

In fact, given a special homomorphism and two accepting protocol transcripts for a ZK-
PoK of an atomic predicate, we prove the existence of a knowledge extractor by ensuring
that we may instantiate Lemma 3.

The compiler also supports composition with Boolean And and Or. If multiple predi-
cates are combined by And, the verification tool defines as proof goal the existence of a
knowledge extractor for each and all of them separately, i.e., one needs to show that the

14 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

witness for each predicate can be extracted independently from the other predicates. In
case of Or proofs (i.e., knowledge of one out of a set of preimages), the proof strategy
looks as follows. First, for each atomic predicate, an Isabelle theorem proves the existence
of a knowledge extractor. In a second step, it is then shown that the assumptions of at
least one of these theorems are satisfied (i.e., that at least for one predicate we actually
have different challenges).

Isabelle/HOL formalization. The HOL theory file produced by the Protocol Verifica-
tion Toolbox is typical, in the sense that it contains a set of auxiliary lemmata that are
subsequently used as simplification rules, and a final lemma with the goal to be proved.
The purpose of the auxiliary lemmata is to decompose the final goal into simpler and easy
to prove subgoals. They allow a systematic proof strategy that, because it is modularized,
can handle proof goals of arbitrary complexity. Concretely, the proof goal for a simple
preimage ZK-PoK such as those associated with Diffie-Hellman keys (pk = gsk) used in
the example in §3 looks like the following theorem formulation:

Theorem (Proof Goal). Let G and H be commutative groups, where G represents
the group of integers. Take as hypothesis the algebraic definition of the exponentiation
homomorphism φ : G → H, quantified for all values of G, i.e., fix g ∈ H with order q
and assume ∀a ∈ G. φ(a) = ga.

Take a prime q > 2 and cmax ∈ Z such that 0 < cmax < q, take t,pk ∈ H such that
the order of pk is q, take s′, s′′ ∈ G and c′, c′′ ∈ Z such that 0 < c′, c′′ < cmax and c′ 6= c′′,
and assume φ(s′) = t · pkc

′ ∧ φ(s′′) = t · pkc
′′
.

Then there exist a, b ∈ Z such that φ(au + b∆s) = pk ∧ av + b∆c = 1, where
∆s := s′ − s′′ and ∆c := c′ − c′′, and (u, v) = (0, q) ∈ G× Z is a pseudo-preimage of pk
under φ.

Instrumental in constructing the proof goal and auxiliary lemmata that permit car-
rying out the formal proof are the verifier’s verification equations extracted from the
PIL file. Indeed, the part of the proof goal that describes the two transcripts of the pro-
tocol (t, c′, s′) and (t, c′′, s′′) is constructed by translating this verification equation into
Isabelle/HOL. For example, the following statement from the PIL file:

Verify((_t*(pk^_c)) == (g^_s));

will be translated into the Isabelle/HOL formalization

t⊗H (pk(∧H)c′) = g(∧H)s′; t⊗H (pk(∧H)c′′) = g(∧H)s′′; c′ 6= c′′;

where ⊗H and (∧H) represent the multiplicative and exponentiation operations in H,
respectively. A typical proof is then structured as follows.

A first lemma with these equations as hypothesis allows the system to make a simple
algebraic manipulation, (formally) proving the following:

(t⊗H (pk(∧H)c′))⊗H invH(t⊗H (pk(∧H)c′′)) = g(∧H)s′ ⊗H invH(g(∧H)s′′)

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 15

where invH represents the inversion operation for H. The subsequent lemmata con-
tinue simplifying this equation, until we obtain:

pk(∧H)(c′ − c′′) = g(∧H)(s′ − s′′).

By introducing the homomorphism φ : G→ H we are able to show

pk(∧H)(∆c) = φ(∆s)

where ∆c = c′−c′′ and ∆s = s′−s′′. We thus obtained the pseudo-preimage (∆s,∆c)
from the two accepting protocol transcripts. The second pseudo-preimage, which is needed
for Lemma 3, is found by analyzing the proof goal extracted from the PSL file, which in
our example was:

Relation((pk) = phi(sk)).

Recall that we have embedded in our tool the domain specific knowledge to generate
pseudo-preimages for the class of protocols that we formally verify, so that we introduce
another explicit pseudo-preimage as an hypothesis in our proof, e.g. (0, q), and prove
that it satisfies the pseudo-preimage definition. At this point we can instantiate the
formalization of Lemma 3, and complete the proof for the above theorem, which implies
the existence of a knowledge extractor.

Proof goals for more complex Σ-protocols involving And and Or composition of simple
preimage ZK-PoK are formalized as described in the previous subsection and in line with
the theoretic background introduced in §2. For And combinations, the proof goal simply
contains the conjunction of the independent proof goals for each of the simple preimage
proofs provided as atomic predicates. For Or combinations, the proof goal assumes the
existence of two transcripts for the composed protocol

((t1, . . . , tn), c′, ((s11, c
1
1), . . . , (s

n
1 , c

n
1)) with

n∑
i=1

ci1 ≡ c′ mod cmax

and analogously for c′′, such that c′ 6= c′′. It then states that, there exists an i ∈
{1, . . . , n} for which we can construct a proof of existence of a knowledge extractor
such as that described above. The assumptions regarding the consistency of the previous
summations are, again, a direct consequence of the verifier code as can be seen in the
example in App. C.

References

1. A. Adelsbach and A.-R. Sadeghi. Zero-knowledge watermark detection and proof of ownership. In
Information Hiding, volume 2137 of LNCS, pages 273–288. Springer, 2001.

2. J. Almeida, E. Bangerter, M. Barbosa, S. Krenn, A.-R. Sadeghi, and T. Schneider. A certifying
compiler for zero-knowledge proofs of knowledge based on Σ-protocols. In D. Gritzalis, B. Preneel,
and M. Theoharidou, editors, European Symposium on Research in Computer Security – ESORICS
2010, volume 6345 of LNCS, pages 151–167. Springer, 2010.

16 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

3. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure coalition-
resistant group signature scheme. In CRYPTO 00, volume 1880 of LNCS, pages 255–270. Springer,
2000.

4. M. Backes, C. Hritcu, and M. Maffei. Type-checking zero-knowledge. In ACM CCS 08, pages 357–370.
ACM, 2008.

5. M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in the applied pi-calculus and automated
verification of the direct anonymous attestation protocol. In IEEE Symposium on Security and
Privacy – SP 08, pages 202–215. IEEE, May 2008.

6. M. Backes and D. Unruh. Computational soundness of symbolic zero-knowledge proofs against active
attackers. In IEEE Computer Security Foundations Symposium - CSF 08, pages 255–269, June 2008.
Preprint on IACR ePrint 2008/152.

7. C. Ballarin, F. Kammüller, and L. Paulson. The Isabelle/HOL Algebra Library. http://isabelle.

in.tum.de/library/HOL/HOL-Algebra/document.pdf, 2008.
8. E. Bangerter. Efficient Zero-Knowledge Proofs of Knowledge for Homomorphisms. PhD thesis, Ruhr-

University Bochum, 2005.
9. E. Bangerter, T. Briner, W. Heneka, S. Krenn, A.-R. Sadeghi, and T. Schneider. Automatic generation

of Σ-protocols. In EuroPKI 09 (to appear), 2009.
10. E. Bangerter, J. Camenisch, S. Krenn, A.-R. Sadeghi, and T. Schneider. Automatic generation of

sound zero-knowledge protocols. Cryptology ePrint Archive, Report 2008/471, 2008. Poster Session
of EUROCRYPT 09.

11. E. Bangerter, J. Camenisch, and U. Maurer. Efficient proofs of knowledge of discrete logarithms
and representations in groups with hidden order. In PKC 05, volume 3386 of LNCS, pages 154–171.
Springer, 2005.

12. E. Bangerter, A. Grünert, and S. Krenn. On the (in)practicability of zero-knowledge proofs of
knowledge using hidden-order groups. Technical report, Bern University of Applied Sciences (CH),
University of Fribourg (CH), and University of London (GB), 2010.

13. E. Bangerter, S. Krenn, A.-R. Sadeghi, T. Schneider, and J.-K. Tsay. On the design and implemen-
tation of efficient zero-knowledge proofs of knowledge. In Software Performance Enhancements for
Encryption and Decryption and Cryptographic Compilers – SPEED-CC 09, October 12-13, 2009.

14. G. Barthe, B. Grégoire, and S. Béguelin. Formal certification of code-based cryptographic proofs. In
ACM SIGPLAN-SIGACT POPL 09, pages 90–101, 2009.

15. G. Barthe, D. Hedin, S. Zanella Béguelin, B. Grégoire, and S. Heraud. A machine-checked formaliza-
tion of Σ-protocols. In 23rd IEEE Computer Security Foundations Symposium – CSF 2010. IEEE,
2010.

16. Anguraj Baskar, R. Ramanujam, and S. P. Suresh. A Dolev-Yao Model for Zero Knowledge. In
Advances in Computer Science (ASIAN 09). Information Security and Privacy, volume 5913 of LNCS,
pages 137 – 146. Springer, 2009.

17. M. Bellare and O. Goldreich. On defining proofs of knowledge. In CRYPTO 92, volume 740 of LNCS,
pages 390–420. Springer, 1993.

18. A. Bhargav-Spantzel, A. C. Squicciarini, S. Modi, M. Young, E. Bertino, and S. J. Elliott. Privacy
preserving multi-factor authentication with biometrics. Journal of Computer Security, 15(5):529–560,
2007.

19. K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu. Cryptographically verified implementations
for TLS. In ACM CCS 08, pages 459–468. ACM, 2008.

20. K. Bhargavan, C. Fournet, A.D. Gordon, and S. Tse. Verified interoperable implementations of
security protocols. ACM Trans. Program. Lang. Syst., 31(1):1–61, 2008.

21. B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In Workshop on
Computer Security Foundations – CSFW 01, page 82. IEEE, 2001.

22. B. Blanchet. A computationally sound mechanized prover for security protocols. In IEEE Symposium
on Security and Privacy – SP 06, pages 140–154. IEEE, 2006.

23. B. Blanchet. ProVerif: Cryptographic protocol verifier in the formal model, 2010.
24. S. Brands. Untraceable off-line cash in wallet with observers. In CRYPTO 93, volume 773 of LNCS,

pages 302–318. Springer, 1994.
25. S. Brands. Rapid demonstration of linear relations connected by boolean operators. In EUROCRYPT

97, volume 1233 of LNCS, pages 318–333. Springer, 1997.

http://isabelle.in.tum.de/library/HOL/HOL-Algebra/document.pdf
http://isabelle.in.tum.de/library/HOL/HOL-Algebra/document.pdf

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 17

26. E. Bresson and J. Stern. Proofs of knowledge for non-monotone discrete-log formulae and applications.
In ISC 02, volume 2433 of LNCS, pages 272–288. Springer, 2002.

27. E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In ACM CCS 04, pages
132–145. ACM Press, 2004.

28. T. Briner. Compiler for zero-knowledge proof-of-knowledge protocols. Master’s thesis, ETH Zurich,
2004.

29. J. Camenisch. Group Signature Schemes and Payment Systems Based on the Discrete Logarithm
Problem. PhD thesis, ETH Zurich, Konstanz, 1998.

30. J. Camenisch and E. V. Herreweghen. Design and implementation of the idemix anonymous credential
system. In ACM CCS 02, pages 21–30. ACM Press, 2002.

31. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Balancing accountability and privacy using
e-cash (extended abstract). In SCN 06, volume 4116 of LNCS, pages 141–155. Springer, 2006.

32. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous credentials
with optional anonymity revocation. In EUROCRYPT 01, volume 2045 of LNCS, pages 93–118.
Springer, 2001.

33. J. Camenisch and M. Michels. Proving in zero-knowledge that a number is the product of two safe
primes. In EUROCRYPT 99, volume 1592 of LNCS, pages 107–122. Springer, 1999.

34. J. Camenisch, M. Rohe, and A.-R. Sadeghi. Sokrates - a compiler framework for zero-knowledge
protocols. In WEWoRC 05, 2005.

35. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups (extended abstract).
In CRYPTO 97, volume 1294 of LNCS, pages 410–424. Springer, 1997.

36. Z. Cao. Analysis of one popular group signature scheme. In ASIACRYPT 06, volume 4284 of LNCS,
pages 460–466. Springer, 2006.

37. R. Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis, CWI and
University of Amsterdam, 1997.

38. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and simplified design of
witness hiding protocols. In CRYPTO 94, volume 839 of LNCS, pages 174–187. Springer, 1994.

39. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In CRYPTO 98, volume 1462 of LNCS, pages 13–25. Springer, 1998.

40. I. Damg̊ard. On Σ-protocols, 2004. Lecture on Cryptologic Protocol Theory; Faculty of Science,
University of Aarhus.

41. I. Damg̊ard and E. Fujisaki. A statistically-hiding integer commitment scheme based on groups with
hidden order. In ASIACRYPT 02, volume 2501 of LNCS, pages 77–85. Springer, 2002.

42. I. Damg̊ard, M. Geisler, M. Krøigaard, and J. B. Nielsen. Asynchronous multiparty computation:
Theory and implementation. In PKC 09, volume 5443 of LNCS, pages 160–179. Springer, 2009.

43. I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications of Paillier’s
probabilistic public-key system. In PKC 01, volume 1992 of LNCS, pages 119–136. Springer, 2001.

44. A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification and signature
problems. In CRYPTO 86, volume 263 of LNCS, pages 186–194. Springer, 1987.

45. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular polynomial
relations. In CRYPTO 97, volume 1294 of LNCS, pages 16–30. Springer, 1997.

46. T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In
CRYPTO 84, volume 196 of LNCS, pages 10–18. Springer, 1985.

47. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity or all languages
in NP have zero-knowledge proof systems. Journal of the ACM, 38(1):691–729, 1991. Preliminary
version in 27th FOCS, 1986.

48. J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on real C code. In VMCAI
05, volume 3385 of LNCS, pages 363–379. Springer, 2005.

49. T. Granlund. The GNU MP Bignum Library. http://gmplib.org/, 2010.
50. J. Groth. Non-interactive zero-knowledge arguments for voting. In ACNS 05, volume 3531 of LNCS,

pages 467–482. Springer, 2005.
51. L. Guillou and J.-J. Quisquater. A “paradoxical” identity-based signature scheme resulting from

zero-knowledge. In CRYPTO 88, volume 403 of LNCS, pages 216–231. Springer, 1990.
52. W. Han, K. Chen, and D. Zheng. Receipt-freeness for Groth e-voting schemes. Journal of Information

Science and Engineering, 25(2):517–530, 2009.

http://gmplib.org/

18 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

53. G. Hanaoka and K. Kurosawa. Efficient chosen ciphertext secure public key encryption under the
computational Diffie-Hellman assumption. In ASIACRYPT 08, volume 5350 of LNCS, pages 308–325.
Springer, 2008.

54. H. Kikuchi, K. Nagai, W. Ogata, and M. Nishigaki. Privacy-preserving similarity evaluation and
application to remote biometrics authentication. Soft Computing, 14(5):529–536, 2010.

55. S. Kunz-Jacques, G. Martinet, G. Poupard, and J. Stern. Cryptanalysis of an efficient proof of
knowledge of discrete logarithm. In PKC 06, volume 3958 of LNCS, pages 27–43. Springer, 2006.

56. Y. Lindell, B. Pinkas, and N. P. Smart. Implementing two-party computation efficiently with security
against malicious adversaries. In SCN 08, volume 5229 of LNCS, pages 2–20. Springer, 2008.

57. H. Lipmaa. On diophantine complexity and statistical zeroknowledge arguments. In ASIACRYPT
03, volume 2894 of LNCS, pages 398–415. Springer, 2003.

58. P. MacKenzie, A. Oprea, and M. K. Reiter. Automatic generation of two-party computations. In
ACM CCS 03, pages 210–219. ACM, 2003.

59. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-party computation system.
In USENIX Security 04, 2004.

60. S. Meiklejohn, C. Erway, A. Küpçü, T. Hinkle, and A. Lysyanskaya. ZKPDL: A language-based
system for efficient zero-knowledge proofs and electronic cash. In USENIX 10 (to appear), 2010.

61. T. Nipkow and L. Paulson. Isabelle web site. http://isabelle.in.tun.de, 2010.

62. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL: a proof assistant for higher-order logic, volume
2283 of LNCS. Springer, 2002.

63. T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as factoring. In EURO-
CRYPT 98, volume 1403 of LNCS, pages 308–318. Springer, 1998.

64. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT
99, volume 1592 of LNCS, pages 223–238. Springer, 1999.

65. L. Paulson. Isabelle: a Generic Theorem Prover, volume 828 of LNCS. Springer, 1994.

66. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
CRYPTO 91, volume 576 of LNCS, pages 129–140. Springer, 1992.

67. R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

68. C. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–174, 1991.

69. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

70. N. P. Smart, editor. Final Report on Unified Theoretical Framework of Efficient Zero-Knowledge
Proofs of Knowledge. CACE project deliverable, 2009.

A Protocol Implementation Language

From the PSL file, the compiler automatically generates a description of the protocol in
the Protocol Implementation Language (PIL). This language describes the algorithms for
prover and verifier in detail, including the sequence of operations that are performed,
and the messages exchanged between the two parties (for an example see the PIL output
generated from the PSL input of Fig. 3 in App. C). This PIL file is used for the automatic
generation of the LATEX documentation (cf. App. B), and source code in the C program-
ming language using the respective backends. The PIL description is also fed as an input
to the protocol verification toolbox described in §4.

http://isabelle.in.tun.de

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 19

B Generated LATEX Output for Example of §3.2

1 Declarations and Inputs

1.1 Common Declarations

p ∈ P1024

q ∈ P160

ksec = 80 ∈ Z
h, g, c, pk2, pk1 ∈ Z∗

p

1

1.2 Private Declarations – Prover

1.2.1 Prover’s Inputs

m, sk1, r, sk2 ∈ Zq

2

1.2.2 Global Variables

c2, c1 ∈ {0, 1}80

r2, r3, r1, r4, s3, s2, s1, s4 ∈ Zq

3

1.3 Private Declarations – Verifier

1.3.1 Global Variables

c ∈ {0, 1}80

t1, t2, t3 ∈ Z∗
p

4

2 Protocol Rounds

2.1 Prover – Round0

hq ?
= 1

gq ?
= 1

cq ?
= 1

pk2
q ?

= 1

pk1
q ?

= 1

5

2.2 Verifier – Round0

hq ?
= 1

gq ?
= 1

cq ?
= 1

pk2
q ?

= 1

pk1
q ?

= 1

6

20 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

2.3 Prover – Round1

r1 ∈R Zq

r2 ∈R Zq

t1 := gr1 · hr2

If known: sk1 do:
| r3 ∈R Zq

| t2 := gr3

Else
| c1 ∈R {0, 1}80

| s3 ∈R Zq

| t2 := gs3 · pk1
((−(c1)))

End if

If known: sk2 do:
| r4 ∈R Zq

| t3 := gr4

Else
| c2 ∈R {0, 1}80

| s4 ∈R Zq

| t3 := gs4 · pk2
((−(c2)))

End if

t1; t2; t3;

✲

7

2.4 Verifier – Round1

c ∈R {0, 1}80

c;

✛

8

2.5 Prover – Round2

s1 := r1 + m · c
s2 := r2 + r · c
Complete (c1, c2) such that

c1 + c2 ≡ c mod 280

If known: sk1 do:
| s3 := r3 + sk1 · c1

End if

If known: sk2 do:
| s4 := r4 + sk2 · c2

End if

s1; s2; s3; s4; c1;

✲

9

A Certifying Compiler for ZK-PoK Based on Σ-Protocols 21

2.6 Verifier – Round2

Local Round Variables:
c2 ∈ {0, 1}80

s1
?∈ Zq

s2
?∈ Zq

t1 · cc
?
= gs1 · hs2

Complete (c1, c2) such that
c1 + c2 ≡ c mod 280

s3
?∈ Zq

t2 · pk1
c1 ?

= gs3

s4
?∈ Zq

t3 · pk2
c2 ?

= gs4

10

C Generated PIL Code for Example of §3.2

ExecutionOrder := (Prover.Round0, Verifier.Round0, Prover.Round1, Verifier.Round1,

Prover.Round2, Verifier.Round2);

Common (

Prime(1024) p;

Prime(160) q;

H=Zmod*(p) pk_1, g, c, h, pk_2

) {}

Prover(G=Zmod+(q) sk_2, sk_1, m, r) {

_C=Int(80) _c_2, _c_1;

G _r_2, _r_3, _r_1, _r_4, _s_3, _s_2, _s_1, _s_4;

Def (Void): Round0(Void) {

Verify((pk_1^q) == 1);

Verify((g^q) == 1);

Verify((c^q) == 1);

Verify((h^q) == 1);

Verify((pk_2^q) == 1);

}

Def (H _t_1, _t_2, _t_3): Round1(Void) {

_r_1 := Random(G);

_r_2 := Random(G);

_t_1 := ((g^_r_1)*(h^_r_2));

IfKnown(sk_1){

_r_3 := Random(G);

_t_2 := (g^_r_3);

} Else {

_c_1 := Random(_C);

_s_3 := Random(G);

_t_2 := ((g^_s_3)*(pk_1^(-(_c_1))));

}

IfKnown(sk_2){

_r_4 := Random(G);

_t_3 := (g^_r_4);

} Else {

_c_2 := Random(_C);

_s_4 := Random(G);

_t_3 := ((g^_s_4)*(pk_2^(-(_c_2))));

}

}

22 Almeida, Bangerter, Barbosa, Krenn, Sadeghi, and Schneider

Def (_s_1; _s_2; _s_3; _s_4; _c_1): Round2(_C _c) {

_s_1 := (_r_1+(m*_c));

_s_2 := (_r_2+(r*_c));

Complete((_c_1,_c_2),_c,OR);

IfKnown(sk_1){

_s_3 := (_r_3+(sk_1*_c_1));

}

IfKnown(sk_2){

_s_4 := (_r_4+(sk_2*_c_2));

}

}

}

Verifier() {

_C=Int(80) _c;

H _t_1, _t_2, _t_3;

Def (Void): Round0(Void) {

Verify((pk_1^q) == 1);

Verify((g^q) == 1);

Verify((c^q) == 1);

Verify((h^q) == 1);

Verify((pk_2^q) == 1);

}

Def (_c): Round1(_t_1; _t_2; _t_3) {

_c := Random(_C);

}

Def (Void): Round2(G=Zmod+(q) _s_1, _s_2, _s_3, _s_4; _C _c_1) {

_C _c_2;

CheckMembership(_s_1, G);

CheckMembership(_s_2, G);

Verify((_t_1*(c^_c)) == ((g^_s_1)*(h^_s_2)));

Complete((_c_1,_c_2),_c,OR);

CheckMembership(_s_3, G);

Verify((_t_2*(pk_1^_c_1)) == (g^_s_3));

CheckMembership(_s_4, G);

Verify((_t_3*(pk_2^_c_2)) == (g^_s_4));

}

}

	A Certifying Compiler for Zero-Knowledge Proofs of Knowledge Based on -Protocols
	José Bacelar Almeida, Endre Bangerter, Manuel Barbosa, Stephan Krenn, Ahmad-Reza Sadeghi, Thomas Schneider

