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~ Abstract—This paper describes carry-less arithmetic opera- ~ speed of finite field arithmetic in ECC based schemes [51],
tions modulo an integer 2 — 1 in the thousand-bit range,  [55]. The great internet Mersenne prime search project [26]
targeted at single instruction multiple data platforms and g hased on an implementation of the Lucas-Lehmer primal-
applications where overall throughput is the main performance ity test [39], [33] for Mersenne numbers in the many million

criterion. Using an implementation on a cluster of PlayStaion 3 ) e ) )
game consoles a new record was set for the e|||pt|c curve bit range. Hence, efficient arithmetic modulo a Mersenne

method for integer factorization. number is a widely studied subject, not just of interestsn it
Keywords-Mersenne number, Single Instruction Multiple ~ OWn right but with many applications.
Data, Cell processor, Elliptic curve method, Integer factoiza- Our interest in arithmetic modulo a Mersenne number was
tion triggered by a potential (special) number field sieve (NFS)
project [36], for which we need a list of composites dividing
l. INTRODUCTION 2M _1 for exponentsV/ in the range from 1000 to 1200. The

Numbers of a special form often allow faster modularCunningham tables contain at least 20 composite Mersenne
arithmetic operations than generic moduli. This is exgldit numbers (or composite factors thereof) in the desired range
in a variety of applications and has led to a substantiathat have not been fully factored yet. It may be expected
body of literature on the subject of fast special arithmetic that some of these composites are not suitable candidates
Speeding up calculations using special moduli was alreadfor our list because they can be factored faster using the
proposed in the mid 1960s by Merrill [40] in the setting elliptic curve method (ECM) for integer factorization [38]
of residue number systems (RNS) [25]. Other applicathan by means of special NFS (SNFS). The only way to
tions range from speeding up fast Fourier transform basefind out if ECM is indeed preferable, is by subjecting each
multiplication [19], enhancing the performance of digital candidate to an extensive ECM effort (which, though it may
signal processing [54], [50], [23], to faster elliptic cerv be substantial, is small compared to the effort that would

cryptography (ECC; [32], [41]), such as in [3]. be required by SNFS): only candidates that ECM failed to
Another application area of special moduli is in factoriza-factor should be included on the list.
tion attempts of so-calleBunningham numbersumbers of The efficiency of ECM factoring attempts relies on the

the formb™+1forb =2,3,5,6,7,10,11, 12 up to high pow-  efficiency of integer arithmetic modulo the number being
ers. This long term factorization project, originally refal  factored. Given the need to do extensive ECM pre-testing
in the Cunningham tables [21] and still continuing in [15], for at least 20 composite Mersenne numbers, we developed
has a long and distinguished record of inspiring algorithmi arithmetic operations modulo a Mersenne number suitable
developments and large-scale computational projects [34for implementation of ECM on the platform that we intended
[42], [14], [46], [37], [13]. Factorizations from [15] with to use for the calculations: the Cell processor as found in
b = 2 are used in formal correctness proofs of floating pointthe Sony PlayStation 3 game console. Because each ECM
division methods [27]. Several of these developments [36kffort consists of a large number of independent attempts
turned out to be applicable beyond special form modulithat can be executed isingle instruction multiple data
and are relevant for security assessment of various commqi$IMD) mode and because each core of the Cell processor
public-key cryptosystems. can be interpreted as a 4-way SIMD environment, our
This paper concerns efficient arithmetic modulo aarithmetic modulo a Mersenne number is geared towards
Mersenne number, an integer of the foet — 1. These SIMD implementation. It is described in Section Ill after
numbers, and a larger family of numbers called generala brief description of the Cell architecture in Section II.
ized Mersenne numbers [51], [17], [1], have found manyAlthough our implementations were written for the Cell
arithmetic applications ranging from number theoretiogra processor, our methods apply to any type of SIMD platform,
forms [12] to cryptography. In the latter they are used to runincluding graphics cards. Section IV sketches ECM, our
calculations concurrently using RNS [2] or to improve the Cell processor implementation, and lists some of our ECM



results, including a new ECM record factorization. 16-bit, or four 32-bit integers. An SPE has 3x 32 — 64-
While the new ECM factorizations removed some of thebit or 64 x 64 — 128-bit integer multiplier, but has several
easy cases from our list of candidate Mersenne numbers, teway SIMD 16 x 16 — 32-bit integer multipliers including
further practical implications of ECM records are limited multiply-and-add instructions.
to their consequence for two variants of the RSA cryp- There is an odd and an even pipeline: in ideal cir-
tosystem [47], namelRSA multiprimg47] andunbalanced cumstances an SPE can dispatch one odd and one even
RSA[48]. The former gains a speedup by a factoréf instruction per clock cycle. Most arithmetic instructions
or = for the private operation in vanilla RSA or CRT-RSA, are even. Because the SPE lacks smart branch prediction,
respectively, by selecting RSA moduli (of appropriate sizebranching is best avoided (as usual in SIMD). Multiple
to be out of reach of NFS) consisting of the product of SIMD processes may be interleaved, filling both pipelines to
r > 2 primes of about the same size. In unbalanced RSAincrease throughput, while possibly increasing per p®ces
the RSA modulus has two factors as usual, but one is chosdatency. Here we took advantage of interleaving in another
much smaller than the other. In these variamtsand the  manner.
smallest factor must be chosen in such a way that ECM has The Cell processor has also been made available to the
a sufficiently low probability to find the resulting relatlye  sypercomputing community by placing two Cell chips in
small prime factor(s). Our ECM findings affirm that 1024- 5 gingle blade server. They come with more memory than
bit RSA moduli withr > 4 should be avoided [35] and may iy the PS3 and on each Cell all eight SPEs are accessible.
give practitioners of these variants some guidance howlsmagoy high-performing blade servers a newer derivative of the

the factors may be chosen. Cell, the PowerXCell 8i, offers enhanced double-precision
floating-point capabilities. Due to their significantly higy
II. THE CELL PROCESSOR AND ITS ARCHITECTURE price these compute nodes come at a price performance ratio

The Cell processor, the main processor of the PS3 angwte different from the relatively inexpensive PS3.

thus mainly targeted at the gaming market, is a powerful
general purpose processor. On the first generation PS3s it
can be accessed using Sony’s hypervisor, a feature that has
been disabled in current versions. This made the PS3 a
relatively inexpensive and also flexible source of progegsi  In this section we describe the SPE-arithmetic that we
power, as witnessed by a variety of cryptanalytic projectsdeveloped for arithmetic moduly’ = 2 —1, for M in the
chosen prefix collisions for the cryptographic hash functio range from 1000 to 1200 (allowing larger values as well).
MDS5 [52], [563], the solution of a 112-bit prime field elliptic Assume that\/ < 13-96 — 2 = 1246 (larger M -values can
curve discrete logarithm problem [9], and implementationbe accommodated by putting < u-v—2 with v-(247")? <
of elliptic curve group arithmetic over a degree-130 binary2”'). Our approach aims to optimize overall throughput as
extension field [10]. opposed to minimize per process latency. Two variants are
The architecture of the Cell processor is quite differentPresented: a first approach where addition and subtraction
from that of regular server or desktop processors. Taking'e fast_at. thg cost of a radix conversion before and aft_er
full advantage of it requires designing new software. It isthe multiplication, and an alternative approach wherexradi
worthwhile doing so, because architectures similar to thé&onversions are avoided at the cost of slower addition and
Cell's will soon be mainstream [44]. It not only helps us to subtractlor_l. Thls second variant turns out to be faster dior o
take advantage of the Cell's inexpensive processing poweECM application. In applications with a different balance
it also helps to prepare for future generations of procﬁssorbetween the various operations the first approach could be
See Section IV-A for the rationale why the Cell processorpreferable, so it is described as well. All our methods are
was chosen as the platform for our ECM attempts. particularly suited to SP_E-impIementation, but the apphoa
The Cell has @ower Processing Eleme(®PPE), a dual- May have broader applicability.
threaded Power architecture-based 64-bit processor with For k € Z-, a k-bit integer is an integerw with
access to a 128-bit AltiVec/VMX SIMD unit. Its main 0 < w < 2%. A signedk-bit integeris an integerw with
processing power, however, comes from ei@ynergistic —2""' <w < 2¥~*. Forr € Z., aradix-r representation
Processing Elemen{SPEs). When running Linux, six SPEs of an integerz with 0 < z < r* is a sequence ofadix-r

can be used: one is disabled, and one is reserved by tr#gits (w;)5=; such thatz = Z;;é w;r andw; € Zxo.

hypervisor. It is conceivable that this last one becomedt is unique if 0 < w; < r for 0 < j < s. If 28 > r,
accessible too [28]. Each SPE runs independently from the signed k-bit radix-r representationof = is a sequence
others at 3.192GHz, using its own 256 kilobyte of fast local(w;)3_, of signedk-bit integers such that = >77_; w;r7.
memory for instructions and data. It has 128 registers of 128Ve usesigned radix2* representatiorior signedk-bit radix-

bits each, allowing SIMD operations on sixteen 8-bit, eight2* representation.

[1l. ARITHMETIC MODULO 2™ — 1 ON THE SPE



A. Related work it causes a slight stall for the other three calculationsan t

In [18] an SPE implementation is presented using arith—4'IUple)' o o )
metic modulo the special prin@?5> — 19 introduced in [3]. Fort = 32 the SPE’s built-in carry generation instructions
SPE-arithmetic modulo a special prime is used in [9] to@'® used, for smallet-values somewhat more work needs
solve a 112-bit elliptic curve discrete logarithm problem© P& done. For completeness (and future reference, cf.
on Cell processors. The SPE-performance of generic versui€P S in Section 11Il-G), we describe the calculation of
generalized Mersenne moduli is compared in [8]. SPE€ = ¢ +bmod N andd = a — bmod N (so-called
arithmetic for moduli in the 200-bit range is presented i [6 @ddition-subtractiorof %5and b) given the 5'9”39 radig??

[16]; on PS3s the former is more than twice faster than théepresentations = 37:%,a;2'% and b = 3737, b,;2'.
latter. Different approaches to implement arithmetic oxer ' N€ following 5 steps are carried out:

binary extension field on SPEs are stated in [10]. 1) Leta) =a; + 2" for 0 < j < 96.

Our usage of a small radix to avoid carries (cf. below) is  2) Setc; = a; +b; andd; = a); — b; for 0 < j < 96.
not new [20], [31, Section 4.6], [6]. In [6] signed radit3 3) Letthe initial value of the carry be0. Forj = 0to 95
representation is used along with the SPHsx 16 — 32- in succession first replaceby 7 + ¢;, next replace;;
bit multiplication instruction to develop fast multiplitan by 7 mod 23, and finally replacer by |7/2'3|. The
modulo 195-bit moduli. All additions done during a single resulting 7 is a carry corresponding ta - 213-96;
schoolbook multiplication are carry-less, requiring natm modulo N this carry is taken care of by adding 2¢
ization to radix2'® representation only at the end of the to ¢cg (for v = 13-96 — M, 8 = [v/13] and
multiplication. a = v — 138 € [0,12]) followed by a few more

carry propagations. If there is still a carry which occurs
B. Representation of 4-tup|eS of integers modilo rare|y, use a more expensive function.

On the SPE it is advantageous to operate on four integers 4) Repeat the previous step withreplaced byd.
modulo N simultaneously, in 4-way SIMD fashion. Each 5) Setc; = ¢; —2'? andd; = d; — 2" for 0 < j < 96.
128-bit SPE register is interpreted as being partitionéd in Steps 1, 2, and 5 allow arbitrary parallelization. Table |
four 32-bit words With s 128-bit registers thought to be lists SPE clock cycle counts for the addition operations
stacked on top of each other, whes > M, four different  modulo 2''9% — 1: it can be seen that for signed radix-
integers modulaV can be represented using four disjoint 213 representation they are more than twice slower than for
parallel columns, each consisting efwords: denoting the radix-232 representation.
ith word of the jth register byw;; for i € {1,2,3,4}

. _1 . .
andj = 0,1,...,s — 1, the sequencéw;;);_, is inter-  p Myltiplication moduloN using radix conversions
preted as the radi2#? representation of thg2s-bit integer ) ) o
Zj;é w;;2%%. More generally, for anyt < 32 of one’s Given a pair of 4-tuples ofM-bit integers, the four

s—1 pairwise products result in a 4-tuple 2/-bit integers. The

choice, the sequenceyij)j:0 may represent the integer ¢ ducti dulay : cinle be d b
Zj;(l) w;; 2% whose value depends on the interpretation of our reductions moduldy can In principle be done by means

i . ; ... of a few of the above 4-tuple additions and subtractions
the wordsw;;: as an unnormalized radi¥- representation if .
; o : oduloN. Here we present our first approach that uses two
the w;; are interpreted as non-negative integers (normalize

: : . . . . ifferent radix representations, thereby making it pdssib
and unique ifw;; < 2* as well), and as a signédbit radix- 2 I .
: . . : take advantage of the fast radiX? addition and subtraction
2* representation, for somie< 32, if the w;; are interpreted

. L modulo N. In Section IlI-F another approach is described
as signedk-bit integers.

. . that is based on signed raddt? representation.
It should be understood that the integer operations de- A o
9 P The multiplication moduloN of two M-bit integersa

scribed below are always carried out in 4-way SIMD fashmnandb given by their radix2?? representations, each using 39

on the SPE. words of 32 bits, proceeds in three steps that are described
C. Addition and subtraction moduldy in more detail in sections Ill-D1 through IlI-D3. The steps

are:
Addition and subtraction in 4-way SIMD fashion on a pair

of 4-tuples of integers modul®y in radix-2* representation, 1) conversion of inputsa and b to signed radia'?
with each 4-tuple represented by a stacksofegisters of representation; _ .
128-bits (where's > M), is done by applyings additions 2) c_arry—less cglcule}non of thEM—blt_ producta - b in
or subtractions to the matching pairs of registers (one from __ Signed 32-bit radig'® representation;

each stack), combined with a moderate number of carry 3) reduction modulaV and conversion to radig** rep-
propagations. The reduction modulé most of the time resentation of th&M-bit producta - b, resulting in
affects just two of the radi®! digits, with probability ¢=a-bmod N € {0,1,..., N —1}.

2—1-t=(Mmod t) that more digits are affected (in which case The following sections describe the steps in more detail.



1) Conversion of inputs to signed radd? representa-
tion: Given the radix23? representation of the precomputed
constantC, = 212 . Z?io 2137 first calculate the radix-
232 representation ofi + Cjp, in the usual way requiring
carries. Next, using masks and shifts, extract the radix-
representatior{a)j2, of a + Cy, and finally subtracC
again by calculating:; = a; — 2'2, for j = 0,1,...,95
(becauseigs = 0 for our choice of)M, it is dropped). The
last two steps allow various straightforward parallelizas
and run twice faster (while requiring fewer registers) if
two 13-bit chunks are packed into a single 32-bit word.
Applying the same method tb, we find signed radig'?
representations of the inputs, below regarded as polyrismia
Py(X) =Y ga; X7, P(X) = Y2020 b; X9 € Z[X] with
P,(2'3) = a and P,(2'3) = b.

2) Carry-less calculation of the M -bit product in signed
32-bit radix2'3 representation: The product polynomial
P(X) = P, (X)Py(X) = Z;iooijj corresponds to the
carry-less product calculation af and b as represented
by (a;)2, and(b;)92,, respectively. Its coefficients satisfy
Ip;| < 96 - (21%)? < 231, which allows computation mod-
ulo 232, resulting in a signed 32-bit radix*® representation
(p;);2h of the producta - b = P(2'?). If M < 13- w with
w < 96, the degree o (X) will be at most2w — 2 < 190,
which leads to savings here and in the description below.

The polynomial P(X) is calculated using three levels

result(Z}iOO p; - 21%9) 4+ Cp = P(2'3) mod N.
2) For0 < j < 191, left shift 5; over k; bits and right
shift p; over32 — k; bits, to obtaind;, e; such that

P21 =dj - 232 ey 232D mod N

(this again allows arbitrary parallelization).
3) Letyy =0. For0 <i < 39, let

@)

(where the indiceg can be precomputed) and compute

(v; + ;) mod 232 € {0,1,...,232 — 1},
Vi1 = [(v; + ;) /2%

(this allows partial parallelization). Finally, compute
C39 = U39 + Dy _35 €j-
Using Eq. (1), reduction moduliV is effected by
disregardingm; and grouping together identical;-
values and identicat;-values. As a result(¢;)3%,
is the radix23? representation of a number with
¢+ C1 =cmod N.

4) Calculatec = ¢ + C; mod N. Although the numbers
are slightly bigger, this calculation is in principle the
same as regular addition moduld.

C; =

E. Optimizations

of Karatsuba multiplication [30] (but see Section Ill-FZ fo swapping even for odd instructionsodular arithmetic

the possibility {0 use more levels), resulting in 27 pairs ofpmostly relies on the SPE’s arithmetic instructions, which
polynomials(P{" (X), B (X)) of degree< 11, for k = are even pipeline instructions. Following the approach
1,2,...,27 (in the more general case wheté < u-v—2  from [43], [11] one may replace an even instruction by
we would usel6 — u |eV€|S). This leads to 27 independent one or more odd ones with the same effect. A|th0ugh
polynomial multiplicationsQ® (X) = P (X)P(X),  this may increase the latency for the functionality of each
done using carry-less schoolbook multiplications. The/pol replaced even instruction and the number of instructions,
nomial P(X) is then obtained by carry-less additions andbalancing the counts of even and odd instructions often

subtractions of the appropriagg® (X)’s.

3) Reduction moduloN and conversion to radig3?
representation of th@M-bit product: Given a signed 32-
bit radix-2'? representatiorip;);%}, of the 2M-bit product
a b, regarded as the polynomi#(X) = 3% p; X7 with
P(213) = a - b, the radix23? representatioric;)38, of the
M -bit numberc = P(2'3) mod N is calculated. We use the
following precomputed constants:

o Oy =231 3 021 mod N, 0< €y < N,

o Integersk;,l; andm; such that

with 0 < 32[; + k; < M and0 < k; < 32,

for 0 < j < 191. Note thatm; € {0,1,2} because
M > 827 (and M < 1246).

increases the throughput. This method was used throughout
our implementation. Examples are sketched below.

Modular squaring.When squaring polynomials of degree
at mostl11, half of the mixed products, i.ePzT*12 = 66
multiplications, can be saved by doubling their resultidg 2
sums (as the top elements are zero). Of these sums, the
eleven for coefficients of odd degree can be doubled for
free during the conversion to rad?, by using for odd;j
precomputed integers;, /;, andsn; such that

135 + 1 =1 M + 321, + k;
with 0 < 32; + k; < M and0 < k; < 32,
instead of k;, [;, and m;, as defined earlier. The ten

remaining sums need to be doubled before they are added to
the corresponding squared input coefficient. Each doubling

Given these values, the following four steps are carried outcan be done by a single even pipeline addition. However,

the correctness of which easily follows by inspection:
1) For0 < j < 191, computep; = p; + 23! (this allows
arbitrary parallelization), so thdt < p; < 2%2. As a

a doubling can also be performed by four odd pipeline in-
structions (or two doublings in six odd pipeline instrucis).
The ten remaining doublings could thus be squeezed in the



odd pipeline, including all load and storage overhead2(&ll is replaced by a value that is zero modo This saves an
doublings would not have fit in the odd pipeline). As a result,addition (byC}) in the final calculation of: in the fourth
all doublings required for squaring came for free. step of Section III-D3.

2) Karatsuba multiplication with multiply-and-addA
more substantial improvement is obtained by noting that for
26 out of the 27k-values in Section IlI-D2 the coefficients
of the polynomialsPék) (X) ande(k) (X) are signed 15-hit
integers. Therefore, for thede another level of Karatsuba
Jnultiplication can be used for the calculation @f*)(X),
while taking advantage of the SPE’s multiply-and-add in-
structions. Some details are described below.
M-dependent optimizatiorcor 0 < j < 191 and mostM Let e, ¢, f, f' be four polynomials of degree — 1. To
we have)”,, . ,_;e; < 2%, sincee; is obtained by aright multiply the two polynomials: + ¢/X™ and f + f'X" of
shift over 32 — k; > 0 bits and the shift amounts usually degree2n — 1, calculateg = ¢ — ¢’ andh = f’ — f (note
differ. Thus, for suchM the second summation in Eq. (1) the asymmetry). Definingf = U + U'X", ¢'f' =V +

does not generate carries. V'X™ andgh = W + W'X™, we have to calculatg¢e +

We have written a program that generates SPE code far X»)(f+ f/X") = U4+ (U'+W+U+V)X"+(V+W'+
each value ofl/, with the applicable’y, C1, kj, Ij, mj, kj, U’ +V')X?" + V' X3 This is done by calculating (using
lj, and m; hard-coded and including all optimizations multiply-and-add when relevant) andU’ in n? operations,
mentioned so far. The resulting code thus depends ORextU’+V andV’ using anothen? operations{/’ +V +U
the value of M used, with slightly varying performance (n additions) and/’ +V +V’ (n — 1 additions), and finally
between differenfl/-values. Representative instruction and /’ + vV 4+ U+ W andU’ +V +V'+W’ usingn? operations.
cycle COUlrlltS for 4-way SIMD multiplication and squaring |n this way this final level of Karatsuba multiplication
modulo 27893 — 1 on a single SPE are given in Table I. requires3n? + 4n — 1 operations, which can be reduced to
Because;7; - 3905 ~ 2115, the 2130 cycles required for 3,21 3, —1if g andh can be calculated twice as fast, as
the calculation of th&)")’s while squaring is very close to in our case. Withn = 6 this becomes 125 operations for
what one would expect based on the 3905 cycles requireghe calculation of each of the 2@(*)(X)’s to which this
for multiplication. applies; the 27th one can be done in 144 operations, for a
total of 3394 even instructions to calculate @lf*)(X)’s.

. . o Forn = 3 we get3n? +3n —1 = 35 < 62 but the
Initial estimates indicated that the advantage of speed qfemaining parts of the 12-to-6-Karatsuba step take more tha

the radix232 additions would outweigh the disadvantage of 20 operations, so more thanx 35 + 20 = 125 operations
the conversion (in Section 11I-D1) to signed radix® rep- per Q) (X). '

resentations required for the carry-less product calicudat Improving the method from Section III-D using sec-
Only after the code based on the methods fj‘?sc”bed aboYﬁ)ns [lI-F1 and 1lI-F2 would lead to a speedup of slightly
had been used for about nine months (obtaining the resuhi%SS than 10%

di . q further | for modular multiplication and a much
as reported in Section 1V) and two further improvementsyy, o ier speedup for modular squaring. We have not used this
had been developed, this issue was revisited. The tw

. ) _ i ﬂnprovement as it led to only a small speedup of the ECM
improvements, in sections Il1-F1 and 11I-F2, apply to thstfir

) ) application. Instead we combined the improvements with the
apprpach as well. The aIte.rnatlve version of the mthod fron?nethod presented in Section III-G below as it was expected
S_ect|or_1 ”ll'?'??’ that norm_allzgs (and re_dtljges) the S|gn(_ed 32(and turned out) to lead to a more substantial speedup for
bit radix-2*> product to_ its signed ra_d|2- representation _the ECM application.

(as opposed to converting and reducing the product to radix-
232 representation, as in Section 11I-D3) is presented in
Section IlI-G.

1) Using C; = 0mod N in Section IlI-D3: Let v = Multiplication moduloN with inputs and output in signed
13-191+18—M, 3 = |v/13| anda = v—133. To get non-  radix-2'3 representation (and thus relatively slow addition
negativep;’s in the first step of Section 111-D3, it suffices to operations) is obtained from the description in Sectio+Dill
putpo = po+23, p; = p; +231 -2 for 1 < j <191, and by omitting the conversion in Section I1I-D1, keeping Sec-
next to replaces by ps—2° to make sure that the sum of all tion 1lI-D2 in place (possibly improved as described in
values added t§" "} p;2'%/ telescopes to zero moduls.  Section IIIl-F2), and by replacing Section 111-D3 by the
Here we use that; > —96(2'?)(2'2 — 1) > —231 + 219 > reduction and normalization step described below.

—231 1 218 and that—23! + 219 > —231 1 218 4 22 (or 1) Reduction modulaN and normalization to signed
—2314219 5 93l 9aif 3 = 0). ThusC; in Section 11I-D3  radix-2'3 representation of theM-bit product: Given a

Conversion to radix*?. The computation ofd; and e;
requires a shift byk; and 32 — k;, respectively, for0 <

j < 191, for a total of 382 even pipeline shift instructions.
If k; = 0 mod 8, each shift can be replaced by a single odd
pipeline byte reordering instruction (or by no instructién
k; = 0). Shift counts bigger than 8 can be replaced by thre
odd pipeline instructions.

F. Further speedups

G. Multiplication moduloN using signed radixg!?



Table I: SPE cycle counts for 4-way SIMD operations modald®® — 1.

instructions cycles measured instructions cycles measured
even [ odd even | odd
a+bora—>b a+banda —b
120 | 117 144 180 radix-232 222 | 180 235 268
301 | 296 332 363 signed radix2!3 553 | 394 571 645
a-b original, radix 232 inputs and output (Section IlI-D) a?
708 | 722 | 752 Fa (X0, Po(X), and P70, | Pu) and AV () | ass | g1 | a76
P (X) for1 <k <27 for1 <k <27
3889 | 1137 | 3905 QM) (X)for1 < k<27 2107 | 2055 | 2130
1138 | 1078 | 1163 P(X) and (d;,e;) for 0 < j < 191 1139 | 1086 | 1171
906 | 907 936 & for 0 <4< 39 andc 900 | 905 931
6641 | 3844 | 6756 6971 total 4500 | 4407 | 4608 4814
a-b signed radix-213 inputs and output (sections llI-F, 1lI-G) a?
3622 | 1510 | 3637 PP (x), PP (X), andQ®) (X) for 1 < k < 27 2220 | 1921 | 2243
1292 | 1172 1308 P(X), steps 1, 2 and part of steps 3, 4 of Section III-G1| 1299 | 1264 1340
544 508 568 Steps 5, 6 and remainder of steps 3, 4 of Section IlI-G1| 544 508 568
5458 | 3190 | 5513 5666 total 4063 | 3693 | 4151 4306
signed 32-bit radix2'? representatiorip;);2, of the 2M- For generic moduli the same carry-less Karatsuba-based
bit producta - b, regarded as the polynomidb(X) = multiplication applies, but the reduction becomes more-cum

Z;ioo p; X7 with P(2!3) = a-b, the signed radi@'? repre-  bersome. We expect we can do much better than the basic
sentation(c;)J2, of the M-bit numberc = P(2'%) mod N approach which would reduce our performance by a factor of
is calculated. at most three. Compared to the roughly 102 million modular

1) Compute(5;)}%9 as described in Section I1I-F1. multiplications for generic moduli in the 200-bit range, as
2) For0 < j < 96 replacep; by j; +2!2. (All additions reported for a single PS3 in [6], we would get at worst a
in steps 1 and 2 are combined at a total cost of 19220-fold slowdown for 6-fold bigger generic moduli.
even addition instructions for steps 1 and 2.)
3) For96 < j < 191 let p; andp? be words such that IV. APPLICATION TOECM
pj = P +p{2'% and0 < pj,pj < 2'° and replace A, Background on ECM
P by pfj2k3' andp’ by p}’z’%" using odd instructions,
where 135 = m/M + 13¢; + k; and 135 + 16 =
mi M + 1307 + k7.

ECM [38] attempts to factor a composite using a number
of independent trials. The success probability per trialgr
. ~. : 5 . , ~ with the effort spent per trial, but decreases with the size o
4) For 96 < J < 191 replacepy; by pe +p; andpey  yhe smallest factor. Overall, the expected factorizatibore
by pey + pj using a total of 190 even instructions. ¢, v (i.e., number of trials times effort per trial) grows
(No overflow occurs becauge, pj < 2** andp; < subexponentially with the size of the smallest factor. For
(74 1)2% for 0 < j < 96.) (S)NFS the effort does not depend on the size of the factor(s)
5) Perform Step 3 of the addition-subtraction method inpt just on the size of the number being factored. For RSA
Section I1I-C withc (consisting of halfwords) replaced  moduyli with two factors of about equal size, NFS is expected
by p (consisting of words). The carry can become 5 pe much faster than ECM. If there may be a relatively
as big a2'? — 1. small factor (such as for composites of the foz{ — 1),
6) For0 < j < 96 calculate the halfword; = 5; —2'2.  EcM may be more efficient than (S)NFS.
Steps 1, 2, 3, 4, and 6 allow arbitrary parallelization. The Each ECM trial consists of two phases, phase one with
resulting SPE clock cycle counts are listed in Table |I. bound B;, which is compute intensive but requires little
memory, followed by a memory-hungry phase two with
bound B;. Depending on the number of trials and the two
Because an SPE runs at 3.192GHz and six are avaibounds, the probability can be estimated that a factor up to a
able per PS3, it follows from Table | that a single PS3specific size, if present, will be found. To have probabiity
can perform 13.5 (17.8) million multiplications (squarig Ieast% ~ 0.632 to find a factor of up to 65 decimal digits
moduloN per second. This may be compared to 182 million(when present)24 000 ECM trials with B; = 3 - 10° and
and 138 million multiplications modulo 192-bit and 224-bit B, ~ 10'* suffice [58]. For the same bounds and success
special moduli, respectively, as reported for a single PS®robability, 110000 trials suffice to find a 70-digit factor
in [8], i.e., less than an 11-fold slowdown for 5-fold bigger (when present). Before our work the largest prime factor
special moduli. ever found using ECM had 68 decimal digits [56].

H. Comparison with other SPE implementations



Using the GMP-ECM package [58], [57] on a single core Table II: SPE effort for 4-way SIMD phase one ECM trials for
of a 2.2GHz Athlon 2427, phase one for an ECM trial for N = 2''** — 1, B, = 3-10" (where “cgc”: “cycles per (1:a||”).
2M _ 1 with M around1100 takes on the order of six hours, | operaton[ oo ¢ cans|_radix2’ signed radi@’®

phase two takes about one hour requiring many GBytes of ;”°§ N 56193984102 6;5(1: 22”8'; 522; 2;’”;;
RAM (for generic composites of comparable size each phase 42 13358576558 | 4814 | 5.60 | 4306 5.00
takes about twice as long; more precise timings are pregente| « +b } 18990126989 | 268 | 0.44
in Table 1V in Section IV-C below). For each composite of | ¢ jrl; sosgesood | 180 | oo1 }645 112
the form 2™ — 1 with 1000 < M < 1200 this implies Z—b 523868924 | 180 | 001
about 20 core years for an ECM attempt to find a 65-digit total 21.95 19.05

factor, and about 90 core years for a 70-digit one. This

should be compared to an SNFS effort ranging from on the

order or 70 (/ ~ 1000) to several thousand{ ~ 1200)  SPE, trying a variety of home-grown SPE-specific arithmetic

core years. Thus, the largat, the harder we should first Packages (which were already known to outperform [29]).

try with ECM, commensurate with the expected SNFS effortin the course of these early experiments we stumbled upon

and the probability that a candidate has a small factor. @ 63-digit prime factor (of2''*7 —1). This showed that
Each ECM trial performs a particular sequence of addi-conducting a thorough ECM search indeed makes sense, and

tions, subtractions, and multiplications modulo the numbe Stimulated development of the much faster SPE-arithmetic

being factored. Modular inversions can mostly be avoidedModulo2™ —1 described in Section II.

Phase one can easily be run in parallel in SIMD fashion [t Was not our goal to improve the ECM package that
for any number of trials. During a large scale ECM effort, W€ put on top of our enhanced arithmetic. It is likely that
overall throughput of trials is, within reason, a more impor IMprovements reported over GMP-ECM that are based on
tant performance measure than latency per trial: for instan different elliptic curve arithmetic or representationscis as,
being able to process four trials simultaneously in one dayO" instance, described and implemented in [4], [5], apply
is better than processing (on the same platform) one trigi® Our overall performance figures as well.

every eight hours. ECM on the Cell processor to support (S)NFSthough
. ECM factorizations have little cryptographic significance
Ranonale to use Cell pro]<\:4esso_rs f°£ ECM Zfﬁf—l: l_:actor- this does not imply that EC\performances cryptograph-
ing numbers of the form™ — 1 is a “popular” activity [15] ically irrelevant as well. In [7], for instance, it is obsex/

and hunting for rglatlvely small factors is not hard 9IVEN that high performance ECM implementations on relatively
several fre?'y available ECM _package;. I\le\’erthe'essng'veinexpensive devices (given their computational powerhsuc
the efforts involved, we co?5|dereq it likely that severtl o oo graphics cards (GPUs)), may be helpful for future
the unfactored composites” — 1 with 1000 < M < 1200 S)NFS projects. A particularly memory-hungry step of
have a factor that can be found more economically by EC S)NFS, sieving generates large quantities of fairly small

than by Sll\lF_S. IGiven _(ljurbre?earch (;néerest in the c&ne_sdthde&oo_ to 200-bit) composites that must be factored. Thdt tas
cannot (re atlv];:n y) gasuy € l{:\ctorfe Iy ECM, we d%CI € requires litle memory and is therefore best outsourced to
on an ECM effort down our list of at least 20 candi ates’cheap devices, so sieving is not interrupted and all ressurc

_aiming to find al faCtO.rS of up fo, rqughly, 65 digits. SinCe 56 e in a cost-conscious fashion. This area has seen
it was meant to be a simple production run, we chose to usg flurry of recent activity: see [49], [45], [24], [22] for

the off-the-shelf GMP-ECM package, because it is free, CaSimplementations on reconfigurable hardware such as field-

to use, has an excellent track-record, and can take admmaﬁrogrammable gate arrays and [7], [6] for GPUSs. In [6] the
of the special form of the numbé&™ — 1. Other packages Cell architecture is covered as wefl '

may be faster, but we were not familiar with them [5].

The overall computation requires at leastx 20 = 400  B. ECM on the Cell applied ta* — 1
core years and can in principle be done on regular server- Table Il lists the numbers of modular arithmetic operations
clusters. But that would be a waste of resources, becaussarried out by phase one of a single ECM trial with
aboutth of the time is spent in phase one, which requireshpound B; = 3 - 10° (cf. Section IV-A) when using GMP-
litle memory thereby underutilizing the available RAM. ECM. When run on an SPE, four phase one trials are run

We also have access to a cluster of 215 PS3s, and thsmultaneously. With the operations from Section I, thei
to 215 Cell processors comprising a total of 1290 SPEgycle counts (cf. Table 1), and the SPE’s 3.192GHz clock
with only little memory per SPE. It could therefore be more speed, this leads to an estimated time of less than 22 hours
economical for us to use those SPEs to do all phase onen a single SPE to complete four phase one ECM trials
calculations, and to do the relatively small phase two efforwith bound B; = 3 - 10° using our first approach from
whenever servers with adequate RAM would otherwise be&ection III-D, and a more than 10% speedup when using the
idle. To test this we ported phase one of GMP-ECM to theapproach from Section 11I-G along with the improvements



from Section Ill-F. The measured wall-clock times are Taple Ill: Factors found o™ — 1 using ECM on the Cell with
slightly larger than the estimates. For applications wherethe arithmetic described in Section 11I-D of this paper, avith
additions play a more important role the method from Bi=3-10° and By ~ 10**.

Section 11I-D may outperform the method from Section IlI-G

- - targeted completed number of trials result

(where both methods are enhanced using Section IlI-F). composite phase one _ phase two
With six SPEs per Cell processor and 215 Cell processors 10°% oo oo T ao gg : ;g‘g
in the PS3-cluster x 6 x 215 = 5160 phase one ECM trials 1139 c313 49080 35490 68 - p246
can be processed in less than 20 hours. Witi000 trials 1163 c318 50152 47768 7P - p246
(cf. Section IV-A), phase one for a 65-digit search takes les 1181 €291 25393 8808 8- p218
] . 1187 €266 15089 9860 6B - p204
than four days; phase one for th&0 000 trials for a 70- 1237 c373 71556 70809 7P - €303

digit search takes two and a half weeks. Using our multi-core
adaptation of phase two of GMP-ECM, the corresponding

phase two calculations (wittB, = 103971375307 818) Table IV: Time to complete 24 phase one ECM trials.

. . hours

take the same time when using 4 cores per node on a 56- processor GHz  cores \jorsenne  generic

node cluster (with two hexcore processors per node): each intel Xeon E5430 2.66 8 23.70 4313

trial takes15 minutes ond cores, using at most6 GBytes :”:e: gore2i7Q92% 08550 2-2‘5;3 44 42-7226 83-5553

. . nte ore ua . . .

of RAM. Thus, the efforts of the two clusters involved in ) Core2 Quad Q6700 266 4 48.80 86.45

our calculations are well matched. AMD Phenom 9500 222 4 38.48 65.75
After nine months of sustained calculations for several AMD Opteron 1381 250 4 33.78 58.46

PlayStation 3 3.19 6 19.20

M-values (using the slower approach from Section IlI-D),
seven new factors have been found, in the following order:
a 63-digit factor forM = 1187, the 73-digit factor

1808422 353177349 564 546 512035512 530 001
279481 259 854 248 860 454 348 989 451 026 887

for M = 1181, another 73-digit factor,

1042816 042 941 845 750 042 952 206 680 089 794
415014668 329 850 393 031 910 483 526 456 487,

for M = 1163, a 66-digit factor forM = 1073, a 63-digit
factor for M = 1051, a 68-digit factor forM/ = 1139,
and a 70-digit factor forM = 1237. The 241-bit, 73-
digit prime factor of2!!8! — 1 is the current ECM record,
beating the previous record by 5 digits. The factor Wase. Comparison between Cell and regular processors.
found after somewhat more th&lb 000 phase one trials
at approximately th&800th corresponding phase two trial, A single PS3 processes 24 phase one ECM trials for
implying that we were quite lucky finding it. Less, but still 21193 — 1 in 19.2 hours. To put this number in perspective,
considerable luck was involved in finding the second 73-bitwe did the same computation using GMP-ECM 6.3 powered
factor (a bit smaller at 240 bits): it was found after aboutby GMP 5.0.1 (both the latest versions) using all cores on a
50000 ECM trials. So far our example numbet'®® — 1 variety of processors, with optimal multiplication paraers
stubbornly resisted all ECM efforts to be factored afterobtained using the tune-up script, and while taking advan-
running 142 162 ECM trials on it. For the numbers" —1  tage of the special Mersenne-arithmetic available in GMP-
that we fail to factor using ECM, such as (so far) for ECM. Table IV lists the results. It can be seen that for this
M = 1193, our efforts will result in a reasonable degree application a single PS3 outperforms several common 4-core
of confidence that they will not have a prime factor of 65 platforms by a factor of more than 2. On a per-core basis,
digits or less. Only forM = 1051 and M = 1237 did we  and accounting for the ratio in clock-speeds, our special 4-
find composite cofactors: fol = 1051 the attempt was way SPE Mersenne arithmetic turns out to abgutimes
continued and the 63-factor was indeed re-found where itore effective than the regular Mersenne arithmetic from
could be predicted (once it had been found), but the c24&MP-ECM 6.3 when run on Intel processors, despite the
cofactor remained unfactored. fact that the SPE does not have 64-bit or 32-bit integer
Table Il lists all results obtained using the slower ap-multiplications. The lack of such multipliers is, however,
proach from Section IlI-D, with & and Pt denoting a clearly to the SPE’s disadvantage when comparing it to the
k-digit composite and prime, respectively. For exponentsAMD processor with its much faster (than Intel) integer
M € [1000,1125] (M € [1126,1200]) not stated in Table Il multiplication.

roughly 25000 (50000) ECM trials have been completed
with bounds as above without finding a factor.

Although we hope, during our continuing efforts using the
faster approach from sections IlI-F and IlI-G, not to miss
factors up to the 65-digit range, with ECM one can never be
sure. Should we wish to find out, using SNFS is probably
the best option. Using the improved arithmetic we have so
far found one factorization: fold = 961 we found that
€254 = p61 - p193 after 1190 curves with3; = 10° and
By = 25427965563 016.



V. CONCLUSION

For integersM in the range from 1000 to 1200 we
presented our Cell processor implementation of multiplica
tion of M -bit integers, processing 24 such multiplications[12]
in parallel on a single PlayStation 3 game console, and
used it to obtain efficient multiplication modu®™ — 1.
The ideas underlying our implementation apply to many,
arithmetic contexts of cryptologic relevance, such aptdli
curve cryptosystems and cryptanalysis thereof.

We focused on application of our arithmetic to elliptic [14]
curve factoring, as a preparatory step for a potential (SNF
factoring project. This led to the two largest factors found
using ECM so far.
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