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A Distinguisher for High Rate McEliece
Cryptosystems

Jean-Charles Faugère, Valérie Gauthier-Umaña, Ayoub Otmani, Ludovic Perret, Jean-Pierre Tillich

Abstract

The Goppa Code Distinguishing (GD) problem consists in distinguishing the matrix of a Goppa code from a random matrix.
The hardness of this problem is an assumption to prove the security of code-based cryptographic primitives such as McEliece’s
cryptosystem. Up to now, it is widely believed that the GD problem is a hard decision problem. We present the first method
allowing to distinguish alternant and Goppa codes over any field. Our technique can solve the GD problem in polynomial-time
provided that the codes have sufficiently large rates. The key ingredient is an algebraic characterization of the key-recovery
problem. The idea is to consider the rank of a linear system which is obtained by linearizing a particular polynomial system
describing a key-recovery attack. It appears that this dimension depends on the type of code considered. Explicit formulas derived
from extensive experimentations for the rank are provided for “generic” random, alternant, and Goppa codes over any field. Finally,
we give theoretical explanations of these formulas in the case of random codes, alternant codes over any field of characteristic
two and binary Goppa codes.

Index Terms

McEliece cryptosystem, CFS signature, Algebraic cryptanalysis, Goppa Code Distinguishing problem.

I. INTRODUCTION

THIS paper1 investigates the difficulty of the Goppa Code Distinguishing (GD) problem which first appeared in [2]. This
is a decision problem that aims at recognizing a generator matrix of a binary Goppa code from a randomly drawn binary

matrix. Up to now, it is assumed that no polynomial time algorithm exists that distinguishes a generator matrix of a Goppa
code from a randomly picked generator matrix.

The main motivation for introducing the GD problem is to formally relate the problem of decoding a random linear code to
the security of the McEliece public-key cryptosytem [3]. Since its apparition, this cryptosystem has withstood many attacks and
after more than thirty years now, it still belongs to the very few unbroken public key cryptosystems. This situation substantiates
the claim that inverting the encryption function, and in particular recovering the private key from public data, is intractable.
The classical methods for inverting the McEliece encryption function without finding a trapdoor all resort to the use of the
best general decoding algorithms [4]–[11]. All these algorithms, whose time complexity is exponential (in the length), attempt
to solve the long-standing problem of decoding random linear code [12]. They also assume (implicitly or explicitly) that there
does not exist an algorithm that is able to decode more efficiently McEliece public keys. Note that if ever such an algorithm
exists, it would permit to solve the GD problem.

On the other hand, no significant breakthrough has been observed with respect to the problem of recovering the private key
[13], [14]. This has led to state that the generator matrix of a binary Goppa code does not disclose any visible structure that
an attacker could exploit. This is strengthened by the fact that Goppa codes share many characteristics with random codes. For
instance they asymptotically meet the Gilbert-Varshamov bound. They also have a trivial permutation group, etc. Hence, the
hardness of the GD problem has become a classical belief, and as a consequence, a de facto assumption to prove the semantic
security in the standard model (IND-CPA in [15] and IND-CCA2 in [16]), and the security in the random oracle model against
existential forgery [2], [17] of the signature scheme [2].

We present a deterministic polynomial-time distinguisher for codes whose rate is close to 1. This includes in particular
codes encountered with the signature scheme CFS ( [2], [18]). We emphasize that our method can distinguish codes also used
in McEliece’s encryption scheme. For instance, the binary Goppa code obtained with m = 13 and r = 19 corresponding
to a 90-bit security key is distinguishable. We provide an asymptotic formula for the smallest rate Rcrit for which one can
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distinguish a q-random code from a q-ary alternant or Goppa code (Theorem 3). If q is fixed and assuming that the length is
qm then when m tends to infinity, we have:

Rcrit = 1−

√
2m log q

qm logm

(
1 + o(1)

)
.

where all logarithms are taken to base 2.
Our distinguisher is based on the algebraic attack developed against compact variants of McEliece [19]. In this approach,

the key-recovery problem is transformed into the one of solving an algebraic system. By using a linearization technique, we
are able to derive a linear system whose rank is different from what one would expect in the random case. More precisely,
we observe experimentally that this defect in the rank is directly related to the type of codes. We provide explicit formulas
for “generic” random, alternant, and Goppa codes over any alphabet. We performed extensive experiments to confirm that the
formulas are accurate. Eventually, we prove the formula in the random case and give explanations in the case of alternant
codes over any field of characteristic two and binary Goppa codes.

However, the existence of our distinguisher does not undermine the security of primitives based on Goppa codes, but
basically, it proves that the GD assumption is false for some parameters, and consequently should be used with great care as
an assumption for a security reduction.

The paper is organized as follows. After recalling basic notions in coding-theory in Section II, we introduce in Section III our
algebraic distinguisher which is basically the dimension of the solution space of a linear system that is deduced by linearization
from the algebraic system that any McEliece cryptosystem must satisfy. We then provide explicit formulas that predicts the
behavior of the distinguisher coming from experiments. In Section IV and Section V, we give explanations of the formulas
for alternant and binary Goppa codes. In Section VI, we give a proof of its typical behavior in the random case. Lastly, we
conclude over the cryptographic implications the distinguisher induces and we deduce an asymptotic formula for the smallest
rate for which we can distinguish a random code from an alternant code or a Goppa code.

II. CODE-BASED PUBLIC-KEY CRYPTOGRAPHY

The problem of decoding random linear codes is a potential candidate for building public-key cryptographic primitives
such as an encryption scheme. McEliece [3] was the first to use this problem in public-key cryptography. The idea is to start
from afamily of codes equipped with a polynomial-time decoding algorithm. The fundamental concept of is to consider two
equivalent representations of a code: one should facilitate the decoding, whereas the decoding should be infeasible from the
other one. Although his design principle is general, he explicitly advocated to use binary Goppa codes [20].

A. Coding Theory Background

Code-based public-key cryptography focuses on linear codes that have a polynomial time decoding algorithm. We recall that
a q-ary (linear) code C over the finite field Fq of q elements defined by a k× n matrix G (with k 6 n) whose entries belong
to Fq is the vector space spanned by its rows i.e.,

C
def
=
{
uG | u ∈ Fkq

}
.

The length of C is n and its rate is the ratio R
def
= k/n. The role of decoding algorithms is to correct errors of prescribed

weight. We say that a decoding algorithm corrects r errors if it recovers u from the knowledge of uG + e for all possible
e ∈ Fnq of weight at most r.

One famous family of codes is the one of binary Goppa codes. It belongs to the more general class of alternant codes (
[21, Chap. 12, p. 365]). The main well-known feature of an alternant code is the possibility of being decoded in polynomial
time. It is more convenient to describe this class through a parity-check matrix over an extension field Fqm of Fq over which
the code is defined. We recall that a parity-check matrix H of a q-ary code C is defined as a matrix such that:

C
def
=
{
c ∈ Fnq | HcT = 0

}
.

where the symbol T means the transpose operation. For q-ary alternant codes of length n 6 qm, there exists a parity-check
matrix with a very special form related to rectangular Vandermonde matrices:

V r(x,y)
def
=


y1 · · · yn
y1x1 · · · ynxn
...

...
y1x

r−1
1 · · · ynx

r−1
n


where x = (x1, . . . , xn) and y = (y1, . . . , yn) are in Fnqm .
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Definition 1 (Alternant code): A q-ary alternant code of order r associated to x = (x1, . . . , xn) ∈ Fnqm where all xi’s are
distinct and y = (y1, . . . , yn) ∈

(
F∗qm

)n
denoted by Ar(x,y) is{

c ∈ Fnq | V r(x,y)cT = 0
}
.

It is well-known that the dimension k of an alternant codes of degree r satisfies k > n− rm. Moreover, a key feature about
them is the following property.

Proposition 1: An alternant codes of degree r can decode in polynomial time all errors of weight at most r2 whenever there
exists a parity-check matrix in the form V r(x

∗,y∗) for some vectors x∗ and y∗.

Definition 2 (Goppa codes): A q-ary Goppa code G (x, γ) associated to a polynomial γ(z)
def
=

r∑
i=0

γix
i of degree r over

Fqm and an n-tuple x = (x1, . . . , xn) of distinct elements of Fqm satisfying γ(xi) 6= 0 for all i, 1 6 i 6 n, is the q-ary
alternant code Ar(x,y) of order r with yi = γ(xi)

−1.
Goppa codes, viewed as alternant codes, inherit a decoding algorithm that corrects up to r

2 errors. But in the case of binary
Goppa codes, it is possible to correct twice as many errors. The starting point is the following result given in [21, p. 341].

Theorem 1: A binary Goppa code G (x, γ) associated to a Goppa polynomial γ(z) of degree r without multiple roots is
equal to the alternant code A2r(x,y) with yi = γ(xi)

−2.
Corollary 1 ( [22]): There exists a polynomial time algorithm decoding all errors of weight at most r for any Goppa code

G (x, γ) where γ(z) is of degree r and has no multiple roots.
It is worthwhile recalling that the only requirement for decoding a binary Goppa G is either to know x and γ(z) or to know
two vectors x∗ and y∗ such that:

G = A2r(x
∗,y∗). (1)

B. Cryptographic Primitives Based on Binary Goppa Codes

The two most important public schemes that use binary Goppa codes are McEliece’s encryption function and Courtois-
Finiasz-Sendrier (CFS) [2] signature algorithm. We briefly recall here the general principle of McEliece’s scheme. The key
generation algorithm picks at random one k× n generator matrix G of a randomly picked binary Goppa code of G of degree
r. The secret key is the decoding algorithm D associated to G and the public key is G. To encrypt u ∈ Fk2 , the sender has
to choose a random vector e in Fn2 of weight r and computes the ciphertext c def

= uG + e. The receiver then recovers the
plaintext by applying D on c.

The CFS scheme also relies on binary Goppa codes. A user whose public key is G and who wishes to sign a message
x ∈ Fk2 has to compute a string u such that the Hamming weight of x − uG is at most r. Anyone (a verifier) can publicly
check the validity of a signature. Unfortunately, this approach can only provide signatures for messages x that are within
distance r from a codeword uG. The CFS scheme prompts to modify the message by appending a counter incremented until
the decoding algorithm can find such a signature. The efficiency of this scheme heavily depends on the number of trials. With
a binary Goppa codes of length n = 2m and and dimension k = n − mr, the number of trials is of order r!. So one has
to choose a very small r and therefore take a very large n in order to be secure. The code rate is then equal to 1 − 1

2mmr
which is quite close to 1 for large n (that is for large values of m) and moderate values of r. For instance, a 80-bit security
CFS scheme requires to take n = 221 and r = 10 whereas the McEliece cryptosystem for the same security needs to choose
n = 211 and r = 32 ( [18]). Thus one major difference between the McEliece cryptosystem and the CFS scheme lies in the
choice of the parameters of the codes.

C. Goppa Code Distinguishing Problem

The minimum requirement for an encryption function is that it should be infeasible from a given ciphertext c and public
data2 like the public key, ciphertexts, etc. to recover the corresponding plaintext x. This issue is directly linked to the following
computational problem.

Definition 3 (McEliece Problem): Let G be a generator matrix of a binary Goppa code of length n 6 2m and dimension
k = n − rm where m and t are positive integers. Let x be a vector from Fk2m and let e be a vector from Fn2m of weight t.
Finally, we set c def

= xG + e. Then the McEliece Problem asks to find x and e only from G and c.
One obvious way of solving this problem consists in devising a method that recovers the private key. But, it is also possible
to recover a plaintext from a specific ciphertext without resorting to a key-recovery attack. In particular, an attacker against
the McEliece scheme would find the plaintext by applying general decoding methods like [3]–[11], [23]–[27] on the public
matrix G. Such attacks are called decoding attacks. It is possible Gn,k to precise formally all these notions. For any integers
n and k with k 6 n, we denote by Gn,k the set of k× n generator matrices of binary Goppa codes. Similarly, Rn,k is the set
of binary random generator k × n matrices. The set of words of weight t is denoted by S(0, t).

2This kind of attack is called a Chosen Plaintext Attack (CPA).
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Definition 4: An (T, ε)-adversary A against the McEliece cryptosystem is an algorithm that runs in time at most T such
that:

SucMcE(A)
def
= PrG,m,e

{
A(G,mG + e) = (m, e)

}
6 ε

where the random choices are made such that G ∈ Gn,k, m ∈ Fk2 and e ∈ S(0, t).
An algorithm A is a (T, ε)-decoder if it runs in time at most T such that:

SucRand(A)
def
= PrG,m,e

{
A(G,mG + e) = (m, e)

}
6 ε

where G ∈ Rn,k, m ∈ Fk2 and e ∈ S(0, t).
Currently, the only known methods that aim to solve the McEliece problem are based either on an exhaustive search of the

private key or on applying very general decoding methods. Both approaches run in exponential time on the length when the
rate is fixed. But this situation is a still unsatisfactory because there is no certitude that there does not exist a better way to
solve it.

A classical stance is to claim that binary Goppa codes look like random linear codes. It amounts to say that there does
not exist a polynomial-time computable quantity which behaves differently depending on whether the code is a Goppa or a
random code. Currently, it is an open problem to establish a formal proof that would substantiate the claim that a binary
Goppa code is indistinguishable from a random code. This assumption is attractive because it enables to rely on the hardness
of decoding a random linear code to prove the security of the McEliece function. This reasoning does make sense because
binary Goppa codes share several common aspects3 with a randomly picked linear code. Furthermore, all the general decoding
algorithms do not exploit the information, even partially, that a matrix describes a “hidden” Goppa code. Based on this, the
authors of [2] defined the Goppa Code Distinguishing (GD) problem and stated that “classification issues are in the core of
coding theory since its emergence in the 50’s. So far nothing significant is known about Goppa codes, more precisely there
is no known property invariant by permutation and computable in polynomial time which characterizes Goppa codes. Finding
such a property or proving that none exists would be an important breakthrough in coding theory and would also probably
seal the fate, for good or ill, of Goppa code-based cryptosystems”. We state now precisely the GD problem.

Definition 5 (Goppa Code Distinguishing (GD) Problem): An algorithm D : Fk×n2 → {0, 1} that takes as input a k × n
matrix G and returns a bit solves the GD problem if it wins the following game:

1) b← {0, 1}
2) If b = 1 then G← Gn,k else G← Rn,k
3) If D(G) = b then D wins else D loses.

An algorithm D : Fk×n2 → {0, 1} is a (T, ε)-distinguisher if it runs in time at most T and such that:

Adv(D)
def
=
∣∣∣PrG∈Gn,k {D(G) = 1} −PrG {D(G) = 1}

∣∣∣.
There is simple way to construct a distinguisher from an attacker (T, ε)-attacker A against the McEliece cryptosystem. We

denote it by DA and it works as follows. On a given input G, it randomly picks a couple (m, e) among Fk2 × S(0, t) and
then outputs DA(G) = 1 if A(G,mG + e) = (m, e) and DA(G) = 0 otherwise. The running time of DA(G) is therefore
uppe-bounded by the running time of A and its advantage is then equal to [28]:

Adv(DA) =
∣∣∣SucRand(A)− SucMcE(A)

∣∣∣.
This shows that if Adv(DA is very small (or negligible) then the chances that an attacker recovers a plaintext are also very
small provided that the problem of decoding a random linear code is hard. So the difficulty of the GD problem guarantees
that there is no polynomial-time algorithm that solves the McEliece problem.

Until our recent work in [1] and this paper, the only known algorithm for solving GD enumerates binary Goppa codes
and tests the code equivalence thanks to the Support Splitting algorithm [29]. This approach runs in time O

(
1
mrn

r−1) for
binary Goppa codes of degree r and length n with m 6 log2 n. Another possible approach was proposed in [30] which shows
that Quantum Fourier Sampling (QFS) can also be used for solving the GD problem. However, it turns out that QFS has a
negligible advantage against the GD problem. Thus GD problem seems immune against QFS unlike classical cryptographic
problems such as factoring integers and discrete logarithms which can be solved in (quantum) poly-time thanks to QFS [31].
This does not contradict the existence of a (classical) poly-time algorithm solving GD. In this paper, we show how to exploit
the algebraic structure of Goppa codes to construct a classical poly-time distinguisher with optimal advantage under some
conditions on the rate of the code.

3Similarly to random codes, Goppa codes asymptotically meet the Gilbert-Varshamov bound. They have also a trivial permutation group like random codes.
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D. Semantically Secure Conversions

The fundamental issue when dealing with cryptographic primitives is to prove its security. A first approach is to show that
the primitive resists to the best known attacks. However, this does not guarantee that there will not appear one day a better
attack that renders the primitive insecure. The methodology of security proof by reduction addresses this question by linking a
security notion that a cryptographic primitive should verify to an algorithmic problem widely considered as hard. The approach
is similar to the one that proves the NP-Completeness of a given problem. Such a “security proof” proves that if an attacker
exists then it can be used as a subroutine to solve a hard problem. In other words, such an attacker has little chances to exist.

These simple facts prompt to design conversions that would lead to an IND-CCA secure encryption scheme. The first article
to propose such a conversion for the McEliece cryptosystem is [32] which proposes a conversion resulting into an IND-CCA2
in the Random Oracle Model under the assumption that the problem of decoding random linear codes is difficult. This work
was then followed by [33] which proposes another modification while providing an IND-CPA secure encryption scheme in the
standard model4 under the assumptions that both decoding random linear codes and distinguishing Goppa codes are difficult
problems. Finally, under the same assumptions, [34] proposed (a modified) McEliece cryptosystem that is IND-CCA2 in the
standard model.

III. A DISTINGUISHER OF ALTERNANT AND GOPPA CODES

The McEliece cryptosystem relies on binary Goppa codes which belong to the class of alternant codes. We are now able
to construct an algebraic system as explained in [19] for a key-recovey. This algebraic system will be the main ingredient for
building a distinguisher. We assume that the public matrix is a k × n generator matrix G where by assumption k = n− rm
and such that it defines an alternant code of degree r. We know that the knowledge of a matrix V r(x

∗,y∗) for some vectors
x∗ and y∗ allows to efficiently decode the public code defined by G. Furthermore, from the definition of G, we also know:

V r(x
∗,y∗)GT = 0.

Let X1, . . . , Xn and Y1, . . . , Yn be 2n variables corresponding to the x∗i ’s and the y∗i ’s. Observe that such x∗i ’s and y∗i ’s are
a particular solution [19] of the following polynomial system:

r−1⋃
e=0


n∑
j=1

gi,jYjX
e
j = 0 | 1 6 i 6 k

 (2)

where the gi,j’s are the entries of the known matrix G. Clearly, solving this system would lead to a possibly equivalent private
key. For compact variants [35], [36] of McEliece [3], additional structures permit to drastically reduce the number of variables
allowing to solve (2) for a large set of parameters in polynomial-time using dedicated Gröbner bases techniques [19]. But
the general case is currently a major open question. However, we describe a simple way for partially solving (2). It basically
consists in deriving a linear system from the polynomial system (2). Note that this operation is actually the first step performed
during the computation of Gröbner bases algorithms such as by F4 or F5 [37], [38]. From now on, we will always assume that
q = 2s with s > 1. We can assume that G = (gij) with 1 6 i 6 k and 1 6 j 6 n is in reduced row echelon form over its
k first positions G = (Ik | P ) where P = (pij) for 1 6 i 6 k and k + 1 6 j 6 n is the submatrix of G formed by its last
n− k = mr columns. Next, for any i ∈ {1, . . . , k} and e ∈ {0, . . . , r− 1}, we can rewrite (2) as YiXe

i =
∑n
j=k+1 pi,jYjX

e
j .

Then, thanks to the trivial identity Yi(YiX2
i ) = (YiXi)

2 for all i in {1, . . . , k}, we get:

n∑
j=k+1

pi,jYj

n∑
j=k+1

pi,jYjX
2
j =

 n∑
j=k+1

pi,jYjXj

2

.

We thus obtain a linear system LP of k equations involving
(
mr
2

)
variables Zjj′

def
= YjYj′X

2
j′ + Yj′YjX

2
j which is as follows:

LP
def
=



n−1∑
j=k+1

n∑
j′>j

p1,jpi,j′Zjj′ = 0

...
n−1∑
j=k+1

n∑
j′>j

pk,jpi,j′Zjj′ = 0

(3)

Definition 6: For any integer r > 1 and m > 1, the number of variables
(
mr
2

)
in the linear system LP as defined in (3) is

denoted by N and its rank by rank(LP ). We denote by Ker(LP ) the kernel of LP and its dimension as a Fq-vector space
is denoted by D.

4There is no hash function in this model.
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Let us recall that Ker(LP ) is necessarily a Fq-vector space since the linear system (3) have coefficients in Fq but the solutions
of (2) are sought in the extension field Fqm . Furthermore, we obviously have D = N −rank(LP ). Hence, in order to recover
the solutions of (2), it is necessary that rank(LP ) is almost equal to the number of variables N =

(
mr
2

)
. For a random

system, this is likely to happen when the number k of equations in (3) is greater than the number of unknowns, that is to say
k > N . It appears experimentally that D is amazingly large even in the case where k > N . It even depends on whether or not
the code with generator matrix G is chosen as a (generic) alternant code or as a Goppa code. Interestingly enough, when G is
chosen at random, rank(LP ) is equal to min {k,N} with very high probability. In particular, the dimension of the solution
space is typically 0 when k is larger than the number of variables N as one would expect. This will be proved in Section VI.
Although this defect in the rank is an obstacle to break the McEliece cryptosystem, it can be used to distinguish the public
generator of a structured code from a random code.

We consider three cases. First, when the pij’s are chosen uniformly and independently at random in Fq then we denote by
Drandom the dimension of Ker(LP ). When G is chosen as a generator matrix of a random alternant (resp. Goppa) code of degree
r, we denote it by Dalternant (resp. DGoppa). We carried out intensive computations with Magma [39] by randomly generating
alternant and Goppa codes over the field Fq with q ∈ {2, 4, 8, 16, 32} for r in the range {3, . . . , 50} and several values of
m. Furthermore, in our probabilistic model, a random alternant code is obtained by picking uniformly and independently
at random two vectors (x1, . . . , xn) and (y1, . . . , yn) from (Fqm)n such that the xi’s are all different and the yi’s are all
nonzero. A random Goppa code is obtained by taking a random vector (x1, . . . , xn) in (Fqm)n with all the xi’s different and
a random irreducible polynomial γ(z) =

∑
i γiz

i of degree r. Our experiments have revealed that the dimension of Ker(LP )
is predictable and follows formulas.

Experimental Fact 1 (Alternant Case): As long as N −Dalternant < k, Dalternant is equal with high probability to:

Talternant
def
=

1

2
m(r − 1)

(
(2e+ 1)r − 2

qe+1 − 1

q − 1

)
(4)

with e def
=
⌊
logq(r − 1)

⌋
.

Experimental Fact 2 (Goppa Case): As long as N −DGoppa < k then DGoppa is equal with high probability to TGoppa which
is defined when r < q − 1 as:

TGoppa
def
=

1

2
m(r − 1)(r − 2) = Talternant (5)

and when r > q − 1:

TGoppa
def
=

1

2
mr
(

(2e+ 1)r − 2(q − 1)qe−1 − 1
)

(6)

with e being the unique integer such that:

(q − 1)2qe−2 < r 6 (q − 1)2qe−1.

We gathered in Appendix A some experimental results obtained through intensive computations with the Magma system [39].

IV. ALTERNANT CASE

The goal of this section is to explain the value of the dimension Dalternant of Ker(LP ) for q-ary alternant codes of degree r.
We shall see that this dimension will be obtained by first identifying a Fqm -basis of Ker(LP ) when viewed as a linear system
with coefficients in Fqm . To set up the linear system LP as defined in (3), we have used the trivial identity YiYiX2

i = (YiXi)
2.

The fundamental remark is that we can use any identity YiXa
i YiX

b
i = YiX

c
i YiX

d
i with a, b, c, d ∈ {0, 1, . . . , r − 1} such that

a+ b = c+ d. Such identities lead to the same algebraic system LP :∑
(j,j′)∈J

pi,jpi,j′
(
YjX

a
j Yj′X

b
j′ + Yj′X

a
j′YjX

b
j

+ YjX
c
jYj′X

d
j′ + Yj′X

c
j′YjX

d
j

)
= 0

(7)

where we have set :
J

def
= {(j, j′) ∈ N× N | k + 1 6 j < j′ 6 n} .

The fact that there are many different ways of combining equations together yielding the same linear system LP explains why
the dimension of Ker(LP ) is large. In what follows, we exhibit further elements of Ker(LP ) thanks to the automorphisms
x 7−→ xq

`

where ` is in {0, . . . ,m− 1}. Indeed, we can also consider the identity:

(YiX
a
i )q

`′

(YiX
b
i )q

`

= (YiX
c
i )q

`′

(YiX
d
i )q

`

(8)
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for any integers a, b, c, d, ` and `′ such that aq`
′
+ bq` = cq`

′
+ dq`. We get again the linear system LP . However, assuming

that `′ 6 `, solutions obtained from such equations are exactly those coming from the identity:

YiX
a
i Y

q`−`
′

i Xbq`−`
′

i = YiX
c
i Y

q`−`
′

i Xdq`−`
′

i . (9)

We can focus on vectors that satisfy equations obtained with 0 6 a, b, c, d < r, 0 6 ` < m and a + q`b = c + q`d. Without
loss of generality, we can assume that d > b and let us set δ = d− b. Moreover, the equality a+ q`b = c+ q`d implies that
a = c+ q`δ.

We now try to determine the number of linearly independent solutions induced by such identities. For the sake of simplicity,
we denote by Z = (Zj,j′)(j,j′)∈J the vector that is obtained from the identity a+ q`b = c+ q`d. One can show that:

Zj,j′ =
(
Xδ
j +Xδ

j′
)q` (

YjY
q`

j′ X
c
jX

q`b
j′ + Yj′Y

q`

j Xc
j′X

q`b
j

)
.

Thus any solution obtained by the tuple (a, b, c, d, `) is uniquely described by (b, c, δ, `) by setting d = b+ δ and a = c+ q`δ

provided that 1 6 δ 6 r − 1 − b, 0 6 b 6 r − 2 and 0 6 c + q`δ 6 r − 1. In the sequel, we set e def
= blogq(r − 1)c so that

0 6 ` 6 e. We will show that Z can be expressed as a linear combination of some solutions obtained thanks to very specific
identities. Firstly, let us denote by B(b, c, `) the solution obtained form (b, c, δ, `) with δ = 1. We define:

Br
def
=

⋃
06b6r−2
06`6e

{
B(b, c, `) 6= 0 | 0 6 c 6 r − 1− q`

}
.

It is easy to see that if B(b, c, 0) belongs to Br then 0 6 b < c 6 r−2. We denote by < Br > the vector space spanned by Br.
We are now in position to show that Z belongs to < Br >. First notice from Equation (7) that if W is the solution obtained
from a+ q`b = g+ q`f for some integers g and f then Z +W is the vector that would be obtained from c+ q`d = g+ q`f .
In particular, the identity c + q`δ + bq` = c + q`(b + δ) can also be rewritten as c + q`δ + bq` = c + q`(δ − 1) + (b + 1)q`.
Therefore, we see that Z = B(b, c+ q`(δ − 1), `) + V where V is the solution obtained from the identity

c+ q`(δ − 1) + (b+ 1)q` = c+ q`(b+ δ).

Hence by induction on δ we can prove that:

Z =

δ∑
i=1

B
(
b+ i− 1, c+ q`(δ − i), `

)
. (10)

Proposition 2: For all r > 3, let us denote by |Br| the cardinality of Br then:

Talternant = m|Br|.

Proof: The number of elements in Br is given by the number of possible tuples (b, c, `) that is to say:

|Br| =
1

2
(r − 1)(r − 2) +

e∑
`=1

r−2∑
b=0

(r − q`)

=
1

2
(r − 1)

(
r − 2 + 2er − 2

e∑
`=1

q`

)
=

1

m
Talternant.

This proposition shows that Br is a Fqm -basis that provides a Fq-basis of Ker(LP ) allowing us to suggest an heuristic:
consider an arbitrary decomposition of the elements of Fqm in a Fq basis. Let πi : Fqm → Fq be the function giving the i-th
coordinate in this decomposition with 1 6 i 6 m. By extension we denote for z = (zj)16j6n ∈ (Fqm)n by πi(z) the vector
(πi(zj))16j6n ∈ Fnq .

Heuristic 1: For any j such that 1 6 j 6 n and for random choices of xj’s and yj’s then
⋃

16i6m

{
πi(Z) | Z ∈ Br

}
forms a basis of Ker(LP ).

V. BINARY GOPPA CASE

In this section, we will investigate the case of binary Goppa codes. Notice that for q-ary Goppa codes of degree r < q − 1
we have observed that Talternant = TGoppa because (4) simplifies to:

1

2
m(r − 1)(r − 2)

def
= TGoppa.
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This is due to the fact that e = 0 when r < q − 1. We leave as an open question the proof that q-ary Goppa codes of degree
r < q− 1 behave for our distinguisher as alternant codes. We focus on the classical case in code-based cryptography of binary
Goppa codes.

The goal is to identify a basis of Ker(LP ) for binary Goppa codes of degree r. We assume therefore that q = 2. In that
special case, the theoretical expression TGoppa (Experimental Fact 2) has a simpler expression.

Proposition 3: Let e = dlog2 re+ 1. When q = 2 then (6) can be simplified to:

TGoppa =
1

2
mr
(

(2e+ 1)r − 2e − 1
)
.

Theorem 1 shows that a binary Goppa code of degree r can be regarded as a binary alternant code of degree 2r. This seems
to indicate that we should have

DGoppa(r) = Talternant(2r).

This is not the case though because it turns out that DGoppa(r) is significantly smaller than this. In our experiments, we have
found out that the vectors of B2r still form a generating set for Ker(LP ). Unfortunately, they are not independent anymore.
Our goal is therefore to identify the additional dependencies occuring in B2r. We will see that many of them come from
F2m -relations induced by the Goppa polynomial γ(z) =

∑r
i=0 γiz

i with γr 6= 0. Recall that by definition Yi = γ(Xi)
−2. This

fact will allow to derive two types of linear dependencies. The first type of linear relations is rather natural, whilst the second
type is more subtle. In the sequel we set u def

= blog2(2r − 1)c.

A. Linear Dependencies over F2m

We derive a first set of linear dependencies induced by the Goppa polynomial γ(X).
Proposition 4: Let t, ` and c be such that 0 6 t 6 r − 2, 1 6 ` 6 u and 0 6 c 6 2r − 2` − 1 then it holds:

r∑
b=0

γ2
`

b B(t+ b, c, `) =

B(2t, c+ 2`−1, `− 1) + B(2t+ 1, c, `− 1).

(11)

Proof: Let us set V = (Vi,j′)(i,j′)∈J as the following:

V
def
=

r∑
b=0

γ2
`

b B(t+ b, c, `).

The equality Yjγ(Xj)
2 = 1 clearly implies that

∑r
b=0 γ

2
bY

2
j X

2(b+t)
j = YjX

2t
j and therefore:

Vj,j′ = (Xj +Xj′)
2`
(
YjY

2`−1

j′ Xc
jX

2`t
j′ + Yj′Y

2`−1

j Xc
j′X

2`t
j

)
.

One can check that V is exactly the vector that we would obtain from the identity a∗ + 2`−1b∗ = c + 2`−1(b∗ + 2) with
a∗

def
= c+ 2` and b∗ def

= 2t. Hence by (10) the vector V can be written as:

V = B(2t, c+ 2`−1, `− 1) + B(2t+ 1, c, `− 1).

This last equality terminates the proof.
Consequently B2r cannot provide a basis for Ker(LP ) as in the alternant case. It even possible to count the number of linear

dependencies predicted by Proposition 4. Indeed, each equation is defined by a unique (t, c, `) such that 0 6 t 6 r−2, 1 6 ` 6 u
and 0 6 c 6 2r − 2` − 1. So if NL is the number of equations of the form (11) then clearly we have:

NL = 2(r − 1) (ru+ 1− 2u) . (12)

B. Additional Relations Inducing Dependencies over F2

We exhibit new linear dependencies between some elements of B2r and the vectors B2(b, c, `).
Proposition 5: For any `, b and t such that 0 6 ` 6 u− 1, 0 6 b 6 2r − 2 and 0 6 t 6 r − 1− 2`, we have:

B(b, 2t, `+ 1) =

r∑
c=0

γ2cB
2(b, t+ c, `). (13)

Proof: Let us set V = (Vi,j′)(i,j′)∈J as the vector:

V
def
=

r∑
c=0

γ2cB
2(b, t+ c, `).
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On can see that for all (j, j′) ∈ J :

Vj,j′ = (Xj +Xj′)
2`+1

(
YjY

2`+1

j′ X2t
j X

2`+1b
j′

+ Yj′Y
2`+1

j X2t
j′X

2`+1b
j

)
.

(14)

We recognize that V is exactly the expression of B(b, 2t, `+ 1) and hence the proposition is proved.
We can count the number of linearly dependencies predicted by Proposition 5. Let NQ be the number of vectors of B2r
satisfying Equation (13). By Proposition 5 NQ is exactly the number of (`, b, t) so that:

NQ = (2r − 1)(ru− 2u + 1). (15)

C. Counting the Exact Number of Linear Dependencies over F2

We now want to count the number of linear dependencies induced by Proposition 5 and Proposition 4. The difficulty is that
some of the NQ vectors of B2r are counted twice because they appear both in linear relations of the form (11) and “quadratic”
equations of the form (13). Let NL∩Q be the number of such vectors. More precisely, let Q2r be the subset of vectors B(b, c, `)
of B2r which are involved in an Equation of type (13). Remark in that case c has to be even and ` > 1. Furthermore, there
are equations of type (11) which involve only vectors of Q2r. Let N1 be their number. Moreover, it is possible by adding two
equations of type (11) involving at least one vector which is not in Q2r to obtain an equation which involves only vectors of
Q2r. Let N0 be the number of such sums and let NL∩Q

def
= N1 +N0. Our goal is to prove that:

NL∩Q = (r − 1)
(

(u− 1

2
)r − 2u + 2

)
. (16)

Proof: We will consider vectors of Q2r, that is to say vectors of B2r that satisfy Equation (13), such that there exists a
linear relation that link them. In other words, we consider all the linear relations of the form:∑

i

αiB(bi, ci, `i) = 0

with αi in F2m and where each B(bi, ci, `i) is equal to a linear relation of the form (13).
One can observe that for such vectors we necessarily have ci even and 1 6 `i 6 u. In particular, an equation of the form of

Equation (11) will involve only vectors of Q2r if and only if `− 1 > 1 and c is even. Let us recall that the number of such
equations is N1, and consequently, its value is

∑r−2
t=0

∑u
`=2

1
2 (2r − 2`), namely:

N1 = (r − 1)
(

(u− 1)r − 2u + 2
)
. (17)

On the other hand when ` = 1 and c is even, say for instance c = 2t′ then Equation (11) becomes:
r∑
b=0

γ2bB(t+ b, 2t′, 1) = B(2t, 2t′ + 1, 0) + B(2t+ 1, 2t′, 0).

Notice that we always have B(b, c, 0) = B(c, b, 0). So if t′ = t then B(2t, 2t+ 1, 0) + B(2t+ 1, 2t, 0) = 0 and when t 6= t′

we obviously have:
r∑
b=0

γ2bB(t+ b, 2t′, 1) =

r∑
b=0

γ2bB(t′ + b, 2t, 1).

In both case, we get new linear dependencies between vectors of Q2r different from those already obtained.In conclusion, N0

is exactly the number of sets {t, t′}. By assumption t and t′ have to satisfy 0 6 t 6 r − 2 and c = 2t′ with 0 6 c 6 2r − 3,
which implies that 0 6 t′ 6 r − 2. N0 is therefore the number of couples (t, t′) such that 0 6 t 6 t′ 6 r − 2. By gathering
all the cases we have proved that:

NL∩Q = (r − 1) ((u− 1)r − 2u + 2) +
1

2
(r − 1)r. (18)

Proposition 6: For any integer r > 2, we have:
1

m
TGoppa(r) = |B2r| −NL −NQ +NL∩Q

=
1

2
r
(
(2u+ 3)r − 2u+1 − 1

)
.

Proof: From Equation (4) and gathering all the equalities:

|B2r| − (NL +NQ −NL∩Q) = r

(
(u+

3

2
)r − 2u − 1

2

)
.
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Moreover, Proposition 3 gives:
1

m
TGoppa(r) =

1

2
r ((2e+ 1)r − 2e − 1)

where e = dlog2 re+ 1. Using the basic inequality 2r− 1 < 2r < 2(2r− 1), we have therefore log2(2r− 1) < log2(r) + 1 <

log2(2r − 1) + 1. This implies dlog2 re = u and thus
1

m
TGoppa(r) =

1

2
r
(
(2u+ 3)r − 2u+1 − 1

)
.

VI. RANDOM CASE

The purpose of this section is to study the behavior of Drandom, namely the dimension of Ker(LP ) as Fq-vector space when
the entries of the matrix P are drawn independently from the uniform distribution over Fq . In this case, we can show that:

Theorem 2: Assume that N 6 k and that the entries of P are drawn independently from the uniform distribution over Fq .
Then for any function ω(x) tending to infinity as x goes to infinity, we have

Pr
(
Drandom > mrω(mr)

)
= o(1),

as mr goes to infinity.
Notice that if we choose ω(x) = log(x) for instance, then asymptotically the dimension Drandom of the solution space is with
very large probability smaller than mr log(mr). When m and r are of the same order (which is generally chosen in practice)
this quantity is smaller than Dalternant or DGoppa which are of the form Ω(mr2).

The main ingredient for proving Theorem 2 consists in analyzing a certain (partial) Gaussian elimination process on the
matrix:

M
def
=
(
pijpij′

)
16i6k

k+16j<j′6n

.

We can see the matrix M in block form, each block consists of the matrix:

Bj =
(
pi,k+jpi,k+j′

)
16i6k

16j<j′6n−k
.

Each block Bj is of size k × (rm− j). Notice that in Bj , the rows for which pi,k+j = 0 consist only of zeros. To start the
Gaussian elimination process with B1, we will therefore choose rm−1 rows for which pi,k+1 6= 0. This gives a square matrix
M1. We perform Gaussian elimination on M by adding rows involved in M1 to put the first block B1 in standard form. We
continue this process with B2 by picking now rm − 2 rows which have not been chosen before and which correspond to
pi,k+2 6= 0. This yields a square submatrix M2 of size rm− 2 and we continue this process until we reach the last block. The
key observation is that:

rank(M) > rank(M1) + · · ·+ rank(Mrm−1).

A rough analysis of this process yields Theorem 2. The important point is that what happens for different blocks are independent
processes and it corresponds to looking at different rows of the matrix P . We give all the previous results that we need in
order to prove Theorem 2.

It will be convenient to assume that the columns of M are ordered lexicographically. The index of the first column is
(j, j′) = (k + 1, k + 2), the second one is (j, j′) = (k + 1, k + 3), while the last one is (j, j′) = (n − 1, n). The matrices
Mi’s which are involved in the Gaussian elimination process mentioned above are defined inductively as follows. Let E1 be
the subset of {1, . . . , k} of indices s such that ps,k+1 6= 0. Let F1 be the subset of E1 formed by its first rm− 1 elements (if
these elements exist). Now , we set

M1
def
= (ps,k+1ps,j) s∈F1

k+1<j6n
. (19)

Let r1 be the rank of M1. To simplify the discussion, we assume that:
1) F1 = {1, 2, . . . , rm− 1},
2) the submatrix N1 of M1 formed by its first r1 rows and columns is of full rank.

Note that we can always assume this by performing suitable row and column permutations. In other words M has the following
block structure:

M =

(
N1 B1

A1 C1

)
.

We denote:
M (1) def

=

(
N−11 O
−A1N

−1
1 I

)
M,

where O is a matrix of size r1 × (k− r1) with only zero entries and I is the identity matrix of size k− r1. Notice that M (1)

takes the block form:
M (1) =

(
I B′1
O C ′1

)
.
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This is basically performing Gaussian elimination on M in order to have the first r1 columns in standard form. We then define
inductively the Ei, Fi,Mi,M

(i) and Ni as follows:

Ei
def
=

{
s | 1 6 s 6 k, ps,k+i 6= 0

}
\
i−1⋃
u=1

Fi−u,

Fi
def
= the first rm− i elements of Ei.

Mi is the submatrix of M (i−1) obtained from the rows in Fi and the columns associated to the indices of the form (k+ i, j′)
where j′ ranges from k + i + 1 to n. M (i) is obtained from M (i−1) by first choosing a square submatrix Ni of Mi of full
rank and with the same rank as Mi and then by performing Gaussian elimination on the rows in order to put the columns of
M (i−1) involved in Ni in standard form (i.e., the submatrix of M (i−1) corresponding to Ni becomes the identity matrix while
the other entries in the columns involved in Ni become zero). It is clear that the whole process leading to M (rm−1) amounts
to perform (partial) Gaussian elimination to M . Hence:

Lemma 1: When |Ei| > rm− i, for all i ∈ {1, . . . , rm− 1}, we have:

rank(M) >
rm−1∑
i=1

rank(Mi).

Another observation is that Mi is equal to the sum of the submatrix (ps,k+ips,j) s∈Fi
k+i<j6n

of M and a certain matrix which is

some function on the entries pt,k+ipt,j where t belongs to F1 ∪ . . . Fi−1 and j ranges over {k+ i+ 1, n}. Since by definition
of Fi, ps,k+i is different from 0 for s in Fi. In addition, the rank of Mi does not change by multiplying each row of index s
by p−1s,k+i. Then, it turns out that the rank of Mi is equal to the rank of a matrix which is the sum of the matrix (ps,j) s∈Fi

k+i<j6n
,

another matrix depending on the pt,k+ipt,j’s (where t ranges over F1 ∪ . . . Fi−1) and the ps,k+1’s with s ∈ Fi. This proves
that:

Lemma 2: Assume that |Ei| > rm− i for all i ∈ {1, . . . , rm− 1}. Then, the random variables rank(Mi) are independent
and rank(Mi) is distributed as the rank of a square matrix of size rm− i with entries drawn independently from the uniform
distribution on Fq .
Another essential ingredient for proving Theorem 2 is the following well known lemma (see for instance [40][Theorem 1])

Lemma 3: There exist two positive constants A and B depending on q such that the probability p(s, `) that a random `× `
matrix over Fq is of rank `− s (where the coefficients are drawn independently from each other from the uniform distribution
on Fq) satisfies

A

qs2
6 p(s, `) 6

B

qs2
.

This enables to control the exponential moments of the defect of a random matrix.For a square matrix M of size ` × `, we
define the defect d(M) by d(M)

def
= `− rank(M).

Lemma 4: If M is random square matrix whose entries are drawn independently from the uniform distribution over Fq ,
then there exists some constant K such that for every λ > 0,

E
(
qλd(M)

)
6 Kq

λ2

4 ,

E(.) denoting the expectation.
Proof: By using Lemma 3, we obtain:

E
(
qλd(M)

)
6

∞∑
d=0

qλd
B

qd2
6 B

∞∑
d=0

qλd−d
2

.

Observe that the maximum of the function d 7→ qλd−d
2

is reached for d0 = λ
2 and is equal to q

λ2

4 . Then, we can write the
sum above as:

∞∑
d=0

qλd−d
2

=
∑
d6d0

qλd−d
2

+
∑
d>d0

qλd−d
2

.

Finally, we notice that:

qλ(d+1)−(d+1)2

qλd−d2
6

qλ(d0+1)−(d0+1)2

qλd0−d
2
0

=
1

q
for d > d0,

qλ(d−1)−(d−1)
2

qλd−d2
6

qλ(d0−1)−(d0−1)
2

qλd0−d
2
0

=
1

q
for d 6 d0.
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This leads to claim that
∑∞
d=0 q

λd−d2 = O
(
q
λ2

4

)
since we have:

∞∑
d=0

qλd−d
2

6
∑
d6d0

qd−bd0cq
λ2

4 +
∑
d>d0

qdd0e−dq
λ2

4 .

We can use now the previous lemma together with Lemma 1 and Lemma 2 to derive the following lemma.
Lemma 5: Assuming that |Ei| > rm− i for all i ∈ {1, . . . , t}, we get:

Pr

(
t∑
i=1

d(Mi) > u

)
6 Ktq−

u2

t

where K is the constant appearing in Lemma 4.
Proof: Let D def

=
∑t
i=1 d(M i). Using Markov’s inequality:

Pr(D > u) 6
E(qλD)

qλu
(20)

for some well chosen λ > 0. The exponential moment appearing at the numerator is upper-bounded with the help of the
previous lemma and by using the independence of the random variables qλd(Mi) i.e.:

E(qλD) = E
(
qλ

∑t
i=1 d(Mi)

)
=

t∏
i=1

E
(
qλd(Mi)

)
6 Ktq

tλ2

4 . (21)

Using now (21) in (20), we obtain Pr(D > αt) 6 Kt q
tλ2

4

qλu
which implies:

Pr(D > αt) 6 Ktq
tλ2

4 −λu.

We choose λ = 2u
t to minimize this upper-bound leading to:

Pr(D > u) 6 Ktq−
u2

t .

The last ingredient for proving Theorem 2 is a bound on the probability that Ei is too small to construct Fi.
Lemma 6: Let ui

def
=
(
mr
2

)
− 1

2 (2rm− i)(i− 1) and F be the event “|Fj | = rm− j for j ∈ {1, . . . , i− 1}” then

Pr (|Ei| < rm− i | F ) 6 e
− 2
ui

( q−1
q ui−rm−i+1)

2

.

Proof: When all the sets Fj are of size rm− j for j in {1, . . . , i− 1}, it remains

N −
i−1∑
j=1

(rm− j) = N − 1

2
(2rm− i)(i− 1) = ui

rows which can be picked up for Ei. Let St be the sum of t Bernoulli variables of parameter q−1
q . We obviously have

Pr(|Ei| < rm− i | F ) = Pr(Sui < rm− i).

It remains to use the Hoeffding inequality on the binomial tails to finish the proof.
We are ready now to prove Theorem 2:
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TABLE I
VALUES OF rmax AND rCRIT FOR A BINARY GOPPA CODE OF LENGTH n = 2m .

m 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

rmax 5 8 8 11 16 20 26 34 47 62 85 114 157 213 290 400
drcrite 5 6 8 11 14 19 25 34 46 62 84 114 156 214 293 402

Proof of Theorem 2: Let u = d
√
mrω(mr))e. We observe now that if all Ej’s are of size at least rm−j for j ∈ {1, . . . , u},

we can write that D = N − rank(M):

D 6 N −
rm−u∑
i=1

rank(Mi) (by Lemma 1)

=

rm−1∑
i=1

(rm− i)−
rm−u∑
i=1

rank(Mi)

=

rm−u∑
i=1

d(Mi) +

rm−1∑
i=rm−u+1

(rm− i)

=

rm−u∑
i=1

d(Mi) +
u(u− 1)

2

<

rm−u∑
i=1

d(Mi) +
1

2
mrω(mr).

From this we deduce that:
Pr
(
Drandom > mrω(mr)

)
6 Pr(A ∪B) 6 Pr(A) + Pr(B)

where A is the event “
∑rm−u
i=1 d(Mi) > 1

2mrω(mr)” and B is the event “for at least one Ej with j ∈ {1, . . . , rm − u} we
have |Ej | < rm − j”. We use now Lemma 5 to prove that Pr(A) = o(1) as rm goes to infinity. We finish the proof by
noticing that the probability of the complementary set of B satisfies

Pr(B̄) = Pr

(
rm−u⋂
i=1

|Ei| > rm− i

)

=

rm−u∏
i=1

Pr (|Ei| > rm− i | F )

= 1− o(1) (by Lemma 6).

VII. CONCLUSION AND CRYPTOGRAPHIC IMPLICATIONS

The existence of a distinguisher for the specific case of binary Goppa codes is not valid for any value of r and m but tends
to be true for codes that have a rate n−mr

n very close to one. We will elaborate on this point below. This kind of codes are
mainly encountered with the signature scheme [2]. If we assume that the length n is equal to 2m and we denote by rmax the
smallest integer r such that N−TGoppa > 2m−mr then any binary Goppa code of degree r < rmax can be distinguished (Table
I). For example, the binary Goppa code obtained with m = 13 and r = 19 corresponding to a 90-bit security McEliece public
key is distinguishable. More interestingly, all the keys proposed in [18] for the CFS signature scheme can be distinguished.

A. Asymptotic Behaviour

When the length n of the code goes to infinity an asymptotic formula can be derived for the smallest rate Rcrit allowing
distinguish a random code from an alternant code or a Goppa code. We derive such a formula when we assume for simplicity
that the cardinality q of the base field is fixed and n is chosen as n = qm (in practice n is chosen either in this way or at
least of the same order as qm). We also assume that the dimension k of the code satisfies k = n− rm. Finally, we also make
the assumption that the dimensions Dalternant and DGoppa are given by their theoretical values Talternant and TGoppa respectively
and that the dimension of Drandom is given by Trandom

def
= max

(
0,
(
mr
2

)
− k
)
. This critical rate rcrit corresponds to the smallest
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value of r for which Trandom becomes bigger than Talternant (asymptotically there will be no difference between Goppa codes
or alternant codes). It holds that:

rcrit
def
= min

{
r > 0 | Trandom > Talternant

}
.

We let Rcrit
def
=
n− rcritm

n
= 1− rcritm

n
. Our claim (whose proof is postponed in the appendix) is that

Theorem 3: Let us assume that n = qm. When q is fixed and m tends to infinity then rcrit =
√

2 qm log q
m logm

(
1 + o(1)

)
and

Rcrit = 1−

√
2m log q

qm logm

(
1 + o(1)

)
,

where all logarithms are taken to base 2.
In Table I, we have computed the value of

⌈ √
2qm log q
m logm

⌉
for several m (q is equal to 2). This shows that our approximation

is rather close to rmax computed in practice even for small values of m.

B. Concluding Remarks

We emphasize that the existence of such a distinguisher does not undermine the security of McEliece [3] or CFS [2]. It
only shows that the GD assumption should be used with great care. It has also been observed in [41] that the value of D
can be equivalently determined by considering the dimension of the square code of the dual of the public code. The square
code construction relies on the component-wise product of vectors. For any vectors a = (a1, . . . ,an) and b = (b1, . . . , bn)

we denote it by a ? b
def
= (a1b1, . . . ,anbn). For a code A , we denote by A 2 its square code which is the linear space

spanned by ai ? aj where ai and aj describe a basis of A . If we denote by D the dual of the public code then it turns
out [41] that dim(D2) =

(
dim(D)+1

2

)
− D. It should be added that this notion has been used recently to successfully attack

several cryptographic schemes relying on (modified) generalized Reed-Solomon codes [42]. More generally, a natural open
question is to investigate the hardness of GD for others codes having a polynomial-time decoding algorithm (for instance,
LDPC, Reed-Muller,. . . ).

Lastly, the recent work [30] shows that the natural reduction of GD to a hidden subgroup problem yields negligible
information. As a consequence, it rules out the direct analogue of a quantum attack using the so-called Quantum Fourier
Sampling (QFS) which breaks number theoretic problems [31]. More exactly, [30] shows that QFS has a negligible advantage
against GD when the rate is > RQFS where RQFS

def
= 1− logq(n)

3/2

√
5n

= 1− m3/2
√
5·qm/2 . Whilst our result is somewhat contradictory

with [30], it is interesting to observe that Rcrit and the critical rate RQFS share some similarities.
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APPENDIX

A. Experimental Results

We gathered in Table II-XI some results obtained through intensive computations with the Magma system [39]. We randomly
generated alternant and Goppa codes over the field Fq with q ∈ {2, 4, 8, 16, 32} for values of r in the range {3, . . . , 50} and
several m. The Goppa codes are generated by means of an irreducible γ(z) of degree r and hence γ(z) has no multiple
roots. In particular, we can apply Theorem 1 in the binary case. We compare the dimensions of the solution space against the
dimension Drandom of the system derived from a random linear code. Table II and Table III give figures for the binary case
with m = 14. We can check that Drandom is equal to 0 for r ∈ {3, . . . , 12} and Drandom = N − k as expected. We remark that
Dalternant is different from Drandom whenever r 6 15, and DGoppa is different from Drandom as long as r 6 25. Finally we observe
that our formulas for Talternant fit as long as k > N −Dalternant which correspond to r 6 15. This is also the case for binary
Goppa codes since we have TGoppa = DGoppa as long as k > N −DGoppa i.e., r 6 25. We also give in Table X and Table XI
the examples we obtained for q = 4 and m = 6 to check that the arguments also apply. We also compare binary Goppa codes
and random linear codes for m = 15 in Table IV-VI and m = 16 in Table VII-IX. We see that Drandom and DGoppa are different
for r 6 33 when m = 15 and for m = 16 they are different even beyond our range of experiment (r 6 50).
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TABLE II
q = 2 AND m = 14.

r 3 4 5 6 7 8 9 10 11 12 13 14 15 16
N 861 1540 2415 3486 4753 6216 7875 9730 11781 14028 16471 19110 21945 24976
k 16342 16328 16314 16300 16286 16272 16258 16244 16230 16216 16202 16188 16174 16160

Drandom 0 0 0 0 0 0 0 0 0 0 269 2922 5771 8816
Dalternant 42 126 308 560 882 1274 1848 2520 3290 4158 5124 6188 7350 8816
Talternant 42 126 308 560 882 1274 1848 2520 3290 4158 5124 6188 7350 8610
DGoppa 252 532 980 1554 2254 3080 4158 5390 6776 8316 10010 11858 13860 16016
TGoppa 252 532 980 1554 2254 3080 4158 5390 6776 8316 10010 11858 13860 16016

TABLE III
q = 2 AND m = 14.

r 17 18 19 20 21 22 23 24 25 26 27 28 29 30
N 28203 31626 35245 39060 43071 47278 51681 56280 61075 66066 71253 76636 82215 87990
k 16146 16132 16118 16104 16090 16076 16062 16048 16034 16020 16006 15992 15978 15964

Drandom 12057 15494 19127 22956 26981 31202 35619 40232 45041 50046 55247 60644 66237 72026
Dalternant 12057 15494 19127 22956 26981 31202 35619 40232 45041 50046 55247 60644 66237 72026
Talternant 10192 11900 13734 15694 17780 19992 22330 24794 27384 30100 32942 35910 39004 42224
DGoppa 18564 21294 24206 27300 30576 34034 37674 41496 45500 50046 55247 60644 66237 72026
TGoppa 18564 21294 24206 27300 30576 34034 37674 41496 45500 49686 54054 58604 63336 68250

TABLE IV
q = 2 AND m = 15.

r 3 4 5 6 7 8 9 10 11 12 13 14 15 16
N 990 1770 2775 4005 5460 7140 9045 11175 13530 16110 18915 21945 25200 28680
k 32723 32708 32693 32678 32663 32648 32633 32618 32603 32588 32573 32558 32543 32528

Drandom 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DGoppa 270 570 1050 1665 2415 3300 4455 5775 7260 8910 10725 12705 14850 17160
TGoppa 270 570 1050 1665 2415 3300 4455 5775 7260 8910 10725 12705 14850 17160

TABLE V
q = 2 AND m = 15.

r 17 18 19 20 21 22 23 24 25 26 27 28 29 30
N 32385 36315 40470 44850 49455 54285 59340 64620 70125 75855 81810 87990 94395 101025
k 32513 32498 32483 32468 32453 32438 32423 32408 32393 32378 32363 32348 32333 32318

Drandom 0 3817 7987 12382 17002 21847 26917 32212 37732 43477 49447 55642 62062 68707
DGoppa 19890 22815 25935 29250 32760 36465 40365 44460 48750 53235 57915 62790 67860 73125
TGoppa 19890 22815 25935 29250 32760 36465 40365 44460 48750 53235 57915 62790 67860 73125

TABLE VI
q = 2 AND m = 15.

r 31 32 33 34 35 36 37 38 39 40 41 42 43 44
N 107880 114960 122265 129795 137550 145530 153735 162165 170820 179700 188805 198135 207690 217470
k 32303 32288 32273 32258 32243 32228 32213 32198 32183 32168 32153 32138 32123 32108

Drandom 75577 82672 89992 97537 105307 113302 121522 129967 138637 147532 156652 165997 175567 185362
DGoppa 78585 84240 90585 97537 105307 113302 121522 129967 138637 147532 156652 165997 175567 185362
TGoppa 78585 84240 90585 97155 103950 110970 118215 125685 133380 141300 149445 157815 166410 175230

B. Proof of Theorem 3

To prove Theorem 3 we will first use the following observation
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TABLE VII
q = 2 AND m = 16.

r 3 4 5 6 7 8 9 10 11 12 13 14 15 16
N 1128 2016 3160 4560 6216 8128 10296 12720 15400 18336 21528 24976 28680 32640
k 65488 65472 65456 65440 65424 65408 65392 65376 65360 65344 65328 65312 65296 65280

Drandom 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DGoppa 288 608 1120 1776 2576 3520 4752 6160 7744 9504 11440 13552 15840 18304
TGoppa 288 608 1120 1776 2576 3520 4752 6160 7744 9504 11440 13552 15840 18304

TABLE VIII
q = 2 AND m = 16.

r 17 18 19 20 21 22 23 24 25 26 27 28 29 30
N 36856 41328 46056 51040 56280 61776 67528 73536 79800 86320 93096 100128 107416 114960
k 65264 65248 65232 65216 65200 65184 65168 65152 65136 65120 65104 65088 65072 65056

Drandom 0 0 0 0 0 0 2360 8384 14664 21200 27992 35040 42344 49904
DGoppa 21216 24336 27664 31200 34944 38896 43056 47424 52000 56784 61776 66976 72384 78000
TGoppa 21216 24336 27664 31200 34944 38896 43056 47424 52000 56784 61776 66976 72384 78000

TABLE IX
q = 2 AND m = 16.

r 31 32 33 34 35 36 37 38 39 40 41 42 43
N 122760 130816 139128 147696 156520 165600 174936 184528 194376 204480 214840 225456 236328
k 65040 65024 65008 64992 64976 64960 64944 64928 64912 64896 64880 64864 64848

Drandom 57720 65792 74120 82704 91544 100640 109992 119600 129464 139584 149960 160592 171480
DGoppa 83824 89856 96624 103632 110880 118368 126096 134064 142272 150720 159408 168336 177504
TGoppa 83824 89856 96624 103632 110880 118368 126096 134064 142272 150720 159408 168336 177504

TABLE X
q = 4 AND m = 6.

r 3 4 5 6 7 8 9 10 11 12 13 14 15 16
N 153 276 435 630 861 1128 1431 1770 2145 2556 3003 3486 4005 4560
k 4078 4072 4066 4060 4054 4048 4042 4036 4030 4024 4018 4012 4006 4000

Drandom 0 0 0 0 0 0 0 0 0 0 0 0 0 560
Dalternant 6 18 60 120 198 294 408 540 690 858 1044 1248 1470 1710
Talternant 6 18 60 120 198 294 408 540 690 858 1044 1248 1470 1710
DGoppa 18 60 120 198 294 408 540 750 990 1260 1560 1890 2250 2640
TGoppa 18 60 120 198 294 408 540 750 990 1260 1560 1890 2250 2640

TABLE XI
q = 4 AND m = 6.

r 17 18 19 20 21 22 23 24 25 26 27 28 29 30
N 5151 5778 6441 7140 7875 8646 9453 10296 11175 12090 13041 14028 15051 16110
k 3994 3988 3982 3976 3970 3964 3958 3952 3946 3940 3934 3928 3922 3916

Drandom 1157 1790 2459 3164 3905 4682 5495 6344 7229 8150 9107 10100 11129 12194
Dalternant 2064 2448 2862 3306 3905 4682 5495 6344 7229 8150 9107 10100 11129 12194
Talternant 2064 2448 2862 3306 3780 4284 4818 5382 5976 6600 7254 7938 8652 9396
DGoppa 3060 3510 3990 4500 5040 5610 6210 6840 7500 8190 9107 10100 11129 12194
TGoppa 3060 3510 3990 4500 5040 5610 6210 6840 7500 8190 8910 9660 10440 11250

Lemma 7: Let Talternant be as defined in (4). Let also TGoppa be as defined in (6). There exists constants K1 and K2 (resp.
K ′1 and K ′1 and K ′2) such that:

mr2
(

logq(r) +K1

)
6 Talternant 6 mr2

(
logq(r) +K2

)
, (22)

mr2(logq(r) +K ′1
)
6 TGoppa 6 mr2(logq(r) +K ′2

)
. (23)
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Proof: We recall that:

Talternant
def
=

1

2
m(r − 1)

(
(2e+ 1)r − 2

qe+1 − 1

q − 1

)
,

where e def
=
⌊
logq(r − 1)

⌋
. There exists some absolute constants K3 and K4 such that for all integers r > 2:

2r logq(r) +K3r 6 (2e+ 1)r − 2
qe+1 − 1

q − 1

2r logq(r) +K4r > (2e+ 1)r − 2
qe+1 − 1

q − 1

(24)

The upper bound is clear since:

(2e+ 1)r − 2
qe+1 − 1

q − 1
6 2r logq(r) + 2r.

For the lower bound, we remark that:

e > logq(r − 1)− 1 = logq(r) + logq(1− 1/r)− 1.

In addition:
qe+1 − 1

q − 1
6 q · qe 6 rq.

As a consequence
(

(2e+ 1)r − 2 q
e+1−1
q−1

)
> 2r logq(r) + r

(
2 logq(1 − 1/r) − 1 − 2q

)
. Remark that logq(1 − 1/r) can be

bounded from above by some (negative) constant. So, it holds that:(
(2e+ 1)r − 2

qe+1 − 1

q − 1

)
> 2r logq(r) +K3r,

for some constant K3. Observe now that 1
2m(r − 1)

(
2 logq(r) +K3r

)
= 1

2 (mr −m)
(
2 logq(r) +K3r

)
is equal to:

1

2

(
2mr logq(r) +K3mr

2 − 2m logq(r)−K3mr
)
. (25)

The lower bound on Talternant follows immediately from this. The expression can be lower bounded (resp. upper bounded) by
a term of the form K1mr

2 (resp. K2mr
2) for some constant K1 (resp. K2). This holds for all positive integers r. Finally, we

recall that when r < q − 1:

TGoppa = Talternant =
1

2
m(r − 1)(r − 2)

and when r > q − 1:

TGoppa =
1

2
mr
(

(2e+ 1)r − 2(q − 1)qe−1 − 1
)
.

with e being the unique integer such that:

(q − 1)2qe−2 < r 6 (q − 1)2qe−1.

The bound (23) on can be proved in the same way.
From this lemma, we deduce that:
Lemma 8: There exist two constants C1 and C2 such that for every r satisfying

(
mr
2

)
> n−mr we have:

mr2
(
m/2− logq(r) + C1

)
− qm 6 Trandom − Talternant, (26)

mr2
(
m/2− logq(r) + C2

)
− qm > Trandom − Talternant. (27)

We also have the same inequalities when we replace Trandom − Talternant with Trandom − TGoppa.
Proof: For all positive integer values of r such that

(
mr
2

)
> n−mr, we have:

Trandom = N − k =

(
mr

2

)
− qm +mr

= m2r2/2− qm +mr/2.

We can then conclude using Lemma 7.
From this lemma, we derive the following estimate for rcrit:
Lemma 9: When m goes to infinity we have

rcrit =

√
2qm log q

m logm

(
1 + o(1)

)
.
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Proof: From Lemma 8, we know that:

Trandom − Talternant = mr2
(
m/2− logq(r)

)
− qm +O(mr2).

Let r0
def
=
√

2qm log q
m logm . It holds that:

2 logq(r0) = logq(2q
m log q)− logq(m logm),

= m+ logq(2 log q)− logq(m)− logq(logm).

Thus by writing that mr20
(
m/2− logq r0

)
− qm is equal to:

2qm log q

logm

(
m/2−m/2

− log(2 log q)

2 log q
+

logm

2 log q
+

log logm

2 log q

)
− qm

which in turn equals qm

logm (log logm− log(2 log q)). We also observe that mr20 = 2qm log q
logm is negligible compared to qm

logm (log logm− log(2 log q))
when m goes to infinity. This can be used to show that Trandom − Talternant is positive for r = dr0e when m is large enough.
Therefore for m large enough, we have rcrit 6 dr0e. On the other hand, let α be any positive constant < 1. We set:

rα
def
=

√
2αqm log q

m logm
.

Notice that the function f(x) = mx2
(
m/2− logq x

)
− qm can be shown to be increasing in the range (0, rα). Therefore for

every r 6 rα, we have mr2
(
m/2− logq r

)
− qm is less than or equal to:

−qm +
2αqm log q

logm

(
m/2−m/2 +

logm

2 log q

+
log logm

2 log q
− log(2α log q)

2 log q

)
,

This last quantity is upper-bounded by:

(α− 1)qm +
2αqm log q

logm

(
log logm

2 log q
− log(2α log q)

2 log q

)
which in turn is less than or equal to:

(α− 1)qm + qm
α log logm

logm
.

Since mr2 6 2αqm log q
logm , it follows that any function of the form mr2

(
m/2− logq r

)
− qm +O(mr2) will be negative for m

large enough in the range (0, rα). This implies that rcrit > rα =
√

2αqm log q
m logm for m large enough. We deduce from this fact

which holds for any 0 < α < 1 and from the upper bound rcrit 6 dr0e =
⌈√

2qm log q
m logm

⌉
that rcrit =

√
2qm log q
m logm (1 + o(1)) when

m goes to infinity. Finally, the proof of Theorem 3 is now obtained by remarking:

Rcrit =
qm −mrcrit

qm
= 1−

√
2m log q

qm logm

(
1 + o(1)

)
.

Jean-Charles Faugère Jean-Charles Faugère graduated from École Normale Supérieure, Paris, France, and received a Ph.D. degree from the University of
Paris 6 in 1994. He was a CNRS Researcher until 2006; presently, he is a INRIA Senior Researcher and the head of the project-team PolSys which is common
between INRIA (Paris-Rocquencourt), UPMC (LIP6) and CNRS (LIP6). His research interests are in computer algebra, polynomial systems solving, Gröbner
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