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Abstract

In this paper, we discuss a naive method of randomness reduction for cryptographic schemes, which
replaces the required perfect randomness with output distribution of a computationally secure pseudoran-
dom generator (PRG). We propose novel ideas and techniques for evaluating the indistinguishability be-
tween the random and pseudorandom cases, even against an adversary with computationally unbounded
attack algorithm. Hence the PRG-based randomness reduction can be effective even for information-
theoretically secure cryptographic schemes, especially when the amount of information received by the
adversary is small. In comparison to a preceding result of Dubrov and Ishai (STOC 2006), our result
removes the requirement of generalized notion of “nb-PRGs” and is effective for more general kinds of
protocols. We give some numerical examples to show the effectiveness of our result in practical situations,
and we also propose a further idea for improving the effect of the PRG-based randomness reduction.
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1 Introduction

1.1 Backgrounds

Randomness is an essential resource for cryptography, and is one of the most important ingredients of
applications in information theory, e.g., efficient computation by probabilistic algorithms. Most of the
existing schemes are designed by basing on an (implicit) assumption that perfect random sources are freely
available. However, in practice such perfect (or even approximately perfect) sources are either not available,
or available but cost-consuming. Hence it is necessary to relax the requirements for quality and amount of
randomness used in the schemes. Some preceding works have shown that, although imperfect random sources
(entropy sources) can be used for non-cryptographic schemes and some kinds of cryptographic schemes [10,
12, 19, 25, 29, 30], it is essentially impossible for many cryptographic purposes to replace the perfect random
sources with imperfect ones without diminishing quality of the scheme [6, 12, 20]. Hence the possibility
of relaxing the requirements for quality of randomness is limited, therefore it is significant, especially for
cryptographic purposes, to relax the requirements for the amount of randomness, i.e., to perform randomness
reduction or derandomization.

There have been proposed a lot of randomness reduction techniques, such as [1, 3, 8, 16, 24], which are
information-theoretically indistinguishable, i.e., the result of the randomness-reduced protocol is statistically
indistinguishable from that of the original protocol. However, those techniques are scheme-dependent, and
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the negative results mentioned in the previous paragraph suggest that information-theoretically indistin-
guishable universal randomness reduction techniques using a single (imperfect) random source are unlikely
to exist. (In the above impossibility statement, the condition of using only one source is important, since
it is known that two independent weak random sources can be used to extract almost perfect random bits
[10, 26]. Here we emphasize that the latter preceding results require weak but information-theoretic ran-
dom sources, i.e., their randomness is measured regardless of the distinguisher’s computational complexity.)
On the other hand, there exists a well-known computationally indistinguishable universal randomness re-
duction technique, which is to replace the required randomness with outputs of (computationally) secure
pseudorandom generators (PRGs).

For an intermediate situation, Dubrov and Ishai introduced in their work [11] a generalization of PRGs,
called pseudorandom generators that fool non-boolean distinguishers (nb-PRGs, in short). They gave a con-
crete example of nb-PRGs under a certain computational assumption. By the definition of nb-PRGs, for
any efficient algorithm with sufficiently small output set, the algorithm with uniform input distribution and
the one with input distribution replaced with the output of an nb-PRG have statistically indistinguish-
able output distributions. Hence information-theoretically indistinguishable randomness reduction for such
a randomized algorithm is possible by using an nb-PRG under the corresponding computational assumption.
More precisely, the statistical distance between the output distributions in random and pseudorandom cases
is bounded in terms of hardness of the underlying computational problem. They also applied nb-PRGs to
information-theoretically indistinguishable randomness reduction of private multi-party computation proto-
col (see [11, Section 6.2]). Hence their technique is also effective for some kinds of cryptographic protocols.

However, there are some drawbacks of the above-mentioned randomness reduction technique using nb-
PRGs for cryptographic protocols, as follows. First, the security evaluation method of Dubrov and Ishai
in [11] depends on the property of the considered protocol that calculation of a secret protected by the
protocol does not use the randomness to be replaced with nb-PRGs, and this property fails for many
cryptographic protocols. Secondly, the construction of nb-PRGs presented in [11] is based on a certain
non-standard computational assumption, and no nb-PRGs based on standard assumptions (e.g., hardness
assumptions of decisional or computational Diffie-Hellman problem) have been obtained so far. (More
precisely, in fact it has been mentioned in [11] without proof that any secure PRG in usual sense is also
an nb-PRG with suitably chosen parameters. However, in the implication the overhead in the bounds of
advantages of distinguishers frequently becomes heavy in practical settings, therefore the implication is not
efficient. See Proposition 2.1 and a subsequent remark for details.) Moreover, in contrast to the notion of
usual PRGs that is well-known even for non-experts of cryptography, the notion of nb-PRGs seems not yet
popular even for experts of cryptography. Hence it is worthy to investigate a similar information-theoretically
indistinguishable randomness reduction technique based on usual (secure) PRGs.

1.2 Our Contributions

In this paper, we reveal that information-theoretically indistinguishable randomness reduction is possible by
using secure PRGs in a naive manner. More precisely, we consider the situation of randomness reduction
that (a part of) the required perfect randomness for a cryptographic protocol is replaced with output of a
PRG whose indistinguishability is based on an underlying hard computational problem. Then our result
implies that the difference of success probabilities of any attack by an adversary (within the scope of the
security definition of the original protocol) between the random and pseudorandom cases is bounded by a
function of both of hardness of the underlying problem for the PRG and, roughly speaking, the amount of
information used for the attack by the adversary. (We notice that, to make the bound of difference of attack
success probabilities sufficiently small, it is actually required that the amount of information received by the
adversary does not exceed a certain threshold calculated from parameters and other characteristics of the
protocol.)

A remarkable characteristic of this result is that the bound is independent of any property, including
computational complexity, of the attack algorithm. This means that our result can be applied even to
cryptographic schemes with information-theoretic security. Moreover, it is also noteworthy that, intuitively
speaking, the computational environment in which the hardness of the underlying problem for the PRG is
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Figure 1: Flowchart for input leakage-resilient functions against unbounded attack algorithms (upper half)
and the corresponding auxiliary flowchart (lower half)

evaluated can be chosen independently of the adversary’s computational environment. A typical example of
the property is that the randomness reduction can be indistinguishable for quantum adversary even when
the underlying problem for the PRG is classically hard but quantumly easy (e.g., Integer Factoring and
Discrete Log).

In comparison to the preceding result of Dubrov and Ishai [11] mentioned in Section 1.1, our result has the
following advantages. First, our result uses PRGs in a usual sense instead of the generalized and less popular
notion of nb-PRGs. (In fact, we can prove that secure PRGs with sufficiently long seed lengths are also nb-
PRGs, as mentioned in [11, Observation 3.1]; see Proposition 2.1 in Section 2.) As a result, our randomness
reduction technique can be based on any standard security assumption (such as classical hardness of Integer
Factoring or Discrete Log) instead of non-standard assumption used in [11] for constructing concrete nb-
PRGs. Secondly, our result is applicable to more general kinds of cryptographic schemes than [11], since it
is allowed that calculation of a secret protected by the protocol does use the randomness to be replaced with
PRGs (it may not use the randomness in the case of [11]; see the discussion in Section 3.2). We notice that
our result requires a condition that, intuitively speaking, the amount of information used by an adversary
for the attack is sufficiently small (such a condition was also required in the case of [11]). However, the
numerical example given later shows that our result is still applicable to some existing schemes; sufficiently
indistinguishable randomness reduction is possible by using a PRG whose seed size is significantly shorter
than the size of the original required randomness.

In order to explain the essence of our main result that covers various situations, in this and the next
paragraphs we present an example of our result applied to an intuitive special case. In the example, we
consider a function f : X → Y whose output value f(x) is to be protected. An adversary tries to make
a guess about the value f(x). Now we suppose that the adversary can make use of some information ℓ on
the input x of f , which is calculated from x by a certain function Lk : X → L where L denotes the set
of possible information received by the adversary (hence ℓ ∈ L). One may imagine that the information ℓ
has “leaked” from the storage of the input x and the function Lk represents the information leakage. Let
At : L→ Z denote an attack algorithm of the adversary, where Z denotes the set of possible guesses derived
by the attack. Moreover, we introduce an auxiliary algorithm Ev : Y ×Z → {0, 1} that evaluates whether the
adversary’s guess z = At(Lk(x)) about y = f(x) is “correct” (Ev(y, z) = 1) or not (Ev(y, z) = 0). Then the
success probability of the adversary’s guess is the probability that A(x) = 1, where we define A : X → {0, 1}
by A(x) = Ev(f(x),At(Lk(x))). This process is represented by the upper half of Fig. 1. Here we assume that
the algorithms f , Lk and Ev are all efficient, while we do not have any assumption on the computational
complexity of At (denoted by a circled arrow in the picture).

Now suppose that the function f is secure in the sense that, when the input x ∈ X of f is chosen
uniformly at random, the adversary’s success probability succrnd is bounded by a sufficiently small value.
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We would like to bound, by a sufficiently small value, the difference between succrnd and the adversary’s
success probability succprnd in the case that the input of f is given by a PRG G (with output set X). If the
adversary receives no information (i.e., |L| = 1), then even the computationally unbounded attack algorithm
At can nothing better than the perfectly random case. On the other hand, if the adversary receives much
information (i.e., |L| is too large), then the adversary would be able to break the pseudorandomness of G
and to make a much better guess than the perfectly random case. Now our result provides a quantitative
argument for the separating point of those two extreme situations. Given any elements ℓ ∈ L and z ∈ Z, we
introduce an auxiliary algorithm Ã : X → {0, 1} such that

Ã(x) =

{
1 if Lk(x) = ℓ and Ev(f(x), z) = 1

0 otherwise
(1)

(see also the lower half of Fig. 1). Our result tells us the way of deriving appropriate algorithms such as Ã

from the current situation (see also Section 3.3). Note that Ã is composed of efficient algorithms only, not

involving the attack algorithm At. In this situation, if the complexity of Ã is bounded by a constant T and
the advantage for T -time algorithms of distinguishing the outputs of G from perfectly random outputs is
bounded by ε, then our result implies that

|succprnd − succrnd| ≤ |L| · ε ,

therefore we have a lower bound of the allowable amount of information received by the adversary.
Our evaluation technique is effective especially in the situations that the information received by the

adversary is sufficiently small. A typical case is that a small piece of the randomness, which is to be
replaced with pseudorandomness, is distributed to each of a large number of players for a protocol, including
a limited number of adversaries. Such applications include parallel computation over honest-but-curious
modules, secret sharing [4, 27], broadcast encryption [14], traitor tracing [2, 9, 17], and collusion-secure
fingerprint codes [5, 28]. In later section, we present a numerical example of applications of our result to
randomness reduction of information-theoretically secure existing schemes, by using a collusion-secure code
in [21] and a secure PRG in [13] based on the DDH assumption. For the parameter choices in the example,
we see that the seed lengths of the PRG which are approximately 75% to 0.0002% of the original perfectly
random bits suffice to bound the differences between random and pseudorandom cases by sufficiently small
values. This shows that our result is indeed effective for existing cryptographic schemes.

Moreover, the observation for the case of collusion-secure codes provides a novel technique to improve
the effect of randomness reduction. The technique is to divide the randomness that is the target of the
randomness reduction into several pieces, in such a way that only a smaller component of the information
received by the adversary depends on each piece of the randomness. Then we replace each piece of the
randomness with output of an independent PRG, and we evaluate the total difference between random
and pseudorandom cases by using “hybrid argument”. By applying the technique to the above-mentioned
example of collusion-secure codes, we see that in the setting, the total seed length of the independent PRGs
is reduced to approximately 29 times as short as the case of the plain randomness reduction. This shows
that our proposed technique is also effective.

1.3 Organization of the Paper

This paper is organized as follows. Section 2 summarizes some definitions, notations and terminology used
throughout this paper, and mentions some properties. In Section 3.1, we introduce a certain kind of diagram
expressions of cryptographic procedures and some relevant notions, which play a key role in our main theorem.
Section 3.2 is devoted to a toy example of our main theorem in order to motivate us to introduce further
auxiliary definitions in later sections and to help understanding of the main theorem. In Section 3.3, we
introduce an auxiliary diagram expression of an algorithm associated to the original cryptographic scheme,
which also plays a central role in our main theorem. Section 3.4 presents the main theorem of this paper
and its proof. Section 3.5 collects some remarks on our result. In order to show a numerical example of the
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main result, in Section 4.1 we summarize some definitions and properties for an existing PRG given in [13].
In Section 4.2, we summarize some definitions for collusion-secure codes given in [21], which are an example
of information-theoretically secure schemes. In Section 4.3, we propose a technique to improve the effect
of randomness reduction as mentioned in the final paragraph of Section 1.2. Then in Section 4.4 we give
the numerical example based on the results in previous sections. Technical details omitted in Section 4 are
supplied as the appendix. Finally, Section 5 concludes this paper.

2 Definitions and Notations

In this section, we summarize some definitions and notations used throughout this paper. In this paper,
any algorithm is probabilistic unless otherwise specified. Let UX denote the uniform probability distribution
over a finite set X. We often identify a probability distribution with the corresponding random variable.
We write x ← P to signify that x is a particular value of a random variable P . Let R≥0 denote the set of
non-negative real numbers. Put Σ = {0, 1}. For any element x of a set X, let δx denote an algorithm that
takes an input y from X and outputs 1 if y = x and 0 if y ̸= x (i.e., that computes Kronecker delta). We
identify the set Zq of integers modulo q naturally with {0, 1, . . . , q− 1}. Moreover, we identify the set Σh of
h-bit sequences with {0, 1, . . . , 2h − 1} via binary expressions of integers. Let |q|2 denote the bit length of
an integer q.

To explain the results of this work, here we clarify some terminology used in this paper:

Definition 2.1. A complexity measure is a function comp : Alg → R≥0 on a set Alg of algorithms that
assigns to each algorithm A ∈ Alg its complexity comp(A) ≥ 0.

Definition 2.2. Among computational assumptions for security proofs, a computational power assumption
means an assumption of the following type: “the adversary cannot solve a specified computational problem
by a practical computational cost (e.g., computing time)”. On the other hand, a computational hardness
assumption means an assumption of the following type: “the complexity of an algorithm (in an explicitly
or implicitly specified underlying set of algorithms) that solves a specified computational problem is lower
bounded by a significantly large value”.

In Definition 2.1, the “complexity” may take various meanings depending on the context, such as time
complexity on a fixed Turing machine, circuit complexity with a fixed set of fundamental gates, average-
or worst-case running time on a fixed real computer, or space complexity. An important point is that
a complexity measure depends on the choice of the computational environment in which each algorithm
is executed. For example, when the computer is replaced with a new one which is twice as fast as the
original, the complexity measure is also replaced with the one whose value is twice as small as the original.
Therefore, any speedup of the adversary’s computation induced just by an improvement of his computational
environment (e.g., the number of computers for parallel computing), not by an algorithmic improvement,
can be interpreted as a change of the complexity measure.

For Definition 2.2, we notice that most of the existing cryptosystems that provide computational security
are in fact based on computational power assumptions (in the above sense), e.g., assumption on infeasibility
for the adversary of factoring 1024-bit RSA composites. On the other hand, our result in this paper (Theorem
3.1) is based on a computational hardness assumption.

Let G : SG → OG be a PRG with seed set SG and output set OG. In this paper, we deal with exact
(concrete) security rather than asymptotic security, therefore G is a single algorithm rather than a sequence
of algorithms with various seed lengths. The following notion of indistinguishability for PRGs is a natural
translation of the conventional notion to the case of exact security and has appeared in the literature (except
slight modification mentioned later), e.g., [13, Definition 1]:

Definition 2.3. An algorithm D : OG → {0, 1} is called a distinguisher for a PRG G. For any distinguisher
D for G, its advantage advG(D) is defined by

advG(D) = |Pr[D(G(USG
)) = 1]− Pr[D(UOG

) = 1] | .
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Definition 2.4. Let comp : Alg → R≥0 be a complexity measure and R(t) ≥ 0 a non-decreasing function.
A PRG G is called R(t)-secure with respect to comp if for any distinguisher D for G that belongs to Alg, its
advantage is bounded by

advG(D) ≤ R(comp(D)) .

An instance of R(t)-secure PRGs was given by Farashahi et al. [13] under DDH assumption, which is
used in our numerical examples below, where the function R(t) is estimated in terms of complexity of the
best known classical algorithm to solve the DDH problem (see Section 4.1 for details). Note that there is
a general tendency such that, when the basic structure of the PRG is not changed but the seed length is
increased, the PRG will be more indistinguishable, implying that the value of the function R(t) in Definition
2.4 will be smaller.

We also recall the definition of statistical distance:

Definition 2.5 (e.g., [15, Appendix D.1.1]). For two probability distributions P1, P2 over the same finite
set X, their statistical distance SD(P1, P2) is defined by

SD(P1, P2) =
1

2

∑
x∈X

|Pr[x← P1]− Pr[x← P2] |

= max
E⊂X

(Pr[x← P1 : x ∈ E]− Pr[x← P2 : x ∈ E]) .

Note that SD(f(P1), f(P2)) ≤ SD(P1, P2) for any (probabilistic) function f . We also notice that the
definition of statistical distance implies the following fact, which shows that any R(t)-secure PRG with
respect to comp is also an nb-PRG with suitable parameters (cf. [11, Observation 3.1]):

Proposition 2.1. Let G : SG → OG be an R(t)-secure PRG with respect to comp. Let F : OG → Y be an
efficient algorithm. Assume that, for each y ∈ Y , the algorithm δy ◦F : OG → {0, 1} satisfies that δy ◦F ∈ Alg
and that comp(δy ◦ F ) ≤ T for a common constant T > 0. Then SD(F (UOG

), F (G(USG
))) ≤ (|Y |/2) ·R(T ).

Proof. We have

2 · SD(F (UOG
), F (G(USG

))) =
∑
y∈Y

|Pr[y ← F (UOG
)]− Pr[y ← F (G(USG

))]|

=
∑
y∈Y

|Pr[(δy ◦ F )(UOG
) = 1]− Pr[(δy ◦ F )(G(USG

)) = 1]|

=
∑
y∈Y

advG(δy ◦ F ) .

We have advG(δy◦F ) ≤ R(comp(δy◦F )) for each y ∈ Y by the assumption on G, whileR(comp(δy◦F )) ≤ R(T )
since comp(δy ◦ F ) ≤ T and R(t) is a non-decreasing function. Hence we have

SD(F (UOG
), F (G(USG

))) ≤ 1

2

∑
y∈Y

R(T ) =
|Y |
2
·R(T ) ,

therefore Proposition 2.1 holds.

We notice that in practical applications of nb-PRGs, it is expected that the size |Y | of the output set of
a distinguisher for an nb-PRG G is frequently large, in which case the parameter R(T ) for G in the above
proposition should be extremely small. This means that the implication of nb-PRGs from usual PRGs in
Proposition 2.1 is practically inefficient.
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Figure 2: Example of a flowchart and the corresponding algorithm

3 Formal Description of the Main Result

3.1 Flowchart Expressions of Procedures

From now, we describe the idea of our main result of this paper. For the purpose, we need to introduce a
formal expression of the flow of a protocol under consideration. This will be done by using some diagrams
(directed graphs) as explained below.

First, we give a toy example to give an intuition for the diagram expression of a protocol or an algorithm.
The diagram in Fig. 2 is a flowchart of an algorithm computing the value (a1+a2)·a3 from inputs a1 ∈ {1, 2},
a2 ∈ {1, 2, 3} and a3 ∈ {2, 3, 4}. (The parentheses in Fig. 2 signify examples of inputs and intermediate values
in the algorithm; for example, we set (a1, a2, a3) = (1, 2, 4) in the example.) The two arrows toward the
vertex “X4” represent the addition (a1, a2) 7→ b := a1 + a2 which is performed first. Then the two arrows
toward “X5” represent the multiplication (b, a3) 7→ b ·a3 which is performed secondly. The entire calculation
(a1 + a2) · a3 is expressed as the concatenation of these two operations, which corresponds to the diagram in
Fig. 2.

In order to generalize the above toy example to more complicated protocols, we introduce some notations
and terminology. In what follows we assume, unless otherwise specified, that any directed graph G = (V, E)
with vertex set V and edge set E is finite (i.e., |V|, |E| < ∞), acyclic (i.e., having no directed cycles) and
simple (i.e., having no parallel edges). Let Pre(v) = PreG(v) denote the set of predecessors u ∈ V of v in G,
namely Pre(v) = {u ∈ V | e = (u→ v) ∈ E}. Let Vsrc and Vsin denote the sets of sources (i.e., vertices with
no predecessors) and of sinks (i.e., vertices that are predecessors of no vertices) of G, respectively. In the
setting, we give the following definition:

Definition 3.1. In this paper, a flowchart signifies a tuple F = (V, E ,X ,A) satisfying the following condi-
tions:

• G = (V, E) is a directed graph;

• To each vertex v ∈ V a finite set Xv is associated; X = (Xv)v∈V ;

• To each v ∈ V \ Vsrc an algorithm Av is associated, where the output set of Av is Xv and the input set

of Av is the product X⃗Pre(v) of the sets Xu over all u ∈ Pre(v); A = (Av)v∈V\Vsrc
.

Here, for a subset V ′ of V, X⃗V′ denotes the product of the sets Xv over all v ∈ V ′. In the case of Fig. 2,
we set G to be a directed graph with vertex set V = {1, 2, 3, 4, 5} and four edges 1 → 4, 2 → 4, 3 → 5 and
4 → 5. We put X1 = {1, 2}, X2 = {1, 2, 3} and X3 = {2, 3, 4} (we omit the concrete choices of the sets X4

and X5 in Fig. 2). We have Vsrc = {1, 2, 3}, and the algorithms A4 and A5 correspond to the addition a1+a2
and multiplication b · a3 given above, respectively.

In a manner similar to the expression of the calculation (a1 + a2) · a3 by Fig. 2, we associate to each
flowchart F an algorithm A(F) as follows:
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Definition 3.2. Let F = (V, E ,X ,A) be a flowchart. We define an algorithm A(F) with input set X⃗Vsrc

and output set X⃗Vsin , in the following inductive manner. Suppose that an element xv ∈ Xv is given for
each v ∈ Vsrc as input for the algorithm A(F). Then, when an element xu ∈ Xu has been determined for
every predecessor u ∈ Pre(v) of a vertex v ∈ V but xv ∈ Xv has not been determined, an element xv ∈ Xv

is determined as the output of the algorithm Av with input (xu)u∈Pre(v). Finally, A(F) outputs the tuple
(xv)v∈Vsin of elements xv with v ∈ Vsin.

The expressions of algorithms introduced by the above definitions will be used throughout the paper.
More precisely, not only a protocol under consideration but also the process of security evaluation of the
protocol, including the attack model, will be represented by using flowcharts.

3.2 A Motivating Example of the Main Result

Here we focus on an example of our main result mentioned in Section 1.2 (see Fig. 1), and give the statement
and its proof specialized to this situation. It aims at motivating our definition of an “auxiliary flowchart”
associated to each flowchart, which will be introduced below.

Recall that the upper half of Fig. 1 expresses a toy example of an attack model and security evaluation of
computation of a function f with private output. The flowchart F representing the whole process is defined
by using a directed graph G with V = {X,Y, L, Z,Σ}, where Σ = {0, 1} and we identify each vertex v ∈ V
with the corresponding set Xv in the collection X . The edges of G are X → Y , X → L, L → Z, Y → Σ
and Z → Σ. We have Vsrc = {X}, Vsin = {Σ}, AY = f : X → Y , AL = Lk : X → L, AZ = At : L → Z and
AΣ = Ev : Y ×Z → Σ. Now the attack success probability succrnd in the situation is equal to the probability
that the algorithm A(F) defined from the flowchart F as in Definition 3.2 outputs 1 when the input x is
chosen from X uniformly at random; succrnd = Pr[A(F)(UX) = 1].

Let succprnd denote the attack success probability in the case that the input x ∈ X is generated by a
PRG G : SG → OG = X; succprnd = Pr[A(F)(G(USG

)) = 1]. Our aim here is to give a bound of the difference
|succprnd − succrnd|. Note that the difference is equal to the advantage advG(A(F)) of a “distinguisher”
A(F) for G. By virtue of the observation, if the attack algorithm At as well as the other algorithms in the
flowchart F is computationally bounded, then the algorithm A(F) will also be computationally bounded
and the above difference can be immediately bounded by using an R(t)-secure PRG G with respect to comp
satisfying A(F) ∈ Alg. However, in the setting of information-theoretic security, the attack algorithm At is
not necessarily computationally bounded, therefore the above straightforward argument does not work.

To obtain an effective bound of the above difference |succprnd − succrnd| regardless of the computational
complexity of At, we introduce a novel mathematical trick explained below. For any random variable r on
the input set X, we have

Pr[1← A(F)(r)] =
∑

(x,y,ℓ,z)∈X×Y×L×Z

Pr[x← r, y ← f(x), ℓ← Lk(x), z ← At(ℓ), 1← Ev(y, z)]

=
∑
ℓ,z

∑
x,y

(
Pr[x← r]Pr[y ← f(x)]Pr[ℓ← Lk(x)]Pr[z ← At(ℓ)]Pr[1← Ev(y, z)]

)

=
∑
ℓ,z

(
Pr[z ← At(ℓ)]

∑
x,y

(
Pr[x← r]Pr[y ← f(x)]Pr[ℓ← Lk(x)]Pr[1← Ev(y, z)]

))
.

Now for each ℓ ∈ L and z ∈ Z, we have∑
x,y

(
Pr[x← r]Pr[y ← f(x)]Pr[ℓ← Lk(x)]Pr[1← Ev(y, z)]

)
=
∑
x

(
Pr[x← r]Pr[ℓ← Lk(x)]

∑
y

Pr[y ← f(x)]Pr[1← Ev(y, z)]

)
=
∑
x

Pr[x← r]Pr[ℓ← Lk(x)]Pr[1← Ev(f(x), z)] =
∑
x

Pr[x← r, 1← Ãℓ,z(x)] = Pr[Ãℓ,z(r) = 1] ,
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where Ã = Ãℓ,z is the algorithm defined in (1). This implies that

Pr[1← A(F)(r)] =
∑
ℓ,z

Pr[z ← At(ℓ)]Pr[Ãℓ,z(r) = 1] ,

therefore by triangle inequality, we have

|succprnd − succrnd| = |Pr[A(F)(USG
)) = 1]− Pr[A(F)(G(UX) = 1]| ≤

∑
ℓ,z

Pr[z ← At(ℓ)]advG(Ãℓ,z) .

Here the auxiliary algorithm Ãℓ,z is regarded as a distinguisher for G. An important fact is that the distin-

guisher Ãℓ,z for G is no longer relevant to the attack algorithm At, therefore its advantage can be effectively
bounded even if the attack algorithm At has unbounded computational complexity.

If the PRG G is R(t)-secure with respect to comp and we have Ãℓ,z ∈ Alg and the quantities comp(Ãℓ,z)

have a common upper bound T for all ℓ ∈ L and z ∈ Z, then the advantages advG(Ãℓ,z) also have a common
upper bound R(T ), therefore

|succprnd − succrnd| ≤ R(T )
∑
ℓ,z

Pr[z ← At(ℓ)] = R(T )
∑
ℓ

1 = |L| ·R(T ) .

We emphasize again that the resulting bound for the difference |succprnd − succrnd| is not relevant to the
computational complexity of the attack algorithm At (on the other hand, the bound depends on the size |L|
of the input set L of the attack algorithm At, therefore L should be sufficiently small in order to make the
bound effective).

The above auxiliary algorithms Ãℓ,z are also expressed by using flowcharts in the following manner. For
each x ∈ X, we have

Pr[1← Ãℓ,z(x)] = Pr[ℓ← Lk(x)]Pr[1← Ev(f(x), z)] =
∑
y

Pr[ℓ← Lk(x), y ← f(x), 1← Ev(y, z)] .

Now note that the event ℓ ← Lk(x) is equivalent to that the output ℓ′ ∈ L of Lk(x) satisfies δℓ(ℓ
′) = 1,

where δℓ : L → {0, 1} denotes an algorithm that outputs 1 if and only if the input is ℓ (i.e., that computes
Kronecker delta). By using this notation, we have

Pr[1← Ãℓ,z(x)] =
∑
y,ℓ′

Pr[ℓ′ ← Lk(x), 1← δℓ(ℓ
′), y ← f(x), 1← Ev(y, z)]

=
∑

y,ℓ′,b1,b2

Pr[ℓ′ ← Lk(x), b1 ← δℓ(ℓ
′), y ← f(x), b2 ← Ev(y, z), 1← AND(b1, b2)]

where AND denotes an algorithm that computes the logical AND of two input bits. This equality implies
that Ãℓ,z = A(F̃ℓ,z), where F̃ℓ,z is the flowchart corresponding to the lower half of Fig. 1. We emphasize

that the resulting flowchart does not involve the attack algorithm At, which allows the algorithm A(F̃ℓ,z) to
have low computational complexity even if the attack algorithm At is computationally unbounded.

Summarizing, our novel mathematical trick is to “factor out” the (possibly computationally unbounded)
attack algorithm from the original flowchart, then an upper bound for the difference of the attack success
probabilities in random and pseudorandom cases can be given in terms of the advantage of a distinguisher
defined by the resulting (somewhat modified) flowchart, which does no longer involve the attack algorithm.
Our main result of the paper says how to construct such an auxiliary flowchart by “factoring out” the attack
algorithm in more general settings.

Here we notice that the technique to evaluate the difference of random and pseudorandom cases by
the preceding result of Dubrov and Ishai [11] using nb-PRGs is essentially not effective in the above case.
Roughly speaking, an nb-PRG G is a PRG such that, even if the output set of a distinguisher D for G
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is not {0, 1} (i.e., D outputs more than one bits), the statistical distance of the output distributions of D
between random and pseudorandom cases is effectively bounded provided the output set of D is not too
large. To apply their randomness reduction technique using the nb-PRG G, first we replace the uniform
random variable on X with the output of G, and then we must find a decomposition of the algorithm A(F)
of the form A(F) = A ◦D such that A may have unbounded complexity but D has bounded complexity and
output set of bounded size. (If such a decomposition is found, then the output distributions of D, hence
those of A(F), in random and pseudorandom cases have a sufficiently small statistical distance, as desired.)
However, in the case of Fig. 1 it is essentially impossible to find such a decomposition of A(F). Indeed, the
possible choices of the efficient D are the followings: D = f × Lk : X → Y × L, or D : X → X (the latter
being trivial). In any case, the output set of D includes either X or Y , which should not be too small to
make the original function f : X → Y secure in the random case (if X or Y is too small, then the success
probability to guess the output f(x) of f cannot be negligibly small). Hence the preceding technique in [11]
is not effective for this example, which means that our result improves the preceding result significantly.

3.3 Definition of the Auxiliary Flowcharts

From now, we give a generalization of the construction of auxiliary flowcharts F̃ℓ,z associated to a flowchart F
in the previous example. We suppose that a flowchart F under consideration satisfies that Xv = Σ = {0, 1}
for every v ∈ Vsin (note that the example discussed in Section 3.2 satisfies the requirement). Moreover, we
specify a subset U ⊂ V \ Vsrc and a source v0 ∈ Vsrc of the directed graph G underlying the flowchart F .
Here, a choice of v0 intuitively means that we evaluate the difference of some behavior of the algorithm A(F)
between the case that a part of the input is chosen from Xv0 uniformly at random and the case that it is
chosen from Xv0 by using a PRG, where the way to choose the remaining part of the input is not changed
(in the example in Section 3.2, v0 corresponds to the set X). On the other hand, a choice of U intuitively
means that every algorithm Av with v ∈ U will be “factored out” from F to make the auxiliary flowcharts,
therefore these algorithms Av may have unbounded computational complexity (in the example in Section
3.2, U consists of the vertex corresponding to the set Z).

We need some more definitions. First, let V ′ be the set of all v ∈ V such that there is a path (v0 → v1 →
· · · → vk = v) in G from v0 to v which does not contain any vertex belonging to U . By the definition, we
have U ∩ V ′ = ∅ and the restriction of G to the vertex subset V ′ has v0 as the unique source (in particular,
V ′ ∩ Vsrc = {v0}). Intuitively, any vertex in V not belonging to V ′ will not be affected by the change of the
way to choose an element of Xv0 . Now we define

U ′ = {v ∈ V ′ | v ∈ Pre(u) for some u ∈ U} ,

U ′′ = {v ∈ V \ V ′ | v ∈ Pre(u) for some u ∈ V ′} .

In the example in Section 3.2, the set V ′ consists of the vertices other than Z, U ′ consists of L and U ′′

consists of Z (see below for a more “generic” example).
Recall that in the construction of an auxiliary flowchart in the example in Section 3.2, the output set

Z of At was replaced with a singleton {z} for an arbitrary element z ∈ Z, while the input set L of At
was followed by a Kronecker delta algorithm δℓ with an arbitrary element ℓ ∈ L. Then two output sets
Σ = {0, 1} were combined by the logical AND function to make the sink unique in the resulting flowchart.
We give a generalization of the construction. First, we introduce a symbol vu for each u ∈ U ′, and put
Ũ ′ = {vu | u ∈ U ′} which will corresponds to the output sets of the Kronecker delta algorithms. Secondly,
we introduce another symbol v∗ that will be the unique sink of the resulting directed graph. Now the new
vertex set Ṽ is defined by

Ṽ = V ′ ⊔ U ′′ ⊔ Ũ ′ ⊔ {v∗} ,

where ⊔ denotes the disjoint union. The new edge set Ẽ is defined by

Ẽ = {e = (v1 → v2) ∈ E | v1 ∈ V ′ ∪ U ′′, v2 ∈ V ′}

⊔ {eu = (u→ vu) | u ∈ U ′} ⊔ {e′v = (v → v∗) | v ∈ (V ′ ∩ Vsin) ∪ Ũ ′} .
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We define a new directed graph G̃ by the pair (Ṽ, Ẽ). A direct argument shows that G̃ has the source set

Ṽsrc = {v0} ∪ U ′′ and the unique sink v∗, and we have PreG(v) ⊂ V ′ ∪ U ′′ and PreG̃(v) = PreG(v) for every
v ∈ V ′.

The construction of the remaining components of the new flowchart depends on a collection (av)v of

specified elements av ∈ Xv for v ∈ U ′ ∪ U ′′. First we define the sets X̃v for v ∈ Ṽ in the following manner:
We put X̃v = Xv for each v ∈ V ′, X̃v = {av} for each v ∈ U ′′, and X̃v = Σ = {0, 1} for each v ∈ Ũ ′ ∪ {v∗}.
Secondly, for each v ∈ V ′ \ {v0}, let Ãv be the same algorithm as Av but each component of its input chosen

from the set Xu with u ∈ PreG(v) ∩ U ′′ (if exists) is specialized to the constant value au (∈ X̃u). For each

vu ∈ Ũ ′ (where u ∈ U ′), we put Ãvu = δau : X̃u → Σ where δau is the Kronecker delta algorithm associated

to the element au as in Section 3.2. Finally, for the remaining non-source vertex v∗ of G̃, let Ãv∗ be an

algorithm, with input taken from the product of the sets X̃v = Σ over v ∈ (V ′ ∩ Vsin) ∪ Ũ ′, that outputs
1 if all components of the input are 1 and outputs 0 otherwise (i.e., the logical AND operation). Thus the

new flowchart F̃ = (Ṽ, Ẽ , X̃ , Ã) is defined, where X̃ = (X̃v)v and Ã = (Ãv)v. One can verify that in the

example in Section 3.2, our definition of F̃ coincides with F̃ℓ,z by setting aL = ℓ and aZ = z. Note that for

the algorithm A(F̃), all of the components xv of the input (xv)v∈{v0}∪U ′′ other than xv0 are specialized to

the constant values av, therefore A(F̃) essentially has input set X̃v0 = Xv0 and output set X̃v∗ = Σ (i.e., we

can regard A(F̃) as a distinguisher for a PRG used for generating an element of Xv0).
Here we give an example to help understanding of the above construction. The upper half of Fig. 3 shows

an example of a “generic” flowchart F , where Σk denotes a copy of Σ = {0, 1}. For simplicity, here we
identify each vertex v of the graph with the corresponding set Xv; the same identification will be applied to
other cases as well, unless some ambiguity occurs. We put v0 = X1. In the figure, the three circled arrows
signify that the corresponding algorithms may have unbounded computational complexity (which should be
“factored out” to construct an auxiliary flowchart). Hence we let U consist of the terminal vertices of the
circled arrows; U = {X7, X11}. Then by the definition, we have

V ′ = {X1, X3, X6, X8, X12,Σ2} , U ′ = {X3, X8} , U ′′ = {X7, X9, X10} .

Let the symbols vX3 and vX8 correspond to the sets Σ3 and Σ4, respectively, therefore Ũ ′ is identified with
{Σ3,Σ4}. On the other hand, let the symbol v∗ correspond to the set Σ5.

To obtain the edges of G̃, we start with the subgraph of G restricted to the vertex subset V ′, and we add
the arrows in G from a vertex in U ′′ to a vertex in V ′ (three arrows in total), the arrows from some u ∈ U ′

to vu ∈ Ũ ′ (two arrows in total), and the arrows from some vertex in (V ′ ∩ Vsin) ∪ Ũ ′ to v∗ (three arrows

in total). Thus we obtain the flowchart F̃ as in the lower half of Fig. 3, where (according to the definition)
each set Xv (v ∈ U ′′) in the flowchart F is replaced with a singleton {av} for a specified element av ∈ Xv.

As mentioned above, the corresponding algorithm A(F̃) is essentially an algorithm with input set X1 and
output set Σ5 = Σ.

3.4 Main Theorem

From now, we present our main theorem formally by using the above definitions. Here we introduce some
notations. Given a flowchart F and a collection R = (rv)v∈Vsrc of random variables rv on the sets Xv

(v ∈ Vsrc), let A(F)(R) denote the output distribution of the algorithm A(F) with input given by the
random variables rv (v ∈ Vsrc). Let 1⃗ denote a collection of copies of 1 ∈ Σ. Then our main theorem is
described as follows:

Theorem 3.1. Let comp : Alg → R≥0 be a complexity measure. Let F be a flowchart such that Xv = Σ =
{0, 1} for every v ∈ Vsin. Let U ⊂ V \ Vsrc and v0 ∈ Vsrc. Let G : SG → Xv0 be a PRG with output set
OG = Xv0 . Let Rrnd = (rv)v∈Vsrc be a collection of random variables rv on Xv (v ∈ Vsrc) such that rv0
is uniformly random, and let Rprnd = (r′v)v∈Vsrc be obtained from Rrnd by replacing rv0 with the random
variable r′v0

given by the output of G for uniformly random seeds. Assume that
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Figure 3: Example of “generic” flowchart and its auxiliary flowchart

• G is R(t)-secure with respect to comp,

• there exists a constant T > 0 such that for every collection of elements av ∈ Xv for v ∈ U ′ ∪ U ′′,
the corresponding flowchart F̃ satisfies that A(F̃) ∈ Alg and comp(A(F̃)) ≤ T (see Section 3.3 for the

definition of F̃ and choices of U ′ and U ′′).

Then we have

|Pr[⃗1← A(F)(Rrnd)]− Pr[⃗1← A(F)(Rprnd)]| ≤

(∏
v∈U ′

|Xv|

)
R(T ) .

Proof. Given elements av of Xv (v ∈ U ′), we define an algorithm A′ with input set X⃗Vsrc\{v0} and output set

X⃗U ′′∪(Vsin\V′) in the following inductive manner:

1. Set (xv)v∈Vsrc\{v0} to be the given input for A′.

2. For each v ∈ U ′, set xv = av.

3. If v ∈ V \ V ′ and xu has been determined for every u ∈ PreG(v) but xv has not been determined, then
set xv ← Av((xu)u∈PreG(v)). Repeat the process until xv is determined for every v ∈ V \ V ′.

4. Finally, output (xv)v∈U ′′∪(Vsin\V′).

Note that xv is determined for every v ∈ V \ V ′ by repeating the process in Step 3. Indeed, assume contrary
that some xv cannot be determined, and we choose such a v ∈ V \V ′ that is closest to sources in G. Then we
have PreG(v) ⊂ (V \V ′)∪U ′, therefore every xu with u ∈ PreG(v) can be determined by the choice of v, while
xv cannot be determined. This is a contradiction. Hence every xv is determined, therefore the algorithm A′

is well-defined (it is shown by induction that the calculation of the elements xv is independent of the order of
choices of vertices v). Let R′ be the collection of random variables obtained by removing rv0 from Rrnd, or
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equivalently, by removing r′v0
from Rprnd; namely R′ = (rv)v∈Vsrc\{v0}. We define a probability distribution

A′(R′) over X⃗U ′′ in the same way as A(F)(Rrnd) and A(F)(Rprnd).
For simplicity, given elements av, xv (v ∈ V), we write a⃗→v = (au)u∈PreG(v) and x⃗→v = (xu)u∈PreG(v)

for v ∈ V ; pv = Pr[av ← rv] and p′v = Pr[xv ← rv] for v ∈ Vsrc; and pv = Pr[av ← Av (⃗a→v)] and
p′v = Pr[xv ← Av(x⃗→v)] for v ∈ V \ Vsrc. Put Z1 = V ′ ∪ U ′′ ∪ Vsin. Then by the definition of A(F)(Rrnd),
we have

Pr[⃗1← A(F)(Rrnd)] =
∑

(av)v∈V∈X⃗V
(av)v∈Vsin

=1⃗

∏
v∈V

pv =
∑

(av)v∈Z1

(av)v∈Vsin
=1⃗

∑
(av)v∈V\Z1

∏
v∈V

pv .

By factoring out some terms, the last value is equal to∑
(av)v∈Z1

(av)v∈Vsin
=1⃗

(∏
v∈V′

pv
∑

(av)v∈V\Z1

∏
v∈V\V′

pv

)
(2)

(note that PreG(v) ⊂ V ′ ∪ U ′′ for every v ∈ V ′ \ {v0}, therefore the terms pv with v ∈ V ′ can indeed be
factored out).

We would like to calculate the sum in the parenthesis in (2) for given elements av ∈ Xv (v ∈ Z1). First,
note that PreG(v) ⊂ (V \ V ′) ∪ U ′ for every v ∈ V \ V ′, therefore the values pv in the sum depend on the
elements au (u ∈ (V \ V ′) ∪ U ′). Secondly, we have

((V \ V ′) ∪ U ′) \ (V \ Z1) = (V \ V ′) ∪ U ′) ∩ Z1 = (Z1 \ V ′) ∪ (U ′ ∩ Z1) = Z2 ,

where Z2 = U ′ ⊔ U ′′ ⊔ (Vsin \ V ′) (disjoint union). Hence, given elements av ∈ Xv (v ∈ Z1), we have∑
(av)v∈V\Z1

∏
v∈V\V′

pv =
∑

(xv)v∈(V\V′)∪U′

xv=av (∀v ∈ Z2)

∏
v∈V\V′

p′v

=
∑

(xv)v∈(V\V′)∪U′

xv=av (∀v ∈ U ′)

Pr[(xv)v∈Vsrc\{v0} ←R
′, xv ← Av(x⃗→v) (∀v ∈ V \ (V ′ ∪ Vsrc)), xv = av (∀v ∈ Z2 \ U ′) ] .

By the definition of A′, the last value is equal to∑
(xv)v∈Vsrc\{v0}

Pr[(xv)v∈Vsrc\{v0} ← R
′, (av)v∈Z2\U ′ ← A′((xv)v∈Vsrc\{v0})] = Pr[(av)v∈Z2\U ′ ← A′(R′)] ,

where the algorithm A′ is corresponding to the given elements av ∈ Xv (v ∈ U ′).
By substituting the above equality for (2), we have

Pr[⃗1← A(F)(Rrnd)] =
∑

(av)v∈Z1

(av)v∈Vsin
=1⃗

∏
v∈V′

pv · Pr[(av)v∈Z2\U ′ ← A′(R′)]

=
∑

(av)v∈Z3

(av)v∈Vsin
=1⃗

(
Pr[(av)v∈Z2\U ′ ← A′(R′)]

∑
(av)v∈Z4

∏
v∈V′

pv

)
,

(3)

where Z3 = U ′ ∪ U ′′ ∪ Vsin and Z4 = V ′ \ (U ′ ∪ Vsin) (note that Z1 \ Z3 = Z4).
Now we would like to calculate the sum in the parenthesis in the right-hand side of (3) for given elements

av ∈ Xv (v ∈ Z3) such that av = 1 for all v ∈ V ′ ∩ Vsin. First, note that PreG(v) ⊂ V ′ ∪ U ′′ for every v ∈ V ′,
therefore the values pv in the sum depend on the elements au (u ∈ V ′ ∪ U ′′). Secondly, we have

(V ′ ∪ U ′′) \ Z4 = (V ′ \ Z4) ∪ (U ′′ \ Z4) = (V ′ ∩ (U ′ ∪ Vsin)) ∪ U ′′ = U ′ ⊔ (V ′ ∩ Vsin) ⊔ U ′′
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(where the right-hand side is disjoint union). Hence, for given elements av ∈ Xv (v ∈ Z3) such that av = 1
for all v ∈ V ′ ∩ Vsin, we have∑
(av)v∈Z4

∏
v∈V′

pv =
∑

(xv)v∈V′∪U′′

xv=av (∀v ∈ U ′ ∪ U ′′)
xv=1 (∀v ∈ V′ ∩ Vsin)

Pr[xv0 ← rv0 , xv ← Av(x⃗→v) (∀v ∈ V ′ \ {v0}) ]

=
∑

(xv)v∈V′∪U′′

xv=av (∀v ∈ U ′′)

Pr[xv0 ← rv0 , xv ← Av(x⃗→v) (∀v ∈ V ′ \ {v0}) , xv = av (∀v ∈ U ′), xv = 1 (∀v ∈ V ′ ∩ Vsin) ] .

By definition of the algorithms δav , the last row is equal to∑
(xv)v∈V′∪U′′

xv=av (∀v ∈ U ′′)

Pr[xv0 ← rv0 , xv ← Av(x⃗→v) (∀v ∈ V ′ \ {v0}) , δav (xv) = 1 (∀v ∈ U ′), xv = 1 (∀v ∈ V ′ ∩ Vsin) ] .

Moreover, by the definition of F̃ , the last value is equal to∑
xv0

∈Xv0

Pr[xv0 ← rv0 , 1← A(F̃)(xv0)] = Pr[1← A(F̃)(rv0)] ,

where the flowchart F̃ is corresponding to the given elements av ∈ Xv (v ∈ U ′ ∪ U ′′).
By substituting the above equality for (3), we have

Pr[⃗1← A(F)(Rrnd)] =
∑

(av)v∈Z3

(av)v∈Vsin
=1⃗

Pr[(av)v∈Z2\U ′ ← A′(R′)]Pr[1← A(F̃)(rv0)] . (4)

The same argument for Rprnd instead of Rrnd implies that

Pr[⃗1← A(F)(Rprnd)] =
∑

(av)v∈Z3

(av)v∈Vsin
=1⃗

Pr[(av)v∈Z2\U ′ ← A′(R′)]Pr[1← A(F̃)(r′v0)] . (5)

By using (4), (5) and triangle inequality, we have

|Pr[⃗1← A(F)(Rrnd)]− Pr[⃗1← A(F)(Rprnd)]|

≤
∑

(av)v∈Z3

(av)v∈Vsin
=1⃗

(
Pr[(av)v∈Z2\U ′ ← A′(R′)] · |Pr[1← A(F̃)(rv0)]− Pr[1← A(F̃)(r′v0)]|

)
. (6)

By the assumption, we have Xv0 = OG, rv0 = UOG
and r′v0 = G(USG

), therefore

|Pr[1← A(F̃)(rv0)]− Pr[1← A(F̃)(r′v0
)]| = advG(A(F̃)) .

Since G is R(t)-secure with respect to comp, the assumption on F̃ implies that

advG(A(F̃)) ≤ R(comp(A(F̃))) ≤ R(T )

(recall that R(t) is a non-decreasing function). By substituting these for (6), we have

|Pr[⃗1← A(F)(Rrnd)]− Pr[⃗1← A(F)(Rprnd)]| ≤
∑

(av)v∈Z3

(av)v∈Vsin
=1⃗

Pr[(av)v∈Z2\U ′ ← A′(R′)]R(T ) .
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Note that the value Pr[(av)v∈Z2\U ′ ← A′(R′)] in the last row does not depend on the elements av (v ∈
V ′ ∩ Vsin). Since Z3 \ (V ′ ∩ Vsin) = Z2, the last sum is equal to∑

(av)v∈Z2

(av)v∈Vsin\V′=1⃗

Pr[(av)v∈Z2\U ′ ← A′(R′)]R(T ) ≤
∑

(av)v∈Z2

Pr[(av)v∈Z2\U ′ ← A′(R′)]R(T )

=
∑

(av)v∈U′

(
R(T )

∑
(av)v∈Z2\U′

Pr[(av)v∈Z2\U ′ ← A′(R′)]

)
.

By using the relation ∑
(av)v∈Z2\U′

Pr[(av)v∈Z2\U ′ ← A′(R′)] = 1

it follows that

|Pr[⃗1← A(F)(Rrnd)]− Pr[⃗1← A(F)(Rprnd)]| ≤
∑

(av)v∈U′

R(T ) = |X⃗U ′ | ·R(T ) =

(∏
v∈U ′

|Xv|

)
R(T ) .

Hence Theorem 3.1 holds.

For practical applications, we consider the situation that an attack by an adversary for a protocol “suc-
ceeds” if and only if every component of output of the algorithm A(F) is 1. We assume that an element
of Xv0 is originally given by a perfect random source and we would like to replace the perfect source with
output of the PRG G. In this setting, the quantity |Pr[⃗1 ← A(F)(Rrnd)] − Pr[⃗1 ← A(F)(Rprnd)]| is the
difference of the adversary’s attack success probabilities between random and pseudorandom cases. Now we
choose U as the set of all vertices corresponding to the output sets of the adversary’s attack algorithms.
Then each vertex in U ′ corresponds to (a part of) the set of information received by the adversary. In this

case, it is an important property that, by the definition of F̃ , the algorithm A(F̃) does not involve any attack

algorithm of the adversary. Hence the complexity of A(F̃) can be effectively bounded even if the attack
algorithms have unbounded complexity, therefore the assumption for Theorem 3.1 can be indeed satisfied.
By Theorem 3.1, the difference between random and pseudorandom cases is bounded well when the product
of sizes of the sets Xv (v ∈ U ′) is sufficiently small, which means intuitively the situation that the amount
of information received by the adversary is sufficiently small. Moreover, the complexity measure comp can
be chosen independently of the adversary’s attack algorithms, therefore the bound of the difference between
random and pseudorandom cases given by Theorem 3.1 is independent of the adversary’s computational
environment (for example, the adversary may use quantum computers even if the complexity measure comp
is according to classical computation).

3.5 Miscellaneous Remarks

Here we collect some remarks on our result.

1. A Frequently Asked Question on our result: Why the adversary cannot recover the presently used seed
of the just computationally secure PRG by using algorithms with unbounded complexity (which would
break the proven indistinguishability between random and pseudorandom cases)? Answer: Our result
requires the property of the situation that the set of possible information received by the adversary is
sufficiently small. In such cases, the information actually received by the adversary is too scanty to
recover the seed, even though the adversary can perform powerful computation.

2. Our result may provide a significant insight for randomness reduction of not only protocols with
information-theoretic security, but also those with computational security. For instance, when the
considered computationally secure protocol is post-quantum (i.e., secure against quantum adversaries),
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our result shows that indistinguishable randomness reduction is still possible even by using a PRG
whose underlying computational problem is easy for quantum computers. The reason is that the
indistinguishability of the PRG is evaluated with respect to a fixed complexity measure comp that is
independent of the adversary’s (quantum) algorithm, therefore comp may be classical.

3. Our result gives a bound of the difference of security between random and pseudorandom cases, which
depends on computational complexity of the considered protocol. This means that the efficiency of
the protocol contributes directly to the security level, which is a rare phenomenon. Indeed, in usual
situations efficiency of the considered protocol contributes just indirectly to the security level, e.g., in
such a way that the more efficient a protocol is, the larger the encryption/decryption keys used by the
protocol can be, hence the higher the achieved security level will be.

4. A typical situation where our result works effectively is the following: There are a large number of
players for the protocol, including a small number of adversaries, and just a small piece of an element
generated from the randomness (which is the target of the randomness reduction) is distributed to each
player. In such a situation, the amount of information on the randomness received by an adversary
will be small, as required in our result. Now imagine that, if we could know in advance who are
the adversaries among all players, then smaller randomness would suffice for fighting the exposed
adversaries directly, since the information on the randomness received by the adversaries is now small.
However, actually we have no practical way to know it in advance, and it is inevitable to fight huge
possibilities of where the adversaries are hiding, requiring further randomness. The randomness for
the latter purpose looks less essential than the former one, and our PRG-based randomness reduction
can be intuitively thought of as reducing the latter inessential randomness. The security notion for
PRGs (Definition 2.4) fits the purpose very well; advantages of distinguishers are bounded regardless
of the bit positions (corresponding to the place of adversaries, in the above situation) that are picked
up from outputs of a PRG.

5. In the above argument, we have carefully avoided the term “computationally unbounded adversary”;
instead, we used, e.g., “computationally unbounded attack algorithm”. The reason is that the exact
meaning of “computationally unbounded adversary” seems depending on people, and someone may
think that existence of “computationally unbounded adversary” breaks not only computational power
assumptions but also computational hardness assumptions (in the sense of Definition 2.2). If it is the
case, then our result cannot be applied against “computationally unbounded adversary”, since our re-
sult is based on a computational hardness assumption on indistinguishability of the PRG. Nevertheless,
our result can imply the following: By PRG-based randomness reduction, the random and pseudoran-
dom cases can be indistinguishable even against an impractically strong adversary who is supposed to
be able to perform arbitrary algorithms in arbitrary (theoretically consistent) computational environ-
ments. Hence anyway our result proves indistinguishability between random and pseudorandom cases
much stronger than ordinary computational indistinguishability.

4 Numerical Example and Improvement

In this section, we present a numerical example of our main result to show that, for an existing information-
theoretically secure cryptographic scheme with reasonable parameters, the scheme based on a pseudorandom
source instead of a perfectly random one can still achieve a sufficient security level (against attack algorithms
with unbounded computational complexity) by using an existing PRG with significantly short seed length.
More precisely, in order to apply Theorem 3.1 to a practical situation, one should know the following three
data; the security property of a PRG (i.e., the function R(t)), the complexity of the auxiliary algorithms

A(F̃) (which are practically almost equal to the complexity of the original cryptographic scheme), and the
amount of the information received by the adversary (e.g., the size |L| of the set L in the example in Section
3.2). In the numerical example, we evaluate the above quantities for an existing scheme and an existing
PRG.
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Moreover, in this section we also present a novel improvement of our PRG-based randomness reduction
technique for information-theoretically secure schemes. Since the technique is scheme-dependent and is
difficult to describe in a generalized manner like Theorem 3.1, here we only explain the technique by showing
its application to the same existing cryptographic scheme, but it would not be difficult to apply the technique
to other individual situations. Some technical part of the numerical example will be supplied as the appendix.

4.1 An Existing Pseudorandom Generator

The PRG used in our numerical example is the one given by Farashahi et al. [13, Section 4.1] under the
DDH assumption, which we call a DDH generator in the paper. Here we summarize notations and some
properties; technical details omitted here will be described in Appendix A.

The DDH generator G = GDDH with integer parameter k0 > 0 has seed set SG = (Zq)
3 and output set

OG = (Zq)
k0 , where q is a Sophie-Germain prime (i.e., both q and p = 2q + 1 are prime numbers). It is

shown in [13] that GDDH is R(t)-secure with respect to a complexity measure comp : Alg → R≥0, where Alg
is the set of classical algorithms, comp is determined by using the data of computer experiments by Lenstra
and Verheul [18], and we put R(t) = k0t/L(|q|2) with a function L(x) given in [13, Section 2.4] (see also
Appendix A).

The seeds and outputs of G = GDDH are sequences of finite field elements rather than bit sequences. For
the purpose of our discussion, we try to convert them into bit sequences. First we give some notations. For
integer parameters h1 and h2, define two maps γ : Σ3h1 → (Zq)

3 = SG and γ′ : OG = (Zq)
k0 → Σk0h2 by

γ(s1, s2, s3) = (γ0(s1), γ0(s2), γ0(s3)) , γ
′(s1, . . . , sk0) = (γ′

0(s1), . . . , γ
′
0(sk0))

where γ0 : Σh1 → Zq and γ′
0 : Zq → Σh2 are defined by

γ0(x) = (x mod q) , γ′
0(x) = (x mod 2h2)

and we let (x mod n) ∈ {0, 1, . . . , n− 1}. Then the following property holds:

Lemma 4.1. We have

SD(γ(UΣ3h1 ), U(Zq)3) ≤ 3f(2h1 , q) , SD(UΣk0h2 , γ
′(U(Zq)k0 )) ≤ k0f(q, 2

h2) ,

where

f(z1, z2) =
(z1 mod z2) · (z2 − (z1 mod z2))

z1z2
.

Proof. First note that, if Pi and P ′
i are random variables on the same set for each i ∈ {1, 2}, P1 and P2 are

independent, and P ′
1 and P ′

2 are independent, then we have

SD(P1 × P2, P
′
1 × P ′

2) ≤ SD(P1, P
′
1) + SD(P2, P

′
2) .

Owing to this fact, it suffices to show that

SD(γ0(UΣh1 ), UZq
) = f(2h1 , q) , SD(UΣh2 , γ

′
0(UZq

)) = f(q, 2h2) .

For the former equality, write 2h1 = aq + b with b = (2h1 mod q). Then we have |γ−1
0 (x)| = a+ 1 for b out

of the q elements x ∈ Zq, while |γ−1
0 (x)| = a for the remaining q − b elements x ∈ Zq. This implies that

SD(γ0(UΣh1 ), UZq ) =
1

2
·
(
b

∣∣∣∣ a+ 1

aq + b
− 1

q

∣∣∣∣+ (q − b)

∣∣∣∣ a

aq + b
− 1

q

∣∣∣∣)
=

1

2
·
(
b · q − b

q(aq + b)
+ (q − b)

b

q(aq + b)

)
=

b(q − b)

2h1q
= f(2h1 , q) .

The latter equality is similarly proven. Hence Lemma 4.1 holds.
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Figure 4: Flowchart for collusion-secure codes (the circled arrow signifies an attack algorithm without bound
of complexity)

Let G′ = G′
DDH denote the composition γ′ ◦ G of G = GDDH followed by γ′, which is also a PRG with

seed set SG′ = SG = (Zq)
3 and output set OG′ = Σk0h2 . Note that the map γ′ just outputs some lower bits

of the original output of G, therefore the issue of complexity of γ′ may be ignored for simplicity in practical
situations. Then Lemma 4.1 and the above choice of R(t) imply (by ignoring complexity of γ′) that the PRG
G′ is R′(t)-secure with respect to the same comp, where

R′(t) = k0

(
t

L(|q|2)
+ f(q, 2h2)

)
. (7)

4.2 Collusion-Secure Codes

In our numerical example, we choose collusion-secure codes [5] (also referred to as fingerprinting codes) as
an instance of existing information-theoretically secure cryptographic schemes to which our result is applied.
We summarize some definitions and notations; further technical details omitted here will be described in
Appendix B.

Here we deal with a concrete scheme of collusion-secure codes given by Nuida et al. [21]. The scheme
is an improvement of the celebrated Tardos code [28] and its construction is based on a simpler probability
distribution than Tardos code, which is desirable for our discussion. The scheme in [21] consists of a codeword
generation algorithm Gen and a tracing algorithm Tr. An overview of the protocol and the security model
are described as follows. The players of the protocol are a provider and a number, say N , of users. Some
users are adversaries, called pirates, not known by the provider. The protocol proceeds as follows:

• The provider generates by Gen a probability distribution and a binary matrix of size N×m, where m is
a given parameter, the latter matrix being generated according to the former probability distribution.
Here i-th row of the matrix represents a codeword of length m that will be sent to i-th user. Let S
denote the set of all possible outputs of Gen.

• The provider distributes the N codewords to the corresponding users. Hence the pirates receive their
own codewords; let w denote the collection of the pirates’ codewords. Let W be the set of all the
possible collections w, and the process that the collection w is extracted from the output of Gen is
expressed by an algorithm Dist : S →W .

• The pirates execute an attack algorithm At to generate from w a pirated word y = At(w) ∈ Y =
{0, 1, ?}m, where ‘?’ denotes an “erasure symbol”. We emphasize that the standard assumption on
At for collusion-secure codes, called Marking Assumption [5], does not restrict the computational
complexity of At.

• Finally, the provider executes Tr, with y and the original output of Gen as inputs, to accuse a user a
who is likely to be one of the pirates. Let A denote the set of the possible accused users.

We define that the attack of the pirates has succeeded if and only if a is not a pirate. This evaluation is
expressed by an auxiliary algorithm Ev : A → Σ = {0, 1}, where 1 and 0 denote the success and the failure
of the attack, respectively. The whole process is described by a flowchart F given in Fig. 4, where the set
X signifies a random source used by the algorithm Gen. Hence the attack success probability succ in the
present setting is the probability Pr[1← A(F)] (for a random element of X).

In the numerical example, we consider the case that the number of pirates is 3, and we use a set of
parameters N and m as in Table 1 which is determined in such a way that the attack success probability
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Figure 5: Modified flowchart for collusion-secure codes, with ℓ = 2 (the circled arrows signify an attack
algorithm without bound of complexity)

succ = succrnd is bounded by 10−3 when a random input for Gen is chosen from X uniformly at random.
Further details will be described in Appendix B.

Table 1: Our parameters for collusion-secure codes in [21]
user number N 103 104 105 106 107 108 109

code length m 614 702 789 877 964 1052 1139

4.3 An Improved Randomness Reduction Technique

By the shape of the bound for the differences between random and pseudorandom cases given by the main
theorem, it is expected that the indistinguishability between the two cases will be improved if the amount
of variation of information received by the adversary (i.e., the size of the input set for the attack algorithm)
is diminished. Therefore, if we can divide the randomness used in a protocol into several pieces in such a
way that only a smaller component of the information received by the adversary depends on each piece of
the randomness, and we use an independent PRG to generate each of the pieces, then replacement of each
perfectly random piece with pseudorandom one would be more indistinguishable than the original situation.
By the “hybrid argument”, the total indistinguishability between fully random and fully pseudorandom cases
will be improved as well. From now, we explain this idea further by applying it to a concrete scheme of
collusion-secure codes [21] mentioned in Section 4.2. Our numerical example will be given in the improved
situation, which also includes the original situation as a special case.

To apply our idea, first we divide the set {1, 2, . . . ,m} of bit positions in the codewords of the collusion-
secure code into ℓ parts I1, I2, . . . , Iℓ. A key property of the scheme in [21] is that the probability distribution,
generated by the algorithm Gen, is the product of m independent distributions each of which is used for
generating the corresponding column of the codeword matrix (see Appendix B). Therefore we can also divide
the set X of random input for Gen into ℓ pieces X1, . . . , Xℓ in such a way that a part of the input chosen
from Xν is relevant to the columns in Iν for the output of Gen. The flowchart F of this modified situation
is shown in Fig. 5 (we present the picture only for the case ℓ = 2 for simplicity, but a more general case
is analogous). Here the ν-th part sν ∈ Sν of the whole output of Gen is regarded as being generated by
an algorithm Genν with random input chosen from Xν , and the ν-th part Distν(sν) ∈ Wν of the pirates’
codewords depends solely on sν . Note that the original situation corresponds to the case ℓ = 1.

In the situation, we would like to compare the following two cases: The input xν for Genν is generated by
the uniform random variable UXν for every 1 ≤ ν ≤ ℓ (the “fully random” case); and xν is generated by an
independent PRG Gν : Sν → Oν with uniformly random seed for every 1 ≤ ν ≤ ℓ, where Oν = Xν (the “fully
pseudorandom” case). Now for 0 ≤ ν ≤ ℓ and 1 ≤ µ ≤ ℓ, let rµν be a random variable on Xµ such that we
have rµν = Gµ(USµ) if µ ≤ ν and rµν = UOµ if µ > ν, and put Rν = (rµν )1≤µ≤ℓ. Hence R0 and Rℓ correspond
to fully random and fully pseudorandom cases, respectively. By the hybrid argument, the difference between
fully random and fully pseudorandom cases is bounded by the sum, over all ν with 1 ≤ ν ≤ ℓ, of differences
between the cases of Rν−1 and Rν , while Rν−1 and Rν differ only at the ν-th components; rνν−1 = UOν
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Figure 6: Auxiliary flowchart F̃ = F̃ν corresponding to Fig. 5, with ν = 2

and rνν = Gν(USν ). Hence it suffices to evaluate the indistinguishability for randomness reduction of each
randomness piece Xν .

For the purpose, we apply Theorem 3.1 to the above flowchart F by setting v0 = Xν and U = {Y }. Then
we have

V ′ = {Xν , Sν ,Wν , A,Σ} , U ′ = Wν , U ′′ = {S1, . . . , Sν−1, Sν+1, . . . , Sℓ, Y } .

Put ¬ν = {1, . . . , ℓ} \ {ν}. Given elements wν ∈ Wν , sµ ∈ Sµ for µ ∈ ¬ν and y ∈ Y , the corresponding

auxiliary flowchart F̃ = F̃ν is as shown in Fig. 6. Now assume that each PRG Gν is Rν(t)-secure with respect

to a common complexity measure comp. Assume further that the complexity comp(A(F̃ν)) is bounded by a
constant Tν > 0. Then by applying Theorem 3.1, we have

|Pr[1← A(F)(Rν−1)]− Pr[1← A(F)(Rν)]| ≤ |Wν |Rν(Tν)

for each ν, therefore the difference between the attack success probabilities succrnd and succprnd in fully
random and fully pseudorandom cases, respectively, is bounded by

|succrnd − succprnd| = |Pr[1← A(F)(R0)]− Pr[1← A(F)(Rℓ)]|

≤
ℓ∑

ν=1

|Pr[1← A(F)(Rν−1)]− Pr[1← A(F)(Rν)]| ≤
ℓ∑

ν=1

|Wν | ·Rν(Tν) .
(8)

4.4 Numerical Examples

From now, we present numerical examples of the bound in (8) by using the objects and data in Section 4.1
and Section 4.2. First, for simplicity, we suppose that the partition I1, . . . , Iℓ of bit positions {1, . . . ,m}
satisfies that Iν = {j | mν−1 + 1 ≤ j ≤ mν}, where we put mν = |Iν | and mν =

∑ν
µ=1 mµ (hence m0 = 0

and mℓ = m). We choose the sizes mν of Iν in a balanced manner |mν −m/ℓ| < 1, therefore mν ≤ ⌈m/ℓ⌉.
On the other hand, we set each PRG Gν to be a copy of the modified DDH generator G′

DDH introduced in
the final paragraph of Section 4.1, therefore we have Rν(t) = R′(t) where R′(t) is as in (7). In this case,
each set Wν consists of binary matrices of size 3 × mν (recall that the number of pirates is 3), therefore
|Wν | = 23mν ≤ 23⌈m/ℓ⌉ and

|succrnd − succprnd| ≤
ℓ∑

ν=1

23⌈m/ℓ⌉k0

(
Tν

L(|q|2)
+ f(q, 2h2)

)
= 23⌈m/ℓ⌉k0

(∑ℓ
ν=1 Tν

L(|q|2)
+ ℓf(q, 2h2)

)
(9)

(see Appendix A for the function L(x)).
Since the parameters for the collusion-secure codes have been chosen in Section 4.2 in such a way that

the attack success probability for fully random case is bounded by 10−3, it is desired to make the difference
|succrnd− succprnd| of attack success probabilities in fully random and fully pseudorandom cases significantly
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Table 2: Comparison of lengths of required randomness in the numerical example

user number N 103 104 105 106 107 108 109

code length m 614 702 789 877 964 1052 1139

# of random bits 9.21× 106 1.05× 108 1.18× 109 1.31× 1010 1.44× 1011 1.57× 1012 1.70× 1013

(original)

ℓ = 1 seed length 6.87× 106 9.72× 106 1.33× 107 1.75× 107 2.25× 107 2.83× 107 3.51× 107

ratio 7.46× 10−1 9.26× 10−2 1.13× 10−2 1.34× 10−3 1.57× 10−4 1.81× 10−5 2.07× 10−6

ℓ = 2 seed length 2.45× 106 3.44× 106 4.66× 106 6.12× 106 7.80× 106 9.78× 106 1.21× 107

ratio 2.67× 10−1 3.28× 10−2 3.95× 10−3 4.68× 10−4 5.42× 10−5 6.23× 10−6 7.12× 10−7

ℓ = 5 seed length 8.15× 105 1.06× 106 1.48× 106 1.83× 106 2.59× 106 2.84× 106 3.45× 106

ratio 8.85× 10−2 1.01× 10−2 1.26× 10−3 1.40× 10−4 1.80× 10−5 1.81× 10−6 2.03× 10−7

Here “ratio” is (seed length)/(# of random bits (original)), and ℓ is the number of parts in the partition of
the columns {1, 2, . . . ,m}

smaller than 10−3. In the numerical example, we would like to determine the parameters for the PRGs
in such a way that the right-hand side of (9) is smaller than 10−6. On the other hand, since the seed set
SG′ = (Zq)

3 of G′ = G′
DDH consists of non-binary elements, in order to compare the lengths of required perfect

randomness in fully random and fully pseudorandom cases, we approximate the seeds of each Gν = G′ by
outputs of the map γ : Σ3h1 → (Zq)

3 introduced in Section 4.1 with uniformly random inputs; now the new
total seed length in fully pseudorandom case is 3ℓh1 bits. By Lemma 4.1, the statistical distance between
the distribution over (Zq)

3ℓ induced by outputs of ℓ copies of γ and the uniform distribution is bounded by
3ℓf(2h1 , q). We would like to determine the parameters in such a way that 3ℓf(2h1 , q) is also smaller than
10−6.

By the estimate of the bounds Tν for the complexity comp(A(F̃ν) given in Appendix C and the calculation
of the other parameters in Appendix D, the numbers of required perfectly random bits in the original (fully
random) and fully pseudorandom cases can be computed as in Table 2. In Table 2, for every choice of ℓ,
the ratio of the seed length to the original number of required random bits decreases (namely, the effect of
randomness reduction improves) as the number N of users increases. More precisely, the original numbers
of required random bits are almost linear in N , while the seed lengths are almost independent of the values
of N . This can be interpreted as that the amount of required randomness “inessential” for the security
increases as the number of users increases; see the fourth remark in Section 3.5.

In the table, for each choice of user number N and code length m, the ratio is significantly low already
in the case ℓ = 1, i.e., when the improved technique presented in Section 4.3 is not applied. This shows
that even the plain PRG-based randomness reduction can be effective for information-theoretically secure
cryptographic schemes, by using our indistinguishability evaluation technique.

Moreover, in the table the ratios for the cases ℓ = 2, 5 are significantly better than the plain case ℓ = 1.
Note that the ratios for the case ℓ = 5 are better than the case ℓ = 2 further. Also, Fig. 7 shows a relation
between the value ℓ and the approximated total seed length in the case N = 103 (written in scientific E
notation), where the approximation was performed in the same way as the argument in Appendix D. (By
the above observation, the overall tendency would be similar for the other choices of N .) In the graph,
it can be shown that the approximated seed length takes the minimum value 236 220 at the case ℓ = 31,
which is approximately 2.57% of the original number of required random bits (this ratio would be further
improved in the case of larger N) and is about 29 times as short as the plain case ℓ = 1. These results show
that our improved technique in Section 4.3 indeed works effectively. We also notice that, as a by-product,
our technique in Section 4.3 reduces the computational cost of the PRGs as well, since the sizes of the
Sophie-Germain primes q used in the PRGs are significantly decreased as ℓ increases (see Appendix D).
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Figure 7: Values of ℓ and approximated seed lengths for the example, with N = 103

5 Conclusion

In this paper, we proposed novel ideas and techniques for evaluation of indistinguishability between random
and pseudorandom cases in PRG-based randomness reduction of cryptographic schemes. Our evaluation
technique can prove the indistinguishability even against an adversary with computationally unbounded
attack algorithm, especially when the amount of information received by the adversary is small, hence it
reveals that PRG-based randomness reduction can be effective for not only computationally secure but also
information-theoretically secure schemes. In comparison to a preceding result of Dubrov and Ishai [11], our
result removes the requirement of the generalized notion of nb-PRGs and is effective for more general kinds of
protocols. We presented the effectiveness of our result by giving numerical examples of randomness reduction
for collusion-secure codes. Moreover, we also proposed another idea of dividing the required randomness into
several smaller pieces for improving the effect of randomness reduction, and presented numerical examples
to show that the idea also works effectively.

A Details of DDH Generator

In this section, we supply the technical details for the DDH generator omitted in Section 4.1. Recall that a
prime parameter q is chosen in such a way that p = 2q + 1 is also a prime number (i.e., p is a safe prime).
Let G1 be the multiplicative group of nonzero quadratic residues modulo p, therefore |G1| = q. We identify
the set G1 with Zq via the bijection enum1 used in [13, Section 4.1]. Under the identification, the DDH
generator G = GDDH has seed set SG = (Zq)

3 and output set OG = (Zq)
k0 ; note that, in their construction,

two elements x and y of G1 are randomly chosen as well as the “seed” s0 of the PRG [13, Section 3.1],
and here we include those random elements x and y in the seed of the PRG. We omit further details of the
construction of the PRG, since it is not relevant to our argument in the paper.

In [13], indistinguishability of the PRG G = GDDH is evaluated by using the data of computer experiments
by Lenstra and Verheul [18]. Accordingly, for each classical algorithm A ∈ Alg, we define comp(A) to be the
worst-case running time of A when executed on a fixed Pentium machine that was used in the experiments
in [18]. (Note that it is not clear in [13] whether the running times are in the sense of average-case or of
worst-case, and here we adopt the worst-case ones for safety since worst-case running time is longer than or
equal to average-case running time.) The time unit is set to be 360 Pentium clock cycles that is, according to
the experiment in [18], approximately the time for one encryption in a software implementation of DES (see
also [13, Section 2.4]). Now [13, Theorem 2] shows that if there is a distinguisher D ∈ Alg for GDDH such that
comp(D) ≤ T and advGDDH(D) > ε, then the DDH problem in the group G1 can be solved by some A ∈ Alg
such that comp(A) ≤ T with advantage larger than ε/k0. Hence, by assuming that the time-success ratio
T ′/ε′ for the complexity T ′ and the advantage ε′ of any algorithm in Alg for the DDH problem in G1 does
not exceed a constant Rts, it follows that GDDH is R(t)-secure with respect to comp with R(t) = k0t/Rts. In
[13, Assumption 1], the value Rts is assumed to be the complexity of the best known algorithm for solving
the DDH problem in G1, which is estimated according to the data in [18] as Rts = L(|q|2) where

L(n) = 4.7× 10−5 exp(1.9229(n ln 2)1/3(ln(n ln 2))2/3)
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(see [13, Section 2.4]).

B Details of Collusion-Secure Codes

In this section, we supply the technical details for the collusion-secure codes in [21] specialized to the case
of three pirates, omitted in Section 4.2. First, for the codeword generation algorithm Gen, we introduce a
publicly known probability distribution P that takes one of the two values p(0) and p(1) with equal probability
1/2, where

p(0) = 0.211334228515625 = (0.001101100001101)2 , p
(1) = 1− p(0) .

These values are approximations of the probability distribution given in [21, Definition 4] with approximation
error less than 10−5 (here we require p(0) and p(1) to have short binary expressions rather than short decimal
expressions; the same also holds for values u0 and u1 introduced below). The algorithm Gen generates
m values pj (1 ≤ j ≤ m) independently according to P (hence each pj is either p(0) or p(1)). Then
it generates each, say, j-th bit wi,j of i-th user’s codeword wi independently by Pr[wi,j = 1] = pj and
Pr[wi,j = 0] = 1− pj . On the other hand, the tracing algorithm Tr first calculates the score sci =

∑m
j=1 sci,j

of i-th user, where the bit-wise score sci,j for j-th bit is a function of yj (the j-th symbol in the pirated word
y), wi,j and pj specified in the following manner: If pj = p(ν) with ν ∈ {0, 1}, then put

sci,j =


uν if yj = 1 and wi,j = 1 ,

−u1−ν if yj = 1 and wi,j = 0 ,

−uν if yj ̸= 1 and wi,j = 1 ,

u1−ν if yj ̸= 1 and wi,j = 0 ,

where we define two auxiliary values u0 and u1 by

u0 = 1.931793212890625 = (1.111011101000101)2 ,

u1 = 0.5176544189453125 = (0.1000010010000101)2 .

Then Tr outputs any one of the users with highest score. We notice that these values u0 and u1 are
approximations of Tardos’s scoring function

√
(1− x)/x (which is also used in [21]) at x = p(0) and x = p(1),

respectively, with approximation error ∆ < 4.2× 10−6 < 10−5 (the effects of such approximation errors are
already considered in the security proof of [21]).

Recall that we would like to choose the parameters in such a way that the attack success probability
succ = succrnd for the case that a random input for Gen is chosen from X uniformly at random is bounded
by ε = 10−3 against c = 3 pirates. Now by the results of the first part of [21, Theorem 1], we can calculate
the code lengths as in Table 1 of Section 4.2, where we used auxiliary values ∆ = 4.2 × 10−6, η = 1.93180,
R = 0.40822, and β = 0.0613461 in the calculation (see [21] for details of those auxiliary values).

C Complexity of Algorithms in the Example

In this section, we estimate the computational complexity comp(A(F̃ν)) of the algorithm corresponding to

the auxiliary flowchart F̃ν given in Section 4.3. Here we use the same complexity measure as mentioned in
Appendix A.

First, we give a “pseudocode” for the algorithm A(F̃ν) in the following manner. Let i1, i2, i3 (1 ≤ i1 <
i2 < i3 ≤ N) be the indices of the three pirates. Here we encode each digit yj of a pirated word y ∈ Y in such
a way that 2-bit sequences 00, 01, and 10 represent ‘0’, ‘1’ and ‘?’, respectively (hence one can determine
whether yj = 1 or not by just one bit comparison at the lowest bit). The element wν ∈ Wν consists of the
bits wν

i,j ∈ {0, 1} with i ∈ {i1, i2, i3} and j ∈ Iν . For each µ ∈ ¬ν, the element sµ ∈ Sµ consists of the values

pj (j ∈ Iµ) and bits wi,j (1 ≤ i ≤ N , j ∈ Iµ). Since each pj is chosen from the two values p(0) and p(1) given
in Section 4.2, here we encode each pj into ξ ∈ {0, 1} such that pj = p(ξ). We also use the values u0 and u1
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given in Section 4.2. In the above setting, we describe a pseudocode for A(F̃ν) together with an estimate of
its complexity (see below for details) as follows, where next_n(xν) denotes an operation to load the next n
bits from the input bit sequence xν (the subscript ‘n’ is omitted in the case n = 1), sc0 denotes the constant
−mu0, and the remaining values wν

i,j (i ∈ {i1, i2, i3}, j ̸∈ Iν), pj (j ∈
∪

µ∈¬ν Iµ) and wi,j (1 ≤ i ≤ N ,
j ∈

∪
µ∈¬ν Iµ) are given:

Input: xν ∈ Xν Output: 0 or 1

01: for j in mν−1+1,...,mν do {

02: set pj := next(xν) \\ 1 TU
03: } \\ 3mν + 2 TUs for 01 - 03

04: for i in 1,...,N do {

05: for j in mν−1+1,...,mν do {

06: if next_15(xν) < p(0) then {

07: set wi,j := 1-pj \\ 2 TUs
08: } else {

09: set wi,j := pj \\ 1 TU
10: } \\ 3 TUs for 06 - 10

11: if i = i1 or i = i2 or i = i3 then {

12: if not wi,j = wν
i,j then {

13: return 0

14: } \\ 1 TU for 12 - 14

15: } \\ 4 TUs for 11 - 15

16: } \\ 9mν + 2 TUs for 05 - 16

17: } \\ (9mν + 4)N + 2 TUs for 04 - 17

18: set scmax := sc0 \\ 1 TU
19: for i in 1,...,N do {

20: set sc := 0 \\ 1 TU
21: for j in 1,...,m do {

22: if yj = 1 then {

23: if wi,j = 1 then {

24: if pj = 0 then {

25: set sc := sc + u0 \\ 1 TU
26: } else {

27: set sc := sc + u1 \\ 1 TU
28: } \\ 2 TUs for 24 - 28

29: } else {

30: if pj = 0 then {

31: set sc := sc - u1 \\ 1 TU
32: } else {

33: set sc := sc - u0 \\ 1 TU
34: } \\ 2 TUs for 30 - 34

35: } \\ 3 TUs for 23 - 35

36: } else {

37: if wi,j = 0 then {

38: if pj = 0 then {

39: set sc := sc + u1 \\ 1 TU
40: } else {

41: set sc := sc + u0 \\ 1 TU
42: } \\ 2 TUs for 38 - 42

43: } else {

44: if pj = 0 then {

45: set sc := sc - u0 \\ 1 TU
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46: } else {

47: set sc := sc - u1 \\ 1 TU
48: } \\ 2 TUs for 44 - 48

49: } \\ 3 TUs for 37 - 49

50: } \\ 4 TUs for 22 - 50

51: } \\ 6m+ 2 TUs for 21 - 51

52: if not sc < scmax then {

53: set scmax := sc, a := i \\ 2 TUs
54: } \\ 3 TUs for 52 - 54

55: } \\ (6m+ 8)N + 2 TUs for 19 - 55

56: if a = i1 or a = i2 or a = i3 then {

57: return 0

58: } \\ 3 TUs for 56 - 58

59: return 1

Recall from Appendix A that our complexity measure comp is defined in terms of the worst-case running
time on a computer used by the work [18]. Since it is infeasible to determine the precise running time, in the
above estimate we approximated the worst-case running time according to the following two rules. First, we
regard each operation of substitution, addition, subtraction, and comparison as taking 1 time unit (in the
above description, “TU” stands for “time unit”) that is approximately the time for 1 DES encryption. This
first rule would be justified since, for the current choice of parameters, every such operation in the above
pseudocode is either an operation between fixed-point numbers with just 12-bit or shorter integer parts and
just 16-bit or shorter fractional parts, or an operation between just 30-bit or shorter integers, which would
be much more efficient than DES encryption (in fact, this is likely to be overestimation, but it does not
cause any serious problem since we need only an upper bound of the complexity). Secondly, we ignore the
complexity of operations of loading a next bit from the input (i.e., an operation next_n(xν)), outputting an
element (i.e., an operation return), and jumping in the execution flow (implicitly used in for loops and if

statements), which (together with any other missed issue on complexity) seem negligibly small and would be
absorbed by the above-mentioned overestimation. From the two rules, it follows that the worst-case running
time of a for loop of the form “for CN in ST,...,EN do JOBCN end for” is (over)estimated to be the
sum of 2(EN− ST+ 2) time units (composed of 1 initialization of the counter CN, EN− ST+ 1 increments
for CN, and EN− ST+ 2 checks for the terminating condition) and the sum of running times of JOBCN for
all ST ≤ CN ≤ EN. In particular, if the running time of JOBCN is constantly equal to T time units, then the
estimated running time of this loop is (EN− ST+ 1)(T+ 2) + 2 time units. The above estimates of running
times of each line, each for loop and each if statement are thus obtained. By summing the estimated
running times presented at lines 03, 17, 18, 55, and 58, we have comp(A(F̃ν)) ≤ Tν where

Tν = (3mν + 2) + ((9mν + 4)N + 2) + 1 + ((6m+ 8)N + 2) + 3 = (6m+ 9mν + 12)N + 3mν + 10 .

Hence we have
ℓ∑

ν=1

Tν = (6ℓm+ 9m+ 12ℓ)N + 3m+ 10ℓ .

By substituting it for (9), the right-hand side of (9) is now equal to

23⌈m/ℓ⌉k0

(
(6ℓm+ 9m+ 12ℓ)N + 3m+ 10ℓ

L(|q|2)
+ ℓf(q, 2h2)

)
. (10)

D Details of the Numerical Example

In this section, we determine the appropriate parameters for DDH generators in order to complete the
numerical example in Section 4.4.
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First, by the pseudocode for the algorithm A(F̃ν) given in Appendix C, the necessary and sufficient bit
length of the input xν is (15N + 1)mν . Hence the total number of required random bits in fully random
case is (15N + 1)m, and the parameters k0 and h2 for G′

DDH should satisfy k0h2 ≥ (15N + 1)⌈m/ℓ⌉. For
simplicity, we suppose that the integer k0 is as small as possible, i.e., we set k0 = ⌈(15N + 1)⌈m/ℓ⌉/h2⌉.

We determine the total seed lengths 3ℓh1 and other parameters in fully pseudorandom cases under the
conditions that the quantity in (10) should be smaller than 10−6 and we should have 3ℓf(2h1 , q) < 10−6.
Table 3 shows the results of calculation for three cases ℓ ∈ {1, 2, 5}. In the table, “difference” signifies the
sum of the quantity in (10) and 3ℓf(2h1 , q), and “ratio” signifies the ratio of the seed length 3ℓh1 in fully
pseudorandom case to the number of required random bits in the original (fully random) case. For each case
in the table where the choice of Sophie-Germain prime q is specified, we used the following values:

q(1) = 790 717 071× 254 254 − 1 , q(2) = 2566 851 867× 270 001 − 1 ,

q(3) = 18 912 879× 298 395 − 1 , q(4) = 7068 555× 2121 301 − 1 ,

q(5) = 137 211 941 292 195× 2171 960 − 1 ,

where the last four Sophie-Germain primes are quoted from the July 2009 version of a list by Caldwell [7],
while the first one is quoted from the September 2008 version of that list. On the other hand, for each of
the remaining cases, an approximation of q was performed since the authors could not find in the literature
a concrete Sophie-Germain prime with appropriate size. In such a case, we calculated the “difference”
and the corresponding total seed length under the assumption that both f(2h1 , q) and f(q, 2h2) vanish and
h1 = h2 = |q|2. This approximation would be allowable, since h1 and h2 are not significantly far from q in
the five cases with precise values of q.
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