
Signatures for Multi-source Network Coding

László Czap and István Vajda

Budapest University of Technology and Economics
Laboratory of Cryptography and Systems Security (CrySys)

2, Magyar Tudósok krt., Budapest 1117, Hungary
{czap,vajda}@crysys.hu

Abstract. We consider the problem of securing inter-flow network cod-
ing with multiple sources. We present a practical homomorphic signature
scheme that makes possible to verify network coded packets composed
of data originating from different sources. The multi-source signature
scheme allows to circumvent the need of a secret key shared by all sources.
Our solution is an extension of the pairing based homomorphic signature
scheme by Boneh et al. We prove the security of the extended scheme by
showing a reduction to the single-source case. We evaluated the perfor-
mance of required computations and our results imply that the solution
is applicable in practice.

1 Introduction

Network coding allows intermediate nodes to perform encoding on data packets.
This can increase throughput and improve robustness [1]. Usually, in systems
applying inter-flow network coding, packets originating from multiple different
sources are encoded together. The methods of linear network coding [2–4] and
random linear network coding [5,6] can be extended for systems with more than
one source nodes as well, however, in general the multi-source case is more dif-
ficult to handle [7]. In these systems, in order to exploit the benefits of network
coding, linear combinations of packets from different sources need to be pro-
duced.

We consider such multi-source networks using network coding in an adver-
sarial setting, where some adversarial nodes (maybe even source nodes) may
aim to hinder data transmission by launching a pollution attack. This means
that the adversary may insert such encoded packets that are not a valid linear
combination of original packets. Classical methods of integrity protection (cryp-
tographic hash functions, digital signatures) are not applicable here, because
they are designed to protect packets from modification on their way from the
source to the destination, while network coding not only routes but inevitably
modifies packets.

Pollution attack has serious effect, because recombining a polluted packet
also results in a polluted packet. As a consequence, if intermediate nodes are
not aware of the pollution of an incoming packet, all of their downstream nodes
may receive and disseminate polluted packets. Furthermore, by decoding, even
a single polluted packet may destroy the whole original data at the receivers.

The problem of pollution attack in the multi-source setting is investigated
in [8]. The authors show a construction in which the homomorphic hash value
of data vectors are signed using oridinary digital signatures. It is shown, that
in the general case, we can not hope to find more efficient solution. Here, we
deal with a special case, where only packets having the same identifier are com-
bined together. In this setting we can exploit the homomorphic property of the
signature and use shorter signatures than [8].

The signature on raw packets are computed by the sources, each using its
own private key. In this way sources do not need to share a secret key or use
secure channels, encoded packets can be verified using the public keys of the
involved source nodes. This property requires that a part of the public key of
the sources is common. Our solution shows how to extend the homomorphic
signature scheme presented in [9] to fulfill this property and to handle multiple
sources while remaining secure. Although the computations rely on public key
operations, our performance analysis show that the computational overhead can
be tolerable for practical applications also.

The rest of this paper is organized as follows. Section 2 overviews the related
work, Section 3 describes the applied system model including the model of the
adversary. The multi-source signature scheme is described in detail in Section 4.
In Section 5 we give a proof of security and in Section 6 the results of our
performance analysis are given. In Section 7 we summarize the paper.

2 Related Work

Several cryptographic primitives were proposed with homomorphic property for
the sake of verification of network coded packets. A homomorphic hash function
is introduced in [10] and extended for network coding in [11]. Using homomorphic
hash function for integrity protection is generally not practical, especially in the
multi-source scenario, because it requires a secure channel between each of the
sources and each of the intermediate nodes.

Based on the homomorphic hash function a homomorphic signature scheme
was introduced in [12]. It exploits that the base RSA signature also has homo-
morphic property, thus signing the homomorphic hash value of a message results
in a homomorphic signature scheme. However, the authors were unaware that
homomorphism introduces a serious security flaw that does not arise using com-
mon cryptographic hash functions. The flaw was published in [13]. Further errors
of this solution were also discovered [14].

A computationally less expensive method is also proposed in [12], and the
same scheme is published in [15] also. A homomorphic signature scheme for con-
tent distribution is introduced in [16]. Another approach using bilinear mapping
was introduced in [17]. All these schemes share the property that they are limited
to a single source and that the number of messages that can be signed before
changing the keys is restricted.

It is only the signature scheme by Boneh et al. in [9] based on bilinear map-
ping that is general, not flawed yet and capable of signing unlimited number

of messages. We take this scheme as a basis and extend it for the multi-source
network coding scenario.

The multi-source case is considered in [8]. The most general setting is in-
vestigated, where vectors with arbitrary identifiers are allowed to combined to-
gether. Their construction applies homomorphic hashing with ordinary digital
signatures. Compared to this work, our solution is more restricted, because we
require that vectors combined together share a common identifier. However, this
allows us to make the signatures shorter.

There are also information theoretic solutions against pollution attacks such
as [18, 19], however they rely on adding redundancy at the source, hence they
are not applicable when there are more than one sources. A scheme proposed
for sensor networks [20] deals with multiple sources, but its field of applicability
is constrained to special scenarios.

3 System model

We consider a network coding scenario with m unit-capacity source nodes and
any number of receivers. We do not consider here the question of designing
a code, we only assume that intermediate nodes perform some linear network
coding over a finite field of size p. For simplicity, we further assume that sources
fragment their data into equal size packets consisting of N symbols. A packet is
considered as a vector v of dimension N . An id is assigned to each packet, such
that packets that have to be encoded together are assigned with the same id.

We further require that a PKI is available in the system that makes possible
all nodes to have their own private-public key pair. Source i signs its packet
vi using its own private key αi. Intermediate nodes first verify the signature
on the received signed packets, then produce linear combinations of the verified
packets and compute a signature for the encoded packet using the received sig-
natures without the need to access the private keys. A signed packet is a tuple
(id, β,y, σ), where y is the encoded payload, β is the corresponding encoding
vector: y =

∑m

i=1 βivi, and σ is the signature on the encoded packet. A signed
packet can be verified with the signature on it, even though its payload is com-
bined from vectors originating from different sources. Section 4 gives the specific
algorithms of signing, combining and verification of packets.

3.1 Adversary

We assume that the adversary controls one or more nodes of the network and
aims to provide the receivers with false information by forging the signature
scheme. The forgery is successful if any receiver decodes incorrectly, i.e. some of
the decoded packets do not equal the original source packets. It can happen if
the receiver accepts an encoded packet that is not a valid linear combination of
original source packets. More formally, the attack is successful, if a forged signed
packet (id∗, β∗,y∗, σ∗) passes the signature verification, while y 6= 0 and either
id∗ is not a valid id used by the sources, or y∗ 6=

∑m

i=1 β∗

i vi.

It is important to note that contrary to the usual model of digital signatures
we have to deal with adversarial source nodes as well. This gives the adversary
another possibility for the forgery. In the single source case, an adversarial source
node can influence only its own data. However, in the multi-source scenario
data of honest nodes can also be corrupted by adversarial behavior, even if
the adversarial source node produces valid signatures only. The following toy
example illustrates the situation. We have two sources, from which the first
behaves adversarial. Assume that two different paths are available from the
adversary to the receiver. On the first path, the adversary transmits a signed
packet with data x1 = 1, while on the other path she sends x′

1 = 2. The other
source node is consistent, it sends x2 = 7. It can happen that the receiver gets two
valid signed packets corresponding to the following system of linear equations:

x1 + x2 = 8

2x′

1 + x2 = 11

If the receiver is not aware of the inconsistency of the adversarial source, the
result of decoding is: x1 = 3, x2 = 5. This small example illustrates that the
adversarial behavior of a source effects the decoding of data sent by honest
sources also. This problem makes even more challenging to design signatures for
multi-source network coding.

4 A multi-source homomorphic signature scheme

Before giving specific algorithms we define the special properties that a multi-
source signature should have. Signing a raw packet does not have special re-
quirements, we only need to define the properties of verification. Besides, one
additional operation is also needed:

1. Verification of encoded packets. The verification must fail for an encoded
packet that is not a valid linear combination of original source packets. A
forged signed packet (id∗, β∗,y∗, σ∗) has to fail the signature verification, if
y 6= 0 and either id∗ is not a valid id used by the sources, or y 6=

∑m

i=1 βivi.
2. Combining packets. If all sources are honest, given a series of valid signed

packets with the same id: {Pϑ = (id, βϑ,yϑ, σϑ)}, ϑ = 1, 2, . . . , k, a node has
to be able to produce a novel valid signed packet with any chosen encoding
vector ̺ of length k without accessing any private keys. The resulting signed
packet has to have the form (id,

∑k

ϑ=1 ̺ϑβϑ,
∑k

ϑ=1 ̺ϑyϑ, σ).

Below, we introduce a multi-source signature scheme with the desired prop-
erties based on the homomorphic signature scheme by Boneh et al. [9].

The signature scheme operates over a bilinear group tuple G = (G1, G2, GT , e, ϕ),
where

– G1, G2 and GT are cyclic multiplicative groups of the same prime order. The
discrete logarithm problem is assumed to be computationally infeasible in
these groups,

– e : G1 × G2 → GT is an efficiently computable mapping with bilinear and
non-degenerating property,

– ϕ : G2 → G1 is an efficiently computable isomorphism.

The setup of the system consists of the following steps:

1. Generate a bilinear group tuple G. Let p denote the order of groups, p is
prime, and p > 2κ, where κ is the security parameter of the system.

2. Generate N − m random numbers g1, g2, . . . , gN−m ∈ G1 \ {1}.

3. Choose a random number u ∈ G2 \ {1}.

4. Output the tuple of public system parameters, these are the public param-
eters that all source nodes share: (G, g1, g2, . . . , gN−m, u, H), where H is a
known hash function.

5. Each source i sets up its own key pair. Source i selects randomly a private
key αi ∈ Fp. The public keys hi of the sources are computed such that
u = hαi

i holds for all i. The public key of the ith source is hence PKi =

u(α−1

i
) = hi. Computing the inverse of αi and modulo exponentiation are all

computationally feasible operations.

6. Output public keys.

Given this key setup, we show the different operations of the signature
scheme.

4.1 Signing

Nodes can produce their signatures as if the single source scheme [9] was used,
only the id has to be shared. Source i computes signature σi on vector vi =
(vi,1, vi,2, . . . , vi,N) 6= 0:

σi =





m
∏

k=1

H(id||k)vi,N−m+k

N−m
∏

j=1

g
vi,j

j





αi

.

4.2 Combining

The signature σ of an encoded packet (id, β,y, σ) is produced by simply concate-
nating the signatures σi produced by the corresponding sources on vi, for which
βi 6= 0. It means that the encoded packet is verified by the tuple of signatures
computed on the vectors that are encoded together. Formally, if m packets are
encoded together, σ is an m length vector, and the ith element of the vector is
σj , if βj is the ith non-zero element of β.

At this point, the combining process has to check if all input packets that
contain a signature for any vi contain the same value of σi. If not, the combining
process fails and an adversarial source is recognized.

4.3 Verification

The verification of a signed packet takes three steps as below:

1. Compute

Γ1 = γ1(id, β, σ) =
m
∏

i=1

e(σi, hi)
βi .

2. Compute

Γ2 = γ2(id,y) =

= e





m
∏

k=1

H(id||k)yN−m+k

N−m
∏

j=1

g
yj

j , u





3. If Γ1 = Γ2 the verification succeeds, otherwise it fails.

We show that for correctly computed packets the verification eventually suc-
ceeds. To simplify the notations, let us introduce

H (vi, id) =

m
∏

k=1

H(id||k)vi,N−m+k

N−m
∏

j=1

g
vi,j

j .

H (,) is essentially a homomorphic hash function, for which H (
∑m

i=1 βivi, id) =
∏m

i=1 H (vi, id)βi . Let n = N − m.
Given this,

Γ1 = γ1(id, β, σ) =

m
∏

i=1

e(σi, hi)
βi =

=

m
∏

i=1

e (H (vi, id)
αi , hi)

βi =

m
∏

i=1

e
(

H (vi, id)
βi , hαi

i

)

=

=
m
∏

i=1

e
(

H (vi, id)βi , u
)

= e

(

m
∏

i=1

H (vi, id)βi , u

)

=

= e

(

H

(

m
∑

i=1

βivi, id

)

, u

)

= e (H (y, id) , u) =

= γ2(id,y) = Γ2

We exploited the bilinear property of e, i.e. e(xy1

1 , x
y2

2) = e(x1, x2)
y1y2 , and the

fact that hαi

i = u.

4.4 Batch verification

The presented multi-source signature scheme supports batch verification as ho-
momorphic signature schemes usually do. The verifier computes a random linear

combination from the signed encoded packets in the batch, resulting in a single
signed encoded packet as if it computed a combined packet for forwarding. If
the verification for this combined packet succeeds, all signed encoded packets
are accepted as valid. If the verification fails, there is eventually at least one
polluted packet in the batch. To find out which one, the verifier needs further
verifications, e.g. it can use binary-checking, that tests the half of the batch in
each step.

If there are some inconsistent packets in the batch, the batch verification
fails, because the combining process will not be able to produce the valid signed
packet that contains the random linear combination of packets in the batch. This
is the property that makes it possible to handle adversarial sources. From this it
follows that batch verification is not only an option to improve the performance
of the verification process, but it is essential for the receiver to perform a batch
verification on the received set of packets before decoding in order to be aware
of adversarial source nodes.

It is an important practical advantage of our scheme that it not only recog-
nizes inconsistency, but also provides an evidence against the adversary, because
the verifier can find two encoded packets with two different valid signatures from
the adversary. These inconsistent packets provide eligible proof against the ad-
versary. Based on this, e.g. the certificate authority of the system can revoke the
key pair of the malicious node. This property ensures that an adversary may
reduce the performance of the system by inconsistent behavior for a while, but
she can not do so continuously.

5 Security

To prove the security of the presented signature scheme we show a reduction
to the single-source case. If there is only a single source, our scheme is almost
identical to the network coding signature scheme NCS1in [9]. Theorem 6 of [9]
proves that the probability of a successful forgery is negligible in κ, assuming
the co-CDH problem is infeasible in (G1, G2). Based on this result it is enough
to show a reduction of the multi-source signature scheme to NCS1to prove
computational security.

5.1 The NCS1scheme

Before giving the proof of security we briefly describe NCS1. It uses the same
public parameters as the multi-source scheme, the only difference is that there
is only one source with a key-pair (α, h). The source has m vectors to send and
it signs these vectors with its private key. The computation of this signature σ′

i

on a vector vi is the same as in the multi-source case, i.e.

σ′

i = H (vi, id)α
.

Computing the signature of an encoded packet differs and is as follows in the
case of NCS1:

σ′ =

m
∏

k=1

(σ′

i)
βk .

The verification process is also similar, but the computation of Γ ′

1 differs:

Γ ′

1 = γ′

1(id, β, σ′) = e(σ′, h).

The computation of Γ ′

2 is the same as Γ2.

5.2 Proof of security

Theorem 1. The presented multi-source signature scheme is secure, if the net-
work coding signature scheme (NCS1) in [9] is secure.

Proof. We show that if there exists an efficient algorithm A∗ that can produce
a forged signed packet in the multi-source signature scheme, we can construct
an efficient algorithm A that produces a forged signed packet in NCS1.

The input of algorithm A∗ is the tuple of public system parameters as well
as the public key of all the m sources together with a valid identifier id, and the
set of corresponding signed packets from the sources. The signed packet from
the ith source is: (id, ei,vi, σi), where ei is the ith unit vector. Algorithm A∗

outputs a packet (id∗, β∗,y∗, σ∗) for which y∗ 6= 0 and the verification succeeds,
but either id∗ 6= id or id∗ = id and y∗ 6=

∑m

i=1 β∗

i vi.

Let us assume that a source node using the NCS1scheme is given with the
system parameters (G, g1, g2, . . . , gN−m, u, H) and a key pair (h, α), for which
hα = u. (Here m means the dimension of the subspace the source signs.)

Algorithm A operates as follows:

1. Construct the multi-source signature scheme with m sources. The key pair
of the first source is (h1 = h, α1 = α), and this single-source key setup is
extended with m − 1 additional key pairs in the following way. We choose
m− 1 random numbers from Fp: x1, x2, . . . , xm−1. The public key of the ith
source is hi = hxi−1 for i > 1. The corresponding private keys are αi = x−1

i−1α

for i > 1.

2. Call algorithm A∗ with the parameters constructed above. If required, a
signed packet from the ith source can be constructed from a single-source
signed packet, although private keys αi are unknown: if (id, ei,vi, σ

′

i) is the
corresponding single-source packet we compute a packet as if it came from

the ith source: (id, ei,vi, σi = (σ′

i)
x
−1

i−1).

The output of A∗ is a forged signed packet in the multi-source scheme:
(id∗, β∗,y∗ =

∑m

i=1 β∗

i v
∗

i , σ∗ = (σ∗

1 , σ∗

2 , . . . , σ∗

m)). (For simplicity, we assume
that all sources are involved, but the proof does not rely on this.)

3. Output the packet (id∗, β∗,y∗, σ∗∗), where σ∗∗ = (σ∗

1)β∗

1

∏m

i=2(σ
∗

i)β∗

i xi−1 .

We show that the output of A is a forged signed packet in NCS1. First, we
show that it passes the verification process than prove that the packet is forged.

Γ ′

1 = e

(

(σ∗

1)β∗

1

m
∏

i=2

(σ∗

i)β∗

i xi−1 , h

)

= e
(

(σ∗

1)β∗

1 , h1

)

m
∏

i=2

e
(

(σ∗

i)β∗

i xi−1 , h1

)

=(1)

= e(σ∗

1 , h1)
β∗

1

m
∏

i=2

e
(

σ∗

i , h
xi−1

1

)β∗

i = (2)

=

m
∏

i=1

e(σ∗

i , hi)
β∗

i = e

(

H

(

m
∑

i=1

β∗

i v
∗

i , id

)

, u

)

= (3)

= e (H (y∗, id) , u) = Γ ′

2 (4)

Equation (3) holds because the output of A∗ passes the multi-source verifi-
cation. It is important to note that v∗

1 ,v
∗

2 , . . . ,v
∗

m are not known and may not
unique, but they eventually exist. This equation proves that the packet passes
the verification of NCS1.

Now we have to show, that this packet is a forged signed packet in NCS1.
The packet is forged if y∗ 6= 0 and either id∗ 6= id, or y∗ 6=

∑N

i=1 β∗

i vi. According
to the properties of A∗ this condition is satisfied, consequently, the output of A
is a forged packet in NCS1. ⊓⊔

Theorem 1 and Theorem 6 of [9] together prove that the multi-source signature
scheme is computationally secure.

6 Performance results

Like all known public key cryptographic operations, the presented scheme also in-
volves computationally expensive operations. Let us overview the number of op-
erations the different algorithms require. Here we ignore the cost of network cod-
ing operations and focus only on the overhead caused by the signature scheme.

– Signing a raw packet requires N exponentiations and N − 1 multiplications.
– Combining is extremely simple, signatures of the input packets need only be

put one after another. Besides, the process only needs to check if signatures
corresponding to the same data vector equal.

– Verification is computationally more expensive, if m packets are combined
together, computing Γ1 requires m mappings, m exponentiations and m− 1
multiplications, while Γ2 requires N modulo exponentiations, N − 1 multi-
plications and one mapping.

Of course, using signatures has not only computational, but communication
overhead as well. In our case, the length of a signature depends on the size of G1

and on the number of source packets combined together in the encoded packet. It
follows from the operation of the signature scheme that the amount of overhead
is proportional to the number of packets combined.

In contrary to usual signatures, in the case of network coding, the verification
process has to be performed not only by the receiver, but intermediate nodes
also, before they produce a novel combination. This property makes verification
performance a key issue of a homomorphic signature scheme. Note that in this
extent the multi-source setting does not differ from the single-source case.

In order to provide also numerical results, we implemented the signature
scheme and measured the performance of the signing and verification operations
as well as the communication overhead in different cases. We omitted measuring
the performance of the combining process, because its overhead is negligible. Our
implementation was written in C using the Pairing-Based Cryptography Library
(libpbc) [21]. For the computations we used the curve groups implemented in the
libpbc library. The main properties of different tested parameters is summarized
on Table 1. For further details on different types of pairings we refer the reader
to [21].

Type
Base field Dlog security Signature length

(bits) (bits) (bytes)

a 512 1024 128

f 160 1920 40

d159 159 954 40

Table 1. Main properties of tested pairings

We performed measurements in two different settings that differs in the size
of signed data packet. In the first scenario the length of a packet was set to
1500 bytes, that is the length of a typical IP packet. In the second case, larger
data blocks were signed, the packet length was 1 MB. In both cases 100 pack-
ets were generated with random elements. Different key pairs were generated
for every packet, and raw packets were signed using their corresponding private
key. Using the signed raw packets, we produced signed encoded packets. The
average number of combined packets ∆ was set in advance, then 100 combined
packets were produced. The number of packets to combine together was selected
randomly from the range [1; 2∆ − 1] for each combined packet, where the co-
efficients and the packets to combine were also selected randomly. Afterward,
the produced signed combined packets were verified one by one. We measured
the throughput of the signing and the verification process not counting the size
of appended signatures. The computations were run on PC with 2.5 GHz CPU
frequency and 2 GB of RAM, using Linux operating system.

The performance results of the signing operation is presented on Table 2,
while the throughput results of the verification process are plotted on Fig. 1
and 2 corresponding to the two different packet lengths tested.

The result heavily depends on both the packet length and the selected type
of pairing. The verification is clearly more costly than signing. In both cases

Packet length Pairing Type Throughput % overhead

1500 bytes

a 84.2 MB/s 8.5

f 107.2 MB/s 2.6

d159 99.0 MB/s 2.6

1 MB

a 141.8 MB/s 0.0128

f 149.2 MB/s 0.004

d159 130.6 MB/s 0.004

Table 2. Throughput of the signing process

the larger packet size results better performance. For signing the improvement
is ∼ 60% for Type ’a’ pairing. For the verification, the difference is much more
significant (note that the scaling of vertical axes differ on the two figures). It is
because computing the pairing is the most costly operation, and if the packet
size is smaller, the pairing function is used more often.

1 5 10 15 20 25 30 35 40
10

0

10
1

10
2

10
3

10
4

Average number of combined packets

T
h

ro
u

g
h

p
u

t
(k

B
y
te

/s
)

Pairing Type a

Pairing Type f

Pairing Type d159

Fig. 1. Throughput results of the verification process, packet size is 1500 Bytes

While by signature generation the different types of pairing give similar result
- the difference is at most 27%, see 3rd column of Table 2 -, in the signature
verification almost one order of magnitude difference rises between them. There
is also a considerable difference in the degree of performance degradation as the
number of packets combined together increases. In this aspect type ’a’ pairing
gives the best performance, in the case of the larger packet size, there is only a
slight difference between its throughput results.

1 5 10 15 20 25 30 35 40
10

0

10
1

10
2

10
3

Average number of combined packets

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Pairing Type a

Pairing Type f

Pairing Type d159

Fig. 2. Throughput results of the verification process, packet size is 1 MB

Regarding communication overhead, it is quite obvious that the larger is the
packet size the lower is the overhead of one signature. In the case of an encoded
packet, this overhead grows proportionally with the number of packets involved.

The conclusion of our investigation is that both the packet size and the ap-
plied pairing have to be selected carefully considering the performance require-
ments of the system. The cost of verification is the most important parameter,
because verification is performed much more often than signing. Thus, from the
tested pairings, type ’a’ pairing seems to be more attractive than others, despite
the larger signature size and the slightly slower signing operation.

Our results show, that although costly public key cryptographic operations
are involved, the performance of the verification process can be in the order of
several tens of MB/s, thus it can be practical for many applications, even if the
computational power of an intermediate router is more constrained than that of
the desktop computer on which we ran our measurements.

7 Summary

We proposed a homomorphic signature scheme that provides a cryptographic
solution against pollution attacks for systems using inter-flow network coding
with multiple sources. A combined signed packet can be verified using the com-
bined signature and the public keys of the corresponding sources. The scheme is
an extension of the signature scheme in [9]. We provide a proof for the security
of the novel scheme based on the security of the single-source case. Our scheme
can handle even the case when some source nodes are adversarial, moreover, it
can not only detect their attack but it provides a proof against the adversary.

We implemented and measured the performance of the signing and verifica-
tion process. The results imply that the scheme is suitable for practical purposes.

References

1. Ahlswede, R., Cai, N., Li, S.Y.R., Yeung, R.W.: Network information flow. IEEE
Transactions on Information Theory 46(4) (July 2000) 1204–1216

2. Li, S.Y.R., Yeung, R.W., Cai, N.: Linear network coding. IEEE Transactions on
Information Theory 49(2) (2003) 371–381

3. Kötter, R., Médard, M.: An algebraic approach to network coding. IEEE/ACM
Transactions on Networking 11 (October 2003) 782–795

4. Fragouli, C., Soljanin, E.: Network Coding Fundamentals. Volume 2. Foundations
and Trends in Networking (2007)

5. Ho, T., Kötter, R., Médard, M., Karger, D.R., Effros, M.: The benefits of coding
over routing in a randomized setting. In: Proceedings of the IEEE Information
Theory Symposium (ISIT). (June 2003)

6. Ho, T., Médard, M., Kötter, R., Karger, D.R., Effros, M., Leong, B., Shi, J.: A
random linear network coding approach to multicast. IEEE Transactions on In-
formation Theory 52(10) (2006) 4413–4430

7. Yeung, R.W.: Information Theory and Network Coding. Information Technology:
Transmission, Processing and Storage. Springer (2008)

8. Boneh, D., Agrawal, S., Boyen, X., Freeman, D.: Preventing pollution attacks in
multi-source network coding. In: Proceedings of PKC. (2010)

9. Boneh, D., Freeman, D., Katz, J., Waters, B. In: Signing a Linear Subspace:
Signature Schemes for Network Coding. Volume 5443/2009. Springer (March 2009)
68–87

10. Krohn, M.N., Freedman, M.J., Mazieres, D.: On-the-fly verification of rateless
erasure codes for efficient content distribution. In: Proceedings of 2004 IEEE
Symposium on Security and Privacy. (2004)

11. Gkantsidis, C., Rodriguez, P.: Cooperative security for network coding file distribu-
tion. In: Proceedings of the 24th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM). (2006)

12. Yu, Z., Wei, Y., Ramkumar, B., Guan, Y.: An efficient signature-based scheme for
securing network coding against pollution attacks. In: Proceedings of the Confer-
ence of the IEEE Computer and Communications Societies (INFOCOM). (2008)

13. Wang, Y.: Insecure “provable secure network coding” (October 2009)
14. Yun, A., Cheon, J., Kim, Y.: On Homomorphic Signatures for Network Coding.

IEEE Transactions on Computers (2009)
15. Kang, H.J., Vasserman, E.Y., Lee, H.T., Cheon, J.H., Kim, Y.: Secure network

coding for a P2P system. ACM Conference on Computer and Communications
Security, Poster (2009)

16. Zhao, F., Kalker, T., Médard, M., Han, K.J.: Signatures for content distribution
with network coding. In: Proceedings of 2007 IEEE International Symposium on
Information Theory (ISIT ’07). (June 2007)

17. Lauter, K.E., Charles X, D., Jain, K.: Signatures for network coding. In: Proceed-
ings of the 40th Annual Conference on Information Sciences and Systems (CISS
’06). (March 2006)

18. Jaggi, S., Sanders, P., Chou, P.A., Effros, M., Egner, S., Jain, K., Tolhuizen, L.:
Polynomial time algorithms for multicast network code construction. IEEE Trans-
actions on Information Theory 51(6) (June 2005) 1973–1982

19. Ho, T., Leong, B., Kötter, R., Médard, M., Effros, M., Karger, D.R.: Byzantine
modification detection in multicast networks using randomized network coding. In:
Proceedings of the 2004 IEEE International Symposium on Information Theory
(ISIT). (June 2004)

20. Buttyán, L., Czap, L., Vajda, I.: Securing coding based distributed storage in
wireless sensor networks. In: Proceedings of the IEEE Workshop on Wireless and
Sensor Network Security (WSNS), Atlanta, USA (2008)

21. : The pairing-based cryptography library. http://crypto.stanford.edu/pbc/

