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Abstract. At Asiacrypt 2009, Kurosawa and Nojima showed a fully
simulatable adaptive oblivious transfer (OT) protocol under the DDH
assumption in the standard model. However, Green and Hohenberger
pointed out that the communication cost of each transfer phase is O(n),
where n is the number of the sender’s messages. In this paper, we show
that the cost can be reduced to O(1) by utilizing a verifiable shuffle
protocol.
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1 Introduction

1.1 Background

Adaptive oblivious transfer is a notion introduced by Naor and Pinkas in [12].
In the scheme, denoted by OTnk×1, a receiver can obtain k messages, one after
the other, from a sender who has n messages in such a way that: (1) the sender
learns nothing on the receiver’s selection, and (2) the receiver only learns about
the k messages. The key applications of this type of OT are in patent searches,
oblivious search, medical databases etc.

The formal security definition for OT schemes capturing the above intuitions
gets evolved in the literature. Historically, in half simulation security [14], only
the sender security is defined via the real world/ideal world paradigm, while
the receiver security is formalized by a weaker notion. Many OT schemes in
the literature satisfy half simulation security, among which are [3, 9, 11, 13, 18].
However, there is a practical attack against schemes with half simulation security,
as realized in [11] and formally emphasized in [1].

To overcome the threat, in 2007, Camenisch, Neven, and shelat introduced
a stronger notion called “full simulation security” [1], in which both sender and
receiver security are defined via the real world/ideal world paradigm. They then
constructed a fully simulatable adaptive OTnk×1 in the standard model, relying
on the q-strong Diffie-Hellman (q-sDH) and q-power decisional Diffie-Hellman
(q-PDDH) assumptions in bilinear groups. Camenisch, Neven, and shelat used
signatures as a key ingredient in their approach, which was originally taken
in [18] by Ogata and Kurosawa in the random oracle model.

Subsequently, in 2008, Green and Hohenberger, again using signatures, showed
a universally composable scheme (and hence fully simulatable), relying on the



Table 1. Fully simulatable adaptive OT without random oracles

Scheme Assumption Comm. Cost
(each transfer)

Camenisch et al [1] q-strong DH and q-PDDH O(1)

Green-Hohenberger [6] q-hidden LRSW (UC secure) O(1)

Jarecki-Liu [8] q-DHI (RSA group) O(1)

Kurosawa-Nojima [10] DDH O(n)

Green-Hohenberger [7] decision 3-party DH (3DDH) O(1)

This work DDH O(1)

q-hidden LRSW assumption. In 2009, Jarecki and Liu [8], using pseudorandom
function as a component, presented a fully simulatable adaptive OT under the
decisional q-Diffie-Hellman inversion (q-DHI) assumption.

We stress that all the above schemes rely on dynamic assumptions (namely,
the q-based assumptions in Table 1 where q may depend on n, the number of mes-
sages in OT). In 2009, Kurosawa and Nojima [10] built a simple fully simulatable
adaptive OT under the DDH assumption. However, Green and Hohenberger [7]
pointed out that it has O(n) communication cost in each transfer phase which
is much larger than the other schemes. Green and Hohenberger [7] also also pro-
posed a fully simulatable adaptive OT under the decision 3-party Diffie-Hellman
(3DDH) assumption, with O(1) communication cost in each transfer phase.

1.2 Our contribution

In this paper, we show a fully simulatable adaptive OT under the DDH as-
sumption such that each transfer requires only O(1) communication cost in the
standard model. (The initialization phase requires O(n) communication cost,
which is asymptotically minimal.) Note that the DDH assumption is a more
standard assumption than the 3DDH assumption on which the scheme of Green
and Hohenberger [7] relies. Furthermore our scheme does not use pairing, while
the scheme of Green and Hohenberger [7] does.

Our scheme is obtained by improving the scheme of Kurosawa and Nojima
[10] by using a verifiable shuffle protocol. To our knowledge, this is the first
time that shuffles are used in building OT protocols. In particular, we employ
the shuffle protocol of Neff [16, 17] in this paper. The technique helps greatly
reducing the communication cost of each transfer from O(n) in the Kurosawa-
Nojima scheme [10] to O(1) as in our proposal.

A comparison between schemes is given in Table 1, and a motivation behind
the usage of shuffles is postponed later in Sec.4.

Organization. We begin with some preliminaries in Sec.2, then introduce a
verifiable shuffle protocol for our OT construction in Sec.3. We describe our
proposal and prove its security in Sec.4.



2 Preliminaries

We will work on a cyclic group G of prime order q, generated by an element g.

The symbol “
$← ” indicates a randomized process.

2.1 Assumption

The DDH assumption claims that for all PPT adversary A, the value

AdvddhG (A) =

∣∣∣∣∣∣∣Pr

b′ = b :

x, r
$← Zq; b

$←{0, 1};
T0 ← gxr;T1

$←G;

b′
$←A(g, gx, gr, Tb)

− 1

2

∣∣∣∣∣∣∣
is negligible. The well-known ElGamal encryption, which has semantic security
under the DDH assumption, produces a ciphertext of a message M ∈ G as
(gr,M · (gx)r) for public key gx.

2.2 Zero-Knowledge Proof Systems

There exists an efficient 4-round zero-knowledge proof system for knowledge
(ZK-PoK) on the discrete log problem. It is obtained by applying the technique
of [4] to Schnorr’s identification scheme [19].

There also exists an efficient 4-round zero-knowledge proof system for mem-
bership (ZK-PoM) on DDH tuples (i.e., (g, gx, u, ux) ∈ G4). It comes from the
confirmation protocol of Chaum’s undeniable signature scheme [2].

2.3 Security of Adaptive k-out-of-n Oblivious Transfer

We use almost the same presentation as [10], and consider a weak model of
universally composable (UC) framework as follows.

– At the beginning of the game, an adversary A can corrupt either a sender S
or a receiver R, but not both of them.

– A can send a message, denoted by Aout, to an environment Z after the end
of the protocol. However, A cannot communicate with Z during the protocol
execution. (This property makes the definitions weaker than standard UC
security.)

The ideal functionality of OTnk×1 will be shown below. For a protocol Π = (S,R),
define the advantage of Z as

Adv(Z)
def
=
∣∣∣Pr(Z = 1 in the real world)− Pr(Z = 1 in the ideal world)

∣∣∣
where the real and ideal worlds are defined below.

In the ideal world of OTnk×1, there are a few parties: the ideal functionality
Fadapt, an ideal world adversaryA′, and the environment Z. Also we have dummy
sender S′ and receiver R′. The parties behave as follows.

Initialization phase



1. The environment Z sends (M1, . . . ,Mn) to the dummy sender S′.
2. S′ sends (M∗1 , . . . ,M

∗
n) to Fadapt, where (M∗1 , . . . ,M

∗
n) = (M1, . . . ,Mn) if S′

is not corrupted.

Transfer phase i = 1, . . . , k

1. Z sends σi to the dummy receiver R′, where 1 ≤ σi ≤ n.
2. R′ sends σ∗i to Fadapt, where σ∗i = σi if R′ is not corrupted.
3. Fadapt sends received to A′.
4. A′ sends b = 1 or 0 to Fadapt, where b = 1 if S′ is not corrupted.
5. Fadapt sends Ei to R′, where

Ei =

{
M∗σ∗

i
if b = 1

⊥ if b = 0

6. R′ sends Ei to Z.

After the end of the protocol, A′ sends a message A′out to Z. Finally Z outputs
1 or 0.

On the other hand, in the real world, the protocol Π = (S,R) is executed as
specified by its construction (thus without Fadapt). The environment Z and the
real world adversary A behave in the same way as above.

Definition 1. Protocol Π = (S,R) is secure against the sender (resp, receiver)
corruption if for any real world adversary A who corrupts the sender S (resp,
receiver R), there exists an ideal world adversary A′ who corrupts the dummy
sender S′ (resp, dummy receiver R′) such that for any poly-time environment Z,
the advantage Adv(Z) is negligible.

Definition 2. Protocol Π = (S,R) is a fully simulatable OTnk×1 if it is secure
against the sender corruption and the receiver corruption.

3 Shuffle Protocol

3.1 Honest-Verifier ZK-PoM

Neff [16, Sec.5] showed a seven-round ZK-PoM on L where

L = {(g, gc, X1, . . . , Xn, X
c
π(1), . . . , X

c
π(n) | c ∈ Zq, π is a permutation on {0, 1}n}

Note that we can extract π if we know c.
It is easy to see that (g, gc, X1, . . . , Xn, X

c
1 , . . . , X

c
n) is indistinguishable from

(g, gc, X1, . . . , Xn, R1, . . . , Rn) under the DDH assumption, where R1, . . . , Rn
are random elements of G. This implies that (g, gc, X1, . . . , Xn, Xc

π(1), . . . ,

Xc
π(n)) leaks no information on π computationally. Formalizing the intuition, Neff

proved that his proof system is honest-verifier computational zero-knowledge
under the DDH assumption. The communication cost for the proof system is
O(n).



3.2 Any Verifier ZK-PoM

The above protocol (P, V ) of Neff is public coin. That is, V sends random ele-
ments of Zq to P . We can transform it into an any verifier ZK-PoM by having
V commit the random elements at the beginning of the protocol. (By using the
same technique, Goldreich and Kahan [5] showed a constant round ZK-PoM for
any NP language under the discrete log assumption. However, as a trade-off
against the generality, their protocol is very inefficient.)

For example, suppose that V sends a random t ∈ Zq to P in the first round
of (P, V ). Then we transform it as follows.

1. P sends a random h ∈ G to V .
2. V chooses random t0, r ∈ Zq, and computes

commit(t0, r) = gt0hr. (1)

He then send it to P .
3. P sends a random t1 ∈ Zq to V .
4. V reveals t0 and r.
5. If eq.(1) is not satisfied, then P aborts. Otherwise P and V computes

t = t0 + t1 mod q

locally.

As a result, we obtain a constant round ZK-PoM on L with respect to any
verifier. It is computational zero-knowledge under the DDH assumption. The
communication cost is still O(n).

3.3 An Alternative Shuffle Protocol

The verifiable shuffle protocol described in Sec.3.1 is for honest verifier, and as
mentioned above, needs a conversion to the case of any verifier. We provide in
this section an alternative shuffle protocol which is zero-knowledge, under the
DDH assumption, with respect to any verifier for the language L without the
above conversion. As a consequence, we obtain a 7-round zero knowledge shuffle
protocol with respect to any verifier.

1. For i = 1, . . . , k, P chooses ai ∈ Zq randomly and sends Ai = gai to V .
2. For i = 1, . . . , k, V sends a random bi ∈ Zq to P .
P and V compute Bi = Aig

bi locally.
3. For i = 1, . . . , k, P computes

Ci = Bcπ(i)

X̄i = Xai+bi
i

Ȳi = Y
c(aπ(i)+bπ(i))

i ,



where Yi = Xπ(i). Also P computes

U =

(
k∏
i=1

X̄i

)c
and sends

U, (C1, . . . , Ck), (X̄1, . . . , X̄k), (Ȳ1, . . . , Ȳk)

to V .
P and V compute

S =

k∏
i=1

X̄i and T =

k∏
i=1

Ȳi

locally.
4. P and V run the simple k-shuffle protocol [16, Sec.4] for

(B1, . . . , Bk), (C1, . . . , Ck),

in which P is required to know logg(Bi) and logg(Ci) for all i, a condition
which is obviously fulfilled.
For i = 1, . . . k, P proves that (g,Xi, Bi, X̄i) and (g, Yi, Ci, Ȳi) are DDH
tuples [2].
P also proves that (g, gc, S, U) and (g, gc, U, T ) are DDH tuples.

4 Proposed Adaptive OT under DDH Assumption

In this section, we show an efficient fully simulatable adaptive OTnk×1 under the
DDH assumption. Each transfer phase needs only O(1) communication cost, and
the initialization phase requires O(n) communication cost.

The novelty of our protocol is that we use a shuffle protocol in the initial-
ization phase. Namely we use the ZK-PoM shown in Sec.3.2. A problem is that
since it is not a ZK-PoK, we cannot extract π from the prover. This problem is
solved by having the prover run the ZK-PoK in which P proves that she knows
c of gc. Then π can be extracted from c and (X1, . . . , Xn, X

c
π(1), . . . , X

c
π(n)).

4.1 Protocol

As a convention, if proofs or checks are not fulfilled, it is implicitly understood
that the protocol immediately stops.

Initialization Phase

1. The sender chooses (r1, . . . , rn, x) ∈ Zn+1
q randomly, and computes h = gx.

2. For i = 1, . . . , n, the sender computes

Ci = (Ai, Bi) = (gri ,Mi · hri),

where M1, . . . ,Mn ∈ G.



3. The sender sends (h,C1, . . . , Cn).
4. The sender proves by ZK-PoK that he knows the secret key x.
5. The receiver chooses c ∈ Zq and sends C = gc. Then he proves in ZK-PoK

that he knows c.
6. The receiver chooses si ∈ Zq randomly and computes Xi = gsiAi for every

1 ≤ i ≤ n. He sends all Xi and then proves in ZK-PoK that he knows si for
every i.

7. (Shuffling) The receiver chooses a random permutation π on {1, . . . , n}. Then
he sends

(Y1, . . . , Yn)
def
=(Xc

π(1), . . . , X
c
π(n)).

He proves that there exist such π and c by using the ZK-PoM of Sec.3.2.
The communication cost is O(n).

The j-th Transfer Phase

1. The receiver obtains an index 1 ≤ σ ≤ n.
2. The receiver sends U = Yπ−1(σ).
3. The sender checks U ∈ {Y1, . . . , Yn} and sends V = Ux.
4. The sender proves that (g, h, U, V ) in ZK-PoM that it is a DDH-tuple.
5. Note

V = Ux = Y xπ−1(σ) = Xcx
π(π−1(σ)) = (gsσAσ)cx

so that V 1/c = (gsσAσ)x, and hence V 1/ch−sσ = Axσ. The receiver now
obtains Mσ via Bσ/A

x
σ.

The ZK-PoKs in the initialization phase are exactly the well-known Schnorr
proof [19]. The ZK-PoM in transfer phases can be implemented using Chaum’s
technique [2].

Relation with Kurosawa-Nojima [10]. In the scheme of Kurosawa and No-
jima [10], there are no steps 5-7 of shuffles in the initialization phase. Further-
more, their steps 2 and 3 in each transfer phase are as follows. First, U = Au for
random value u ∈ Zq and some A ∈ G, both chosen by the receiver. The receiver
is then required to persuade the sender that A = Aσ for some σ ∈ {1, . . . , n}.
Obviously, the receiver cannot reveal Aσ (since otherwise, σ is revealed as well).
Kurosawa and Nojima solved in [10] by mixing σ with other indexes in {1, . . . , n}.
Namely, they forced the receiver to prove in WI-PoK that he knows some u ∈ Zq
satisfying

U = Au1 ∨ · · · ∨Aun.

The above WI-PoK, unfortunately, makes the communication cost of each trans-
fer become O(n).

In order to have O(1) communication cost for each transfer phase, a possible
method is to move the above WI-PoK to the initialization phase. Certainly, since
the index σ of each transfer phase may be not chosen in advance, we move the
WI-PoKs (each costs O(n)) corresponding to all possible n indexes, so that the



communication cost of the initialization phase becomes O(n2). Moving further,
we mix the indexes by shuffling, and fortunately, by making use of existing
results [16], the cost is better reduced to O(n), which is asymptotically minimal
for the initialization phase.

4.2 Security

We now have the following theorems ensuring the security of our adaptive OT
protocol.

Theorem 1 The above adaptive OT protocol is secure against sender corruption
under the DDH assumption.

Proof. For every real-world adversary A who corrupts the sender, we construct
an ideal-world adversary A′ such that the advantage Adv(Z) is negligible.

We will consider a sequence of games beginning from game G0, which is the
real world experiment, and proceed to the final game, which is the ideal world
experiment as in Sec.2.3. For each integer i, let

Pr(Gi) = Pr(Z = 1 in game Gi),

and denote Pr(Gi) ≈ Pr(Gj) when the two values are negligibly close.

Game G0: This is the real world experiment such that the sender is controlled
by the adversary A. By definition Pr(G0) = Pr(Z = 1 in the real world).

Game G1: This game is the same as the previous one except the following. In
the initialization phase, the receiver extracts x from A by using the knowledge
extractor of the ZK-PoK.

If it fails, then the protocol stops. Since the failure occurs with negligible
probability, we have Pr(G0) ≈ Pr(G1).

Game G2: This game is the same as game G1 except that, in the initialization
phase, the game uses the zero-knowledge simulators of the ZK-PoK at steps 5-7.
Since the protocol at step 7 is computational zero-knowledge under the DDH
assumption, and the others are perfect [4], we have Pr(G1) ≈ Pr(G2).

Game G3: This game is the same as the previous one except that in the initial-
ization phase, the receiver sends random (Y1, . . . , Yn) ∈ Gn to the sender.

We will prove Pr(G3) ≈ Pr(G2). Before that, let us state the following es-
tablished result.

Fact 2 (Naor, Reingold [15]) There exists a poly-time algorithm Q that, on
input (g, gc, X∗, Y ∗), outputs a random pair (X,Y ) ∈ G2 such that (g, gc, X, Y )
is a DDH tuple if and only if (g, gc, X∗, Y ∗) is.

Lemma 3 Pr(G3) ≈ Pr(G2) under the DDH assumption.



Proof (of Lemma 3). By using Z and the corrupted sender A, we construct
a DDH distinguisher D as follows. On input (g, C = gc, X∗, Y ∗), D first runs
Q(g, C = gc, X∗, Y ∗) to generate the pairs (X1, Y1), . . . , (Xn, Yn).
D next runs Z which sends (M1, . . . ,Mn) to A (the sender), and an index

σ to the receiver. A and the receiver run the initialization phase until step 4.
At step 5, D sends C = gc to A, and runs the simulator of the ZK-PoK on c.
At step 6, D sends the above (X1, . . . , Xn) to A, and runs the simulator of the
ZK-PoK on si(1 ≤ i ≤ n). At step 7, D sends the above (Y1, . . . , Yn) in random
order to A, and runs the zero-knowledge simulator of the shuffle protocol.
A and the receiver run the transfer phase as it is. Note that D can extract

the secret key from A, and hence extract M∗i for all i (at the beginning), and D
(playing the receiver) sends M∗i to Z if necessary.

Finally, A sends Aout to Z. The distinguisher D outputs what Z outputs.
One can see that if D’s input (g, C = gc, X∗, Y ∗) is a DDH tuple, then we

are in game G2; otherwise we are in game G3, finishing the proof.

Game G4: This game is the same as the previous one except the following. In
each transfer phases, the receiver chooses U randomly and distinctly from the
set {Y1, . . . , Yn}. Since the view of A is unchanged, we have Pr(G4) = Pr(G3).

Game G5: This game is the ideal world experiment in which an ideal-world
adversary A′ uses A as a black-box as follows.

1. A′ receives (M1, . . . ,Mn) from Z, and sends (M1, . . . ,Mn) to A.
2. A′ runs Game G4 with A, where A′ plays the role of the receiver. She can

do this because σ (which is the secret of the receiver) is not used in Game
G4.

3. In the initialization phase, A′ computes M∗i = Bi/(Ai)
x for all i by using x

(which is extracted in Game G1), and sends (M∗1 , . . . ,M
∗
n) to Fadapt.

4. In each transfer phase, if A behaved in an acceptable way, then A′ sends
b = 1 to Fadapt. Otherwise A′ sends b = 0 to Fadapt.

5. Suppose that A sends Aout to Z at the end of the game. Then A′ sends
A′out = Aout to Z.

We have Pr(G4) = Pr(G5), and by definition Pr(Z = 1 in the ideal world)
= Pr(G5). Summing up all above, we have Adv(Z) = |Pr(G0) − Pr(G5)| is
negligible as required. ut

Theorem 4 The above adaptive OT protocol is secure against receiver corrup-
tion under the DDH assumption.

Proof. For every real-world adversary A who corrupts the receiver, we construct
an ideal-world adversary A′ such that the advantage of the environment Adv(Z)
is negligible.

We again consider a sequence of games G0, . . ., G6, where G0 is the real
world experiment of Sec.2.3, while G6 is the ideal world experiment. Again, let
Pr(Gi) = Pr(Z = 1 in game Gi).



Game G0: In this game the receiver is controlled by the adversary A, and by
definition Pr(G0) = Pr(Z = 1 in the real world).

Game G1: This game is the same as game G0 except the following. In the
initialization phase, the sender extracts c and si by using the extractors of the
ZK-PoK.

If it fails, then the protocol fails. Since this failure occurs with negligible
probability, we have Pr(G1) ≈ Pr(G0).

Game G2: This game is the same as the previous one except the following. First
the sender extracts π by comparing (Xc

1 , . . . , X
c
n) and (Y1, . . . , Yn). Next in each

transfer phase, the sender extracts the index σ that A really used as follows.
A sends U such that U ∈ {Y1, . . . , Yn}. The sender searches the index ρ

satisfying U = Yρ. Recall U = Yπ−1(σ), so π−1(σ) = ρ, and hence σ = π(ρ).
Thus the sender can extract σ that A really used.

Since the change is syntactic, we have Pr(G2) = Pr(G1).

Game G3: This game is the same as the previous one except the following. In
each transfer phase, the sender computes V as (BσM

−1
σ hsσ )c. Since the change

is syntactic, we have Pr(G3) = Pr(G2).

Game G4: This game is the same as the previous one except the following. In
each transfer phase, instead of running the ZK-PoM which proves that (g, h, U, V )
is a DDH-tuple, the zero-knowledge simulator of the ZK-PoM is run so that
Pr(G4) ≈ Pr(G3).

Game G5: This game is the same as the previous one except the following. In
the initialization phase, each Bi is a random element of G. It is easy to see that
Pr(G5) ≈ Pr(G4) under the DDH assumption.

Game G6: This game is the ideal world experiment in which an ideal-world
adversary A′ uses A as a black-box as follows.

1. A′ runs Game G5 with A, where A′ plays the role of the sender.
2. In each transfer phase, A′ sends σ which is extracted as in Game G2 to
Fadapt, and obtains Mσ. A′ then computes V as in Game G3.

3. Suppose that A sends Aout to Z at the end of the game. Then A′ sends
A′out = Aout to Z.

We have by definition Pr(G6) = Pr(Z = 1 in the ideal world). Summing up
all above, we have Adv(Z) = |Pr(G0)− Pr(G6)| is negligible as required. ut
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