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Abstract. In this paper we study the security of the SHA-3 candidate SIMD. We first
show a new free-start distinguisher based on symmetry relations. It allows to distinguish the
compression function of SIMD from a random function with a single evaluation. However,
we also show that this property is very hard to exploit to mount any attack on the hash
function because of the mode of operation of the compression function. Essentially, if one
can build a pair of symmetric states, the symmetry property can only be triggered once.

In the second part, we show that a class of free-start distinguishers is not a threat to the
wide-pipe hash functions. In particular, this means that our distinguisher has a minimal
impact on the security of the hash function, and we still have a security proof for the SIMD
hash function. Intuitively, the reason why this distinguisher does not weaken the function
is that getting into a symmetric state is about as hard as finding a preimage.

Finally, in the third part we study differential path in SIMD, and give an upper bound on
the probability of related key differential paths. Our bound is in the order of 2™/2 using
very weak assumptions. Resistance to related key attacks is often overlooked, but it is very
important for hash function designs.

Key words: SIMD, SHA-3, hash function, distinguisher, security proof with distinguish-
ers.

1 Introduction

SIMD is a SHA-3 candidate designed by Leurent, Fouque and Bouillaguet [I]. Its main feature is
a strong message expansion whose aim is to thwart differential attacks. This paper provides three
important contributions to the security analysis of SIMD. In Section 2] we study its resistance
against self-similarity attacks [4]. This class of attack is inspired by the complementation property
of DES and includes symmetry based attacks. In the case of SIMD, we show that it is possible to
exploit the symmetry of the design using special messages. This shows that the constants included
in the message expansion of SIMD are not sufficient to prevent symmetry relations, and non-
symmetric constants should be added in the last steps of the message expansion. The study of this
symmetry property shows that it is much weaker that symmetry properties in CubeHash [II8] or
Lesamnta [4]. More precisely, most symmetry properties can be used to generate many symmetric
states out of a single state, but this is not the case for SIMD.

In Section 3] we show a proof of security for the mode of operation used in SIMD, the truncated
prefix-free Merkle-Damgard, in the presence of some efficient distinguishers on the compression
function. The class of distinguisher we consider includes the symmetry based distinguisher, and
also includes differential paths with a non-zero chaining value difference. This shows that the
properties of the compression function of SIMD found so far do not affect the security of the
iterated hash function. This part is also of independent interest and applies to other wide-pipe
hash functions.

In Section[d] we study differential attacks, and bound the probability of paths with a non-zero
message difference, i.e., related key attacks on the block cipher. We show an upper bound on
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Fig. 1. SIMD modified Davies-Meyer mode

such paths on the order of 27/2, and we argue that the best paths are probably much worse
than this bound. We note that there are very few results known regarding resistance to related
key attack for block ciphers. In particular, the differential properties of the AES have been
extensively studied [I6] but related key differential attacks have been shown recently [3]. In many
hash function designs (in particular those based on the Davies-Meyer construction), related key
attack are a real concern and should be studied accordingly.

By combining the results of Section [3] and [d] we show that SIMD is resistant to differential
cryptanalysis: a path with a non-zero difference in the chaining value input cannot be used to
attack the hash function because it is wide-pipe, while a path a non-zero difference in the message
can only have a low success probability.

Finally, in Section [5] we express our views on the security of SIMD.

1.1 Brief Description of SIMD

SIMD is built using a modified Davies-Meyer mode with a strong message expansion, as shown
in Figure [1} The compression part is built from 4 parallel Feistel ladders (8 for SIMD-512) with
32-bit registers, and is shown in Figure [2l We can describe the step update function as:
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where j denotes the Feistel number, and ¢ denotes the rounds number. A, B, C', and D are the
four registers of the Feistel ladders, while ¢(*) is the Boolean function used at round i (which can
be either IF or MAJ) and W is the expanded message. The parallel Feistels interact through the
permutations p(*), which are built as p(?)(j) = j @, for some ;. There are no explicit constants
in the round function, but there are implicit constants in the message expansion.

The Message Expansion. The message expansion of SIMD is defined with the following op-
erations:



SIMD-256:
4 parallel
Feistels.

SIMD-512:
8 parallel
Feistels.

Fig. 2. SIMD compression rounds.

1. Use a NTT transform (which is the same as a FFT over a finite field) to double the size
of the message(the message bytes are interpreted as elements of Fos7). The NTT is actually
used as a Reed-Solomon code.

2. Make two copies of the NTT output.

3. The first copy is multiplied by 185, while the second copy is multiplied by 233. This step also
doubles the size of the message, as the output are 16-bit words.

4. Permute the 16-bit words and pack them into 32-bit words. Table |1| shows how the packing
is done for SIMD-256.

Constants are added in the NTT layer, and make it an affine code instead of a linear one.
They avoid special expanded messages such as the all-zero message. For more details, see the
specification of SIMD [I1].

1.2 Previous Cryptanalysis Results
As far as we know, the following results have been found on SIMD:

— In [9], Gauravaram and Bagheri showed that the modified Davies-Meyer construction used
in SIMD allows to find partial fixed-points (this is a weaker version of Davies-Meyer’s fixed-
points). There is no easy way to find full fixed-points as in the original Davies-Meyer construc-
tion, but those partial fixed-points give an easy distinguisher of the compression function.
Just like the fixed-points of Davies-Meyer, this property does not affect the security of the
hash function, and the mode can be proven secure under the assumption that the block
cipher is ideal [7].

— In [14], Mendel and Nad showed a differential path with probability 2757 for the compression
funct ion of the round-1 version of SIMD-512. They used it to make a distinguishing attack
on the compression function with complexity 2427, using IV /message modifications. In this
path, no difference is introduced in the message, but a specific difference A;,, in the chaining
value can go to a difference A,,;. Because of the need to control the chaining value difference,
this path can not be used to attack the iterated hash function. In Section |3, we show that
even if there of a path with probability one, we only loose a factor 2 in the indifferentiability
proof.

However, this path was using some unwanted properties of the permutations used in the com-
pression function, and it was decided to remove those properties by tweaking the design [12]
for the second round of the SHA-3 competition.



Table 1. Full Permutations for SIMD-256. The y;’s are the output of the NTT, and Io(x,y) is

((C ®x) mod 216) + 216((C K y) mod 21°)

Ll w7 wl T owi T W

0 | Iiss(ys2,yss) | liss(ysa,yss) | Iiss(yse,ys7) | Iiss(yss, yso)
1| ©iss(yas,ya0) | T1s5(ys0,ys1) | Tiss5(ys2,ys3) | Liss(Ys4,yss)
2 1185(2107241) I1ss(y2,y3) 1185(y47y5) 1185(y6,y7)
3| Liss(yis,y17) | liss(yis,vy19) | Tiss(y20,y21) | Tiss(y22, ye23)
4 | Iiss(yse, ys7) | Iiss(yss,yso) | Iiss(Yeo,ye1) | Tiss(ye2, ye3)
5 | ©ss(ya0,ya1) | Tiss5(yaz,va3) | Tis5(yaa, yas) 1185(y467 Yar)
6 | Iiss(y24,y25) | Iiss5(y2e,y27) | Iiss(y2s,y20) | Iiss(ys0,ys1)
7 Tis5(ys, yo) Liss(yi0,y11) | Tiss(yiz,v13) | 1Tiss5(yia,y1s5)
8 | Ins5(y120, y121) | L1s5(y122,y123) | T185 (Y124, y125) | T185(y126, Y127)
9 | Iiss(yss,yso) | Iiss(yoo,yo1) | Iiss(yoz,yes) | ITiss5(yes,yos)
10| Iiss(yos,yor) | Iiss(yos,vee) | I18s(y100,¥y101) | I185(Y102, Y103)
11| Tiss(yea, yes) | I1ss5(vee,yer) | Iiss(yes,yso) | Iiss(yro,yr1)
12| ILiss(yre,ym3) | liss(yra,yzs) | Tiss(y7e,y77) | Iiss(y7s, y7o)
13 | Ings(y104, Y105) | 1185(Y106, Y107) | 1185 (Y108, Y109) | T185(Y110, Y111)
14| Tiss(yso,ys1) | Iiss5(ys2,vs3) | Iiss(ysa,yss) | Iiss(yss, ys7)
15| I1ss(y112,y113) | L185(y114, Y115) | T1ss (Y116, y117) | T185(Y11s, Y119)
16 | I2s3(ys,y72) | I233(yi0,y74) | I233(y12,y7e) | I233(y14,yrs)
17| I233(yi6,ys0) | I233(y1s,ys2) | I233(y20,ysa) | I233(y22, yse)
18 | I233(ys6,Y120) | I233(yss, y122) | 1233(Yeo, y124) | T233(ye2, Y126)
19| I2s3(ys2,yoe) | I233(y34,yos) | I233(yse, y100) | IT233(yss, Yi02)
20| I233(yas, y112) | L233(ys0,y114) | L233(ys2,y116) | I233(ys54,Y118)
21| I233(y10,y104) | I233(ya2, y106) | I233(yaa, Y108) | I233(ya6,y110)
22| I233(Yo, Yea) I233(y2, Ye6) I233(y4, Yes) I233(ys, Y70)
23| I233(y24,vss) | I233(y26,y90) | I233(y2s,ye2) | I233(y30,yoa)
24 | I33(yao,y113) | T233(ys1,y115) | I233(ys3, y117) | IT233(yss, Y119)
25| I233(y1,Yes) I>33(ys, ye7) I233(ys, Ye9) I233(y7, y71)
26| I233(yo,yr3) | I233(yi1,yrs) | I233(yis,y77) | I233(y1s,yro)
27 | Iss(ys7,y121) | T233(ys9,y123) | I233(ye1,y125) | I233(yes, yi27)
28| I233(y25,vs9) | I233(y27,y91) | I233(y20,y93) | I233(ys1,yos5)
29| I233(ya1,y105) | 1233(ya3, y1o7) | I233(yas, Y109) | I233(yar, y111)
30| I233(yss,yor) | I233(y3s,y09) | I233(ys7,y101) | I233(y39, Y103)
31| I233(y17,ys1) | I233(y19,ys3) | I233(y21,yss) | I233(y23,ys7)

— In [I5], Nikoli¢ et al. applied rotational cryptanalysis to the compression function of SIMD-512.
They showed that 24 rounds can be distinguished from a random function with complexity
2497 if the constants are removed from the design. In the real design, they can only distin-
guish 12 rounds (out of 36) because of the non-linear message expansion. This is clearly not
a threat for SIMD-512.

2 A Distinguisher for the Compression Function of SIMD

Our distinguisher is based on symmetries in the design, and follows the ideas of [4]. Symmetry
based properties have already been found in several hash function designs, such as CubeHash [II§]
or Lesamnta [4]. We describe the distinguisher in the case of SIMD-256, but it applies similarly
to SIMD-512.



2.1 Building the Symmetric Messages

The basic idea is to build a message so that the expanded message is symmetric. Then, if the
internal state is also made symmetric, the compression rounds will preserve the symmetry. This
can also be used with a pair of symmetric messages, and a pair of symmetric states.

The NTT layer of the message expansion is an affine transformation, therefore it is easy to
find inputs that satisfy some affine conditions on the output. Since it only doubles the size of the
input, we have enough degrees of freedom to force equalities between pairs of output. The next
expansion step is a multiplication by a constant, and it will preserve equality relations.

Then if we look at the permutations used in the message expansion, they have the following
propert the NTT words used to build the message words WO(Z), Wl(l), WQ(”, ngz) are always

of the form (Yk,, Yk, ), (Yk1+2, Yka+2), (Yky+4, Yko+4), (Yky+6, Yko+6) for some ky and ko (with k; =
0 mod 8 or k; = 1 mod 8). The full permutations are given in Table [I} Because of this property,

if we have y; = yig2 after the NTT, then we have WOZ) = Wl(z) and WQ(Z) = Wél). This allows to
build a symmetric message. An example of such a symmetric message is given in Appendix [A]

More precisely, let us use the notation ‘e to denote this symmetry relation, and .. and 3
to denote the other two possible symmetries:

—
(Xo, X1, X2, X3) = (X1, Xo, X3, X>)
(Xo, X1, X9, X3) = (X2, X3, X0, X1)

>
(Xo, X1, Xa, X3) = (X3, X2, X1, Xo)
We now consider two messages M and M’. We use y to denote the NTT output for M, and v to

denote the NTT output for M’. The equality constraints on the NTT output that are necessary
to build a pair of symmetric expanded messages are (we use £ to denote the message expansion):

/ !
Yi = Yigo = E(M) = E(M')
Yi = Yiga = E(M) = E(M')
Yi = Yige = E(M) = E(M)

In Appendix [B] we solve the linear systems involved, and we describe the sets of symmetric
messages. For SIMD-256 we have the following results:

Symmetry class # msg  # pairs
Yi = Yheo Wi=W/g 28 256-255
Yi = Yiga Wi=W/g, 2'©  (256-255)
Yi = Yios Wi=W/gs 28 256-255

IRE)

there are about 2'6 symmetric messages, and less than 23? symmetric pairs.
For SIMD-512 the results are:

!This design choice was guided by implementation efficiency



Symmetry class # msg  # pairs

Yi =Ylgo Wi=W/y 28 256-255
Yi =Yioq Wi=Wlgy 21 (256-255)
Yi = Yige Wi=W/ps 28 256 - 255
Yi =Yies Wi=W/g, 2% (256-255)*
Yi = Yigio Wi = Wiy 285 256-255
Yi =Ygz Wi = Wigg 210 (256 - 255)
Yi =Yg Wi=W/lgr 25 256-255

there are about 232 symmetric messages, and less than 264 symmetric pairs. An important prop-
erty of these message classes is that they are all disjoints: it is not possible to use the intersection
of two symmetry classes.

2.2 Symmetry Property on the Compression Function

Let us consider a pair of symmetric messages for one of the symmetry relations (without loss

>
of generality, we assume it’s the ‘o symmetry): £(M’) = £(M). We can take advantage of the
symmetry of the Feistel part using those messages. If we have a pair of states S®,S'() with

. =
S’ = S8 and we compute one Feistel step with messages W and W’ such that W’ = W, we

—
obtain a new pair of states with S’t1) = S(+1) The xor-based symmetry classes commute with
the xor-based permutations p(*) used to mix the Feistels (and they are the only symmetry classes
to do so).

Because the compression function is built using a modified Davies-Meyer mode (Figure , we
need to start with H;_; such that H;_; ® M is symmetric: H]_; ®M’' = H;_1 & M. Then, in the
feed-forward, H;_1 is used as the key to a few Feistel rounds, and since H;_; is not symmetric,
those rounds will break the symmetry. However, it turns out the symmetric messages are very
sparse, so H; will be almost symmetric, and the feed-forward will mostly preserve the symmetry
of the outputs.

This gives a distinguisher on the compression function: an almost symmetric chaining value is
transformed into a somewhat symmetric chaining value. See Appendix [A]for a concrete example.

The distinguisher can be used either with a pair of messages and chaining values with £(M’) =

> >
E(M) and H]_ & M' = H;_1 & M, or with a single chaining value and message, with £(M) =
> —
EM)and H_1®&M =H,_1 & M.

2.3 Non-Ideality of the Compression Function

Here we define the bias of the compression function with the notations that will be used in
Section [Bl

For each symmetric message M under a symmetry relation (denoted by ‘e without loss of
generality), we have a first order relation between the inputs and output of the compression
function:

>

RM (h,m, h') == (m: MAh®m= h@m) = P~Y(W,h) = P/, h)

We use the feed-forward permutation P to define the relation, because it is tricky to describe
exactly the somewhat symmetry of b’ after the feed-forward. We have about 2'6 such relations for



SIMD-256 and about 232 relations for SIMD-512. We can capture all of them in a single relation:

Ra(h,m, 1) := \ R (h,m, 1).
M

Similarly, for each symmetric message pair M, M’, this gives a second order relation (there are
about 232 such relations for SIMD-256 and 25* for SIMD-512):

RéwyM/UIhml; h27 ma, h/17 h/2) =

- —
(m1 ZM/\’ITLQZM//\}M@TTM Zhg@mg) =>P71( /17h1):P71( /2,h2)

Ra(h1,ma, ha,ma, i, hh) ==\ Ry"M (hy,mm, o, ma, 1y, hy)

M, M’
The corresponding weak states are:
WM =M@z |z=T7)} W1:=Uwa
M
WMM {(h,? oM @ ﬁ)} W= ] wptM

M, M’

The study of the symmetry classes of SIMD, in Appendix [B] shows that:

Wy | = 2%56 . 2562 + 2 - 256 ~ 2256 . 216 for SIMD-256
Wi | = 2°12 . 256% +2- 2562 + 4 - 256 ~ 2512 . 232 for SIMD-512
[Wa| = 2512 . ((256 - 255)2 + 2 - 256 - 255) < 2°12. 232 for SIMD-256

Wa| = 21924 . ((256 - 255)* + 2 - (256 - 255)% + 4 - 256 - 255) < 21024 . 264 for SIMD-512

Each chaining value can be used with less than 232 related chaining values (less than 2% for

SIMD-512) and each such pair can be used with a single message.

2.4 Impact of the Symmetry-based Distinguisher

There are two main classes of attacks based on symmetric properties of the compression function.
To attack the compression function, one can use the symmetry property to force the output of
the compression function in a small subspace. This allows to find collision in the compression
function more efficiently than brute force, and the efficiency of this attack depends on the size of
the symmetry classes. On the other hand, to attack the hash function, one first tries to reach a
symmetric state using random messages, and then uses symmetric messages to build a big set of
symmetric states. To expand the set, the attacker will build a tree, starting with the symmetric
state that was reached randomly. The degree and the depth of the tree can be limited depending
of the symmetry property. In the case of SIMD, none of these attacks are effective for the following
reasons:

— First, the modified Davies-Meyer mode of operation means that the compression function
does not transform a symmetric state into a symmetric state, but it transforms an almost
symmetric state into a somewhat symmetric state. We show in Appendix [B]that a “somewhat
symmetric” output pair can only be used as an “almost symmetric” input pair with a very
small probability. This prevents attacks based on building long chains of symmetric messages,
like the attacks on CubeHash [TIg].



Table 2. Comparison of symmetry properties in several hash functions.

Function Reach symm. state Max. length Max. degree Free-start Collisions

Lesamnta-512 2256 1 2256 2128 (semi-free-start)

CubeHash (symm C;..C7) 2384 eS) 2128 232 (semi-free-start)

CubeHash (symm Cjs..C15) 2256 () 1 204 (semi-free-start)
SIMD-512 2490 1 1 2756

— Second, if a pair of almost symmetric states is reached, there is only a single message pair
that can be used to reach a symmetric state in the Feistel rounds. This prevents attacks like
the herding attack on Lesamnta [4], where one reaches a symmetric state and then uses a lot
of different messages in order to explore the subset of symmetric outputs.

— Third, the final transformation of SIMD uses the message length as input. The symmetry
property can only be used if the message length is unrealistically large messages (almost 2512
bits for SIMD-256 and almost 2'°2* bits for SIMD-512). Note that computing the hash of
such a message is vastly more expensive than finding a preimage.

— Moreover the symmetry classes do not intersect. It is not possible to build a smaller symmetry
classes in order to show collisions in the compression function, as was done for CubeHash [TI)g].
Finding collisions in the compression function using the symmetry property costs 27/2. It is
more efficient than generic attacks on the compression function, but can not be used to find
collisions in the hash function faster than the birthday attack. We also note that the initial
state of the SIMD hash function is not symmetric.

To summarise, reaching a symmetric state in SIMD is far less interesting than reaching a
symmetric state in CubeHash or in Lesamnta. Table [2| gives a comparison of the symmetry
properties found in these functions.

Another very important factor is that SIMD is a wide-pipe design. Therefore reaching a
symmetric state is about as hard a finding a preimage for the hash function. In the next section,
we provide a formal proof that this distinguisher has only a small effect on the security of SIMD.
We can prove that the hash function behaves as a random oracle under the assumption that the
compression function is a weak perfect function having this symmetry property.

3 Free-start Distinguishers, Non-Ideal Compression Functions and
Wide-Pipe Designs

In this section, we discuss the security of the prefix-free iteration of non-ideal compression func-
tions. While our primary objective is to show that the distinguisher for the compression function
of SIMD presented in Section [2| does not void the security proof of SIMD, the reasoning and the
proof presented here are pretty general and could very well be adapted to other functions.

Let H = {0,1}” denote the set of chaining values, M = {0,1}"" denote the set of message
blocks, and F be the set of all functions H x M — H. Let F' € F be a compression function
taking as input an p-bit chaining value and an m-bit message block. A mode of operation for a
hash function H* combined with a compression function F yields a full hash function H*".

Following [I3I7], we rely on the notion of indifferentiability of systems to reduce the security
of SIMD to that of its compression function. The usual way of establishing the soundness of a
mode of operation H' is to show that it is indifferentiable from a random oracle. This is done by
constructing a simulator S such that any distinguisher D cannot tell apart (H¥', F') and (RO, S)
without a considerable effort, where RO is a variable-input-length random oracle (VIL-RO, for



short). When this is established, it is shown in [13] that any cryptosystem making use of a VIL-
RO is not less secure when the random oracle is replaced by the hash function H', where F
is an ideal compression function (i.e., a fixed-input-length random oracle, FIL-RO for short).
Informally, if F' is ideal (i.e., has no special property that a random function would not have),
then H¥ is secure up to the level offered by the indifferentiability proof. More precisely, if H-
is (tp,ts, qs, o, €)-indifferentiable from a VIL-RO when the compression function is assumed to
be a FIL-RO, then this means that there exists a simulator running in time tg, such that any
distinguisher running in time ¢p and issuing at most gg (resp. qo) queries to the FIL-RO (resp.
VIL-RO) has success probability at most e.

A property of this methodology is that as soon as the compression function used in a hash
function turns out to be non-ideal, then the security argument offered by the indifferentiability
proof becomes vacuous. For instance, distinguishers exhibiting a “non-random” behavior of the
compression function are usually advertised by their authors to nullify the security proof of the
full hash function.

This problematic situation was first tackled by the designers of Shabal, who provided a
security proof taking into account the existence of an efficient distinguisher on the internal
permutation of their proposal [5]. We will follow their track and demonstrate that the security of
SIMD can be proved despite the existence of an efficient distinguisher on its compression function.

The mode of operation of SIMD can be “concisely” described as being the wide-pipe preﬁx—freeﬂ
iteration of the compression function. Let H¥ therefore denote the prefiz-free Merkle-Damgéard
iteration of F. Formally, g : {0,1}" — M* is a prefiz-free encoding if for all x,z’, g(x) is not a
prefix of g(z'). The mode of operation H  simply applies the Merkle-Damgéard iteration of F' to
the prefix-free encoding of the message.

The original security argument was that if the internal state and the hash are both p-bit
wide, then prefix-free Merkle-Damgard is indifferentiable from a random oracle up to about 2°/2
queries [7]. More precisely, we have:

Theorem 1. Prefiz-Free Merkle-Damgadrd is (tp,ts,qs,qo,€)-indifferentiable from a VIL-RO
when the compression function is modeled by a FIL-RO, for any running time tp of the dis-

tinguisher, and ts = O ((QO + K- qs)Q) where K is an upper-bound on the size of the queries

sent to the VIL-RO. If ¢ = qs + Kk - gqo + 1, then the success probability of the distinguisher is
upper-bounded by:
_g. L
e=28 o
In SIMD where the internal state is 2n bits, this ensures the indifferentiability of the whole
function up to roughly 2™ queries (if H is indifferentiable up to ¢ queries, then the composition
of a truncation that truncates half of the output and of H is also secure up to ¢ queries).
To restore the security argument damaged by the distinguisher, we will show that the prefix-
free iteration of a non-ideal compression function is to some extent still indifferentiable from a
VIL-RO.

3.1 Deterministic Distinguishers for the Compression Function
Let us consider a non-ideal compression function F'.

— For instance, it may have weak states, that are such that querying F' thereon with a well-
chosen message block produces a “special” output allowing to distinguish F' from random in

2this is not explicitly stated in the submission document, but SIMD has a different finalization function
that effectively acts as a prefix-free encoding.



one query. Known examples include for instance the symmetry on the compression function
of Lesamnta [4], CubeHash [Ii8], and SIMD (described in Section [2)).

— But F can also have bad second-order properties, meaning that the output of F' on corre-
lated input states (with well-chosen message blocks) produces correlated outputs, allowing
to distinguish F' from random in two queries. A notable example of this property include
the existence of differential paths with probability one in the compression function of Sha-
bal [2]. Symmetry properties also give second order relations, which means that Lesamnta,
CubeHash and SIMD have bad second-order properties as well.

Following the methodology introduced in [5], we model this situation by saying that there
are two relations R1 and Ry such that:

V(h,m)e Hx M. Ry(h,m,F(h,m))=1
V(h1,ha,m1,ma) € H* x M? . Ro(h1,mi, ha,ma, F(h1,m1), F(ha,ms)) =1

We denote by R the relation formed by the union of R; and R, and we will denote by F[R]
the subset of F such that the above two equations hold. We require the relations to be efficiently
checkable, i.e., that given h,m and A/, it is efficient to check whether Rq(h,m,h') = 1. The
relation can thus be used as an efficient distinguishing algorithm that tells F[R] apart from F.

A weak state is a state on which it is possible to falsify the relation Ri. We formally define
the set of weak states for Ry in the following way:

W={heH|3Im,h' € M xH such that Ry(h,m,h") =0}

W should be a relatively small subset of H because the loss of security will be related to the size
of W. Moreover, we require than the IV is not H.

In the same vein, a weak pair is a pair of states on which it is possible to falsify the relation
R2. We therefore define the set of weak pairs for Ro by an undirected graph Gr, = (H, WP),
where WP is defined by:

WP = {hy < ho | Imi,ma, b}, hy € M? x H? such that Ra(h1,mi, ko, ma, by, hb) = 0}

Similarly, WP should be a relatively small subset of H? because the security loss will be related
to the size of WP. For the sake of expressing things conveniently, we define a variant of the same
graph, G, = (H x M,WP’), where WP" is defined by:

WP, = {(hl,ml) ad (hg,mQ) | E'hll,hlg S H2 such that Rg(hl,ml,h2,m2,h’1,h’2) = 0}

To simplify the proof we also require that the connected component of G  have size at most
two. This rules out some second-order relations, but it includes for instance the existence of a
differential path with probability one with a non-zero difference in the input chaining value, as
well as the symmetry in the compression function of SIMD or Lesamnta. We expect a similar
result with larger connected components, but there will be a loss of security related to their size.

We also require the existence of the sampling algorithms for R, namely of two efficient algo-
rithms Sampler; and Sampler, such that:

Sampler, (h,m) : b’ & {f(h,m) | f € F[R]};return b’
Sampler, (b1, m1, ha,ma, 1) : by < {f(ha,ms) | f € FIR] and F(hy,my) = b} ;veturn b

Informally, the sampling algorithms should produce an output that looks as if it were produced
by a random function constrained to conform to R.
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3.2 Adapting the Indifferentiability Proof to Non-Ideal Compression Functions

We now assume that the compression function is a public function chosen uniformly at random in
F[R], and for the sake of convenience we will call it a “biased FIL-RO”. We show that the prefix-
free iteration of biased FIL-RO is indifferentiable from a VIL-RO. In fact, we extend Theorem
to the case where the compression function is biased.

Theorem 2. Prefiz-Free Merkle-Damgard is (tp,ts, qs, qo, €)-indifferentiable from a VIL-RO,
when the compression function is modeled by a biased FIL-RO conforming to the relation R, for

any running time tp of the distinguisher, and ts = O ((qo + K- qs)2) where Kk s an upper-bound
on the size of the queries sent to the VIL-RO. If ¢ = qs + k- q, + 1, then the probability of success
of the distinguisher is upper-bounded by:

2 2
e=16-L 44w Liawp| —L—
(2P —q)

2v op
The first term of the expression of € is similar to the result given in Theorem [I} when the
compression function is ideal (up to a factor two that could be avoided by making the argument
slightly more involved). The two other terms reflect the fact that the compression function is
biased. The relation induces a security loss if || is at least of order 27/2, or if WP is at least of
order 2P. Informally, it seems possible to iterate compression functions having a relatively high
bias in a secure way.

Application to Free-start Differential Attacks. Let us assume that the compression func-
tion is weak because of the existence of a good differential path with a non-zero difference in the
input chaining value. Even if the probability of the differential path is 1, this has a very limited
effect on the security of the hash function: this leads to W = @) and [WP| = 2P~. The advantage
of the distinguisher is at most twice as high, compared to the iteration of an ideal FIL-RO.

Application to SIMD. In SIMD-256 (resp. SIMD-512), the internal state has p = 512 bits
(resp. p = 1024 bits), and the distinguisher of Section yields |W| = 2p/2416 [Wp| = 2p+32
(resp. |W| = 2P/2432 |WP| = 2P164) Therefore the advantage of any distinguisher in telling
apart SIMD-256 from a VIL-RO with ¢ queries is upper-bounded by:

2 2416 2
q .u+4.2p+32.q72
2r 2r (2P —q)

SIMD-256 is then secure up to roughly 22°6=16 queries (SIMD-512 is secure up to 2512732
queries).

Application to Lesamnta. Lesamnta follows the prefix-free Merkle-Damgéard mode of opera-
tion due to its special finalization function. An efficient distinguisher based on symmetries was
shown in [4], with [W| = 2/2 and |[WP| = 2P~. According to Theorem [2| the advantage of any
distinguisher in telling apart Lesamnta-256 from a random oracle with ¢ queries is upper-bounded
by:
2 p/2 . 2

q 207 q —1 q q
e=16-—+4- 4.7 —— ™22 ——

ot o (20 — ¢)? 2p/2
Note that since Lesamnta is a narrow-pipe design, we have p = n. Our result show that Lesamnta
remains secure against generic attacks up to the birthday bound. This is the best achievable proof
for Lesamnta, since it does not behave as a good narrow-pipe hash function beyond that bound: a

dedicated herding attack based on the symmetry property is shown in [4], with complexity /2,
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3.3 Proof Sketch of Theorem 2|

1: function SIMULATOR(h,m)

2 if there exist a vertex b’ € V and an edge h — k' in E then
3: return this »’

4: else

5: return FRESHVALUE(h, m)

6 end if

7: end function

8: function FRESHVALUE(h, m) B
9: if there exist (u,v) < (h,m) € G%, then (h,m) — (u,v)

10:  if IV 25 & € Reach then Swap (h,m) and (h,m > (only if 7 is defined)
11:  if IV 25 h € Reach then

12: if there exist M’ such that M|m = g(M') then

13: h — RO(M")

14: else

15: nE N

16: end if

17: I « Sampler, (h,m,h,m,h’) > (only if h is defined)
18: if " € Wor h' €V or Reach U {h'} covers an edge of Gr, then Abort

19: Reach < Reach U {h z, h’}

20: else

21: h' «+ Sampler, (h,m)

22: h' — Sampler, (h,m, h,m,h") > (only if h is defined)
23: end if

24: V —Vu{hh' hn} > (only add h and A’ if defined)
25: EHEU{hlh’,Eﬂﬁ} > idem.

26: return A’ (or i/ if they were swapped in line
27: end function

Fig. 3. Pseudo-code of the Simulator Sy, with abort conditions

We give a sketch of the proof, while a more formal proof can be found in Appendix [D] The
heart of the proof is a simulator S which has oracle access to the VIL-RO, and whose task is
to simulate a biased FIL-RO. The pseudo-code of the simulator is shown in Figure[3] but a few
preliminary remarks are in order. The simulator maintains a log of the queries it has answered
to. This knowledge is maintained under the form of a graph G = (V, E), where the set of vertices
V' is a subset of H, and where the edges are labelled by message blocks from M. The semantic
of this graph is that there is an edge labelled by m between h and A’ if the simulator let the
distinguisher know that f(h,m) = h’. We will use the notation h % W to say that there is an
edge between h and h' labelled by m in G. Initially, the graph contains only a single vertex I'V.
The simulator also maintains a subset of V' denoted by Reach, consisting of the vertices that are
reachable from I'V. It also associates to each vertex v in Reach an ancestor in Reach. This allows
to efficiently reconstruct the sequence of message blocks that map I'V on v, given v € Reach. We

will note I'V % v when there is such a path between IV and v. In the beginning, Reach only
contains the I'V.
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Now, a distinguisher D interacts with either H and F (we say that it is in the “construction
world”), or with RO (which is a VIL-RO) and S (and we say that it is in the “random oracle
world”), and it has to tell in which world it is. More formally, D is a Turing machine which has
two interfaces. It should output “1” if H¥ and F are answering its oracle queries, or “0” if RO
and S are. Our objective is to show that for all distinguisher D the following holds for a small e:

[P[DH"F = 1] — P[DROS —1]| <

The main idea of the proof is that our simulator aborts as soon as a state (or pair of states)
on which the relation could be falsified becomes reachable (that is to say, a state in W or a pair
of states in WP). Therefore we do not have to study exactly how much information is revealed
by the relation. We use the sampling algorithms to simulate the weakness of the compression
function, but the adversary can never compare the outputs of the samplers with the output of
the VIL-RO, because that would cause the simulator to abort. Moreover, when queried on (h, m),
the simulator looks for a symmetric query (h,7) so that the relation Ry could be falsified (i.e.,
(h,m) < (h,m) € G',)- If such a symmetric query exists, the simulator computes both queries
at the same time to ensure that they respect the relation Ro.

The proof uses a hybrid argument through a sequence of games, which we summarize.
Game 1: The distinguisher is in the random oracle world. It has access to RO and S.

Game 2: We introduce a dummy relay algorithm 7, which sits between the distinguisher and
the RO. Given a random oracle query from the distinguisher, 7 just sends the query to RO, and
transmits the answer of RO back to D. This leaves the view of D unchanged.

Game 3: We modify the simulator S, by making it abort in some cases, and report failure.
The failure of S ensures that specific invariants of its internal data structures hold. Specifically,
when queried on a reachable chaining value, S fails if its answer was already “known” by the
distinguisher from a previous and different query. Thus, a (reachable) collision on the internal
state, or the “connection” to some internal state already known would make S fail. Moreover, S
will also fail if a weak state becomes reachable, or if the two members of a pair of weak states
become reachable (these two events could be observed on the iteration if S did not fail).

An important point is that when queried on non-reachable chaining values, S uses the sam-
plers to answer in conformance to the relation R. However, when queried on reachable chaining
values, it answers either randomly, or using the VIL-RO for consistency (but the result is still
random). Thanks to this, Reach is a random subset of H, and this allows to establish an upper-
bound on the probability of the failure, which directly depends on the number of weak states,
and on the density of the graph representing the weak pairs of states. The view of D only changes
if S aborts, and it can be shown that:

(g5 +1)°

(g5 +1)°
(20 — g5 — 1)°

P

_QS+1

IP’[S aborts} <4. 5

+ Wi

+ WP -

Game 4: In this game, we modify the relay algorithm and leave the simulator unchanged. In-
stead of querying the VIL-RO, the new relay algorithm 7; now applies the Merkle-Damgard
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construction to the prefix-free encoding of its query. It uses the simulator to evaluate the com-
pression function. Thus the relay algorithm 77 is essentially the same as H', except that it is
based on the simulator S instead of random function F'.

The key argument is that the answers of S are consistent with those of RO: when S receives a
sequence of queries corresponding to the prefix-free encoding of a message, it decodes it, queries
the VIL-RO on the decoded message, and returns the answer of the VIL-RO. Another important
detail is that before S fails, Reach exactly describes the reachable chaining values, and form a
tree rooted in IV. This latter property means that when a sequence of queries complete the
prefix-free encoding of a message, then the message can be decoded in a unique way, which is
critical in order to keep the simulator consistent with the VIL-RO.

So, all-in-all, the VIL-RO gives the same answers in Games 3 and 4, the simulator is consistent
with the VIL-RO in both games, and conforms to the relation in both games. Therefore, when
proceeding from Game 3 to Game 4, the view of the distinguisher only changes when S fails in
either one of the games, but it fails more often in game 4 (because it also receives the queries of
the relay algorithm).

Game 5: In this game, the VIL-RO is removed completely and the new simulator S; always
chooses a random p-bit response, even in situations where S would have consulted the VIL-RO.
We also remove all the failure conditions from the new simulator S;.

The view of the distinguisher may only change if S would have failed (because now S; does
not).

Game 6: This is the final game of our argument. Here we finally replace the simulator &; with

the biased FIL-RO. Since the relay algorithm 7; simply implemented the prefix-free Merkle-

Damgéard construction, the view of the distinguisher is in fact in the construction world.
All-in-all, we find that the advantage of the distinguisher is upper-bounded by:

e =2-P[S fails in G3] +2-P[S fails in G4]

And for the sake of obtaining a simpler expression, since S fails more often in G4 than in Gz, we
find:
e<4- ]P’[S fails in G4]

This yields the result announced in the Theorem.

4 On Differential Attacks against SIMD

In this section we will present our results concerning differential paths in SIMD. Using Integer
Linear Programming, we show that if there is a difference in the message, then the probability
of the path will be at most of the order of 2=™/2. We stress that this result is not tight, but the
computational power needed to improve the bound using this technique grows exponentially.

Related Work. The first attempt to avoid differential attack in a SHA /MD-like hash function
was proposed in [I0], where Jutla and Patthak described a linear code similar to the message
expansion of SHA-1, and proved that it has a much better minimal distance than the original

SHA-1 message expansion. They proposed to use SHA-1 with this new message expansion and
called the new design SHA-1-IME.
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Our Results. The design of SIMD follows the same idea, using a strong message expansion
with a high minimal distance. In this paper we show that we can prove the security of SIMD
more rigorously than the security of SHA-1-IME. While the security of SHA-1-IME is based
the heuristic assumption that the path is built out of local collisions, our proof gives an upper
bound on the probability of any differential characteristic with a non-zero difference in the input
chaining value.

Our results prove the following: for any message pair with a non-zero difference, the proba-
bility of going from an input difference A; to an output difference A, is bounded by 27132 for
SIMD-256, and 27253 for SIMD-512.

4.1 Modeling Differential Paths

To study differential attacks against SIMD, we assume that the attacker builds a differential path.
The differential path specifies the message difference and the state difference at each step. For
each step 7, we study the probability p(i) that the new step difference conforms to the differential
path, assuming that the previous state difference and the message difference conforms to the
path, but that the values themselves are random. Since SIMD heavily uses modular additions,
our analysis is based on a signed differential, as used by Wang et al. [I8]. A signed difference
gives better differential paths than an XOR difference when two active bits cancels each other
out: with an XOR difference this gives a probability 1/2, but with a signed difference we have a
probability 1 if the signs are opposed.

To study differential paths, we will consider the inner state of SIMD, and the Boolean functions
&M, A state bit Ay) is called active if it takes two different values for a message pair following
the differential path. Similarly, a Boolean function is called active if at least one of its inputs is
active. A differential path consists of a set of active message bits, active state bits, active Boolean
function, and the sign of each active element. We assume that the adversary first builds such
a differential path, and then looks for a conforming pair of message and chaining value. If we
disregard the first and last rounds, each Boolean function has three inputs, and each state bit
enters three Boolean functions. We use this simplification in Section [£.4}

4.2 The Message Expansion

Table [3| shows the minimal distance of the message expansion of SIMD compared to the message
expansion of SHA-1 and SHA-1-IME. We know that the message expansion of SIMD has a
minimal distance of 520, but this is the Hamming distance, i.e. an XOR difference. Since we
assume that the attacker will use a signed difference to build the differential path, we must study
the distance of the code when the difference is difference is given by signed binary representation.
The problem is that consecutive active bits might be used as a single modular difference. For
instance 0b0111 and 0b1001 differ in three bit positions, but the modular difference is only 2!
and it can introduce a single difference in the output of a modular addition.

To compute the minimal number of modular differences introduced by the message, we use
the non-adjacent form (NAF). The NAF is a signed binary representation, i.e. a sum of signed
powers of two. It is unique and can be efficiently computed. The good property of the NAF is
that it is a signed binary representation of minimal weight. For each pair of input to the inner
code, we can compute the NAF of the difference, and we see that the minimal distance is 4. This
means that each active word in the output of the Reed-Solomon code will introduce 4 differences
in the state, even when we consider a differential attack using modular difference.

However, two outputs of the inner code are packed together into a 32-bit word. If we have a
difference in the MSB of the low order word and in the LSB of the high order word, they can
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collapse to a single modular difference. In Section [£.4] we disregard this property and we just
consider that the message introduces 520 differences through the message expansion. However,
in Section [4.5] our model will account for that.

Table 3. Minimal distance of the message expansion.

Message block Expanded message Minimal distance

SHA-1! 512 bits 1920 bits 25 bits
SHA-1-IME! 512 bits 1920 bits 75 bits
SIMD-256,/162 512 bits 2048 bits 260 bits
SIMD-512/16% 1024 bits 4096 bits 516 bits
SIMD-256 512 bits 4096 bits 520 bits
SIMD-512 1024 bits 8192 bits 1032 bits

! SHA-1 and SHA-1-IME codes are projected to the last 60 words.
2 SIMD-256/16 and SIMD-512/16 are reduced versions using a single copy of the encoded message.

4.3 Structure of a Differential Path

The basic idea of our analysis is to use the lower bound on the number of active message bit
to derive a lower bound on the number of active state bits. Each message difference must either
introduce a new difference in the state, or cancel the propagation of a previous state difference.
A single difference propagates to between 2 and 5 differences, depending on whether the Boolean
functions absorb it or let it go through. This means that a collision corresponds to between 3
and 6 message differences.

For instance, if a difference is introduced in the state A§5) by Wl( , it will appears in A§5),
BiG), C§7)7 D%g). Each of the Boolean function ¢§6), §7), gg) can either absorb it or pass it. This
difference will propagate to ASG), and to A§9). Moreover, it can propagate Agﬁ), A§7) and Agg)
if the Boolean functions do not absorb it. Up to five active message bits can be use to cancel
this propagation: W1(4)7 Wl(g)7 Wé5), and possibly W1(5), Wl(ﬁ), Wlm if the corresponding Boolean
functions are not absorbing.

We consider two parts of the compression function: the computation of ¢, and the modular
sum. In order to study the probabilities associated with these computations, we will count the
conditions needed for a message pair to follow the characteristic.

5)

¢-conditions. The Boolean functions MAJ and IF used in SIMD can either absorb or pass
differences. When there is a single active input, the probability to absorb and to pass is 1/2.
Each time a state difference enters a Boolean function, the differential characteristic specifies
whether the difference should be passed or absorbed, and this gives one condition if the Boolean
functions have a single active input. Thus, each isolated difference in the state will account
for 3 ¢-conditions: one for each Boolean function they enter. For instance, A difference in Ag4)

generates conditions for ¢§6), 57), ¢>§8).
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H-conditions. When a difference is introduced in the state, it has to come from one of the
inputs of the round function:

@) (@
@) _ (pli—D @@ @@ 40D i1 G=1y) < (i—1) \ <7
AP = (Df D Bw e (Al B e ) @ (Al
The round function is essentially a sum of 4 terms, and the differential characteristic will
specify which input bits and which output bits are active. Thus, the differential characteristic
specifies how the carry should propagate, and this gives at least one condition per state difference.
In the end, a state difference accounts for 4 conditions.

4.4 Heuristics

We first give some results based on heuristics. We assume that the adversary can find message
pairs that give a minimal distance in the expanded message, and we allow him to add some more
constraints to the expanded message. Note that finding a message pair with a low difference in
the expanded message is already quite difficult with the message expansion of SIMD.

Heuristic I assumes that the adversary can find message pairs with minimal distance, but no
other useful property. The adversary gets a message pair with minimal distance, and connects
the dots to build a differential characteristic.

Heuristic IT assumes that the adversary can find message pairs with minimal distance and
controls the relative positions of the message difference. He will use that ability to create
local collisions.

Heuristic III assumes that the adversary can find a message pair with any message difference,
limited only by the minimal weight of the code. He will cluster local collisions to avoid many
conditions.

Heuristic I. In this section, we assume that the adversary can find a message pair such that
the expanded messages reach the minimal distance of the code, but we assume that the message
pair has no further useful properties.

In this case, this adversary gets a message pair with a small difference and he has to connect
the dots to build a differential path. This is somewhat similar to the attacks on MD4 [I7]: the
messages are chosen so as to make a local collision in the last round, and the attacker has to
connect all the remaining differences into a path with a good probability.

It seems safe to assume that such a differential path will at least have as many active state
bits as active message bits. Since an isolated difference in the state costs 4 conditions, we expect
at least 2080 conditions (resp. 4128 for SIMD-512), which is very high.

This shows that the adversary needs some control over the expanded message. If he wants to
succeed, he needs to find message pairs with some extra properties.

Heuristic II. We now assume that the adversary can force some structure in the expanded
message difference. Namely, he can choose the relative location of the differences in the expanded
message. Since the probability of the path is essentially given by the number of active bits in
the state, the path should minimize this. This is achieved with local collisions, and each local
collision will use as many message differences as possible. Due to the structure of the round
function of SIMD, a local collision can use between 3 and 6 message differences, depending on
whether the Boolean functions absorb or pass the differences. In order to minimize the number
of state differences, the path will make all the Boolean functions pass the differences, yielding

17



six message differences per state difference. This is somewhat counter-intuitive because most
attacks try to minimize the propagation of differences by absorbing them. However, in our case
it is more efficient to let the differences go through the Boolean functions, and to use more
message differences to cancel them, because we have a lower bound on the number of message
differences.

Since the adversary only controls the relative position of the message differences, we assume
that most local collisions will be isolated, so that each local collision gives 4 conditions. Thus,
a differential is expected to have at least 520 x 4/6 = 347 conditions (688 for SIMD-512). This
leaves a big security margin, and even if the adversary can use message modifications in the first
16 rounds, it can only avoid half of those conditions.

This can be compared to the attacks on SHA-1 [6/I8]. These attacks are based on local
collisions, but we do not know how to find a message pair which would have both minimal
distance and yield a series of local collisions in SHA-1. Instead, attacks on SHA-1 use the fact
that the message expansion is linear and circulant: given a codeword, if we shift it by a few
rounds we get another valid codeword and similarly if we rotate each word we get another valid
codeword. Then we can combine a few rotated and/or shifted codewords so as to build local
collisions. The attacks on SHA-1 start with a codeword of minimal distance, and combines 6
rotated versions. Thus the weight of the actual expanded message difference used in the attack
is six times the minimal weight of the code.

Note that message expansion of SIMD is more complex than the one from SHA-1, and it
seems very hard to find this kind of message pairs in SIMD. Moreover, the trick used in SHA-1
can not be used here because the message expansion is neither linear nor circulant.

Heuristic III. We now remove all heuristic assumptions and we try to give a bound on any
differential trail. However, to keep this analysis simple, we still disregard the specificities of the
first round, and the fact that one can combine some of the message differences.

The adversary will still use local collisions to minimize the number of differences in the state,
but he will also try to reduce the number of conditions for each local collision by clustering them.
We have seen that an isolated state difference costs 4 conditions, but if two state differences are
next to each other, the cost can be reduced when using a signed difference. For instance, if two
inputs of the MAJ function are active, the adversary doesn’t have to pay any probability: if both
active inputs have the same sign, then the output is active with the same sign, but if the inputs
have opposite signs then the output will be inactive. In this section we consider that a Boolean
function with more than one active input does not cost any probability.

Thus, the best strategy for the adversary is to place the state differences so that each active
Boolean function has two active inputs, in order to avoid any ¢-conditions. Each state differ-
ence costs only one H-condition, and gets 4.5 message differences (these message differences
corresponding to the Boolean functions are shared between two Boolean functions). This gives a
lower bound of 116 conditions.

More rigorously, this can be described by a linear program, as shown in Linear Program
Equation comes from counting the number of active inputs to the Boolean functions in two
different ways, while Equation counts the number of message differences that can be used.
The objective value S + « — 3 counts the conditions: one for each state difference, plus one for
each Boolean function with exactly one active input. The optimal solution to this program is
520/4.5 ~ 115.55.

In the next section we will see how to improve this bound and get a bound on the probability
of any differential path.
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Program 1 Linear Program

Minimize S + o — § with the constraints:

38 =a+ B+ 1)
520 < 35 + « (2)
y<B< « (3)

«a > 0 is the number of Boolean functions with at least one active input

[ > 0 is the number of Boolean functions with at least two active inputs
v > 0 is the number of Boolean functions with at least three active inputs
S > 0 1is the number of active state bits

Comparison with SHA-1-IME. The security of SHA-1-IME is based on a heuristic that
is quite similar to our Heuristic I. Jutla and Patthak assume that the adversary will use the
same technique as the attacks on SHA-1, i.e. create local collisions using the fact that the code
is linear and circulant. They deduce that the probability of a differential characteristic will be
about 27°%2:5 They implicitly assume that the adversary cannot find minimal codeword that
would already give local collisions. Our Heuristic II assumes that the attacker can find such
codewords, and if we apply it to SHA-1-IME, it would only guarantee that we have at least 13
local collisions (each local collision accounts for 6 message differences). Since a local collision in
SHA-1 has an average probability of 272%, this would only prove that an attack has at least a
complexity 212%2:5 = 2325,

This shows that our Heuristic IT and I1I are much weaker than the heuristic used in SHA-1-IME.

4.5 Upper Bounding the Probability of a Differential Path

The bound given by Heuristic III is slightly lower than n/2 so we would like to improve it. To
find a better bound, we will follow the approach of Linear Program [} Note that in the optimal
solution, all the Boolean functions have either zero or two active inputs, but it is unlikely that
such a path actually exists because of the way the Boolean functions share inputs. In order to
remove some impossible solutions, we use a more detailed modeling of differential paths where
each individual state bit is treated separately. This also allows us to express some extra constraints
that will help to improve the lower bound.

Constraints related to the message erpansion. We know that the message expansion gives at
least 520 differences in the expanded message, but there are some constraints on the positions
of these differences. Namely, we have at least 65 active words in each copy of the message, and
each active word has at least 4 active bits. For instance, a difference pattern with 3 active bits
in each word would have 768 bit differences, but it is not a valid pattern. Moreover, the active
words in both copies have to be the same up to the permutation P. To include these constraints
in our model, we add a set of binary variables Y; which encode whether word 7 is active in the
output of the NTT. This is modeled by Equations (4)) and (f]). Note that this still allows many
difference patterns that can not be the output of a real message pair.

Better cost estimation. In Program [I} we only count a condition for the Boolean functions with
a single active input. In fact, if we look at the truth table of the Boolean functions we see that
the IF function still needs a condition when inputs 1 and 2, or 1 and 3 are active. Since we are
using distinct variables for each of these inputs, we can include this in our description.
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Program 2 Integer Linear Program (simplified)

Minimize ) Sfj”k] +> agj)[k] -3 ﬁi(j)[k] with the constraints:

Sl(j_l)[k] +Si(j_2)[k] +S£j—3)[k] _ az(_j)[k] + Bi(j)[k] + ’Yi(j)[k] ‘
WO < gOlta) | glG=dlk=r;] _i_S;i(—i;)[k—rﬁsj'l + QW @)
MO AL PINOIL @)
15 31
S WM > avp > W > avp ) (4)
k=0 k=16
> V=65 (5)

agj)[k] € B is true iff qﬁl(-j)[k] as at least one active input

ﬁi(j)[k] € B is true iff qﬁij)[k] as at least two active input

'yi(j M e B s true iff d)z(-j JF s at least three active input

Si(j)[k] € B is true iff the state bit Agmk] is active

Wi(j ) ¢ B is true iff the expended message bit Wi(j V] s active
Y,enB is true iff the word i is active in the output of the NTT

We can write all these constraints as a huge optimisation problem with approximately 30,000
variables and 80,000 equations, but we need some tool to find the optimal solution of the system,
or at least find a lower bound. We decided to write our problem as an Integer Linear Program.

Integer Linear Programming. Integer Linear Programming (ILP) is a generalisation of Linear
Programming (LP) where some variables are restricted to integer values. While LP is solvable
in polynomial time, ILP is NP-complete. ILP solvers usually use some variants of the branch-
and-bound algorithm. In the case of minimization problem, the branch-and-bound algorithm
computes a lower bound to the optimal solution and incrementally raises this lower bound.
Meanwhile, non-optimal solutions give an upper bound, and when the two bounds meet, the
search is over.

To compute a lower bound, the problem is relaxed by considering all variables as real numbers
instead of integers. This gives a Linear Program which can be solved efficiently, and the optimal
solution of the Linear Program is a lower bound of the Integer Linear Program. To improve
this lower bound, the search space is divided into two or more subspaces, and a lower bound is
computed recursively for each subproblem. For instance, Figure [ shows how to solve Program [I]
as an ILP.

Results. A simplified version of the ILP is given by Program [2] The first equations and the
objective value mirrors Program [I} but use many variables to allow for more precise extra con-
straints. The full program has 28,576 variables and 80,162 equations for SIMD-256. We used
the solver SYMPHONY, an open-source solver for mixed-integer linear programs, available at
http://www.coin-or.org/SYMPHONY/. The solver could not find an optimal solution to the pro-
gram, but it gave a reaches an interesting lower bound after some time: a differential path for
SIMD-256 has at least 132 conditions, while a differential path for SIMD-512 has at least 253.
The computation for SIMD-512 took one month on a bi-quadcore machine.
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l
38 =a+ B+~ |
520 < 35 + o
|
|

Optimal LP solution: 115.55

a=173.33 B =173.33

v=0 S =115.55

S <115 S > 116
Optimal LP solution: 120 Optimal LP solution: 116
a =175 B =170 a=172 6 =172

Fig. 4. Solving Program [I] as a ILP. The problem is divided into two subproblems: S < 115 ans
S > 116. For each of these subproblems, the optimal solution of the relaxed problem is integral
so this gives us the optimal solution of the ILP.

Summary The optimal strategy of the attacker is to use local collisions (avoiding any difference
propagation) and to cluster the local collisions so as to avoid most conditions. Our modeling
allows the adversary to do this because he can choose the message difference and the expanded
message difference independently, and he can position the differences arbitrarily in the inner
code. However, this is not possible in practice, and most solutions of the Integer Linear Program
will require an expanded message difference that is not actually feasible. It should also be noted
that we do not model the sign of the differences, and we always assume that the sign is correct
when two differences cancel out.

Therefore, we expect that the best differential path in SIMD is much worse that the optimal
solution of our Integer Linear Program. Moreover, the program is too large to be solved to
optimality, and we only have a lower bound on the number of conditions (this lower bound keep
improving if we let the solver run).

Limitations

About message modifications. When we consider the Heuristic III, our proof does not leave
enough margin to account for message modifications. However the mode of operation of the com-
pression function is designed to make message modification difficult, by XORing the message and
the chaining value in the very beginning. This prevents usual message modification techniques,
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because the adversary has to commit to some message before he can begin the real computation
of the compression function.

We note that given a message M, one can compute a new message M* so that the expanded
message W* is identical to W in the first steps, up to almost 8 steps. However in order to keep
the same state in the Feistel rounds, one has to counter the modification of the message by a
modification of the input chaining value. Therefore it is only applicable to free-start attacks.
Since SIMD is a wide-pipe design, free-start attacks on the compression function can not be
turned into attacks on the hash function.

Redundant Conditions There might be some redundant ¢-conditions in a differential path. As
opposed to MD4 or MD5, we can never have the same condition for two different Boolean
functions (because of the rotations), but there might still be some redundant conditions. However,
since most of the conditions are H-conditions, we believe this is negligible.

5 Security Status of SIMD

5.1 On the Symmetry-based Distinguisher

The distinguisher of Section [2| shows that the compression function of SIMD is not ideal. It does
not affect the security of the hash function, but it is nonetheless an unwanted property. Since
this distinguisher is based on symmetry properties, it is easy to avoid this property by slightly
changing the design. Therefore, we plan to tweak the SIMD design by adding non-symmetric
constants, if given such an opportunity. We also note that other SHA-3 candidates are in a
similar situation:

— CubeHash has strong symmetry properties in its round transformation [IJg]. It is thought
that since the initial state in not symmetric, it is not possible to reach a symmetric state.

— Shabal has strong distinguishers on its compression function: there are differential paths with
probability 1 [2], and the inverse permutation does not have full diffusion (some input bits
do not depend on all output bits). The Shabal team has shown that these distinguishers do
not affect the security [5].

Countermeasures. An interesting way to way to avoid the symmetry properties would be to
add a counter to the expanded message after the multiplication by a constant (step |3| of the
message expansion). This would ensure that each expanded message word has a different value
modulo 185 (respectively modulo 223), and it prevents equality constraints between the expanded
message words.

5.2 On Differential Attacks
Concerning differential attacks, our results are two-fold:

1. A differential path with a non-zero difference in the input chaining value does not affect the
security of the hash function because it is wide pipe

2. A differential path with a non-zero difference in the message can not have a high success
probability, because of the strong message expansion.

This shows that successful attacks on the hash function based on differential properties are very
unlikely.
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A Example of Weak Message

Here is an example of a weak message, and the output of the compression function when used
with the same value for the message and chaining value (this ensures that the XOR is symmetric).
Notice that the output is mostly symmetric.
Message = Chaining Value Output

Ap..3 00000000 00000000 00000000 00000000 || Ag..3 0e0618e6 Oeeb618e6 ecba3cee fbdc48ae
Bp..3 00000000 00000000 00000000 a2000000 || Bp..3 17bde794 17bddbd4 5a0ab9f2 5a2ab59f2
Cp..3 00000000 00000000 00000000 00000000 || Cph..3 12a9c015 12a9c015 be7d3dfl be775df1
Dp..3 00000000 00000000 00000000 £1000000 || Dg..3 15£f9cb8d 15f9cb8d 2efefdbc 2efefdbc

Expanded Message
W%, 0Oalee3dl Oalee3dl bc12531b bci2531b | W', ababca86 ababca86 4be14335 4bel4335
W{?, e827b082 e827b082 1b761dal 1b761dal| W.?) 287848fd 287848fd aa01d8fa aa0ldsfa
W', 2fb2e543 2fb2e543 c9l4cdbe c9l4cdbe | W\°) 050f4ecs 050f4ecs de09ccbl de09ccbi
W%, 143cc7a2 143cc7a2 31ddec7d 31ddec7d | W\') 50£0d841 50£0d841 Odbbbif4 O0dbbbifa
W%, do4elabd d04elabd 36ec3b42 36ec3bd2| W\’ ebc4385e ebc438be ce231383 ce231383
W9 f5e21c2f f5e21c2f 43eeace5 43eeace5|W(\') 17d94f7e 17d94f7e e48ae25f e48ae25f
W{'2 af1027bf af1027bf £2454e0c £2454e0c | W\'3 fafib13b fafib13b 21£7334f 21f7334f
W% da788b703 d788b703 55££2706 55££2706 | W\'Y 5a55357a 5ab55357a baifbecb b4ifbecb
WS 320fcdf1 320fcdfl 624c9db4 624c9db4 | W'D a4135bed a4135bed 3126ceda 3126ceda
W{'® 21adde53 21adde53 4aa2bb5e 4aa2b55e | W\'Y 237fdc81 237fdc81 975568ab 975568ab
W) 435abca6 435abca6 ab5bb4a5 abb5b54as |W\’L 9ccb6335 9cch6335 409fbf61 409fbf61
W2 641e9be2 641e9be2 daaf2551 daaf2551 | W\ >3 46£eb902 46£eb902 1893e76d 1893e76d
W) 71c58e3b 71c58e3b a06£5£91 a06£5£91 | WY 1e09e1f7 1e09e1f7 dd6a2296 dd6a2296
W) 9a1065f0 9a1065f0 eeb5114b eeb5114b | W\ T c3ee3c12 c3ee3c12 452cbadd 452cbadd
WY e684197c e684197c c1333ecd c1333ecd |W.>) £9a1065f £9a1065f 2ac7d539 2ac7d539
W) £3420cbe £3420cbe 558eaa72 558eaa72 | W\*) cd0832f8 cd0832f8 6c4f93bl 6c4f93bi

B Study of the Symmetry Classes

In this section we study the sets of messages than be used for the symmetry property of SIMD
by solving the equation on the NTT. We give an explicit description of the sets, and we show
that for a given symmetry relation, a pair of output can not be used as input for the symmetry
property.

B.1 Symmetries for SIMD-256
There are three symmetry classes in SIMD-256.

Class 1:%¢ (y; = y2€B2’ W; = ileal)’ For this symmetry relation, the pairs of suitable
messages are in an affine space of dimension 2:
Ma_ﬂ =162 X e31 + 241 X eg3 + a X 60+ﬁ X €32
M(/y,ﬂ =162 x 631—|—241 X eg3 + o X €g —ﬂ X €32
Note that if 3 =1 we have —3 = —1 and the corresponding M’ is not a valid message. So
we have only 256 - 255 valid message pairs.

When 8 = 0, we have M, 3 = M, g and this gives a symmetric message instead of a pair of
symmetric message.
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Class 2: o (yi = Yjgqs Wi = Wjg,). For this symmetry relation, the pairs of suitable
messages are in an affine space of dimension 4:

Ma”@’%5255><615+232X€31+37><€47+16X€63—|—Oé><60+ﬁ><632+7X€16+(5X€48

;ﬁmg:%><615+232><631+37><e47+16><663+a><eo+5><632—'y><e16—5><e48

Class 3: z (yi = 1@6, W; = W/ 3). For this symmetry relation, the pairs of suitable
messages are in an affine space of dlmenswn 2:

Ma5=212><€15+181><831+139><647+2OX€63+04><60+ﬁ><632
M'5_212><615+181><e31+139><e47+20><e63+axeo—ﬁxegg

Input and Output Pairs. Let M, M’ be a message in one of these classes. Without loss of
generality, we denote the symmetry class by ‘e .

Let h, I/ be a pair of chaining values that can used with this message, i.e., h' = noMaoM.

We denote the inputs to the Feistel compression part by S(©) = AE(()))l 23] B[((?)l 23] C[((;J,)1,2,3] , D[(g7)1,2,3]

(respectively S'(9). Similarly, SG) is the state after the 32 Feistel rounds using the message,
and S©5 if the final state after the Feed-forward.
We can express DS in terms of SGV;

«13 <« K13
DI = <(D’3(3”BafvgEB|F(A;<31>,Bg<31),cg(31>)) /M ACY )

«13 <« K13
DO = ((‘B’g‘"’“ BIV,BIF(ALY, BEY, ‘?ﬁf’”)) m ALY )
Since SBY and S’V are symmetric, we have:
A/(31) A 3y Bg(zn) _ <§>§1 03(31) _ ‘531 /(31) D31 A6(31) _ 781

. 1(35) 5 (35) . ’
Therefore, the difference between D3™"’ and D 3™’ comes from the difference between IV'; and

Wg. By looking at those differences, we can see that they are not compatible, because of the
rotation by 26 bits:

Class 1 [V, & 1Vs= 0 D e D =241 x 2%
Class 2 IV, & Vs = 55 x 224, DI Dz(,"ﬁ) = 16 x 2%
Class 3 IV, & IV =212 x 24, D® & D = 20 x 22

B.2 Symmetries for SIMD-512

There are seven symmetry class for SIMD-512.

Class 1 (y; = y§®2, W, = Wi’eal)' For this symmetry relation, the pairs of suitable messages
are in an affine space of dimension 2:

M, 52180X€63+241X€127+QX80+6X864
M/ﬁ—180X663+241><€127+a><60—ﬁ><664
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Class 2 (yi = Yjqqs Wi = W/g,). For this symmetry relation, the pairs of suitable messages
are in an affine space of dimension 4:

Ma“@ﬂﬁ:74X631+232X€63+218X695+16X6127+0[X€0+ﬂX€64+’}/X632+5X696
M[/17B7,Y75:74X631+232X663+218X695+16X6127+OzX€0+ﬁX6647’}/X€3275X696

Class 3 (yi = Yjqgs Wi = W/g3). For this symmetry relation, the pairs of suitable messages
are in an affine space of dimension 2:

Ma’ﬁ:58><631+].6X663+150X695+122X€127+QX6(]+ﬁ><€64
M(/Xﬂ:{)sx631+16X663+150X€95+122X6127+QX6076)(664

Class 4 (yi = Yjqgs Wi = W/g,). For this symmetry relation, the pairs of suitable messages
are in an affine space of dimension 8:
Maﬁ’%g’gyg’n’g =211 xe15 + 8 X e31 +199 X eq7 + 234 X eg3 + 116 X €79 + 32 X eg5 + 111 X e111 + 16 X eq97

+CMX60+5X664+’}/X632+5X696+€X616+CX648+77X680+0X6112
M&,Bmé,a,anﬂ:ﬂl X e15 +8 X e31 + 199 X eq7 + 234 X eg3 + 116 X e79 + 32 X eg5 + 111 X e111 + 16 X e127

+axe+ B Xesa+yXesn+0Xeg—€Xe—( Xeqg—1nXego— 0 Xer

Class 5 (y; = ngBIO’ W; = Wi’@5). For this symmetry relation, the pairs of suitable messages
are in an affine space of dimension 2:
My g =195 X e15 + 237 X e31 + 154 X eq7 + 254 X eg3 4+ 70 X e7g9 + 40 X egs5 + 121 x eq11 + 195 X eq27

+axey+ 0 Xeg
Mclxﬂ:].95><€15+237>< e31 + 154 X eq7 4+ 254 X eg3 + 70 X e7g + 40 X egs5 + 121 X e111 + 195 X e197

4+ axey— X egy

Class 6 (y; = yz/'GB127 W, = W{@e)' For this symmetry relation, the pairs of suitable messages
are in an affine space of dimension 4:
Ma g,y = 251 X e15 + 35 X e31 + 36 X eg7 + 223 X eg3 + 57 X erg + 159 X eg5 + 0 X e111 + 114 X eq27

+axey+ 0 Xegy+yXez+d X egg
M&ﬁ’w:%l X e15 + 35 X eg1 + 36 X eq7 + 223 X eg3 + 57 X €79 + 159 X eg5 + 0 X e111 + 114 X eqo7

+Ot><€0+ﬁ>(€647’)/><63275><696

Class 7 (yi = Yjq14> Wi = W/g,). For this symmetry relation, the pairs of suitable messages
are in an affine space of dimension 2:

Mayg =32 x e15 + 212 X e31 + 157 X eq7 + 218 X eg3 + 129 X e7g9 + 162 X eg5 + 174 X e111 + 199 X eq27
+axey+ X egq
M(;,,B =32 X e15 + 212 x e31 + 157 X eg7 + 218 X eg3 + 129 X erg 4+ 162 X eg5 + 174 x €111 + 199 X eq27

+axey— [0 Xeg
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Input and Output Pairs. Like in SIMD-256, we can show than a pair of output can not be a
valid input pair for the symmetry relation. We have:
35 31 31 31 31),) 13 g1yt €
DI = ((D;( "B IV BIFASY, B, o)) T m Ay

«13 «a\ €83
T = (B8 8 W2 mIR(T, B, )™ e T

Since SGY and S’V are symmetric, we have:
AT B FE oM _Gn o -BE AT

Again, the differences in D§35) and in V7 are not compatible:

Class 1 IV, &V, = 0 D% g DB =041 x 22
Class 2 IV, & IV, = 74 x 224, DB g ?535) = 16 x 2%
<« >
Class 3 IV, @ [V, = 58 x 224, DI o D (%) = 199 x 924

Class 4 IV, @ TV, =219 x 224, DI g ‘5’535) — 127 x 224

Class 5 IV, @ IV = 237 x 224, D!V ¢ D = 195 x 224
Class 6 IV, & IV, = 35x 224, DI® & D) = 114 x 224
Class 7 IV, & IV, = 212 x 224, DI® & D9 — 199 x 224

B.3 Symmetry Classes for the Final Transformation

The final transformation is based on a slightly modified compression function and similar sym-
metry classes can be found. However, we note that all the messages and message pairs than can
give a symmetric expanded message have a non zero value in the last message byte (M[63] for
SIMD-256, or M[127] for SIMD-512). Since the message input of the final compression function
is in fact the length of the message being hashed, this means that the message length must be
at least 2°0% for SIMD-256, and at least 2!9'¢ for SIMD-512. Hashing such a long message is
completely meaninglessﬂ so it is safe to say that the distinguisher can not be used against the
final transformation.

C Proof of Theorem [1I

In this section we show that the prefix-free iteration of an ideal compression function is indif-
ferentiable from a random oracle, thus proving Theorem [I} The content of this section borrows
very much to the proof in the extended version of [7].

We consider a simulator S, which has oracle access to a random oracle RO : {0,1}" — {0,1}?,
and whose task is to simulate a random compression function. The pseudo-code of the simulator
is shown in Figure [5| page but here are a few comments. The simulator maintains a log of the
queries it has answered to. This knowledge is maintained under the form of a graph G = (V, E),
where the set of vertices V' is a subset of H, and where the edges are labelled by message blocks
from M. The semantic of this graph is that there is an edge labelled by m between h and b’ if
the simulator let the distinguisher know that f(h,m) = h’. We denote this by h 2 R/ Initially,

3If it is feasible to hash these messages, then the hash function can be broken by brute force and
does not offer any kind of security.
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the graph contains only a single vertex IV. The simulator also maintains a subset of V' denoted
by Reach, consisting of the vertices that are reachable from I'V. It also associates to each vertex
v in Reach an ancestor in Reach. This allows to efficiently reconstruct the sequence of message

blocks that maps I'V to v, given v. We will note IV % v when there is such a path between I'V
and v. At the beginning, Reach only contains the I'V.

: function FRESHVALUE(h, m)

if 7V 25 h € Reach then
if there exist M’ such that M|jm = g(M') then
B — RO(M")
else
nEH
end if
Reach < Reach U {h LN h’}
9: else
10: WK
11: end if
12: V—VU{hn'}
13: E<—Eu{hlh’}
14: return h’
15: end function

16: function SIMULATOR(h,m)
17: if there exist a vertex b’ € V and an edge h = h/ in E then

18: return this h’

19: else

20: h' «— FRESHVALUE(h, m)
21: return h’

22: end if

23: end function

Fig.5. Pseudo-code of the Simulator S

Let F' be a random function. Now, a distinguisher D interacts with either H¥" and I (we say
that it is in the “construction world”), or with RO and S (and we say that it is in the “random
oracle world”), and it has to tell in which world it is. More formally, D is a Turing machine that
has two interfaces. It should output “1” if H¥ and F are answering its oracle queries, and “0” if
RO and S are. Our objective is to show that the following holds for a small e:

[P[DH"F = 1] — P[DROS —1]| <

The proof uses a hybrid argument through a sequence of games. We will denote by ¢s and
go the number of queries sent to the Simulator and the Oracle respectively, by the distinguisher.

Game 1 : The distinguisher is in the random oracle world. It has access to RO and §. Let Gy
be the event that D outputs “1” in this setting:

P[G:] =P[DFO =1]
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Game 2 : we introduce a dummy relay algorithm 7, which has oracle access to RO. Given a
random oracle query from the distinguisher, 7 just send the query to RO, and transmits the
answer of RO back to D. Let G2 be the event that D outputs “1” in this case. Since the view of
D is left unchanged, we have:

P[G,] = P[DT"7:S =1] = P[G]

Game 3 : In this game, we modify the simulator S. In particular, we restrict the responses
of the simulator such that they never satisfy certain specific failure conditions. If the simulator
comes up with a response that would result in an inconsistent state, then it fails explicitly
instead of sending that response. The failure conditions describe certain situations that could be
exploited by the distinguisher, such as collisions on the internal state. We just slightly change
the FRESHVALUE function:

1: function FRESHVALUE(h, m)

2. if IV 2L b € Reach then

3: if there exist M’ such that M|m = g(M’) then
4: h' — RO(M')

5: else

6: h i H

7 end if

8: if ' € V then

9: Abort
10: end if
11: Reach « Reach U {h RN h’}
12: else
13: WE K
14: end if

15: V—VuU{hnh'}
16: E%EU{}LL}L/}
17: return b’
18: end function
It should be clear that until no abort occur, the subgraph Reach is in fact a tree rooted in
IV. This follows from the fact that the simulator aborts as soon as a collision in the internal
state is detected. The new value h’ is always drawn uniformly at random. It should be clear that
as long as the simulator does not abort, the number of nodes in V' is upper-bounded by 2¢g + 1.
Therefore, for a given query, the probability of failure is upper-bounded by (2¢gs + 1)/2P.
For all the gs queries sent by the distinguisher, the probability of failure is therefore less than
gs - (2-qs +1)/2P. Let G5 be the event that D outputs “1” in this case. Since the view of D only
changes when the simulator aborts, we have:

2
BlGs] - B[] <2 @1

Game 4 : In this game, we modify the relay algorithm and leave the simulator unchanged.
The underlying idea is to make the responses of the relay algorithm directly dependent on the
simulator. Thus, instead of giving the new relay algorithm 77 an oracle access to the random
oracle RO, it is now given oracle access to the simulator Sg. On a random oracle query X, the relay
algorithm 77 computes the prefix-free encoding of X, g(X). It then applies the Merkle-Damgard
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construction to g(X) and queries the simulator Sy to evaluate the compression function. Thus
the relay algorithm 77 is essentially the same as the random oracle construction pf-MD, except
that it is based on the simulator S; instead of random function F'. Let G4 denote the event that
the distinguisher D outputs “1” when given oracle access to 7; and Sy in this game. Thus, we
know that

P[G4] = P[DT%0 =1]

Before going further, we establish two key properties of Sy. Let us consider the sequence Q
of queries (h;, m;, hl) sent to Sp, where h} is the answer and (h;, m;) is the question. We say that
the IV is reachable, and at a given point in the simulation h} is reachable if there has been a
previous query (h;, m;, h;) where h; was reachable. Then:

i) Until Sy fails, Reach precisely describes the set of reachable chaining values.
ii) Until Sy fails, Reach describes a tree.

These two properties are easy to establish by induction on the number of queries. When the
simulator detects that h; is reachable, it puts its answer h} in Reach. What guarantees that our
two properties hold is that Sy aborts if A, was already “known”. Thus, the set of reachable values
can only be extended by one element, namely k%, and Reach is updated accordingly.

Next, we claim that the following three statements hold:

i) In Game 3, i.e., when D interacts with (T RO,SO), the answers of Sy are consistent with
those of RO as long as Sy does not abort.

it) In Game 4, i.e., when D interacts with ’Tlpf_MD(S“), SO), the answers of Sy are consistent

with those of RO as long as Sy does not abort.

THO and 77 F=MD(So) give the same answers until the simulator aborts.

ii1)
From these three points, we can deduce that the view of the distinguisher D remains un-
changed from game 3 to game 4 if the simulator Sy does not fail in either of the two games.

Proof. i) To detect an inconsistency between Sy and RO, one has to build a chain of queries
corresponding to a valid message, and compare with the output of RO with the last query of
the chain. Note that if the chain is built out-of-order, then the simulator will abort. Therefore
the last query to be sent to Sy is the final block of the prefix free encoding of M. When Sy
detects the final block of a message, it queries RO on the decoded message, which is unique
because Reach is a tree. The answers of RO and Sy are thus consistent.

it) The justification is the same as in the previous point. The fact that 7; sends extra queries
does not change the fact that Sy answers are consistent with the Random Oracle.

iii) Since Sy is consistent with the VIL-RO, the relay algorithm 77 does in fact return RO(M)
by applying the pf-MD construction with Sy. O

We can finally complete the argument by observing that if the maximum length of the prefix-
free encoding of a random oracle query made by D is k blocks, then,

’]P’[G4] — P[Gg,] | < P[SO fails in Game 3] + IP’[SO fails in Game 4]

(gs +1)° + (g5 + K- g0 +1)°
op

<2

Game 5 . In this game, we modify the simulator Sy so as to make its responses independent of the
random oracle RO. For this purpose, we remove the random oracle RO from this game entirely
and the new simulator &1 always chooses a random p-bit response itself, even in situations where
So would have consulted RO. We also remove all the failure conditions from the new simulator
S1. More precisely, we change the simulator in the following way:
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: function FRESHVALUE(h, m)
nEH
V—Vu{hnh'}
E—EU {h m, h’}
return A’/

end function

The responses of these two simulators are identical apart from the failure conditions which
are used by Sy and not by Si: even when Sy consults the random oracle, its response is still
uniformly distributed. Thus, the distinguisher does not notice a difference between these games
if in game 4, the simulator Sy does not fail.

Let G5 denote the event that the distinguisher D outputs “1” in game 5, so that

P[Gs] =P[DT5 =1]
Then we can deduce that:
|P[G5] — P[G4]| < P[S, fails in game 4]

(g5 + K- qo +1)°
op

<2.

Game 6: This is the final game of our argument. Here we finally replace the simulator S; with

the random function F'. Since the relay algorithm 77 simply implemented the prefix-free Merkle-

Damgéard construction, then the view of the distinguisher is in fact the construction world.
Now, by combining games 1 to 6, we can show that

gs +1)° + (g5 + K -qo +1)°
op

)P['DHFvF _ 1] —]P’[DRO’S _ 1}‘ <4. (

D Proof of Theorem (2l

The proof proceed in the same way as the proof of Theorem [T} given in annex [C] The simulator
is shown in Figure [3] page[I2] The pseudo-code shows S, with the failure conditions. Before going
further, a few comments on Sy are in order. When it receives a query (h,m), it checks whether
there exist a symmetric query (E, m), that would trigger the symmetry relation (i.e., it checks
whether the node (h,m) is connected to something in G ). If such a query exist, then both
are treated simultaneously in a “symmetric” way. In particular, if either one of these concerns a
reachable state, then it is treated specially, even if it not the original query, but the “symmetric”
one.

Game 3: let us discuss the probability that Sy fails. It can only happen if h is reachable, which in
turn means that b’ is randomly distributed in H. Sy aborts when A’ € W, b’ € V or ReachU{h'}
covers an edge of Gg,. The probability that A" € W is |W|/2P, and the probability that A’ € V/
is upper-bounded by (4-¢gs+1)/2P, since |V| < 4-¢s+ 1. Let us now discuss the probability that
an edge of Gr, is covered by Reach.

A simple induction on the number of queries shows that the chaining values in Reach are all
randomly and independently distributed in H (this is because Reach is always extended by h’ on
line and A’ is itself always generated randomly). If we ignore the abort conditions, Reach is a
random subset of H of size k < ¢, + 1 after ¢gg queries. There are (2]: ) such subsets, and amongst
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these (,ip?) cover a given edge. The probability that at least one edge out of [WP] is covered is
thus upper-bounded by [WP]| - (ijQ)/(ZI:), which it itself upper-bounded by |WP|-k?/(2F — k)2.

After g5 queries, the probability of failure is therefore bounded by:

qs+12

(g5 +1)
(2r — g5 — 1)°

op

qs +1
o

[P[G3] —P[Gs]| < 4- + W + WPl

Game 4 : we claim that the following four statements hold:

i) In Game 3, i.e., when D interacts with (TRO,SO), the answers of Sy are consistent with
those of RO as long as Sy does not abort.

it) In Game 4, i.e., when D interacts with ngf_MD(S“), SO), the answers of Sy are consistent

with those of RO as long as Sy does not abort.
iii) THEO and 7,7 f=MD(50) give the same answers until the simulator aborts.

iv) As long as it does not abort, the answer of Sy always comply with the relation R.

Consistency with the VIL-RO. Establishing the first three points can be done in the same as it
was done in the proof of Theorem [T} The simulator relies on the fact that Reach is a tree, and
that it exactly describes the reachable chaining values in V. This can be established by arguing
that if S does not abort, then A’ is the only new reachable chaining value created by the current
invocation of FRESHVALUE. Note that A, if it exists, is not reachable.

Conformance to the Relation. The main point is that the relation can never be falsified on
reachable states, and that the samplers are used on non-reachable states to ensure that the
answers are consistent with the relation. More precisely, the simulator aborts as soon as a state
in W becomes reachable, or a pair of states in WP becomes reachable.

Let us assume that the distinguisher can find a query (h,m,h’) with h 2 R’ such that
R1(h,m, k') does not hold. Then we have h € W by definition of W, therefore h can not be reach-
able and h' has necessarily been build by Sampler;. By definition of Sampler;, Ry (h,m,h’)
must hold.

Similarly, let us assume that the distinguisher finds h; — h% and hy —2 h} such that
Ra(h1,m1, ha,ma, b, hy) does not hold. By definition of WP we have (hi,hs) € WP there-
fore h; and hy can not both be reachable. Moreover, we have (hi,m;) < (he,ma) € G;zz.
Without loos of generality, we assume that hs is not reachable. When the first query involving
(h1,m1) or (ha,m2) was sent to Sp, the simulator built the second query. If h; was reachable,
h} has been built by calling the VIL-RO and k), has been built by Sampler,, with assures that
Ra(h1,m1, ha, ma, b, hY) holds. Similarly, if hy is not reachable, b} has been built by Sampler,,
and h/, by Sampler,. We note that if 41 was not reachable at the time when it was queried, it
can not become reachable later without causing the simulator to abort.

Finally, we obtain that the view of the distinguisher does not change as long as the simulator
does not abort:
‘]P’[G4] - ]P’[Gg] ‘ < IP’[SO fails in Game 3] + ]P’[So fails in Game 4}
<2 IP’[SO fails in Game 4]
(gs + 5 q0)”
(2» — g5 — K- qo)”

(g5 + - q0)°
2p

ds +K-qo
2P

<8- +2\W) - + 2|WP| -
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And we conclude:
[P[D#"F = 1] - P[DROS 1] | < [P[G4] - P[Gi]|
< 4P [SO fails in Game 4]

(g5 + # - q0)° qs+ k- qo (gs + K- q0)°

<16 - +4-|W]- +4-|WP|-

2p 2p

(20 — g5 — k- qo0)°
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