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Abstract. AES is the most widely used block cipher today, and its se-
curity is one of the most important issues in cryptanalysis. After 13 years
of analysis, related-key attacks were recently found against two of its fla-
vors (AES-192 and AES-256). However, such a strong type of attack is
not universally accepted as a valid attack model, and in the more stan-
dard single-key attack model at most 8 rounds of these two versions can
be currently attacked. In the case of 8-round AES-192, the only known
attack (found 10 years ago) is extremely marginal, requiring the eval-
uation of essentially all the 2128 possible plaintext/ciphertext pairs in
order to speed up exhaustive key search by a factor of 16. In this paper
we introduce three new cryptanalytic techniques, and use them to get
the first non-marginal attack on 8-round AES-192 (making its time com-
plexity about a million times faster than exhaustive search, and reducing
its data complexity to about 1/32, 000 of the full codebook). In addition,
our new techniques can reduce the best known time complexities for all
the other combinations of 7-round and 8-round AES-192 and AES-256.

Keywords: AES, cryptanalysis, single-key attacks, multiset tabulation,
differential enumeration, key bridging.

1 Introduction

The Rijndael block cipher [11] was developed in the late 1990’s by Joan Daemen
and Vincent Rijmen, and was selected as the Advanced Encryption Standard
(AES) in 2001. Over the last ten years it replaced the Data Encryption Standard
(DES) in most applications, and had become the block cipher of choice for any
new security application. It has three possible key sizes (128, 192, and 256 bits),
and in 2003 the US government had publicly announced that AES-128 can be
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used to protect classified data up to the level of “secret”, and that AES-192 and
AES-256 can be used to protect classified data up to the level of “top secret”.

Due to its importance and popularity, the security of AES had attracted a
lot of attention, and is considered one of the hottest areas of research in crypt-
analysis. A major breakthrough was the recent discovery of related-key attacks
on the full versions of AES-192 and AES-256 [6, 7] which are faster than exhaus-
tive search, but have impractical complexities. In another line of research [5],
related-key attacks requiring practical time complexity of 245 were found on
AES-256 with up to 10 rounds, and related key attacks requiring semipractical
time complexity of 270 were found on AES-256 with 11 rounds (the full AES-256
algorithm has 14 rounds, so none of these attacks endanger the security of AES
in real applications).

The main weakness of AES-192 and AES-256 exploited in these attacks was
their extremely simple key schedule. In a related-key attack model, this made it
possible to cancel data differences with corresponding key differences over many
rounds of AES. This created a very high probability differential characteristic,
which led to a greatly improved time complexity. However, such attacks make a
very strong assumption that the attacker can ask the encryption box to modify
the unknown key in a known way. Some of these attacks even assume that
the attacker can obtain a large number of related keys, or that he can obtain
related intermediate subkeys — see [6] for a discussion of these possibilities.
Consequently, related-key attacks are important considerations during the design
and certification stage of new ciphers, but are not considered a realistic threat
in practical security protocols which use the block cipher in a standard way.

In this paper we consider the classical attack model of a single key and multi-
ple known or chosen plaintext/ciphertext pairs. In this model the attacker has to
deal with the very well designed data path of AES, and cannot directly benefit
from its weak key schedule. Consequently, there are no known attacks which are
faster than exhaustive search on any one of the three flavors of AES, and the
best we can do is to attack reduced round versions of AES. In the case of AES-
256, the largest number of rounds we can attack faster than the 2256 complexity
of exhaustive search is 8. In the case of AES-192 the reference complexity of
exhaustive search is reduced to 2192, and while there is one attack on 8-round
AES-192 which was published in FSE’2000 [15], it is extremely marginal: It re-
quires the evaluation of essentially all the possible plaintext/ciphertext pairs
under the unknown key, and even then the time required to derive the key is
only 16 times faster than the 2192 complexity of exhaustive search (one can argue
that given the complete codebook of size 2128, there is no need to find the actual
key in order to easily decrypt any given ciphertext . . . ). In the case of AES-128,
there is no known attack on its 8-round version, and the best we can do is to
attack its 7-round version.

In order to improve all these known attacks, and especially the marginal
attack on 8-round AES-192 which no one was able to improve upon in the last ten
years, we develop three new cryptanalytic techniques. Our starting point is the
attack on 7-round AES developed by Gilbert and Minier [16], which constructs
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Rounds AES-128 AES-192 AES-256 AES-IND

8 Best Published N/A 2188 † 2204 † 2212 ⋆

Our Results N/A 2172 2196 2204

† — Square. ⋆ — Meet in the middle.
AES-IND — AES with independent subkeys.

Table 1. Comparing the time complexities of the best previous attacks and our new
attacks

a large table of 272 entries, where each entry contains a sequence of 256 byte
values. This idea was extended to 8-round AES by Demirci and Selçuk [12], who
constructed an even larger table of 2192 entries (again containing sequences of 256
byte values, which are constructed in a slightly modified way). Due to the 2200

time required just to construct this table, this attack is worse than exhaustive
search for 8-round AES-192, and can only be applied to 8-round AES-256.

Our first new idea (called multiset tabulation) is to replace the sequence of
256-byte values in each table entry by the multiset of its values. Even though we
lose some information, we show that it is still possible to use such a table in order
to discard with very high probability incorrect key guesses. This modification
makes it possible to reduce the number of table entries (and thus also the time
required to prepare the table) by a factor of 28. A much bigger saving (by a factor
of 257) in the size of the table is obtained by another new technique which we
call differential enumeration. It uses some truncated differential (which need not
have particularly high or low probability, as required in standard or impossible
differential attacks) in order to enumerate the entries of such a table in a much
more efficient way: Instead of directly enumerating state values, the attacker
derives them indirectly by enumerating the input and output differential values
of certain internal S-boxes. By reducing the space complexity in such a major
way, we can now trade it off with the high time complexity of the Demirci and
Selçuk attack in order to get greatly improved attacks. Finally, we develop a new
key bridging technique which exploits the weak key schedule of AES by using
the following surprising observation: In the particular case of 8-round AES-192,
it is possible to compute one byte of the whitening subkey (used before the first
round) directly from four bytes of the last subkey (used at the end of the eighth
round), even though they are separated by eight consecutive key mixing stages.
Since our attack requires guessing of these five subkey bytes in the first and last
rounds, we get an extra saving of 28 in our time complexity. By combining these
three techniques, we can now break this previously marginal case in about one
millionth of the complexity of exhaustive search.

Our new results are summarized and compared with the best previously
known single-key attacks in Table 1. As can be seen in this table, our time
complexities for 8-round AES are considerably better than the best previous
results for both AES-192 and AES-256. In addition, our attack can overcome
any possible enlargement of the key size and improvement of the key schedule of
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Fig. 1. An AES round

8-round AES, since we can directly find all the subkeys of AES-IND (in which
they are independently chosen) with just a little higher complexity.

The rest of this paper is organized as follows. In Section 2 we describe the
AES block cipher and introduce our notation. In Section 3 we describe the
techniques used in previous attacks on reduced round AES, and analyze their
complexity. In Section 4 we introduce the multiset tabulation technique and
prove its validity by rigorous probabilistic analysis. The differential enumeration
technique is introduced in Section 5. In Section 5.1 we introduce the key bridging
technique, prove its validity, and discuss when it can be applied to improve other
attacks on AES. We use our new techniques in Section 6 to improve the best
known attacks on 7-round AES, and in Section 7 to improve the best known
attacks on 8-round AES. In Appendix A we analyze another improvement of
the Demirci-Selçuk attack on 7-round AES proposed in [13] and show that its
time complexity is significantly higher than claimed by the authors. Finally, we
summarize our results in Section 8.

2 A Short Description of AES

The advanced encryption standard (AES) [11] is an SP-network that supports
key sizes of 128, 192, and 256 bits. A 128-bit plaintext is treated as a byte matrix
of size 4x4, where each byte represents a value in GF (28). An AES round applies
four operations to the state matrix:

– SubBytes (SB) — applying the same 8-bit to 8-bit invertible S-box 16 times
in parallel on each byte of the state,

– ShiftRows (SR) — cyclic shift of each row (the i’th row is shifted by i bytes
to the left),

– MixColumns (MC) — multiplication of each column by a constant 4x4 ma-
trix over the field GF (28), and

– AddRoundKey (ARK) — XORing the state with a 128-bit subkey.

We outline an AES round in Figure 1.
In the first round, an additional AddRoundKey operation (using a whitening

subkey) is applied, and in the last round the MixColumns operation is omitted.
Rounds which include the MixColumns operation are called full rounds.

The number of rounds depends on the key length: 10 rounds for 128-bit
keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys. The rounds are
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numbered 0, . . . , Nr− 1, where Nr is the number of rounds (Nr ∈ {10, 12, 14}).
For the sake of simplicity we shall denote AES with n-bit keys by AES-n, e.g.,
AES with 128-bit keys (and thus with 10 rounds) is denoted by AES-128. We
use AES to mean all three variants of AES.

The key schedule of AES takes the user key and transforms it into Nr + 1
subkeys of 128 bits each. The subkey array is denoted by W [0, . . . , 4 · Nr + 3],
where each word of W [·] consists of 32 bits. Let the length of the key be Nk
32-bit words, then the first Nk words of W [·] are loaded with the user supplied
key. The remaining words of W [·] are updated according to the following rule:

– For i = Nk, . . . , 4 ·Nr + 3, do
• If i ≡ 0 mod Nk then W [i] = W [i − Nk] ⊕ SB(W [i − 1] ≪ 8) ⊕
RCON [i/Nk],

• else if Nk = 8 and i ≡ 4 mod 8 then W [i] = W [i− 8]⊕ SB(W [i − 1]),
• Otherwise W [i] = W [i− 1]⊕W [i−Nk],

where RCON [·] is an array of predetermined constants, and ≪ denotes rotation
of the word by 8 bits to the left.

2.1 The Notations Used in the Paper

In the sequel we use the following definitions and notations:
The state matrix at the beginning of round i is denoted by Xi, and its

bytes are denoted by 0, 1, 2, . . . , 15, as described in Figure 1. Similarly, the state
matrix after the SubBytes and the ShiftRows operations of round i are denoted
by Xi(SB) and Xi(SR), respectively.

We denote the subkey of round i by ki, and the first (whitening) key by k−1,
i.e., ki = W [4 · (i + 1)]||W [4 · (i + 1) + 1]||W [4 · (i + 1) + 2]||W [4 · (i + 1) + 3].
In some cases, we are interested in interchanging the order of the MixColumns
operation and the subkey addition. As these operations are linear they can be
interchanged, by first XORing the data with an equivalent subkey and only
then applying the MixColumns operation. We denote the equivalent subkey for
the altered version by ui, i.e., ui = MC−1(ki). The bytes of the subkeys are
numbered by 0, 1, . . . , 15, in accordance with the corresponding state bytes.

We use the following notations for intermediate encryption values: The inter-
mediate state at the beginning of round i in the encryption of P j is denoted by
Xj

i , and its bytes are denoted by Xj
i,l, for 0 ≤ l ≤ 15. Similarly, the intermediate

values after the SubBytes and the ShiftRows operations of round i are denoted
by Xj

i(SB),l and Xj

i(SR),l, respectively.

In our attacks we mostly consider the encryption of δ-sets, which are struc-
tured sets of 256 plaintexts {P 0, P 1, . . . , P 255} in which one active byte assumes
each one of the 256 possible values exactly once, and each one of the other 15
bytes is a (possibly different) constant. A state byte is called balanced if the XOR
of its 256 values during the encryption of a δ-set is zero.

In all the observations considering reduced-round versions of AES, the num-
bering of the rounds starts with round 0. When we analyze the behavior of some
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Fig. 2. The development of a δ-set through 3 rounds of AES, where A stands for an
active byte, B stands for a balanced byte, and C stands for a constant byte

consecutive inner rounds of AES, we shift the round numbering accordingly,
depending on the number of rounds we add at the beginning.

Finally, we measure the time complexity of all the attacks in units which are
equivalent to a single encryption operation of the relevant reduced round variant
of AES. We measure the space complexity in units which are equivalent to the
storage of a single plaintext (namely, 128 bits). To be completely fair, we charge
for all the operations carried out during our attacks, and in particular we do not
ignore the time and space required to prepare the various tables we use. Note
that in this sense, all the standard time/memory tradeoff attacks are worse than
exhaustive search due to their lengthy preprocessing phase.

3 Previous Work

The first attack developed against AES was the Square attack, which was found
by its designers [10]. The Square attack is based on the following observation:

Observation 1 Consider the encryption of a δ-set through three full AES rounds.
The set of 256 corresponding ciphertexts is balanced, i.e., the XOR of the 256
values in each one of its 16 bytes is zero.

The observation follows easily from the structure of AES, as demonstrated
in Figure 2.

This property is the basis of many attacks on reduced round variants of AES.
For example, it can be used to attack 6-round AES by adding one round at the
top and two rounds at the bottom. In a naive version of such an attack, the
adversary guesses four bytes of the key k−1 in order to construct a collection of
256 plaintexts which form a δ-set at state X1 (e.g., if the active byte of the δ-set
is byte 0, bytes 0, 5, 10, 15 of k−1). Then she guesses four bytes of the equivalent
subkey u5 and one byte of the equivalent subkey u4, and checks whether the 256
intermediate values in one byte of the state X4 sum up to zero. (For example,
if the byte to be checked is byte 0, then the subkey bytes the adversary should
guess are byte 0 of u4 and bytes 0, 7, 10, 13 of u5). This naive version requires 232
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chosen plaintexts and about 272 encryptions. In [15], the attack was improved
using partial sums and other techniques, which reduced the time complexity to
the practical value of 242 encryptions. The resulting attack is the best known
attack on 6-round AES.

In [16], Gilbert and Minier proposed to refine the information on the inter-
mediate encryption values of the δ-sets exploited in the attack. Their attack is
based on the following observation:

Observation 2 Consider the encryption of a δ-set through three full AES rounds.
For each one of the 16 bytes of the ciphertext, we can define a sequence of 256
values for this byte by ordering the plaintexts according to the value of their
active byte. Then any such sequence is fully determined by just 9 byte param-
eters, which are complex functions of the constants in the δ-set and the key
bytes. Consequently, for any fixed byte position, there are at most 272 possible
sequences when we consider all the possible choices of keys and δ-sets (out of
the (28)256 = 22048 “theoretically possible” 256-byte sequences, and out of the
2256+15×8 = 2376 sequences which could be potentially defined by the choice of 15
constant bytes and 256 key bits) .

This observation was used in [16] to mount an attack on 7-round AES-128
with time complexity slightly smaller than that of exhaustive key search. Since
the attack algorithm is a bit complex and not used in our paper, we omit it here.

In [12], Demirci and Selçuk extended the observation of [16] by another round.
They showed the following:

Observation 3 Consider the encryption of a δ-set through four full AES rounds.
For each of the 16 bytes of the state, the ordered sequence of 256 values of that
byte in the corresponding ciphertexts is fully determined by just 25 byte param-
eters. Consequently, for any fixed byte position, there are at most 2200 possible
sequences when we consider all the possible choices of keys and δ-sets (out of
the (28)256 = 22048 “theoretically possible” 256-byte sequences, and out of the
2256+15×8 = 2376 sequences which could be potentially defined by the choice of 15
constant bytes and 256 key bits).3

This observation was used in [12] to mount attacks on 7-round and 8-round
variants of AES-256. The attack on 7-round AES-256 is roughly as follows:

1. Preprocessing phase: Compute all the 2192 possible values of the 255-byte
sequence given in Observation 3, and store them in a hash table.

2. Online phase:

3 In [12] the authors note that the function fc1,...,c25(x) can be written as
fc1,...,c25(x) = gc1,...,c24(x)⊕ c25, and thus one can reduce the number of possible se-
quences by picking some x0, and considering the augmented function f ′

c1,...,c24
(x) =

fc1,...,c25(x) − fc1,...,c25(x0) = gc1,...,c24(x) − gc1,...,c24(x0). In this case, the number
of parameters is reduced to 24, the number of “interesting” entries in each sequence
is reduced to 255 (as f ′(x0) = 0, independently of the choice of x0 and c1, . . . , c24),
and the number of possible sequences is reduced to 2192.
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(a) Guess the value of four bytes in the whitening key k−1 and of one byte
in k0, and for each guess, construct a δ-set from the data. (For example,
if the active byte of the δ-set is byte 0, then the guessed bytes are bytes
0, 5, 10, 15 of k−1 and byte 0 of k0. Note that byte 0 of k0 is used only
to compute the order of the values in the δ-set).

(b) Guess four bytes of the equivalent subkey u6 and one byte of the equiva-
lent subkey u5 and partially decrypt the ciphertexts of the δ-set to obtain
the sequence of 256 intermediate values of one byte of the state X5. (For
example, if the byte to be checked is byte 0, then the subkey bytes the
adversary should guess are byte 0 of u5 and bytes 0, 7, 10, 13 of u6).

(c) Check whether the sequence exists in the hash table. If not, discard the
key guess.

The data complexity of the attack is 232 chosen plaintexts. The time com-
plexity of the online phase is relatively modest at 280, but the space complexity
and the time complexity in encryption operations required to prepare this large
table are about 2200. These complexities are worse than exhaustive search for
both AES-192 and AES-128. However, Demirci and Selçuk presented a tradeoff,
which makes it possible to decrease the memory complexity at the expense of
increasing both the data and the online time complexities. This results in an
attack on 7-round AES-192 with data complexity of 296 chosen plaintexts, and
time and space complexities of 2144.

The attack in [12] can be extended to 8-round AES-256 by guessing the
full subkey of the last round. This increases the time complexity of the online
phase from 280 to 2208 encryptions, and makes it impossible to rebalance the
parameters in order to attack 8-round AES-192.

Finally, in a more recent paper, Demirci et al. [13] claim that by optimizing
their technique they can also attack 7-round AES-128 faster than exhaustive
search. However, as we show in Appendix A, the analysis of [13] is flawed, and
the correct running time of the attack is about 232 times more than claimed,
and in particular greater than the complexity of exhaustive key search for the
128-bit key version.

4 The Multiset Tabulation Technique

Our first technique improves Observation 3 by replacing the sequence of 256 val-
ues with the multiset of the values. We show by a rigorous probabilistic analysis
that although information is lost in the transformation to a multiset, the new
table still allows the adversary to discard all the incorrect key guesses with an
overwhelming probability.

Observation 4 Consider the encryption of a δ-set {P 0, P 1, . . . , P 255} through
four full AES rounds.
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For each 0 ≤ l ≤ 15, the (un-ordered) multiset4
[

X0
4,l ⊕X0

4,l, X
1
4,l ⊕X0

4,l, . . . , X
255
4,l ⊕X0

4,l

]

is fully determined by the following 24 byte parameters:

– The full 16-byte state X0
2 .

– Four bytes of the state X0
1 . (For example, if the active byte of the δ-set is

byte 0 then these are bytes 0, 1, 2, 3).
– Four bytes of the subkey k2. (For example, if l = 0 then these are bytes

0, 5, 10, 15).

Moreover, this multiset can assume only 2184 values out of the
(

510
256

)

≈ 2505.2

“theoretically possible” values.5

Our variant has several advantages over Observation 3:

– In our variant, the parameters upon which the sequence depends are specified
explicitly. This improvement will be crucial for the major reduction in the
number of parameters which we shall present in the next section.

– The smaller number of possible configurations in our variant (2184 instead of
2192) allows to reduce the memory requirements of the attack and the time
complexity of the preprocessing phase by a factor of 28.

– Since we consider a multiset instead of an ordered sequence, the adversary
does not need to know the order of the values in the δ-set at the beginning
of the four rounds. This allows to reduce the time complexity of the online
phase of the attack by a factor of 28 (by avoiding the guess of one byte in
the subkey k0).

Proof: The proof emphasizes the meet-in-the-middle nature of the observation.
We start with the “bottom side” of the four rounds. First, we observe that if

the values {X0
2 , X

1
2 , . . . , X

255
2 } are known, then the knowledge of bytes 0, 5, 10, 15

of k2 yields the knowledge of the entire first column before the AddRoundKey of
round 3 in all the 256 encryptions. Since the AddRoundKey preserves differences,

this yields the desired values of the vector of differences
(

X0
4,l ⊕X0

4,l, X
1
4,l ⊕X0

4,l, . . . , X
255
4,l ⊕X0

4,l

)

.

Second, we note that in order to know the values {X0
2 , X

1
2 , . . . , X

255
2 }, it is

sufficient to know the value X0
2 which is given as part of the parameters, and

the differences
(

X0
2 ⊕X0

2 , X
1
2 ⊕X0

2 , . . . , X
255
2 ⊕X0

2

)

. Since the ShiftRows, the
MixColumns and the AddRoundKey operations are linear, it is thus sufficient to

know the differences
(

X0
1(SB) ⊕X0

1(SB), X
1
1(SB) ⊕X0

1(SB), . . . , X
255
1(SB) ⊕X0

1(SB)

)

.

Now we turn to the “top side” of the four rounds. In round 0, the differ-

ences
(

X0
0(SB) ⊕X0

0(SB), X1
0(SB) ⊕X0

0(SB), . . . , X
255
0(SB) ⊕X0

0(SB)

)

are known

— these are exactly the 256 possible differences in byte 0 (the rest of the
bytes are equal). Note that the order of the differences is not known, but this

4 Unlike sets, elements can occur multiple times, and the multiset retains this multi-
plicity along with the values.

5 The calculation of the number of possible values is explained at the end of this
section.
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does not disturb the adversary since in our attack she is interested only in
the multiset and not in the sequence. Since the ShiftRows, the MixColumns,
and the AddRoundKey operations are linear, the differences

(

X0
1 ⊕ X0

1 , X
1
1 ⊕

X0
1 , . . . , X

255
1 ⊕X0

1

)

are also known. By the structure of the δ-set, these differ-
ences are active in bytes 0, 1, 2, 3 and passive in the rest of the bytes. Since
bytes 0, 1, 2, 3 of X0

1 are given as part of the parameters, bytes 0, 1, 2, 3 of
the values {X1

1 , . . . , X
255
1 } are thus also known, and so are bytes 0, 1, 2, 3 of

{X0
1(SB), X

1
1(SB), . . . , X

255
1(SB)}. Since the differences Xj

1(SB) ⊕X0
1(SB) in all the

bytes except for 0, 1, 2, 3 are zero for all j = 1, 2, . . . , 255, this implies that the full

vector of differences
(

X0
1(SB) ⊕X0

1(SB), X
1
1(SB) ⊕X0

1(SB), . . . , X
255
1(SB) ⊕X0

1(SB)

)

is known, as required above.
Finally, since the multiset depends on 24 byte parameters, it can assume at

most 2192 possible values. However, we note that in this count, each δ-set is
represented by 28 multisets, according to the 256 possible choices of P 0. We can
then reduce the number of parameters by one by choosing P 0 such that X0

1,0 = 0
(this is possible since byte 0 in state X1 is active). This reduces the number of
possible multisets to 2184, concluding the proof. �

4.1 Analysis of The Distribution of Sequences

While it is easy to see that in the original Demirci-Selçuk attack, all the wrong
subkeys are discarded with an overwhelming probability, it is far less clear that
the same holds for our multiset tabulation technique. In order to address this
issue, we provide in this subsection a rigorous analysis of the distribution of the
sequences generated in the attacks described in the paper. The analysis shows
that despite the loss of information in our generation of tables, the adversary is
still able to discard all the wrong subkey guesses with overwhelming probability.

In the analysis, we assume that the sequences obtained during the attack for
wrong key guesses look as they were generated randomly (with the appropriate
distribution). This assumption is very common in cryptanalysis, and in our case
it is founded on the diffusion properties of AES. A wrong subkey guess (even
in a single byte) will either completely change the values in the sequence, or
even change the identity of which elements are taken into consideration (or their
order).

The first attack we discuss is the original attack of Demirci-Selçuk, dis-
cussed in Observation 3. In this attack, a vector of 256 entries is evaluated
as (f(0), f(1), . . . , f(255)), where f(i) = fc1,...,c25(i). As the evaluations of the
vector are randomly distributed (for a wrong subkey, the outcome is expected
to be random), we can easily conclude that there are 22048 possible vectors, all
with the same probability, where the number of “good” vectors (i.e., ones that
can be produced by any of the admissible functions), is only 2200. Hence, the
probability that a wrong subkey guess generates a vector which is admissible is
extremely low, 2−2048 · 2200 = 2−1848.

The improved variant of the attack, mentioned in the footnote of the ob-
servation, takes into consideration vectors of 255 elements, which are generated
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by taking the previous 256-element vectors, and subtracting the first element
from all other elements (discarding the first entry which is always 0 after this
procedure). It is easy to see that all 256255 = 22040 vectors can appear with
the same probability, and as there are 2192 admissible vectors, defined by the
function f ′

c1,...,c24
(x) = fc1,...,c25(x) − fc1,...,c25(0), again, the probability that a

wrong subkey generates an admissible vector is 2−2040 · 2192 = 2−1848.

For the multiset sequences used in our attack, the analysis is more delicate.
First we note that each entry X0

4,ℓ ⊕ X i
4,ℓ (besides the entry i = 0, which is

always zero) is distributed randomly. Hence, we look at 255 values, each chosen
uniformly and independently from the set {0, 1, . . . , 255}. While this may seem
similar to the previous attack, we deal with multisets, where the order has no
meaning. This results with a significantly smaller sample space. In other words, a
multiset can be considered as a vector of 256 counters, each counting how many
times a specific entry value for X0

4,ℓ ⊕X i
4,ℓ is encountered, such that the sum of

all counters is 255 (considering that 0 is always counted at least once, and hence
we disregard it).

Using selection with repetitions, it is easy to see that the number of possible
multisets can be described by a sequence of 255 place holders and 255 dividers
placed in some order in a linear array of 510 entries. Hence, the number of
repetitions of value i is defined by the number of place holders between the i-th
and i + 1-st dividers. This allows counting the number of possible multisets as
(

510
256

)

≈ 2505.2.

Additionally, we have to consider the fact that the multiset can is actually
a representative of a few other vectors (picking a different X0, yields a shifted
version of the vector). As each multiset is a representative of at most 255 other
vectors,6 we obtain that there are more than 2498.2 possible counter vectors that
may be encountered.

However, unlike the prior cases where the sample space was distributed uni-
formly, in this case, we obtain a non-uniform distribution. For example, the
multiset {255, 0, 0, . . . , 0}, occurs with probability of 2−2040, while the multiset
{254, 1, 0, . . . , 0} occurs with a larger probability of 255 · 2−2040 (as it does not
matter which entry of the 255 values X0

4,ℓ ⊕X i
4,ℓ is 1). Thus, we cannot claim

that the probability of encountering an admissible multiset when examining a
wrong subkey is 2184 · 2−498.2, like in the previous attacks. It may occur that
the admissible multisets have a higher probability than the non-admissible ones,
and hence the probability of encountering them for a wrong subkey guess is no
longer negligible.

In order to overcome this problem, we use Poisson approximation to de-
tect the most probable multisets, and show that there are more than 2467.6

equiprobable multisets which are the most probable ones, and thus even if all
the admissible multisets are contained in this class, the probability of obtain-

6 Picking a different starting point X0,⋆, results in changing all the 255 entries of the
multiset by XORing them with X0,⋆⊕X0. As there are at most 255 other values for
X0,⋆, each multiset belongs to the same equivalence class with as at most 255 other
multisets.
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ing an admissible multiset for a wrong key guess is still bounded from above
by 2184 · 2−467.6 = 2−283.6. Since the adversary checks less than 2200 wrong
key guesses, it follows that all of them are expected to produce non-admissible
multisets with overwhelming probability.

As each value of the multiset (up to the first entry) is chosen randomly, we can
approximate the number of times a specific value appears in the multiset using
a Poisson distribution with a mean value of 255/256. This way, we can conclude
that on average out of the 256 possible values X0

4,ℓ ⊕X i
4,ℓ (after removing the

X0
4,ℓ⊕X0

4,ℓ = 0 entry), about 94 do not appear, 94 appear once, 47 appear twice,
16 three times, four values appear four times, and one is expected to appear five
times.

As this is the most probable outcome, we look at these cases, and show that
there are sufficiently many of these. Notably, there are

(

256

94

)

·

(

162

94

)

·

(

68

47

)

·

(

21

16

)

·

(

5

4

)

·

(

1

1

)

= 2238.5 ·2155.0 ·257.4 ·214.3 ·22.3 = 2467.6

possible multisets of this structure. Hence, we can conclude that even though
the outcome space is not uniformly distributed, there is a sufficient number of
multisets with the highest probability, to ensure that the attack succeeds.

5 The Differential Enumeration Technique

Observation 4 shows that the possible multisets depend on 24 explicitly stated
parameters. In order to reduce the size of the precomputed table, we would
like to choose the δ-set such that several of these parameters will equal to pre-
determined constants. Of course, the key bytes are not known to the adversary
and thus cannot be “replaced” by such constants. At first glance, it seems that
the bytes in the intermediate states X0

1 and X0
2 also cannot be made equal to

pre-determined constants by choosing the plaintexts appropriately, since they are
separated from the plaintexts by operations involving an unknown key. However,
we show that by using an expected-probability differential (i.e., a differential
whose probability is not assumed to be especially high or especially low) for
4-round AES, the plaintext P 0 can be chosen such that the full 128-bit state
X0

2 will assume one of at most 264 particular values (which can be computed in
advance and are independent of the choice of key) instead of 2128 possible values.

Consider a truncated differential for four full AES rounds, in which both the
input and the output differences are non-zero in a single byte (e.g., byte 0 both
in the input and in the output). The probability of this differential is expected to
be about 2−120, 7 and thus it is expected that 2120 randomly chosen pairs with

7 The probability of 2−120 is based on the assumption that 4-round AES behaves like
a random permutation with respect to this differential, and thus forcing 120 bits
to be equal has this probability. Theoretically, it may be the case that due to the
algebraic structure of AES, this differential is impossible, which would lead to very
strong impossible differential attacks on reduced-round variants of AES. However,
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Fig. 3. The 4-Round Differential Characteristic Used in Our Attack

difference only in byte 0 would contain one pair that satisfies the differential.
Moreover, since each δ-set contains 215 pairs with difference in a single byte, a
collection of 2105 randomly chosen δ-sets in which byte 0 is active is expected to
contain a right pair with respect to the differential. For right pairs, we show the
following:

Observation 5 Let (P 1, P 2) be a right pair with respect to the differential (i.e.,
the difference P 1 ⊕P 2 is non-zero only in byte 0, and the difference between the
corresponding ciphertexts, C1 ⊕ C2, is also non-zero only in byte 0). Then the
intermediate state X1

2 assumes one of at most 264 prescribed values.

Proof:

The proof is a meet-in-the-middle argument. We start with the “top side” of
the four rounds. Due to the structure of AES, the difference between the states
X1

1(SB) and X2
1(SB) (i.e., the intermediate values after SubBytes of round 1) is

non-zero only in bytes 0, 1, 2, 3. Thus, this difference can assume at most 232

distinct values. Since the ShiftRows, the MixColumns, and the AddRoundKey
operations are linear, this implies that the difference X1

2 ⊕ X2
2 can assume at

most 232 different values.

On the other hand, from the “bottom side” we see that the difference X1
3 ⊕

X2
3 is non-zero only in bytes 0, 5, 10, 15. Since the ShiftRows, the MixColumns,

and the AddRoundKey operations are linear, this implies that the difference
X1

2(SB) ⊕X2
2(SB) can assume at most 232 different values.

It is well-known that given the input and output differences of the SubBytes
operation, there is one possibility on average for the actual pair of input/output
values.8 Moreover, this pair of actual values does not depend on the key, and
can be easily found by precomputing the full difference distribution table of
the SubBytes operation. Since for the right pair we consider, there are at most
232 ·232 = 264 possible pairs of input/output difference of the SubBytes operation
in round 2, there are at most 264 possible values of the full state X1

2 , as asserted.
�

we could not find any specific reason why this should be the case, and unfortunately,
we cannot check this differential experimentally due to its extremely low probability.

8 Actually, given the input/output differences, with probability of about 1/2 there are
no such pairs, with probability of about 1/2 there are two pairs, and with probability
of about 1/256 there are four pairs.
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It follows from the observation that if we choose the δ-set such that P 0 is a
member of a right pair with respect to this expected-probability differential, we
are assured that the state X0

2 can assume at most 264 possible values. Moreover,
since these values do not depend on the key and can be computed in advance,
this allows to construct the “table of possible multisets” only for these 264 values,
which reduces the size of the table and the time complexity of the preprocessing
phase by a huge factor of 257 as shown below.

Three additional remarks are due.

– First, we note that in order to exploit the expected-probability differential we
have to consider as many as 2113 chosen plaintexts, which increases the data
complexity of the attack. However, the resultant tradeoff is advantageous
since the data complexity was smaller than the other complexities.

– Second, in order to detect the right pair with respect to the differential, the
adversary has to guess several key bytes in the rounds before and after the
differential. However, it turns out that if the differential is chosen such that
the non-zero differences are in the bytes which are active in the δ-set, these
key bytes coincide with the key bytes that should be guessed in the original
Demirci-Selçuk attack. Hence, this does not increase the time complexity of
the online phase of the attack.

– Finally, we note that the total number of possible multisets after the com-
bination with the differential is not 2184 · 2−64 = 2120, but rather 2127. The
reason for this increase is that in the original attack, the number of multisets
is reduced by a factor of 28 since each δ-set corresponds to 28 different mul-
tisets, according to the possible choices of P 0 (see proof of Observation 4).
In the new version of the attack, we are forced to choose P 0 to be one of the
members of the right pair w.r.t. the differential, and thus each δ-set corre-
sponds to only two “special” multisets. 9 Therefore, the memory complexity
and the time complexity of the preprocessing phase are reduced by a factor
of 257 rather than 264, compared to Observation 4.

5.1 The Key Bridging Technique

In this section we show that the time complexity of the online phase in the
attacks on 8-round AES-192 can be reduced significantly by using key schedule
considerations. While most of these considerations are simple, one of them is a

9 We note that while the table of possible multisets is constructed according to one
member of the right pair, it may occur that in the actual attack, the other member
is chosen as P 0, and thus the multiset does not match the table (even for the right
key guess). A simple solution is to repeat the attack for both members of the right
pair. A more advanced solution, which allows to save the extra factor two in the time
complexity of the attack, is to store the multisets only up to XOR with a constant
value. This can be achieved by a small modification to the preprocessing phase,
consisting of XORing each multiset with the 256 possible byte values and storing in
the table the resulting multiset which is the least in the lexicographic order amongst
the 256 possibilities.
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Fig. 4. The Subkeys k5, k6, and k7 in the Key Schedule of AES-192. The known bytes
are colored in black, and the retrieved bytes are colored in gray.

novel observation which we call key bridging technique, that allows the adversary
to deduce some subkey bytes from some other subkey bytes, even though they
are separated by many key mixing steps. At the end of the section, we show that
except for its application in our attack, the key bridging technique can be used
to improve two other previously known attacks on 8-round AES.

We start with the attack on 8-round AES-192. Recall that in the online phase
of this attack, the adversary has to guess four bytes of the subkey k−1, one byte
of the equivalent subkey u5, four bytes of the equivalent subkey u6, and the full
k7. The exact number of bytes that should be guessed depends on the choice of
the active byte of the δ-set and of the byte in which the multiset is constructed. It
turns out that if the byte to be examined at the end of round 4 is one of the bytes
1, 6, 11, 12, then the number of guessed key bytes is reduced by three. Indeed, by
the key schedule of AES-192, the knowledge of k7 yields the knowledge of the
first two columns of k6 (and thus also of u6) and of the last column of k5 (and
thus also of u5), see Figure 4.

If the byte to be checked at the end of round 4 is byte 1, then the bytes to
guess are byte 13 of u5, bytes 3, 6, 9, 12 of u6, and the full subkey k7. However,
as shown earlier, once k7 is guessed, bytes 3, 6 of u6 and byte 13 of u5 can be
computed from the key schedule, thus reducing the time complexity of the online
phase of the attack by a factor of 224.

The complexity can be further reduced by another factor of 28 using the
following novel observation:

Observation 6 By the key schedule of AES-192, knowledge of columns 0, 1, 3
of the subkey k7 allows to deduce column 3 of the whitening key k−1 (which is
actually Column 3 of the master key).

The main novelty in this observation is that it exploits the weak key schedule
of AES-192 in order to provide a surprisingly long “bridge” between two subkeys
which are separated by 8 key mixing steps (applied in the reverse direction). In

15



particular, it makes it possible to compute one byte in the whitening subkey
k−1 directly from four bytes in the last subkey k7

10, which saves a factor of
28 in the time complexity of any attack which has to guess these five subkey
bytes. Since guessing key material in the first and last round is a very common
cryptanalytic technique, this observation can have wide applicability (for exam-
ple, it can reduce the time complexity of the impossible differential attack on
8-round AES-192 presented in [24] from 2180 to 2172, which is the same as our
time complexity but in the much stronger attack model of related keys).
Proof:
We start with a simpler observation first presented in [14]:

By the key schedule of AES-192, for any k ≥ 2 and for 0 ≤ j ≤ 3, we have

W [6k + j]⊕W [6k + j + 2] =
=

(

W [6k + j]⊕W [6k + j + 1]
)

⊕
(

W [6k + j + 1]⊕W [6k + j + 2]
)

= W [6(k − 1) + j + 1]⊕W [6(k − 1) + j + 2]
= W [6(k − 2) + j + 2],

(1)

where W [·] are the 32-bit words generated by the key schedule algorithm. Thus,
the knowledge of words W [6k + j] and W [6k + j + 2] is sufficient to retrieve
W [6(k − 2) + j + 2]. Similarly, it was observed in [14] that for any k ≥ 2, the
knowledge ofW [6k+1] and W [6(k−1)+5] is sufficient to retrieveW [6(k−2)+1].
Indeed, we have

W [6k + 1]⊕ SB(W [6(k − 1) + 5] ≪ 8) =
=

(

W [6k + 1]⊕W [6k]
)

⊕
(

W [6k]⊕ SB(W [6(k − 1) + 5] ≪ 8)
)

= W [6(k − 1) + 1]⊕W [6(k − 1)]⊕RCON [k]
= W [6(k − 2) + 1]⊕RCON [k].

(2)

Both observations allow to “jump” over one row in the key schedule algorithm
(see Figure 5).

Combining the two observations, we see that for any k ≥ 4, the knowledge of
W [6k + 3] and W [6(k − 1) + 5] is sufficient to retrieve W [6(k − 4) + 3]. Indeed,
we have

W [6k + 3]⊕ SB(W [6(k − 1) + 5] ≪ 8) =
=

(

W [6k + 3]⊕W [6k + 1]
)

⊕
(

W [6k + 1]⊕ SB(W [6(k − 1) + 5] ≪ 8)
)

= W [6(k − 2) + 3]⊕W [6(k − 2) + 1]⊕RCON [k]
= W [6(k − 4) + 3]⊕RCON [k].

(3)
This already allows us to “jump” over three rows in the key schedule algorithm.

Finally, in order to prove Observation 6, note that by assumption, the words
W [32],W [33], and W [35] are known. Since we have W [33] ⊕ W [35] = W [23]
and W [32]⊕W [33] = W [27], this implies that W [27] and W [23] are known. By
Equation (3) above (with k = 4), this is sufficient to retrieve W [3], as asserted.
�

10 The four bytes of k7 are 0 and 4 (for obtaining byte 0 of W [27]) and bytes 7 and 15
(for obtaining byte 3 of W [23]).
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Fig. 5. Deducing Subkeys Using the Key Schedule Algorithm of AES-192

Since in the 8-round attack, one of the subkey bytes guessed by the adversary
is included in the column W [3] (regardless of the active byte in the δ-set, since
the adversary guesses a shifted column), this reduces the time complexity by
another factor of 28. In total, the key schedule considerations reduce the time
complexity of the online phase of the attack on AES-192 by a factor of 232.

In the attack on 8-round AES-256, key schedule considerations can help the
adversary only a little. By the key schedule, the subkey u6 is independent of
the subkey k7, and thus the only subkey byte the adversary can retrieve is the
single byte of u5. The novel observation presented in the case of AES-192 does
not hold for AES-256, and thus the time complexity can be reduced only by a
factor of 28.

It is interesting to note that the search for such long key bridges does not
require tedious hand calculations or great intuition, since it can be easily auto-
mated: By choosing a random key and observing the effect of changing one of
its subkey bytes on all the other subkey bytes, one could discover all the cases in
which some bytes depend only on a limited number of far away other bytes due
to a weak avalanche effect. We recommend to apply this procedure to any newly
designed cryptosystem in order to detect such unpleasant surprises in advance.
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5.2 Application of the Key Bridging Technique to Other Attacks
on 8-round AES-192

The key bridging technique reduces the need to guess subkey material in attacks
on 8-round AES-192. As there are other attacks on 8-round AES-192 (most of
which are in the related-key model), we tried to locate these attacks that can
benefit from the new technique.

Before considering the various attacks, we tried to evaluate what type of
attacks can enjoy this technique. We came to the conclusion that such attacks
should need a huge amount of subkey material in the last stages, and at least
one byte from W [3] in the first whitening key. Additionally, it appears that the
attack needs to guess both subkeys simultaneously (rather then guessing one of
the subkeys, and computing the second one using some other technique), as we
demonstrate later.

The SQUARE Attack on 8-Round AES-192 [15] The first attack which
we consider as a candidate for improvement is the 8-round attack SQUARE
attack of [15]. In this attack, the adversary guesses the full k7 as well as one byte
of the last column of k−1.

The attack starts with guessing four bytes in k−1, and only then the bytes
of k7, which does not affect the usability of the key bridging, as it is easy to
reformulate the relations such that one byte of k7 is deduced from two bytes of
k7 and the byte of k−1. While this suggests that the key bridging technique may
be used, the special nature of the attack, prevents gaining the expected factor
of 28 in the time complexity of the attack.

The way the attack of [15] works, after guessing the four bytes of k−1, a set
of 2104 ciphertexts, called a herd, is identified, and is partially decrypted. The
partial decryption is done in steps. Firstly, a few bytes of k7 are guessed, and the
partial decryption reduces the set of values for further decryption to a smaller
set, which are then partially decrypted under a newly guessed subkey byte(s),
which in turn results in a smaller set, and so on, until one byte is determined.
Following this fact, obtaining the “free” byte of k7 is done after a sufficient
number of key bytes were already guessed. Hence, the outcome is that the peak
number of operations (key guesses times the size of the set of values, and which
is met several times throughout the execution of the attack), is not reduced.
What can be reduced, is the number of times this peak is reached, implying that
instead of having 10 such peaks, we can reduce the number of “peaks” to just
three. This suggests an improvement of about 3 times in the running time of the
attack, i.e., to 2186.3.

The Related-Key Impossible Differential Attack on 8-Round AES-
192 [24] In [24] three related-key impossible attacks on 8-round AES-192 are
reported. In all of these attacks parts of the key k7 are guessed, and some pairs
(which satisfy some differential conditions) are then analyzed in the first round,
and candidate values for k−1 are obtained. Then, the candidate subkey (as a
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whole) is found to be illegitimate (as it suggests that an impossible event has
occurred). All three variants of the attack analyze two bytes in k−1 which are
part of W [3]. They differ by the number of bytes from k7 that are guessed, and
the amount of data used in each attack.

The first variant of the attack requires 264.5 chosen plaintexts, and takes 2177

time. This variant allows computing the two bytes of k0 immediately (due to the
key bridging). For each subkey guess (composed of 14 bytes from k8), there are
271 pairs, each suggesting one value on average for 8 bytes of k0. Obviously, if
the two bytes of k0 disagree with the bridged key bytes, we can discard the pair.
On the other hand, for each 14-byte guess of k8, there are only 248 (rather than
264) possible subkeys in k0. Hence, while the number of useful pairs is reduced to
271 · 2−16 = 255 pairs, the probability that a wrong subkey guess for k0 remains
is reduced to 248 · (1− 2−48)2

55

= 248 · e−128 ≈ 2−136. This in turn, implies that
the number of wrong 14-byte key guesses that remain is 2112 ·2−136 = 2−24. This
probability is slightly smaller than in the original attack (where the analysis
reveals that the probability of a wrong subkey to remain is 2−8), and hence, one
may consider reducing the data complexity with no effect on the data complexity.
This can be done, but the amount of data needed is reduced to 264.43, which in
turn suggests a negligible reduction in the time complexity.

The other two variants faces very similar results. In these variants less key
material is guessed in the last round, which in turn allows to compute only one
byte of k−1 using the key bridging technique. This time, each analyzed pair has
probability 2−8 to offer a consistent solution with the key byte suggested by the
key bridging, and there are 256 possible subkeys to discard in the first round.

It is easy to see that the advantage of applying our key bridging technique in
this situation is quite small. This follows the fact that in this specific impossible
differential attack, the majority of the time complexity is identifying the pairs
that we need to analyze. Once the pairs are detected, the suggested subkey in
the first round can be easily computed rather than guessed.

On Key Bridging in Attacks on 8-Round AES-256 One may consider ap-
plying the same key bridging technique to AES-256. The main problem we faced
when trying to apply this technique to AES-256 is the fact that our attack, like
many other attacks on AES, require that the last round is without MixColumns.
This can be easily justified by the fact that one can switch the order of the last
MixColumns with the AddRoundKey (with the appropriate change to the last
subkey from ki to ui). While knowing a full column from ui allows computing
the respective column of ki, in our attack on AES-256, the bytes from u6 that
are guessed (along with the full u7), give one byte of u−1 in the third column.
Unfortunately, this is insufficient to gain information about a byte of k−1.

6 Our New Attack on 7-round AES

In this section we present our new attack on 7-round AES. First we present the
basic variant of the attack, which is used later as part of the 8-round attack. Then
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we show how to improve the attack using alteration of the expected-probability
differential and time/memory/data tradeoffs, such that the resulting time com-
plexity will be lower than the complexity of all previously known attacks on
7-round AES (in all its three flavors).

6.1 The Basic Attack

In this attack, the byte with non-zero difference in the expected-probability
differential is byte 0, both in the input and in the output differences. The active
byte of the δ-set and the byte that is checked in the state X5 are taken to be
byte 0 as well. The attack works similarly if these bytes are replaced by any
other pair of bytes, as long as the correspondence between the differential and
the δ-set is preserved.

The algorithm of the basic attack is as follows.

1. Preprocessing phase: Compute the 2127 possible values of the “special”
multisets defined by Observations 4 and 5, and store them in a hash table.

2. Online phase:
(a) Phase A – Detecting the right pair:

i. Ask for the encryption of 281 structures of 232 plaintexts, such that
in each structure, bytes 0, 5, 10, 15 assume the 232 possible values
and the rest of the bytes are constant.

ii. For each structure, store the ciphertexts in a hash table and look for
pairs in which the difference in bytes 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15
is zero.11 Since this is a 96-bit filtering, only 248 pairs are expected
to remain.

iii. For each remaining pair, guess bytes 0, 5, 10, 15 of k−1 and check
whether the difference in the state X1 is non-zero only in byte 0. For
each key guess, about 224 pairs are expected to remain for each key
guess.

iv. For each remaining pair, guess bytes 0, 7, 10, 13 of u6 and check
whether the difference in the state X5 is non-zero only in byte 0.
For each key guess, only one pair is expected to remain.

(b) Phase B – Checking the δ-set
i. For each guess of the eight subkey bytes made in Phase A and for

the corresponding pair, take one of the members of the pair, denote
it by P 0, and find its δ-set using the knowledge of bytes 0, 5, 10, 15
of k−1. This can be done by considering the state X0

1 , XORing it
with the 255 possible values which are non-zero only in byte 0, and
decrypting the 255 obtained values through round 0 using the known
subkey bytes. The resulting plaintexts are the other members of the
δ-set.

11 In the description of our attack we assume that the last round does not contain
the MixColumns operation. If it does contain it, one can swap the order of the last
round’s MixColumns and AddRoundKey and apply the attack with the respective
changes.
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ii. Guess byte 0 of u5, and using the knowledge of bytes 0, 7, 10, 13 of u6,
partially decrypt the ciphertexts of the δ-set to obtain the multiset
[

X0
5,0 ⊕X0

5,0, X
1
5,0 ⊕X0

5,0, . . . , X
255
5,0 ⊕X0

5,0

]

.
iii. Check whether the multiset exists in the hash table. If not, discard

the key guess (possibly using auxiliary techniques such as repetition
of the attack with a different output byte).

(c) Retrieving the rest of the key: For each remaining key guess, retrieve
the rest of the key by exhaustive key search.

It is clear that the time complexity of the online phase of the attack is dom-
inated by encrypting 2113 plaintexts, and hence, the data and time complexity
of this part of the attack is 2113. The memory complexity is 2129 128-bit blocks,
since each multiset contains about 512 bits of information and its representa-
tion can be easily compressed into 512 bits of space. The time complexity of
the preprocessing phase of the attack is approximately 2127 · 28 · 2−3 = 2132

encryptions.

6.2 Altering the Expected-Probability Differential

Our first improvement reduces the data and time complexities of the attack by
a factor of 28 without affecting the memory requirements.

We observe that the time complexity of most components of the attack is
significantly lower than the time required to encrypt the plaintexts. Therefore, a
tradeoff that would decrease the data complexity, even at the price of increasing
the time complexity of the other parts of the attack, may reduce its overall
complexity.

Such tradeoff is achieved by slightly modifying the expected-probability dif-
ferential used in the attack. Instead of requiring the input difference to be non-
zero only in byte 0, we can allow the difference to be non-zero also in one of
the bytes 5, 10, 15. These bytes are chosen such that the number of possible dif-
ferences in the state X2 is not increased, and thus the memory complexity is
preserved.

This change reduces the data complexity of the attack to 2105, since it allows
the adversary to use structures of size 216 that contain 231 pairs with the input
difference of the differential. On the other hand, the change requires to guess
four additional bytes of k−1 in order to detect the right pair (if the additional
byte is byte 5, then the additional guessed bytes are 3, 4, 9, 14). As a result, the
number of pairs remaining after the first filtering step of the attack is increased
to 272 (instead of 248). For each such pair, there are 224 possible values of 12
subkey bytes (8 bytes of k−1 and 4 bytes of u6) for which that pair satisfies the
expected-probability differential. As in the 8-round attack, these values can be
found with time complexity of 224 table look-ups for each pair, using the early
abort technique. Thus, the time complexity of Phase A of the modified attack
is 296 table look-ups.

At Phase B, we observe that since the value of bytes 3, 4, 9, 14 of k−1 is
irrelevant to the examination of the δ-set, the phase has to be performed only
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216 times for each of the 272 pairs (instead of 224 times). Thus, its time complexity
is 272 ·216 ·28 ·28 ·2−3 = 2101 encryptions. Therefore, the overall time complexity
of the attack is still dominated by the encryption of the plaintexts, and thus
both the data and the time complexity of the attack are reduced to 2105.

6.3 Using Several Differentials in Parallel

Our second improvement further reduces the data and time complexities by a
factor of 5 without affecting the memory requirements.

We observe that the data complexity can be reduced by using several dif-
ferentials in parallel. Since there is no specialty in the choice of the active byte
at the input and the output of the original differential, there are 256 possible
differentials that can be used in parallel. In the basic 7-round attack this im-
provement leads to a data/memory tradeoff: The attack requires the “active”
bytes of the δ-set to correspond to the non-zero difference bytes of the differ-
ential, and altering the active bytes of the δ-set requires preparing a different
precomputed table for each choice of the bytes. As a result, the data complexity
can be reduced by factor of up to 256, but the memory requirement is increased
by the same factor. Since the memory complexity is the dominant one in the
7-round attack, this tradeoff is not profitable.

However, in the modified attack the data complexity can be reduced (though,
by a small factor) without affecting the memory complexity. We observe that
since the additional “active” byte in the expected-probability differential is not
used in the analysis of the δ-set, it can be chosen without affecting the memory
complexity. There are six possible ways to choose this byte (bytes 5, 10, 15 in the
input and bytes 1, 2, 3 in the output), and five of them can be used in parallel
with the same set of chosen plaintexts.12 This reduces the data complexity of
the attack by a factor of 5 without affecting the memory complexity. Since the
time complexity is dominated by encrypting the plaintexts, it is also reduced by
a factor of 5. Therefore, the data and time complexities of the modified attack
are smaller than 2103. In the sequel, we assume for the sake of simplicity that
these complexities are equal to 2103.

6.4 Time/Memory/Data Tradeoffs

Our third improvement is a fine tuning of the complexities using a simple tradeoff
between data, time, and memory as proposed in [12]. In the preprocessing phase,
we precompute the table only for some of the values, and then for each key
guess, we perform the attack for several δ-sets in order to compensate for the
missing part of the table. For each n ≥ 0, this tradeoff decreases the memory

12 In order to do it, the adversary considers structures of size 296 each, in which bytes
1, 6, 11, 12 are constant and the other bytes take all the 296 possible values. This
allows to use bytes 5 and 10 as the additional active byte in the input of the differ-
ential. All three additional bytes cannot be used in parallel, since this would require
structures of size 2128.

22



complexity and the time complexity of the preprocessing phase by a factor of 2n,
and increases the data complexity and the online time complexity by the same
factor 2n. The resulting complexities lie on the following tradeoff curve: Data
complexity – 2103+n chosen plaintexts, Time complexity – 2103+n encryptions,
Memory requirement – 2129−n AES blocks, for any n ≥ 0. Choosing n = 13,
all the three complexities are equalized at 2116, which is lower than the time
complexities of all known attacks on 7-round AES, in all its three flavors (see
Table 2).

7 Extension to Attacks on 8-round AES-192 and AES-256

In this section we present the first non-marginal attack on 8-round AES-192.
The data complexity of the attack is 2113 chosen plaintexts, the memory re-
quirement is 2129 128-bit blocks, and the time complexity is 2172 encryptions. A
variant of the attack can be applied to 8-round AES-256. The data and mem-
ory requirements remain unchanged, but the time complexity is increased to
2196 encryptions, since most of the key schedule considerations presented in Sec-
tion 5.1 apply only to AES-192. We present the attack on AES-192; the attack
on AES-256 is similar.

In the attack presented below, we choose the non-zero byte in the output
difference of the expected-probability differential to be byte 1. Accordingly, the
byte to be checked in the δ-set is also chosen as byte 1. This change is required
in order to apply the key schedule considerations presented in Section 5.1. The
only non-zero byte in the input difference of the differential and the only active
byte of the δ-set can be still chosen arbitrarily, as long as they are the same.
Without lose of generality, in the sequel we assume that this byte is byte 0.

A trivial generalization of the 7-round attack presented in Section 6 to eight
rounds is to guess the full k7, and for each guess, decrypt all the ciphertexts
through the last round and apply the 7-round attack. While this generalization
is sufficiently good for the basic Demirci-Selçuk attack where the data and time
complexities of the online phase of the 7-round attack are low, in our attack
it leads to an extremely high time complexity. Specifically, the first part of the
online phase (namely, detecting the right pair) would require time complexity
of 2113 · 2128 = 2241 encryptions, which is significantly higher than the 2192

computations of exhaustive search.
Instead, we use an early abort technique that was described in [18]. We present

here the technique only briefly, and refer the reader to [18] for the full details.
In the following, the adversary examines each of the 2113 · 231 = 2144 pairs

separately, and her goal is to detect the subkey candidates for which that pair
satisfies the expected-probability differential. Note that this approach differs
from the usual approach where subkey material is guessed and for each guess of
the subkey, the adversary obtains the corresponding right pairs.

Note that if (P 1, P 2) is a right pair, then the corresponding intermediate
states (X1

6(SR), X
2
6(SR)) have non-zero difference only in bytes 3, 6, 9, 12. Hence,

in each column of X6(SR) there are only 28 possible differences. Since the Mix-
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Columns and AddRoundKey operations are linear, this implies that in each
column of X7 there are only 28 possible differences, and thus only 232 · 28 = 240

possible pairs of actual values. In the technique presented in [18], the adversary
considers these 240 pairs in advance, encrypts them through round 7, and stores
the actual values before the last AddRoundKey operation in a hash table, sorted
by the output difference. In the online phase of the attack, for each examined
pair, the adversary considers each shifted column (e.g., bytes 0, 7, 10, 13) inde-
pendently, and accesses the hash table in the row corresponding to the ciphertext
difference. It is expected that 240 · 2−32 = 28 values appear in each row. Since
the table gives the actual values before the AddRoundKey operation, and the
ciphertexts are the values after that operation, each of the pairs in the table
suggests one value for the 32-bit subkey corresponding to that shifted column.

Therefore, for each examined pair, and for each shifted column, the adversary
obtains a list of 28 candidates for the 32-bit subkey corresponding to that column.
In a basic variant of the attack, the adversary aggregates these suggestions to 232

suggestions for the full k7, and for each suggestion, she decrypts the ciphertext
pair through round 7. Then she uses a similar precomputed table for round 6 to
get a list of 28 possible values of bytes 3, 6, 9, 12 of u6. For each such value, the
adversary checks whether the relations between bytes 3, 6 of u6 and the subkey
k7 described in Section 5.1 hold. If not, the subkey guess is discarded. Since
this is a 16-bit filtering, the adversary is left with 224 candidates for the full k7
and bytes 3, 6, 9, 12 of u6. Finally, using a precomputed table also in round 0,
the adversary obtains a list of 28 possible values of bytes 0, 5, 10, 15 of k−1. For
each such value, the adversary checks whether the relation between byte 15 of
k−1 and the subkey k7 described in Section 5.1 holds. If not, the subkey guess is
discarded. Since this is an 8-bit filtering, the adversary is left with 224 candidates
for the full k7, bytes 3, 6, 9, 12 of u6, and bytes 0, 5, 10, 15 of k−1. For each of these
candidates, (P 1, P 2) is a right pair w.r.t. the expected-probability differential,
and the second-phase of the attack can be applied.

The time complexity of this procedure is 240 simple operations for each ex-
amined pair, or 2144 · 240 · 2−8 = 2176 encryptions in total.

The time complexity can be slightly reduced by using a more sophisticated
precomputed table in order to check the consistency between bytes 3, 6 of u6

and the subkey k7. The table takes bytes 3,6 of MC−1(X6) in both pairs, along
with bytes 2,3,5,6 of u7, and returns the consistent values for bytes 3,6 of u6,
if there are any. The precomputation is done by trying all possible candidates
for the pair of bytes for MC−1(X6) along with the corresponding bytes of u6,
to see if the decrypted values satisfy the linear relation on the differences before
the SubBytes operation of round 5. If this is the case, the entry corresponding
to the MC−1(X6) values and all subkeys of u7 which satisfy the key relation is
stored with the respective u6 bytes. We note that for each key and each pair,
there is probability of 2−8 that the condition is satisfied, and thus, only 256 of
the entries in the table are nonempty.

At the second part of the online phase of the attack, performed for each of
the 2144 pairs (P 1, P 2) and each of the 224 subkeys corresponding to the pair,
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the adversary constructs a δ-set and checks whether the corresponding multiset
appears in the table. Note that while in the 7-round attack this phase requires
guessing an additional subkey byte (which is byte 13 of u5), in this attack that
subkey byte can be derived from the subkey k7. The time complexity of the
second part is 2168 · 28 · 2−4 = 2172 encryptions.

Therefore, the overall memory requirement of the attack is 2129 128-bit blocks
(as in the basic version of the 7-round attack), the data complexity is 2113 cho-
sen plaintexts, and the time complexity is 2172 encryptions. These complexities
improve significantly over the only previously known attack on AES-192, which
is a Square attack [15] requiring almost the entire codebook and time complexity
of 2188 encryptions.

8 Summary

In this paper we introduced three new cryptanalytic techniques which can be
used to improve the best known complexities of all the known attacks on 7 and
8 round versions of AES, as detailed in Table 2. In particular, we describe the
first real attack on 8-round AES-192 which does not use the full codebook in
order to marginally improve the time complexity of exhaustive search. However,
all our attacks have impractical complexities, and thus they do not endanger the
security of any fielded system.
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A Analysis of the Meet-in-the-Middle Attack on 7-round
AES proposed in [13]

For the sake of completeness, we present in this appendix a detailed analysis
of the improved meet-in-the-middle attack on 7-round AES proposed in [13]
and show that the time complexity of this attack is much higher than that of
exhaustive key search (for AES-128) or higher than claimed (for AES-192 and
AES-256).

The attack of [13] is based on several improvements of the observations used
in [12]:

1. The number of parameters that determine the values of the examined byte
in the output of 4-round AES can be reduced from 25 to 24 by picking some
x0, and considering the augmented function f ′

c1,...,c24
(x) = fc1,...,c25(x) −

fc1,...,c25(x0). This improvement is used in our attack as well.
2. The number of parameters can be further reduced to 15, under a restric-

tion on the plaintexts that holds with probability 2−72. In order to find a
δ-set that satisfies the restriction, the authors suggest to repeat the attack
for 272 different δ-sets. We note that this improvement is equivalent to the
time/memory tradeoff presented in [12] that suggested to prepare the pre-
computed table only for some values of the 25 parameters and compensate
for it by repeating the attack with more sets of plaintexts. Actually, the
proposal of [13] is a partial case of the time/memory tradeoff, where the
precomputed table is prepared only for those 2120 = 2192 · 2−72 values of the
parameters which satisfy the 72-bit restriction. Another equivalent sugges-
tion would be to fix 9 of the 24 constants to zero. Thus, this suggestion does
not improve over [12].

3. The time complexity and the memory requirements can be slightly reduced
by keeping only 32 of the ciphertext values corresponding to a δ-set, instead
of all the 256 values. This improvement is not used in our attack since it
cannot be applied simultaneously with our multiset tabulation technique,
and the gain of the multiset tabulation technique is greater than that of this
improvement.

The attack algorithm in [13] is essentially similar to that of the basic attack
in [12] and thus is omitted here.

The authors analyse the attack and conclude that the data complexity is 280

chosen plaintexts, the time complexity of the online phase is 2113 encryptions,
the memory complexity is 2122 128-bit blocks, and the time complexity of the
preprocessing is 2123 encryptions. Unfortunately, there is a flaw in the analysis.
The exact flaw is in the time complexity of Steps (5)–(6) of the attack. The
authors write:
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In the key search phase, for every combination of Kfinal, we do partial
decryption over 280 ciphertexts which makes 2120 partial decryptions and

for every combination of Kinit and K
(1)
11 , we do partial encryption over

280 plaintexts which makes 2120 partial encryptions . . . Therefore the
processing complexity of the attack is comparable to 2113 encryptions.

The complexity described by the authors is indeed the complexity of Steps (3)–
(4) of the algorithm. However, the time complexity of the matching phase (Steps (5)–
(6)) that is not mentioned in the analysis is much higher. Since the matching
phase has to be performed for every combination of guesses of Kfinal (bytes 0, 7,
10, and 13 of k7 and byte 0 of u6 in this paper’s notations), Kinit (bytes 0,5,10,

and 15 of k−1 in our notations), and K
(1)
11 (byte 0 of k0), the equivalent of , its

time complexity is at least 240 · 240 · 280 = 2160 operations, which is much higher
than claimed (and suppresses exhaustive key search time for AES-128). Hence,
the improved attack presented in [13] cannot be considered a valid attack on
7-round AES-128.

We note that in [13], the authors also present an extension of the collision
attack presented by Gilbert and Minier [16]. Since this extension is not used by
the authors to mount an attack on AES, we do not discuss it here.
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Rounds Key Complexity Attack Type & Source
Size Data (CP) Memory Time MinMax⋆

7 128 2112.2 2112.2 2117.2 MA 2117.2 Impossible Differential [18]
290.4 2106 2117.2 MA 2117.2 Impossible Differential [20]
2103+n 2129−n 2103+n 2116 Our Results (Sect. 6)

192 19 · 232 19 · 232 2155 2155 SQUARE [15]
246+n 2192−n 294+n 2143 Meet in the Middle [12]
291.2 2139.2 2101 2139.2 Impossible Differential [18]
2113.8 2113.8 2118.8 MA 2118.8 Impossible Differential [18]
2103+n 2129−n 2103+n 2116 Our Results (Sect 6)

256 21 · 232 21 · 232 2172 2172 SQUARE [15]
234+n 2204−n 282+n 2143 Meet in the Middle [12]
292 2125 2163 MA 2163 Impossible Differential [18]

2113.8 2113.8 2118.8 MA 2118.8 Impossible Differential [18]
2103+n 2129−n 2103+n 2116 Our Results (Sect 6)

8 192 2127.997 2128 2188 2188 SQUARE [15]
2113+n 2129−n 2172+n 2172 Our Results (Sect. 7)

256 234+n 2206−n 2205.6+n 2205.8 Meet in the Middle [12]†

234+max(n−24,0) 2208−n 2206+n MA 2208 Meet in the Middle [13]‡

289.1 297 2229.7 MA 2229.7 Impossible Differential [18]
2127.997 2128 2204 2204 SQUARE [15]
2113+n 2129−n 2196+n 2196 Our Results (Sect. 7)

⋆ — the lowest time complexity which exceeds the other complexities via the tradeoff
option (if such a tradeoff exists).

† — [12] estimates the cost of partial encryption as 2−8 of an encryption. As there are at

least six columns which take part in the partial encryption/decryption, we believe

that 2−2.4 is a more accurate estimate.
‡ — The complexity is higher than claimed in [13] due to a flaw in the analysis.
CP – Chosen plaintext. MA – Memory Accesses.
Time complexity measures the online time in encryption units unless mentioned otherwise.
Memory complexity is measured in AES blocks.

Table 2. A Comparison of Previous Results with Our New Attacks
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