
Subspace Distinguisher for 5/8 Rounds of the
ECHO-256 Hash Function?

Martin Schläffer

Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

martin.schlaeffer@iaik.tugraz.at

Abstract. In this work we present first results for the hash function of ECHO. We provide a
subspace distinguisher for 5 rounds, near-collisions on 4.5 rounds and collisions for 4 out of 8
rounds of the ECHO-256 hash function. The complexities are 296 compression function calls for the
distinguisher and near-collision attack, and 264 for the collision attack. The memory requirements
are 264 for all attacks. Furthermore, we provide improved compression function attacks on ECHO-
256 to get distinguishers on 7 rounds and near-collisions for 6 and 6.5 rounds. The compression
function attacks also apply to ECHO-512. To get these results, we consider new and sparse truncated
differential paths through ECHO. We are able to construct these paths by analyzing the combined
MixColumns and BigMixColumns transformation. Since in these sparse truncated differential paths
at most one fourth of all bytes of each ECHO state are active, missing degrees of freedom are not
a problem. Therefore, we are able to mount a rebound attack with multiple inbound phases to
efficiently find according message pairs for ECHO.
Keywords: hash functions, SHA-3 competition, ECHO, cryptanalysis, truncated differential path,
rebound attack, subspace distinguisher, near-collisions, collision attack

1 Introduction

Many new and interesting hash function designs have been proposed in the NIST SHA-3 com-
petition [16]. In this paper, we analyze the hash function ECHO [1], which is one of 14 Round 2
candidates of the competition. ECHO is a wide-pipe, AES based design which transforms 128-bit
words similar as AES transforms bytes. Inside these 128-bit words, two standard AES rounds are
used. So far, most cryptanalytic results of ECHO were limited to the internal permutation [7,12].
Recently, reduced round attacks on the wide-pipe compression function of ECHO have been pub-
lished in [17], which cover up to 4/8 rounds for ECHO-256 and 6/10 rounds of ECHO-512. However,
a drawback of attacks on building blocks (such as compression functions or permutations) is
that they cannot be used to compare SHA-3 candidates due to their great design variety and
different requirements for building blocks.

Therefore, in this work we analyze the hash function of ECHO and present results for up to
5/8 rounds of ECHO-256. We use the subspace distinguisher [9,10] to compare our distinguishing
attacks with the generic complexity on ideal hash functions. Our results greatly improve upon
the previous results on the compression function, which are attacks on a similar number of
rounds. Furthermore, we provide attacks on the compression function for up to 7/8 rounds of
ECHO-256 and 7/10 rounds of ECHO-512. The main improvement is to consider a new type of
sparse truncated differential paths by placing only a single active byte in the ECHO state with
16 active AES states. In all previous paths, the full active ECHO states also had full active AES
states. The construction of such paths is possible by combining the last MixColumns transfor-
mation of the second AES round with the BigMixColumns transformation of an ECHO round to
a SuperMixColumns transformation.

? This paper is an extended version of [18] and includes some new attacks which do not assume that the adversary
controls the salt (see Table 1).

The attack itself is a rebound attack [13] with multiple inbound phases. Similar attacks have
been applied to the SHA-3 candidate LANE [11] and the hash function Whirlpool [9]. Since
the truncated differential paths are very sparse, we have plenty degrees of freedom to merge
the solutions of these multiple inbound phases. Note that using multiple inbound phases, we
can control more distant parts of much longer truncated differential paths than in a start-from-
the-middle attack [12] or simple Super-Sbox analysis [7, 9, 14] where the controlled rounds are
limited to only the middle rounds. To merge independent solutions of multiple inbound phases,
we use a technique based on the generalized birthday attack [19]. A summary of our main results
on the ECHO-256 hash function and both ECHO compression functions are given in Table 1. More
details and the respective generic complexities, especially for near-collisions and distinguishers,
are given in the sections describing the attacks.

Table 1. Summary of our results and related analysis for ECHO.

Hash Function Target Rounds Time Memory Type Reference

ECHO-256

hash
5/8 296 264 distinguisher Sect. 4.1

function
4.5/8 296 264 near-collision Sect. 4.2

4/8 264 264 collision Sect. 4.3

compression

7/8 2152 264 distinguisher Sect. 5.5

7/8 2107 264 distinguisher* Sect. 5.5

function

6.5/8 2152 264 free-start near-collision Sect. 5.6

6.5/8 296 264 free-start near-collision* Sect. 5.6

4.5/8 296 232 distinguisher [17]

3/8 264 232 free-start collision [17]

3/8 296 232 semi-free-start collision* [17]

7/10 2162 264 distinguisher Sect. A.1

7/10 2106 264 distinguisher* Sect. A.1

ECHO-512
compression 6.5/10 2152 264 free-start near-collision Sect. A.2

function 6.5/10 296 264 free-start near-collision* Sect. A.2

6.5/10 296 232 distinguisher [17]

3/10 296 232 (semi-)free-start collision* [17]
* with chosen salt

2 Description of ECHO

In this section we briefly describe the AES based SHA-3 candidate ECHO. For a detailed descrip-
tion of ECHO we refer to the specification [1]. Since ECHO heavily uses AES round transformations,
we describe the AES block cipher first.

2.1 The AES Block Cipher

The block cipher Rijndael was designed by Daemen and Rijmen and standardized by NIST in
2000 as the Advanced Encryption Standard (AES) [15]. The AES follows the wide-trail design
strategy [4, 5] and consists of a key schedule and state update transformation. Since ECHO does
not use the AES key schedule, we just describe the state update here.

In the AES, a 4×4 state of 16 bytes is updated using the following 4 round transformations,
with 10 rounds for AES-128, 12 rounds for AES-192 and 14 rounds for AES-256:

– The non-linear layer SubBytes (SB) applies the AES S-Box to each byte of the state inde-
pendently.

2

– The cyclical permutation ShiftRows (SR) rotates the bytes of row j to the left by j positions.
– The linear diffusion layer MixColumns (MC) multiplies each column of the state by a constant

MDS matrix MMC.
– AddRoundKey (AK) adds the 128-bit round key Ki to the AES state.

Note that a round key is added prior to the first round and the MixColumns transformation is
omitted in the last round of AES. For a detailed description of the AES we refer to [15].

2.2 The ECHO Hash Function

The ECHO hash function is a SHA-3 candidate submitted by Benadjila et al. [1]. It is a double-
pipe, iterated hash function and uses the HAIFA [2] domain extension algorithm. More pre-
cisely, a padded t-block message M and a salt s are hashed using the compression function
f(Hi−1,Mi, ci, s), where ci is a bit counter, IV the initial value and trunc(Ht) a truncation to
the final output hash size of n bits:

H0 = IV

Hi = f(Hi−1,Mi, ci, s) for 1 ≤ i ≤ t

h = truncn(Ht).

The message block size is 1536 bits for ECHO-256 and 1024 bits for ECHO-512, and the message
is padded by adding a single 1 followed by zeros to fill up the block size. Note that the last
18 bytes of the last message block always contain the 2-byte hash output size, followed by the
16-byte message length.

The compression function of ECHO uses one internal 2048-bit permutation P which manipu-
lates 128-bit words similar as AES manipulates bytes. The permutation consists of 8 rounds in
the case of ECHO-256 and has 10 rounds for ECHO-512. The internal state of the permutation P
can be modeled as a 4 × 4 matrix of 128-bit words. We denote one ECHO state by Si and each
128-bit word or AES state is indexed by [r, c], with rows r ∈ {0, ..., 3} and columns c ∈ {0, ..., 3}
of the ECHO state.

The 2048-bit input of the permutation (which is also tweaked by the counter ci and salt
s) are the previous chaining variable Hi−1 and the current message block Mi, concatenated to
each other. After the last round of the permutation, a feed-forward (FF) is applied to get the
preliminary output V :

V = Pci,s(Hi−1||Mi)⊕ (Hi−1||Mi). (1)

To get the 512-bit chaining variable Hi for ECHO-256, all columns of the ECHO output state V are
XORed. In the case of ECHO-512, the 1024-bit chaining variable Hi is the XOR of the two left
and the two right columns of V . The feed-forward together with the compression of columns is
called the BigFinal (BF) operation. To get the final output of the hash function, the lower half
is truncated in the case of ECHO-256 and the right half is truncated for ECHO-512.

The round transformations of the ECHO permutation are very similar to AES rounds, except
that 128-bit words are used instead of bytes. One round is the composition of the following
three transformations in the given order:

– The non-linear layer BigSubWords (BSW) applies two AES rounds to each of the 16 128-bit
words of the internal state. The first round key consists of a counter value initialized by ci
and increased for every AES state and round of ECHO. The second round key consists of the
128-bit salt s.

– The cyclical permutation BigShiftRows (BSR) rotates the 128-bit words of row j to the left
by j words.

3

– The linear diffusion layer BigMixColumns (BMC) mixes the AES states of each ECHO column
by the same MDS matrix MMC but applied to those bytes with equal position inside the
AES states.

3 Improved Truncated Differential Analysis of ECHO

In this section we describe the main concepts used to attack the ECHO hash function. We first
describe the improved truncated differential paths which have a very low number of active S-
boxes. These sparse truncated differential paths are the core of our attacks and for a better
description of the attacks, we reorder the ECHO round transformations. This reordering gives
two combined building blocks of ECHO, the SuperMixColumns and SuperBox transformations.
We then show how to efficiently find both differences and values through these functions for a
given truncated differential path.

3.1 Sparse Truncated Differential Paths for ECHO

In this section we construct truncated differential paths with a low number of active bytes.
Since ECHO has the same properties for words as AES has for bytes, at least 25 AES states are
active in each 4-round differential path of ECHO. However, we can reduce the number of active
S-boxes in each AES state to get a sparse 4-round truncated differential path with only 245
active S-boxes. Note that the truncated differential path of the previously best known analysis
of ECHO has already 320 active S-boxes in a single round [17]. A trivial lower bound [1] of active
S-boxes for 4 rounds is 125.

The AES structure of ECHO ensures that the minimum number of active AES states (or
words) for 4 rounds has the following sequence of active AES states:

1
r1−→ 4

r2−→ 16
r3−→ 4

r4−→ 1

Also, the same sequence of active bytes holds for 4 rounds of AES. In previous analysis of ECHO,
truncated differential paths have been used with 16 active bytes in the AES states where the
ECHO state has also 16 active words. In these attacks always one full active state with 256 active
S-boxes was used. In the following, we show how to construct sparse truncated differential paths
with a maximum of 64 active bytes in each single ECHO state.

The main idea is to place AES states with only one active S-box into those ECHO rounds with
16 active words. This way, the number of total active bytes (or S-boxes) can be greatly reduced.
The resulting 4-round truncated differential path of ECHO is given in Fig. 1 and consists of only
245 active S-boxes. Since one round of ECHO consists of two AES rounds, it follows that the full
active AES states result in those rounds of ECHO with 4 active words. The ECHO state with only
one active word contains only one active byte in this AES state. Note that in the attacks on
ECHO, we use this truncated differential path with small modifications to improve the overall
complexity of the attacks.

3.2 An Equivalent ECHO Round Description

For an easier description of our attack, we use an equivalent description of one ECHO round.
First, we swap the BigShiftRows transformation with the MixColumns transformation of the sec-
ond AES round. Second, we swap SubBytes with ShiftRows of the first AES round. Swapping
these operations does not change the computational result of ECHO and similar alternative de-
scriptions have already been used in the analysis of AES. This way, we get two new super-round
transformations separated just by byte shuffling operations: SuperMixColumns and SuperBox.

4

These functions with adjacent byte shuffling operations are shown in Fig. 2. In the following
subsections, we describe these transformations and show how to efficiently find differences and
pairs according to a given truncated differential path for both transformations.

3.3 SuperMixColumns

The SuperMixColumns transformation combines the four MixColumns transformations of the
second AES round with the 4 MixColumns transformations of BigMixColumns in the same 1×16
column slice of the ECHO state (see Fig. 2). We denote by column slice the 16 bytes of the same 1-
byte wide column of the 16×16 ECHO state. Note that the BigMixColumns transformation consists
of 16×4 parallel MixColumns transformations. Each of these MixColumns transformations mixes
those four bytes of an ECHO column, which have the same position in the four AES states. Using
the alternative description of ECHO (see Fig. 2), it is easy to see that four MixColumns operations
of the second AES round work on the same column slice as four MixColumns operations of
BigMixColumns. We combine these eight MixColumns transformations to get a SuperMixColumns
transformation on a 1-byte wide column slice of ECHO.

We have determined the 16 × 16 matrix MSMC of the SuperMixColumns transformation
which is applied to the ECHO state instead of MixColumns and BigMixColumns. This matrix can
be computed by the Kronecker product of two MixColumns MDS matrices MMC and is given as
follows:

MSMC = MMC ⊗MMC =

 2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⊗
 2 3 1 1

1 2 3 1
1 1 2 3
3 1 1 2

 =



4 6 2 2 6 5 3 3 2 3 1 1 2 3 1 1
2 4 6 2 3 6 5 3 1 2 3 1 1 2 3 1
2 2 4 6 3 3 6 5 1 1 2 3 1 1 2 3
6 2 2 4 5 3 3 6 3 1 1 2 3 1 1 2
2 3 1 1 4 6 2 2 6 5 3 3 2 3 1 1
1 2 3 1 2 4 6 2 3 6 5 3 1 2 3 1
1 1 2 3 2 2 4 6 3 3 6 5 1 1 2 3
3 1 1 2 6 2 2 4 5 3 3 6 3 1 1 2
2 3 1 1 2 3 1 1 4 6 2 2 6 5 3 3
1 2 3 1 1 2 3 1 2 4 6 2 3 6 5 3
1 1 2 3 1 1 2 3 2 2 4 6 3 3 6 5
3 1 1 2 3 1 1 2 6 2 2 4 5 3 3 6
6 5 3 3 2 3 1 1 2 3 1 1 4 6 2 2
3 6 5 3 1 2 3 1 1 2 3 1 2 4 6 2
3 3 6 5 1 1 2 3 1 1 2 3 2 2 4 6
5 3 3 6 3 1 1 2 3 1 1 2 6 2 2 4


Note that the optimal branch number of a 16 × 16 matrix is 17, which could be achieved

by an MDS matrix. Using Magma we have computed the branch number of SuperMixColumns
which is 8. Hence, it is possible to find differential paths in SuperMixColumns such that the sum
of active bytes at input and output is only 8. An according truncated differential path through
MixColumns and BigMixColumns has the following sequence of active bytes:

4
MC−−→ 16

BMC−−−→ 4

An example for a valid SuperMixColumns differential according to this truncated differential
path is given as follows:

SMC([E000 9000 D000 B000]T) = [2113 0000 0000 0000]T

However, the probability for a truncated differential path from 4 → 16 → 4 active bytes (with
fixed position) through SuperMixColumns is 2−24. Hence, only 28 (out of 232) such differentials
for the given position of active bytes exist. In the sparse truncated differential path of Fig. 1,
this 4→ 16→ 4 transition through SuperMixColumns occurs in the second and forth round.

5

D 1 C C C

C

C

C

C

C

C

C

F

F

F

F

D

D

D

D

D

D

D

D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

D D D D

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

C C C C

C C C C

C C C C

C C C C

C C C C

C C C C

C C C C

C C C C

C

C

C

C

C

C

C

C

F

F

F

F

D

D

D

D

D

D

D

D

D

S0 SAES
0 SBSB

0 SBSR
0 SBMC

0

AES AES BSR BMC

S1 SAES
1 SBSB

1 SBSR
1 SBMC

1

AES AES BSR BMC

S2 SAES
2 SBSB

2 SBSR
2 SBMC

2

AES AES BSR BMC

S3 SAES
3 SBSB

3 SBSR
3 SBMC

3

AES AES BSR BMC

Fig. 1. The sparse truncated differential path for 4 rounds of ECHO. By 1, D, C, F we denote
the pattern and number of active bytes in each AES state (also see [7]). A 1 denotes an AES
state with only one active byte, a D an active diagonal (4 active bytes), a C an active column
(4 active bytes) and an F denotes a full active state (16 active bytes). Note that a maximum of
64 bytes are active in each single ECHO state.

3.4 SuperBox

The SuperBox has first been used by the designers of AES in the differential analysis of two AES
rounds [6]. Since one round of ECHO also consists of two consecutive AES rounds we use this
concept in our analysis as well. Using SuperBoxes, we can represent two rounds of AES using
a single non-linear layer and two adjacent linear layers. Since we can swap the SubBytes and
ShiftRows operation of the first AES round, we get a sequence of SB-MC-SB transformations
with independent columns in the middle. One such column is called a SuperBox and consists of
4 parallel S-boxes, one MixColumns operation and another 4 parallel S-boxes (see Fig. 2). Hence,
a SuperBox is in fact a 32-bit non-linear S-box.

This separation of two AES rounds into parallel 32-bit SuperBoxes allows to efficiently find
pairs for a given (truncated) differential. In a theoretical attack on ECHO or if we do not care
about memory, we can simply pre-compute and store the whole differential distribution table
(DDT) of the AES SuperBox with a time and memory complexity of 264. The DDT stores which
input/output differentials of the SuperBox are possible and also stores all input values such that
these differentials are fulfilled. Note that in ECHO, each SuperBox is keyed in the middle by the
counter value. Hence, we need different DDTs for all SuperBoxes with different keys. To reduce
the memory requirements and the maximum time to find values for given SuperBox differentials,
a time-memory trade-off with average complexity one and memory requirements of 232 can be
used. This method has first been proposed in the analysis of the hash function Whirlpool [9, Ap-
pendix A] and applied to Grøstl in [14]. The same technique has been discovered independently
in [7].

6

S
hi
ft
R
ow
s

S
ub
B
yt
es

M
ix
C
ol
u
m
ns

S
u
bB
yt
es

S
hi
ft
R
ow
s

S
hi
ft
R
ow
s

B
ig
S
hi
ft
R
ow
s

M
ix
C
ol
u
m
ns

B
ig
M
ix
C
ol
um
n
s

S
hi
ft
R
ow
s

Fig. 2. The two super-round transformations of ECHO: SuperBox (top, red) and SuperMixColumns
(bottom, green) with adjacent byte shuffling operations (ShiftRows and BigShiftRows).

3.5 Expected Number of Pairs

At this point, we can already compute the expected number of pairs conforming to the 4-round
truncated differential path given in Fig. 1. The resulting number of solutions determines the
degrees of freedom we have in the attack. At the input of the path, we have a 2048-bit value
and differences in 4 bytes. Therefore, the total number of possible inputs pairs (excluding the
128-bit salt) is about

22048 · 28·4 = 28·260 = 22080.

In general, the probability for a random pair to follow a truncated differential path from
a to b active bytes (with a + b ≥ 5) through MixColumns is 2−8·(4−b). An exception is the
propagation from 4→ 16→ 4 bytes through SuperMixColumns, which has a probability of 2−24

(see Sect. 3.3). Multiplying all probabilities through MixColumns and SuperMixColumns gives the
approximate probability for a random input pair to follow the whole truncate differential path.
For the path given in Fig. 1, we get a probability significantly less than one for all MixColumns
or SuperMixColumns transformation where a reduction in the number of active bytes occur. This
happens in the 1st MC of round 1 (D – 1), the 2nd MC of round 2 (4 × F – D), the 1st MC
(16 × D – 1) and SMC (4 × 1111 – FFFF – F000) of round 3, and the 2nd MC (4 × F – D) and
BMC (3 × D – 0) of round 4. We then get for the total probability of the truncated differential
path (in base 2 logarithm):

−8 · (3 + 4 · 12 + 16 · 3 + 4 · 3 + 4 · 12 + 3 · 4) = −8 · 171

So in total, the expected number of solutions for this path is

28·260 · 2−8·171 = 28·89 = 2712

and we have about 712 degrees of freedom in this 4-round truncated differential path.

4 Attacks on the ECHO-256 Hash Function

In this section we use the sparse truncated differential path and properties of SuperMixColumns
to get attacks for up to 5 rounds of the ECHO-256 hash function. We first describe our main
result, the subspace distinguisher for 5 rounds of ECHO-256 in detail. Then, we briefly show how
to get near-collisions for 4.5 rounds and collisions for 4 rounds of ECHO-256.

7

4.1 Subspace Distinguisher for 5 Rounds

In this section we show that ECHO-256 reduced to 5 rounds can be distinguished from an ideal
hash function. We are able to construct a large set of output differences which fall into a vector
space of fixed dimension. But when does this result in a distinguisher on the hash function?
An attacker could have chosen the vector space specifically to fit a previously computed set
of differences. Also, finding up to x differences in subspace of dimension x is trivial, even for
ideal functions. But once a subspace has been chosen, finding additional differences in this
subspace should again have the generic complexity. We have a similar situation for preimage
attacks: finding a preimage is trivial if the attacker can choose the hash value. Note that in most
distinguishing attacks, the generic complexity also depends on the number of found solutions.
To compare distinguishers with generic attacks, differential q-multicollisions have been used
in the distinguishing attacks on AES [3]. More general, to analyze the complexity of finding
differences in a vector space of fixed dimension, the subspace distinguisher has been introduced
in the analysis of Whirlpool [9, 10]. Before we describe the subspace distinguisher for 5 rounds
of ECHO-256 in detail, we give an overview of the truncated differential path and provide a brief
outline of the attack.

The Truncated Differential Path. For the attack we use two message blocks where the
first block does not contain differences. For the second message block, we use the truncated
differential path given in Fig. 3. We use colors (red, yellow, green, blue, cyan) to describe
different phases of the attack and to denote their resulting solutions. Active bytes are denoted
by black color and all AES states are active which contain at least one active byte. Hence, the
sequence of active AES states for each round of ECHO is as follows:

5
r1−→ 16

r2−→ 4
r3−→ 1

r4−→ 4
r5−→ 16

Note that in this path we keep the number of active bytes low as described in Sect. 3.1. Except
for the beginning and end, at most one fourth of the ECHO state is active and therefore, we have
enough freedom to find many solutions. Since the lower half of the state is truncated, we have
most differences in the lower half of the message and there are no differences in the chaining
input (blue). The padding of the second (and last) message block is denoted by cyan bytes. The
last 16 bytes (one AES state) of the padding contain the message length, and the two bytes
above contain the 2-byte value with the hash size. Note that the AES states containing the
chaining values (blue) and padding (cyan) do not get mixed with other AES states until the
first BigMixColumns transformation.

Attack Outline. To find input pairs according to this path we use the rebound attack [13] with
multiple inbound phases [9,11]. The main advantage of multiple inbound phases is that we can
first find pairs for each inbound phase independently and then, connect (or merge) the results.
For the attack on 5 rounds of ECHO-256 we use an inbound phase in round 2 (red) and another
inbound phase in round 3 (yellow). The 1st inbound phase finds values and differences for the
red bytes which we connect with the chaining input (blue) and padding (cyan) by merging lists.
Then, we compute the solutions of the 2nd inbound phase forwards in the outbound phase
(green) to insure the propagation according to the truncated differential path until the end.
Finally, we merge the solutions of the two inbound phases by determining the remaining (white)
values using a generalized birthday attack on 4 independent columns of the state. Note that
in some cases, the probability to find one solution is only close to one. However, for simplicity
reasons of describing the attack we assume it is one, since we have enough freedom in the attack
to repeat all phases with different starting points to get one solution on average.

8

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

H
M

S
8

S
9

S
10

S
11

S
12

S
13

S
14

S
15

S
16

S
16

S
17

S
18

S
19

S
20

S
21

S
22

S
23

S
24

S
24

S
25

S
26

S
27

S
28

S
29

S
30

S
31

S
32

S
32

S
33

S
34

S
35

S
36

S
37

S
38

S
39

S
40

ShiftRows

SubBytes

MixColumns

SubBytes

ShiftRows

BigShiftRows

MixColumns

BigMixColumns

m
er

ge

ch
ai

ni
ng

in
pu

t

ShiftRows

SubBytes

MixColumns

SubBytes

ShiftRows

BigShiftRows

MixColumns

BigMixColumns

1s
t i

nb
ou

nd

ShiftRows

SubBytes

MixColumns

SubBytes

ShiftRows

BigShiftRows

MixColumns

BigMixColumns

2n
d

in
bo

un
d

ShiftRows

SubBytes

MixColumns

SubBytes

ShiftRows

BigShiftRows

MixColumns

BigMixColumns

ou
tb

ou
nd

ShiftRows

SubBytes

MixColumns

SubBytes

ShiftRows

BigShiftRows

MixColumns

BigMixColumns

BigFinal

Trunc

F
ig

.
3
.

T
h

e
tr

u
n

ca
te

d
d

iff
er

en
ti

al
p
at

h
to

g
et

a
su

b
sp

ac
e

d
is

ti
n

gu
is

h
er

fo
r

5
ro

u
n

d
s

of
E
C
H
O
-2

56
.

B
la

ck
b
y
te

s
ar

e
ac

ti
ve

,
b

lu
e

an
d

cy
an

b
y
te

s
ar

e
d

et
er

m
in

ed
b
y

th
e

ch
a
in

in
g

in
p

u
t

an
d

p
ad

d
in

g,
re

d
b
y
te

s
ar

e
va

lu
es

co
m

p
u

te
d

in
th

e
1s

t
in

b
ou

n
d

p
h

as
e,

y
el

lo
w

b
y
te

s
in

th
e

2n
d

in
b

ou
n

d
p

h
as

e
an

d
g
re

en
b
y
te

s
in

th
e

o
u

tb
o
u

n
d

p
h

as
e.

9

1st Inbound. We start the 1st inbound phase with a random difference according to the trun-
cated differential path through SuperMixColumns between state S14 and state S16 (see Sect. 3.3).
We compute these differences backward to get the output differences of the SuperBoxes in state
S12. For each column in state S7 we choose 232 random differences for the given active bytes.
We compute these differences forward through BigMixColumns to the input of the SuperBoxes.
Note that for the last column we could choose up to 264 differences (8 active bytes), whereas in
all other columns we have only 232 possible differences (4 active bytes).

As described in Sect. 3.4, we find values according to the SuperBox differentials with an
average complexity of 1 by using DDT lookups. Note that for some differentials no solutions
exist, but for each possible differential we get more pairs which out-weight the non-existing ones
(for more details we refer to [13]). In general, for each active AES S-box a differential is possible
with a probability of about 2−1 and we get at least 2 pairs. Hence, for a full active AES state,
one out of approximately 216 differences gives a differential match and then, provides at least
216 solutions. In the following attacks, it is reasonable to assume that for each differential we
get one solution with average complexity one.

Since in the 1st inbound phase the columns of ECHO are independent, we get 232 independent
solutions for each of the four columns in state S7 (red and black bytes) with complexity 232

in time and memory. These solutions (or pairs) consist of differences and values for the black
bytes, and values for the red bytes in S7. Note that for each solution (and arbitrary choice of
white bytes in S7) the truncated differential path from state S3 to state S23 is already fulfilled.

Merge Chaining Input. Next, we need to merge the solutions of the 1st inbound phase
with the chaining input and bytes fixed by the padding. Therefore, we choose 232 random first
message blocks and compute the resulting chaining value after one compression function call
of ECHO. Note that each AES state can be independently computed forward to state S7 until
the first BigMixColumns transformation. We do this for the chaining values (blue) and the AES
state containing the message length (cyan). Note that we match the two remaining bytes and
one bit of the padding at a later step.

We merge the 232 chaining values with the solutions of the 1st inbound phase column by
column. We start with column 0 where we need to match the padding state as well. Since
we match 64 bits of overlapping red and blue/cyan bytes, the expected number of solutions
is 232 × 232 × 2−64 = 1. We compute this solution by merging the two lists of size 232 and
exploiting the birthday effect. For all other columns, we need to match only 4 red bytes in each
blue AES state and we get 232 × 2−32 = 1 solution as well. Since we only merge lists of size 232

the complexity of this step is 232 in time and memory.
After this step, we have found solutions where the values of all blue, cyan and red bytes, as

well as the values of the black bytes between state S7 and state S14 are determined. Furthermore,
all differences (black bytes) from state S4 up to state S17 can be computed.

2nd Inbound. In the 2nd inbound phase, we search for values and differences such that the
truncated differential path in round 3 is fulfilled (yellow). Remember that the differences in
state S17 have already been fixed due to the 1st inbound phase. We start with 264 differences of
state S24 and compute backwards to state S20, the output of the SuperBoxes. Note that we have
16 independent SuperBoxes for the yellow AES states between state S17 and S20. Again, we use
the DDT of the SuperBoxes to find the according values for the given differentials. For 4 full
active AES states, the probability of a differential is about 2−4·16. Among the 264 differentials,
we expect to find one possible differential. Note that for a valid differential, the expected number
of solutions for the 2nd inbound phase is 264. For each of these pairs, differences and values of
all yellow and black bytes in round 3 are determined.

10

Outbound Phase. Next, we compute the 264 differences and values of state S24 forward to
S31. With a probability of 2−96 we get 4 active bytes after MixColumns in state S31. Hence, we
have to repeat the 2nd inbound phase 232 times to find one solution for the outbound phase as
well and we get a total complexity of 296. After this step, the complete truncated differential
path is fulfilled (except for two cyan bytes in the first states). Furthermore, all differences (black
bytes) from state S4 until state S33 are already determined. Also, the values of the yellow, red,
blue, green and cyan bytes, and the values of the black bytes from state S7 to S31 except for
state S15 are determined. What remains is to find values for the white bytes such that the
results of the two inbound phases (blue/cyan/red and yellow bytes) can be connected.

Merge Inbound. To merge the two inbound phases, we need to find according values for the
white bytes. We first choose random values for all remaining bytes of the first two columns in
state S7 (gray and lightgray) and compute them forward to state S14. Note that we need to try
22·8+1 values for AES state S7[2, 1] to also match the 2-byte (cyan) and 1-bit padding at the
input in AES state S0[2, 3]. To illustrate all further steps, we use only states and colors shown
in Fig. 4. Note that all gray, lightgray and brows bytes have already been determined either by
an inbound phase, chaining value, padding or just by choosing random values for the remaining
free bytes of the first two columns of S7. Also the cyan bytes are fixed already. However, all
white, red, green, yellow and blue bytes are still free to choose.

S7 S8 S14 S16

S
R

S

B

M
C

S

B

S
R

B

S
R

B
M

C

M
C

B

M
C

Fig. 4. States used to merge the two inbound phases with the chaining values. Gray, lightgray
and brown bytes show values already determined. Green, blue, yellow and red bytes show
independent values used in the generalized birthday attack and cyan bytes represent values
with the target conditions.

By taking a look at the linear SuperMixColumns transformation, we observe that in each
column slice, 14 out of 32 input/output values are already fixed. Hence, we expect to get 216

solutions for this linear system of equations. Unfortunately, for the given position of already
determined 14 bytes, the linear system of equations does not have a full rank. One can determine
the resulting system using the matrix MSMC of SuperMixColumns. For the first column-slice the
system is given as follows:

MSMC · [a0L0L1L2a1L
′
0L
′
1L
′
2a2x0x1x2a3x3x4x5]

′ = [b0b1b2b3y0y1y2y3y4y5y6y7y8y9y10y11]

The free variables in this system are x0, . . . , x5 (green). The values a0, a1, a2, a3, b0, b1, b2, b3
(brown) have been determined by the first or second inbound phase, and the values L0, L1, L2

(lightgray) and L′0, L
′
1, L

′
2 (gray) are determined by the choice of arbitrary values in state S7.

Since the values y0, . . . , y11 (white) are free to choose we can remove their respective equations.
We move terms which do not depend on xi to the right side and get the following linear system

11

with 4 equations and 6 variables:

 3 1 1 3 1 1
2 3 1 2 3 1
1 2 3 1 2 3
1 1 2 1 1 2

 ·


x0

x1

x2

x3

x4

x5

 =

 c0
c1
c2
c3

 (2)

On the right side, we have the constant values c0, c1, c2, c3 which are determined by a0, a1, a2, a3,
b0, b1, b2, b3, L0, L1, L2, L

′
0, L

′
1, L

′
2 and we get for example:

c0 = b0 + 4a0 + 6L0 + 2L1 + 2L2 + 6a1 + 5L′0 + 3L′1 + 3L′2 + 2a0 + 2a1

The matrix of this linear system has rank 3 instead of 4 and therefore, we only get a solution
with probability 2−8. We can solve this system of equations by transforming the system into
echelon form and get:  1 0 0 1 0 0

0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 0 0 0

 ·


x0

x1

x2

x3

x4

x5

 =

 c′0
c′1
c′2
c′3

 (3)

where the values c′0, c
′
1, c
′
2, c
′
3 are a linear combination of c0, c1, c2, c3. From the last equation,

we get the 8-bit condition c′3 = 0. Since also c′3 depends linearly on Li and L′i, we can separate
this linear equation into terms depending only on values of Li and only on L′i, and get c′3 =
f1(Li) + f2(L

′
i) + f3(ai, bi) = 0. For all other 16 column-slices and fixed positions of gray bytes,

we also get matrices of rank 3. In total, we get 16 8-bit conditions and the probability to find a
solution for a given choice of gray and lightgray values in state S14 and S16 is 2−128. However, we
can also find a solution using the birthday effect with a complexity of 264 in time and memory.

First, we start by choosing 264 values for each of the first (gray) and second (lightgray)
BigColumn in state S7. We compute these values independently forward to state S14 and store
them in two lists L and L′. We also separate all equations of the 128-bit condition into parts
depending only on values of L and L′. We apply the resulting functions f1, f2, f3 to the elements
of lists Li and L′i, and search for matches between the two lists using the birthday effect. Now,
by solving (3) we get 224 solutions for the fist column-slice. By doing the same for all other
slices, we get 224 independent solutions for each column-slice. Hence, in total we can get up to
216·24 = 2384 solutions for the whole ECHO state.

We continue with a generalized birthday match to find values for all remaining bytes of the
state. For each column in state S14, we independently choose 264 values for the green, blue,
yellow and red columns, and compute them independently backward to S8. We need to match
the values of the cyan bytes of state S7, which results in a condition on 24 bytes or 192 bits.
Since we have 4 independent lists with 264 values in state S8, we can use the generalized birthday
attack [19] to find one solution with a complexity of 2192/3 = 264 in time and memory. In detail,
we need to match values after the BigMixColumns transformation in backward direction. Hence,
we first multiply each byte of the 4 independent lists by the 4 multipliers of the InvMixColumns
transformation. Then, we get 24 equations containing only XOR conditions on bytes between
the target value and elements of the 4 independent lists. This can be solved using a generalized
birthday attack.

After this step, all values and differences are determined. We can compute the input message
pair, as well as the output differences for ECHO-256 reduced to 5 rounds. By simply repeating
the merge inbound phase 232 times, we can find at least 232 solutions for the whole truncated
differential path. The total complexity is still 296 compression function evaluations and memory
requirements of 264.

12

Subspace Distinguisher. Note that one message pair resulting in one output differences does
not give a distinguisher. We need to find many output differences in a subspace with a complexity
less than in the generic case. To determine the generic complexity of finding output differences
in a vector space and the resulting advantage of our attack we use the subspace distinguisher.
In general, the size of the output vector space is define by the number of active bytes prior to
the linear transformations in the last round (16 active bytes after the last SubBytes), combined
with the number of active bytes at the input due to the feed-forward (0 active bytes in our
case). This would results in a vector space dimension of (16 + 0) · 8 = 128. However, a weakness
in the combined transformations SuperMixColumns, BigFinal and output truncation reduces the
vector space to a dimension of 64 at the output of the hash function (for the given truncated
differential path).

Note that we can move the BigFinal function prior to SuperMixColumns, since BigFinal is
a linear transformation and the same linear transformation MSMC is applied to all columns in
SuperMixColumns. Hence, we get 4 active bytes in each column slice at the same position in each
AES state. To each (active) column slice C16, we first apply the SuperMixColumns multiplication
with MSMC and then, a matrix multiplication with Mtrunc which truncates the lower 8 rows.
Since only 4 bytes are active in C16, these transformations can be combined into a transformation
using a reduced 4× 8 matrix Mcomb applied to the reduce input C4, which contains only the 4
active bytes of C16:

Mtrunc ·MSMC · C16 = Mcomb · C4

The multiplication with zero differences of C16 removes 12 columns of MSMC while the truncation
removes 8 rows of MSMC. An example for the first active column slice is given as follows:


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

 ·



4 6 2 2 6 5 3 3 2 3 1 1 2 3 1 1
2 4 6 2 3 6 5 3 1 2 3 1 1 2 3 1
2 2 4 6 3 3 6 5 1 1 2 3 1 1 2 3
6 2 2 4 5 3 3 6 3 1 1 2 3 1 1 2
2 3 1 1 4 6 2 2 6 5 3 3 2 3 1 1
1 2 3 1 2 4 6 2 3 6 5 3 1 2 3 1
1 1 2 3 2 2 4 6 3 3 6 5 1 1 2 3
3 1 1 2 6 2 2 4 5 3 3 6 3 1 1 2
2 3 1 1 2 3 1 1 4 6 2 2 6 5 3 3
1 2 3 1 1 2 3 1 2 4 6 2 3 6 5 3
1 1 2 3 1 1 2 3 2 2 4 6 3 3 6 5
3 1 1 2 3 1 1 2 6 2 2 4 5 3 3 6
6 5 3 3 2 3 1 1 2 3 1 1 4 6 2 2
3 6 5 3 1 2 3 1 1 2 3 1 2 4 6 2
3 3 6 5 1 1 2 3 1 1 2 3 2 2 4 6
5 3 3 6 3 1 1 2 3 1 1 2 6 2 2 4



·



a
0
0
0
b
0
0
0
c
0
0
0
d
0
0
0



=


4 6 2 2
2 3 1 1
2 3 1 1
6 5 3 3
2 4 6 2
1 2 3 1
1 2 3 1
3 6 5 3

 ·
 a

b
c
d



Analyzing the resulting matrix Mcomb for all 4 active column slices shows that in each case, the
rank of Mcomb is 2 instead of 4. This reduces the dimension of the vector space in each active
column slice from 32 to 16. Since we have 4 active columns, the total dimension of the vector
space at the output of the hash function is 64.

We use [9, Corollary 1] and [9, Equation (19)] to compute the complexity of a generic
distinguishing attack on the ECHO-256 hash function. We get the parameters N = 256 (hash
function output size), n = 64 (dimension of vector space) and t = 232 (number of outputs
in vector space) for the subspace distinguisher. Then, the generic complexity to construct 232

elements in a vector space of dimension 64 is about 2111.8 compression function evaluations.
Remember that in our attack on ECHO we also get 232 pairs in a vector space of the same
dimension. Hence, the total complexity for our subspace distinguisher on 5 rounds of the ECHO-
256 hash function is about 296 compression function evaluations with memory requirements of
264.

13

4.2 Near-Collisions for 4.5 Rounds

We can also use the truncated differential path for the subspace distinguisher on 5 rounds to
get a near-collision attack for 4.5 rounds. If we remove the last MixColumns, BigShiftRows and
BigMixColumns transformations we get 232 64-bit near-collisions (8 active bytes at the output)
with a total complexity of 296 and 264 memory. Note that the generic complexity to find one
such near-collision is 296 while the complexity to find 232 near-collisions is 2128 compression
function evaluations.

We can also change the truncate differential path slightly to find one 48-bit near-collision
with only 6 active bytes at the output (generic complexity 2104). Instead of computing 232 solu-
tions after the merge inbound phase, we search for one pair according the truncated differential
path of Fig. 5 in the last round. The probability for the propagation through MixColumns in
state S35 is 2−32 and we get one 48-bit near-collision with a complexity of 296 compression
function evaluations and 264 memory.

S32 S33 S34 S35 S36 S37 S38

S
hi

ft
R

ow
s

S
ub

B
yt

es

M
ix

C
ol

u
m

ns

S
u
bB

yt
es

S
hi

ft
R

ow
s

B
ig

S
hi

ft
R

ow
s

B
ig

F
in

al T
ru

nc

Fig. 5. The truncated differential path for the last round to get a near-collision for 4.5 rounds of
ECHO-256. Black bytes are active and purple bytes are determined in the 2nd outbound phase.

Additionally, we can improve the complexity of a near-collision attack by choosing the salt
value. In this case, we extend the attack by a 3rd inbound phase in round 4 instead of the
outbound phase. Since the salt has to be determined first, we need to compute the 2nd and
3rd inbound phase before the 1st inbound phase. Note that the 128-bit salt value is added
after the second AES MixColumns transformation in each round of ECHO. Since the same salt
value is added in every AES state and BigMixColumns is a linear operation, we can move the
XOR-addition of the salt after BigMixColumns. Then, the whole 2nd and 3rd inbound phase is
independent of the salt value and we use the freedom in the salt to connect the two inbound
phases.

In detail, we first compute the resulting difference of the 2nd inbound phase forward to
state S25 and one difference of state S31 backward to state S28. Then, we use the DDT of the
SuperBoxes to find values according to the given differential or repeat with another difference
of state S31. This step determines values and differences of the green and black bytes of round
4. Since the differences between the 2nd and 3rd inbound phase already match we just need
to choose the salt such that the values in the active AES state match as well. Since we do not
reduce the number of active bytes in the outbound phase, the total complexity to find a 64-bit
near-collision with chosen salt (8 active bytes at the output) is 264 in time and memory.

4.3 Collisions for 4 Rounds

Finally, we are able to construct collisions for 4 rounds of the ECHO-256 hash function. The
attack and truncated differential path is similar as for the subspace distinguisher on 5 rounds.
We use a two-block message and the truncated differential path for the second block is given in
Fig. 6. Again, we start with the 1st inbound phase, merge the chaining input and continue with
the 2nd inbound and outbound phase. To get a collision at the output we use differences in the
feed-forward and do a 3rd inbound phase in two AES states in round 1. Finally, we merge the

14

solutions of the two inbound phases to determining the remaining values. In the following, we
only describe parts of the attack which are new or have been changed.

1st Inbound. The 1st inbound phase is the same as for the subspace distinguisher, except
that in state S7 we choose 264 random differences for the active bytes of column 0 and 1, and
232 random differences for column 2 and 3. Hence, after the 1st inbound phase we get 264

independent solutions for each of the first two columns, and 232 solutions for each of the last
two columns in state S7 (red and black bytes).

Merge Chaining Input. Again, we choose 232 random first message blocks and merge them
with the solutions of the 1st inbound phase column by column. We start with column 0 where
we need to match the padding state as well. Since we match 64 bits of overlapping red and
blue/cyan bytes, the expected number of solutions is 232 × 264 × 2−64 = 232. For all other
columns, we need to match only the 4 red bytes in each blue AES state with a probability of
2−32. For column 1 we get 232 solutions since we have computed 264 results in the 1st inbound
phase. For column 2 and 3, we have 232 solutions from the 1st inbound phase and get one match
on the overlapping 4 bytes.

2nd Inbound. To get the first solution for the 2nd inbound phase we need to try 264 differences
of state S24, since the probability of a differential match in 4 full active AES states is only about
2−4·16. Then, the expected number of solutions for the 2nd inbound phase is 264 but we only
need 248 solutions to continue.

Outbound Phase. In the outbound phase we compute these 248 differences and values of
state S24 forward to S27. With a probability of 2−48 we get one active byte after MixColumns
in each active state of S27. After this step, the complete truncated differential path (except for
the three first states) is fulfilled. What remains is to determine differences in the first state to
get a collision at the output and to find values for the white bytes.

3rd Inbound. To get a collision at the output, we use two additional active AES states in
round 1. In S0[0, 1] and S0[1, 1], only the first column should be active such that the active
bytes overlap with the active bytes at the output. For these active bytes at the input, we choose
the differences to be S0[0, 1] =S32[0, 0]⊕S32[0, 3] and S0[1, 1] =S32[1, 0]⊕S32[1, 3]. Then, these
differences cancel each other by the feed-forward and we get a collision. In a 3rd inbound phase,
we determine the remaining values of the gray and black bytes such that the given truncated
differential for these two AES states in round 1 is satisfied. Again, we can find such values and
differences with a complexity of about 1 using the DDT of the SuperBoxes, and compute 232

solutions for each AES state. Since we still have 232 solutions for each of column 0 and column
1 due to the 1st inbound phase, we expect to find a match for both differences and values of
the overlapping 4 diagonal bytes of AES state S7[0, 1] and S7[1, 0].

Merge Inbound. Finally, we merge the 1st and 2nd inbound phases as in the previous attacks.
Then, all values and differences are determined and we can compute the input message pair
which results in a collision for ECHO-256 reduced to 4 rounds. The total complexity is 264 in
time and memory.

15

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

H
M

S
8

S
9

S
10

S
11

S
12

S
13

S
14

S
15

S
16

S
16

S
17

S
18

S
19

S
20

S
21

S
22

S
23

S
24

S
24

S
25

S
26

S
27

S
28

S
29

S
30

S
31

S
32

ShiftRows

SubBytes

MixColumns

SubBytes

ShiftRows

BigShiftRows

MixColumns

BigMixColumns

ShiftRows

SubBytes

MixColumns

SubBytes

ShiftRows

BigShiftRows

MixColumns

BigMixColumns

ShiftRows

SubBytes

MixColumns

SubBytes

ShiftRows

BigShiftRows

MixColumns

BigMixColumns

ShiftRows

SubBytes

MixColumns

SubBytes

ShiftRows

BigShiftRows

MixColumns

BigMixColumns

BigFinal

Trunc

F
ig

.
6
.

T
h

e
tru

n
ca

ted
d

iff
eren

tial
p

ath
to

get
a

collision
on

4
rou

n
d

s
of

E
C
H
O
-256.

B
lack

b
y
tes

are
active,

b
lu

e
an

d
cyan

b
y
tes

are
d

eterm
in

ed
b
y

th
e

ch
ain

in
g

in
p

u
t

a
n

d
p

ad
d

in
g
,

red
b
y
tes

are
valu

es
com

p
u

ted
in

th
e

1st
in

b
ou

n
d

p
h

ase
an

d
yellow

b
y
tes

in
th

e
2n

d
in

b
ou

n
d

p
h

ase,
green

b
y
tes

in
th

e
o
u

tb
o
u

n
d

p
h

ase
a
n

d
gray

b
y
tes

in
th

e
in

p
u

t
in

b
ou

n
d

p
h

ase.

16

5 Attacks on the ECHO-256 Compression Function

The attack on the hash functions of ECHO can be extended to the compression function almost
in a straight-forward way. In this case, instead of the chaining value a 512-bit value of another
inbound phase is merged with the 1st inbound phase. In fact we can continue with a similar
3-round path in backward direction as we have in the hash function case in forward direction.
Then, the full active ECHO state is located in the middle round and we can construct attacks for
up to 7 out of 8 rounds of the compression function of ECHO-256. By choosing the salt input, we
get a subspace distinguisher for 7 rounds of the compression function with complexity 2107 and
264 memory. If the attacker is not allowed to choose the salt, one still gets a distinguisher for 7
rounds with a complexity of 2152 and 264 memory using the limited birthday distinguisher [7].
Note that in this setting, not only the outputs but also parts of the inputs are constraint.

5.1 The Truncated Differential Path

We use the 7-round truncated differential path given in Fig. 7. Black bytes are active and
colored bytes are determined by the different inbound and outbound phases. Since this path is
sparse, we do not have problems with missing degrees of freedom and are able to find many
pairs according to this path. Again, we can already compute the expected number of pairs by
considering the MixColumns and SuperMixColumns transformations. At the input, we start with
values in 256 bytes, a 16 byte differences and a 128-bit salt. We get a reduction of pairs at the
1st MC and SMC of round 1, the 2nd MC of round 3, the 1st MC and SMC of round 4, the BMC
of round 5 and the 2nd MC of round 6. The expected number of pairs (in base 2 logarithm) for
the path is given as follows:

8 · (256 + 16 + 16− 12− 3− 48− 48− 12− 48− 12) = 8 · 105 (4)

To summarize, the expected number of pairs conforming to this 7-round truncated differential
path is 28·105 = 2800 which corresponds to 800 degrees of freedom. Note that this is much more
than for the paths given in [12] and [17].

5.2 Outline of the Attack

The attack on the compression function consists of 3 main parts and we start in the middle
of the compression function. The forward part is similar to the hash function attack and the
backward part consists of additional inbound and outbound phases in round 3 and round 2.
Instead of merging with the chaining input, we merge the results of the forward and backward
part. Again, we start with the 1st inbound phase which is now located in round 4. Then, we
compute the inbound and outbound phases in round 3 and round 2. We continue with the 2nd
inbound phase (round 5), the 1st outbound phase (round 6) and finally, merge the forward and
backward part by finding solutions for the remaining white bytes, similar as in the hash function
attack.

5.3 Compression Function Attack with Chosen Salt

Similarly to the hash function attack, we start with the 1st inbound phase which we change
slightly. Again, we use all 232 difference for each active AES state in S23, but also all 232

differences for the active bytes in state S30. According to the SuperMixColumns transformation
in round 4, 232 such differences exist.

17

S
0

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
8

S
9

S
10

S
11

S
12

S
13

S
14

S
15

S
16

S
16

S
17

S
18

S
19

S
20

S
21

S
22

S
23

S
24

S
24

S
25

S
26

S
27

S
28

S
29

S
30

S
31

S
32

S
32

S
33

S
34

S
35

S
36

S
37

S
38

S
39

S
40

S
40

S
41

S
42

S
43

S
44

S
45

S
46

S
47

S
48

S
48

S
49

S
50

S
51

S
52

S
53

S
54

S
55

S
56

ShiftRows

SubBytes

MixColumns

SubBytes

ShiftRows

BigShiftRows

MixColumns

BigMixColumns

ShiftRows

SubBytes

MixColumns

SubBytes

ShiftRows

BigShiftRows

MixColumns

BigMixColumns

ShiftRows

SubBytes

MixColumns

SubBytes

ShiftRows

BigShiftRows

MixColumns

BigMixColumns

ShiftRows

SubBytes

MixColumns

SubBytes

ShiftRows

BigShiftRows

MixColumns

BigMixColumns

ShiftRows

SubBytes

MixColumns

SubBytes

ShiftRows

BigShiftRows

MixColumns

BigMixColumns

ShiftRows

SubBytes

MixColumns

SubBytes

ShiftRows

BigShiftRows

MixColumns

BigMixColumns

ShiftRows

SubBytes

MixColumns

SubBytes

ShiftRows

BigShiftRows

MixColumns

BigMixColumns

Fig. 7. The truncated differential path to get a subspace distinguisher for 7 rounds of the
ECHO-256 and ECHO-512 compression function. Black (and brown) bytes are active, red bytes are
values computed in the 1st inbound phase, yellow bytes in the 2nd, blue bytes in the 3rd and
green bytes in the 4th inbound or 2nd outbound phase. Brown bytes in state S15 and S23 are
active and show the position where the salt is chosen in the chosen-salt attack. Purple bytes
are determined in the 1st outbound phase and gray bytes are chosen randomly. Note that by
omitting the last (half) round, we get near-collisions for the compression function.

18

3rd Inbound. In the 3rd inbound phase, we search for values and differences such that the
truncated differential path in round 3 is fulfilled. Furthermore, we need to ensure that the results
can be connected with the solutions of the 1st inbound phase. We have 232 solutions for the
1st inbound phase and choose 232 values of the salt corresponding to the active diagonal bytes
(red an black bytes) in state S23. Hence, we get in total 264 values with equal differences for the
red and black bytes of state S23. Next, we compute the difference of S23 backward to state S20,
choose a random difference in state S15 and compute forwards to state S17. Again, we have 16
independent active SuperBoxes in round 3 and can use the DDT to find according values for the
given differentials with an average complexity of 1. We need to match the overlapping values
of the 16 black bytes in state S23. We repeat the previous step with 296 random differences of
state S15 to get 296 × 264 × 2−128 = 232 solutions.

4th Inbound. The 4th inbound phase is applied in round 2. We first choose a difference
according to the truncated differential path through SuperMixColumns in round 1 and compute
this difference forward to state S9. Furthermore, we compute the differences of the 232 solutions
of the 3rd inbound phase backwards to state S12. We use the DDT of the SuperBoxes to get 232

solutions for the 4th inbound phase. Next, we need to connect the values of the 3rd and 4th
inbound in state S15. Among the 232 solutions of the 4th inbound phase, we expect to find one
match for the 4 bytes of the diagonal of state S15[0, 0]. For all other bytes, we simply choose
the remaining 12 bytes of the salt accordingly.

1st Outbound. In the 2nd inbound phase, we have computed 296 solutions which we now prop-
agate outwards to state S47. With a probability of 2−96 we get 4 active bytes after MixColumns
in state S47 and expect to find one such pair. The remaining part of the truncated differential
path holds with probability 1. For this resulting pair, the complete 7-round truncated differential
path is fulfilled and we just need to find values for the white (and gray) bytes again.

Merge Inbound. We can choose random values for the gray bytes in round 3 and continue
with merging the inbound phases as in Sect. 4.1 of the hash function attack. Hence, the overall
complexity to find one pair according to the truncated differential path for the permutation is
296 with 264 memory.

5.4 Compression Function Attack without Chosen Salt

Again, we start with the 1st inbound phase. We use all 232 difference for the active AES states in
S23, but only a single difference for the active bytes in state S30. Similar as in the hash function
attack, we can independently find 232 solutions for each column of state S23 with a complexity
of 232.

3rd Inbound. In this inbound phase, we search for values and differences such that the trun-
cated differential path in round 3 is fulfilled. Furthermore, we ensure that the results can be
connected with the 1st inbound phase. For each active AES state in S23, we independently
compute the 232 difference backward to state S20. Next, we choose a random difference in state
S15 and compute forwards to state S17. Since, we have 16 independent active SuperBoxes in
round 3, we can use the DDT to find according values for the given differentials with an average
complexity of 1. Then, we can independently match the overlapping values and differences of
the 16 black bytes in state S23. For each AES state, we expect to get 232 × 232 × 2−64 = 1
solution on average with a complexity of 232. For this solution, the differences between state S12

and S33, and the values of the red and black bytes between state S16 and S30 are determined.

19

2nd Outbound. In the 2nd outbound phase, we simply propagate the solution of the 3rd
inbound phase backwards through round 2 and 1. Note that only 28 differences of state S8 result
in the given truncated differential path through SuperMixColumns in round 1. The probability
to hit one of these differences from an active AES state is 2−120. Hence, we need to repeat the
3rd inbound phase about 2120 times. Since the forward and merging part of the compression
function attack does not change, we get a total complexity of 2152 with 264 memory.

5.5 Distinguishers for 7 Rounds

To distinguish 7 rounds of the ECHO-256 compression function from an ideal compression func-
tion, we use a subspace distinguisher again. Since the output is not truncated, the size of the
vector space is define by the number of active bytes prior to the MixColumns and BigMixColumns
transformations in the last round (16 active bytes), and the number of active bytes at the input
due to the feed-forward (16 active bytes). Since in total, 32 active bytes determine the vector
space we get a dimension of 32 · 8 = 256. Again, we use [9, Equation (19)] to compute the
complexity of a generic distinguishing attack on the ECHO-256 compression function.

With chosen salt, we get the parameters N = 512 (compression function output size),
n = 256 (dimension of vector space) and t = 211 (number of outputs in vector space) for
the subspace distinguisher. Then, the generic complexity to construct 211 elements in a vector
space of dimension 256 is about 2117.3 compression function evaluations. Note that we also
need to repeat our attack on the ECHO-256 compression function about 211 times to get enough
differences in the vector space. Hence, the total complexity for the subspace distinguisher on
the compression function is about 2107 with memory requirements of 264.

Without chosen salt, the complexity of the attack is too high to get a subspace distinguisher.
However, in a weaker attack model, for example using a limited birthday distinguisher [7] where
also the input space is restricted, a distinguisher for 7/8 rounds of the compression function
of ECHO-256 without chosen salt can be constructed. In this case, the output differences need
to be in a 256-bit subspace again. The generic complexity to find one such pair for a 512-bit
compression function is 2(512−256)/2 = 2128 using the birthday effect. However, to find more such
pairs the whole attack needs to be repeated with different values, since the input is limited to
a 128-bit difference. The generic complexity to find x solutions is therefore x · 2128.

Similar as in the near-collision attack of Sect. 4.2, we can find many solutions with a total
complexity of 2152. For example, we can repeat the merge inbound phase (complexity 264)
at least 232 times to get x = 232 solutions with a complexity of 296 for the merge inbound
phase. Since the differences for the truncated differential path are already fixed, each of these
solutions results in output differences in the same subspace. To summarize, we can find up to
x = 2152−64 = 288 input pairs which conform to the whole truncated differential path with a
total complexity of 2152 and without choosing the salt. The generic complexity to find 288 such
solutions is 2216 compression function evaluations.

5.6 Near-Collisions for 6 and 6.5 Rounds

Due to the truncating output transformation of ECHO, near-collisions are also interesting for
the compression function. To construct near-collisions for up to 6.5 rounds of the compression
function, we use the same truncated differential path as before. With chosen salt, we get a
128-bit near-collision (4 diagonals with 4 bytes are active) for the 512-bit compression function
of ECHO-256 and 6 rounds, or a 192-bit near-collision (6 bytes in 4 AES states are active) and 6.5
rounds with a complexity of 296 and 264 memory. Without chosen salt, the complexity increases
to 2152 and 264 memory. For a 512-bit compression function, the generic complexity is 2192 to

20

get a 128-bit near-collision and 2160 to get a 192-bit near-collision. Because of the padding, this
near-collision does not apply to the last compression function call of ECHO-256.

6 Conclusion

In this work we have presented the first analysis of the ECHO hash function. We give a subspace
distinguisher for 5 rounds, near-collisions for 4.5 rounds and collisions for 4 out of 8 rounds of
the ECHO-256 hash function. Note that also near-collision resistance is a NIST requirement for a
future SHA-3 [16]. Our results improve upon the previous results which are only on the (double-
pipe) compression function of ECHO and for less rounds. Since ECHO has a truncating output
transformation, near-collisions are also an interesting property of the compression function. We
have analyzed the compression functions of ECHO to get a distinguisher for 7 rounds and near-
collisions for up to 6.5 rounds of ECHO-256. We get similar compression function results also for
ECHO-512.

In our improved attacks we combine the MixColumns transformation of the second AES round
with the subsequent BigMixColumns transformation to a combined SuperMixColumns transfor-
mation. This allows us to construct very sparse truncated differential paths. In these paths, at
most one fourth of the bytes are active throughout the whole computation of ECHO. This behav-
ior is not known from the AES or AES based hash functions which strictly follow the wide-trail
design strategy. Additionally, we are able to apply a rebound attack with multiple inbound
phases to ECHO by using a generalized birthday technique to merge the inbound phases. Future
work includes the search for even sparser truncated differential paths and the improvement of
the given attacks by using the large degrees of available freedom. Also the separate search for
differences and values as proposed in [12] and [8] may be used to improve the complexity of
additional inbound phases.

Acknowledgements

We thank the members of the IAIK Krypto group, the designers of ECHO and especially Jérémy
Jean and Florian Mendel for their comments and useful discussions. This work was supported
in part by the Austrian Science Fund (FWF), project P21936, by the European Commission
through the ICT programme under contract ICT-2007-216676 ECRYPT II, and by the IAP
Programme P6/26 BCRYPT of the Belgian State (Belgian Science Policy).

References

1. Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles Macario-Rat, Thomas Peyrin, Matt Robshaw, and Yan-
nick Seurin. SHA-3 Proposal: ECHO. Submission to NIST, 2008. Available online: http://crypto.rd.

francetelecom.com/echo.
2. Eli Biham and Orr Dunkelman. A Framework for Iterative Hash Functions - HAIFA. Cryptology ePrint

Archive, Report 2007/278, 2007. Available online: http://eprint.iacr.org/2007/278.
3. Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and Related-Key Attack on the Full

AES-256. In Shai Halevi, editor, CRYPTO, volume 5677 of LNCS, pages 231–249. Springer, 2009.
4. Joan Daemen and Vincent Rijmen. The Wide Trail Design Strategy. In Bahram Honary, editor, IMA Int.

Conf., volume 2260 of LNCS, pages 222–238. Springer, 2001.
5. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard.

Springer, 2002.
6. Joan Daemen and Vincent Rijmen. Understanding Two-Round Differentials in AES. In Roberto De Prisco

and Moti Yung, editors, SCN, volume 4116 of LNCS, pages 78–94. Springer, 2006.
7. Henri Gilbert and Thomas Peyrin. Super-Sbox Cryptanalysis: Improved Attacks for AES-Like Permutations.

In Seokhie Hong and Tetsu Iwata, editors, FSE, volume 6147 of LNCS, pages 365–383. Springer, 2010.
8. Dmitry Khovratovich, Maŕıa Naya-Plasencia, Andrea Röck, and Martin Schläffer. Cryptanalysis of Luffa v2

Components. In Selected Areas in Cryptography, 2010. to appear.

21

http://crypto.rd.francetelecom.com/echo
http://crypto.rd.francetelecom.com/echo
http://eprint.iacr.org/2007/278

9. Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and Martin Schläffer. Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. In Mitsuru Matsui, editor, ASI-
ACRYPT, volume 5912 of LNCS, pages 126–143. Springer, 2009.

10. Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and Martin Schläffer. The Re-
bound Attack and Subspace Distinguishers: Application to Whirlpool. Cryptology ePrint Archive, Report
2010/198, 2010. Available online: http://eprint.iacr.org/2010/198.

11. Krystian Matusiewicz, Maŕıa Naya-Plasencia, Ivica Nikolic, Yu Sasaki, and Martin Schläffer. Rebound Attack
on the Full Lane Compression Function. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of LNCS,
pages 106–125. Springer, 2009.

12. Florian Mendel, Thomas Peyrin, Christian Rechberger, and Martin Schläffer. Improved Cryptanalysis of the
Reduced Grøstl Compression Function, ECHO Permutation and AES Block Cipher. In Michael J. Jacobson
Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors, Selected Areas in Cryptography, volume 5867 of
LNCS, pages 16–35. Springer, 2009.

13. Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In Orr Dunkelman, editor, FSE, volume 5665 of LNCS,
pages 260–276. Springer, 2009.

14. Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. Rebound Attacks on the
Reduced Grøstl Hash Function. In Josef Pieprzyk, editor, CT-RSA, volume 5985 of LNCS, pages 350–365.
Springer, 2010.

15. National Institute of Standards and Technology (NIST). FIPS PUB 197: Advanced Encryption Standard.
Federal Information Processing Standards Publication 197, U.S. Department of Commerce, November 2001.
Available online: http://www.itl.nist.gov/fipspubs.

16. National Institute of Standards and Technology (NIST). Announcing Request for Candidate Algorithm
Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family. Federal Register, 27(212):62212–
62220, November 2007. Available online: http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_
Nov07.pdf.

17. Thomas Peyrin. Improved Differential Attacks for ECHO and Grøstl. Cryptology ePrint Archive, Report
2010/223, 2010. Available online: http://eprint.iacr.org/2010/223.

18. Martin Schläffer. Subspace Distinguisher for 5/8 Rounds of the ECHO-256 Hash Function. In Selected Areas
in Cryptography, 2010. to appear.

19. David Wagner. A Generalized Birthday Problem. In Moti Yung, editor, CRYPTO, volume 2442 of LNCS,
pages 288–303. Springer, 2002.

22

http://eprint.iacr.org/2010/198
http://www.itl.nist.gov/fipspubs
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://eprint.iacr.org/2010/223

A Results on the ECHO-512 Compression Function

The truncated differential path to analyze the ECHO-256 compression function can also be used
for the compression function of ECHO-512. However, the active bytes for the near-collisions and
the complexities for the subspace distinguisher change slightly. The complexity to find one
solution for the truncated differential path is 296 and 264 memory with chosen salt, and 2152

with 264 memory without chosen salt.
If we rotate the truncated differential path by one column of ECHO to the right, we can also

correct the 144-bit padding of the last compression function call. To fix the padding, we need
to repeat the merge inbound phase (complexity 264) about 2144 times. Hence, we get a total
complexity of 2208 compression function evaluations and 264 memory with and without chosen
salt.

A.1 Subspace Distinguisher for 7 Rounds

For the compression function of ECHO-512, the parameters of the subspace distinguisher are
N = 1024 (compression function output size), n = 256 (dimension of vector space) and t = 210

(number of outputs in vector space). The generic complexity for a subspace distinguisher is
2292.9 compression function evaluations. In our attack, we get for a subspace distinguisher on
the ECHO-512 compression function a complexity of about 2106 with chosen salt, 2162 without
chosen salt, and 2218 without chosen salt and correct padding (with memory 264 in all cases).

A.2 Near-Collisions for 6 and 6.5 Rounds

For the 1024-bit compression function of ECHO-512, we get a 192-bit near-collision after 6
rounds (6 diagonals with 4 bytes are active). Without the last MixColumns, BigShiftRows and
BigMixColumns transformation, we get a 224-bit near-collision after 6.5 rounds (2 AES states
with 6 bytes and 4 AES states with 4 bytes are active). With chosen salt, the complexity is
296, and without chosen salt we get a complexity of 2152. In both cases, we can also correct the
padding of the last block and get a complexity of 2208 (with memory requirements of 264 in
all cases). For a 1024-bit compression function, the generic complexity is 2416 to get a 192-bit
near-collision and 2400 to get a 224-bit near-collision.

For the rotated truncated differential path, we can additionally get a 64-bit near-collision for
6 and 6.5 rounds of the last compression function call, including the ECHO output transformation
and correct padding. The resulting truncated differences after the feed-forward, the BigFinal and
the output transformation are given in Figure 8. Again, the total complexity is 2208 compression
function evaluations and 264 memory. The generic complexity of a 64-bit near-collision for an
ideal 512-bit function is 2224.

feed forward BigFinal trunc feed forward BigFinal trunc

6 rounds 6.5 rounds

Fig. 8. Near-collisions for 6 and 6.5 rounds of the last compression function call of ECHO-512.
The truncated differential path is rotated one column to the right. The second and forth columns
are truncated by the output transformation.

23

	Introduction
	Description of ECHO
	The AES Block Cipher
	The ECHO Hash Function

	Improved Truncated Differential Analysis of ECHO
	Sparse Truncated Differential Paths for ECHO
	An Equivalent ECHO Round Description
	SuperMixColumns
	SuperBox
	Expected Number of Pairs

	Attacks on the ECHO-256 Hash Function
	Subspace Distinguisher for 5 Rounds
	Near-Collisions for 4.5 Rounds
	Collisions for 4 Rounds

	Attacks on the ECHO-256 Compression Function
	The Truncated Differential Path
	Outline of the Attack
	Compression Function Attack with Chosen Salt
	Compression Function Attack without Chosen Salt
	Distinguishers for 7 Rounds
	Near-Collisions for 6 and 6.5 Rounds

	Conclusion
	Results on the ECHO-512 Compression Function
	Subspace Distinguisher for 7 Rounds
	Near-Collisions for 6 and 6.5 Rounds

