Multiparty Computation for Dishonest Majority:
from Passive to Active Security at Low Cost

Ivan Damgard and Claudio Orlandi

Department of Computer Science, Aarhus University
{ivan, claudio}@cs.au.dk

Abstract Multiparty computation protocols have been known for more than twenty years now, but
due to their lack of efficiency their use is still limited in real-world applications: the goal of this paper
is the design of efficient two and multi party computation protocols aimed to fill the gap between
theory and practice. We propose a new protocol to securely evaluate reactive arithmetic circuits, that
offers security against an active adversary in the universally composable security framework. Instead
of the “do-and-compile” approach (where the parties use zero-knowledge proofs to show that they are
following the protocol) our key ingredient is an efficient version of the “cut-and-choose” technique, that
allow us to achieve active security for just a (small) constant amount of work more than for passive
security.

1 Introduction

In multi party computation (MPC) a set of parties (Py, Pa, ..., P,,) owns some private inputs (21, za,...,%,)
and wants to compute some function f of these inputs in such a way that the output z = f(x1,22,...,2,)
is correct and even if n — 1 parties are corrupted and cooperate, they cannot learn more information about
the honest party’s input than what they can learn from their inputs and the output of the computation.

The first solutions for this problem were given by Yao [Ya082] for the two party case and by Goldreich, Mi-
cali and Wigderson [GMW8T] for the multi party case. Those solutions provide computational security: if we
are willing to assume that a majority of the parties are honest, information-theoretical secure solutions were
introduced by Ben-Or, Goldwasser and Widgerson [BGW88| and Chaum, Crepeau and Damgérd: [CCD88].
An unexpected advantage of the latter kind of protocols with respect to the former, is that information-
theoretical secure protocols are more efficient than the computational secure one, and therefore have been
implemented and successfully used to solve real-world problems [BCD*09], while protocols that are secure
against a dishonest majority — and therefore consider a more realistic threat model, and in particular can be
used in the crucial two-party setting — are still too cumbersome to be used in real life.

The goal of this paper is to fill this gap and design an efficient protocol for arithmetic MPC secure against
a dishonest majority.

Another advantage of the protocols in [BGW88,CCD88] over the ones in [Yao82,GMW8T], is to provide
security also in concurrent settings: when we run an MPC protocol over an Internet-like network, we need
to be sure that the protocol remains secure also when other protocols are running over the network: in
particular, the adversary might use the information that he gets running one protocol in order to break the
security of the other one. The universally composable (UC) security framework of [Can01] provides a strong
definition of security, and if a protocol is UC secure then we know that it’s going to be secure also when
arbitrarily composed with itself or other protocols. The protocols of [BGW88,CCD88] are secure also in the
UC sense, while the security of [Yao82,GMWS87] does not hold in the concurrent case.

We achieve the best of both worlds and present a truly efficient protocol that can be implemented and
used in real life, and that guarantees static UC security against any dishonest majority. An earlier version
of this protocol, described in [Orl09], has already been implmenented and tested by Jakobsen, Makkes and
Nielsen in [JMN10], where timings for different level of security and circuit sizes can be found.

The price to pay when designing protocols secure against any dishonest majority is high. First of all, it
is clearly impossible to guarantee termination, meaning that even if one single party leaves the protocol, the

protocol is going to abort. Also, it is not possible to guarantee fairness for general MPC [Cle86], meaning
that the adversary can see the output and then decide whether to let the honest parties receive their output
or not.

Tweaking the model or the definition it is possible to achieve some relaxed flavor of fairness [CC00,Lin08,GMY04]
for general MPC. On the other end of the scale, complete fairness has been achieved for a limited class of
functionalities in a recent series of papers [GHKL08,GKO09].

Our protocol requires a (small) constant amount of public key operations per gate of the circuit. The
protocol has a preprocessing flavor with a first (heavier) preprocessing phase and a (lighter) on-line phase of
actual computation. The preprocessing phase is independent of the function to be computed and the inputs.

Informal Theorem 1 Assuming semi-honest multiplication protocols and homomorphic trapdoor commyit-
ment schemes, there exist a protocol for arithmetic multi party computation that is UC secure against any
dishonest majority.

— If n parties want to preprocess M multiplication gates with security 1 — 275, every party calls the multi-
plication protocol n(5M + 18s) times.
— In the on-line phase, 3 commitments are computed for each multiplication gate.

State of the art: The first solution for MPC with dishonest majority in the UC framework was given by
Canetti, Lindell, Ostrovsky and Sahai [CLOS02]: while their construction is an important feasibility result,
the protocol is completely impractical due to the use of generic zero-knowledge proofs.

Efficient solutions for MPC over Boolean circuits have been extensively investigated in the past years
[LP0O7,LPS08,NO09,PSSW09]. For the case of arithmetic computation, a step towards efficient solutions
has been taken by Cramer, Damgard and Nielsen in [CDN01,DNO03], based on threshold homomorphic
encryption: however efficient protocols for the distributed key generation phase are still lacking and the use
of homomorphic encryption during the on-line computation makes these protocol impractical.

In a recent work Ishai, Prabhakaran and Sahai [IPS09], following the “MPC in the head” approach of
[IPS08], present a protocol for arithmetic computation with characteristics similar to ours, but where the
constants involved are significantly bigger. On the other hand, the focus of [IPS09] is on optimizing the
amortized asymptotic complexity, ignoring multiplicative constants and low-order additive terms, whereas
our goal is to optimize practical efficiency.

1.1 Main Ideas

Secret representation: We call a shared commitment a secret-shared value in Z, between the parties: the
sharing of a value a is represented by an additive secret sharing of the value a and some randomness r,
together with a public homomorphic trapdoor commitment to Comm(a; 7).

MPC with a trusted dealer: Suppose there exists a trusted dealer that provides the parties with random
triplets of multiplicative shared commitments Comm(a), Comm(b), Comm(c), with ¢ = a - b, and additive
sharings of the openings. We will call these commitments to random multiplications together with the
sharing of their openings multiplicative triplets or triplets from now on.

Given access to this trusted dealer, the parties can efficiently compute any arithmetic circuit over the field:
given that shared commitments are linear (the commitments are homomorphic and the openings additively
shared), it is possible to evaluate additions without any interaction. Using circuit derandomization from
[Bea91], it is possible to evaluate a multiplication in the circuit using one of the preprocessed triplets.

The resulting protocol is extremely efficient as the interaction is limited to the opening of a triplets of
commitments for every multiplication gate in the circuit, and some local computation. As for security, n — 1
corrupted parties have no information about the honest party’s inputs, and cannot force the computation to
output the wrong value without breaking the binding property of the commitment scheme.

Implementing the trusted dealer: The main challenge of this paper is to implement the trusted dealer i.e., to
generate the triplets in an efficient way. We start from any two party multiplication protocol that satisfies
strong semi-honest security. This could be done using homomorphic encryption, OT, or other cryptographic
assumptions, see for instance [IPS09]. Intuitively, a protocol is strongly secure against a semi-honest adversary
if 1) the security is guaranteed for any choice of the corrupted parties’ randomness and 2) the view of the
protocol commits the adversary to his randomness and given the view and the randomness it is possible to
verify whether any party deviated from the protocol.!

The main challenge now is to turn this semi-honest protocol into a protocol with security against a
malicious adversary in the UC setting. In order to do so, we will employ a kind of cut-and-choose technique
reminiscent of the one from [NO09], that works as follow:

1. First, many random triplets are created.

2. Then, a fraction (say half) of the triplets are checked to detect cheating attempts. The parties randomly
select a subset of the generated triplets and disclose the randomness that they used during the multi-
plication protocol. If any cheating is detected the protocol aborts, otherwise the parties proceed to the
next step.

3. If the test goes through, we know that with high probability the adversary didn’t cheat in most of the
executions of the multiplication protocol. Given that any triplet is checked with probability 1/2, if the
adversary cheats in the generation of s triplets the cheating will be detected during the test except
with probability 27°. So the honest parties can reasonably assume that if the test goes through there
are no more than, say 80, triplets that were generated maliciously among the untested ones. For this
informal description let’s call a triplet good if it was honestly generated, and bad if it was maliciously
generated. Given that the protocol to generate the triplets is semi-honest secure, a good triplet will
satisfy correctness (¢ = a-b) and privacy (a, b are uniformly random in the view of the adversary), while
a bad triplet might nor be correct nor private.

4. The triplets are checked for correctness: they are paired two-by-two, and a sanity-check is performed. If
any bad triplet is found, the protocol aborts, otherwise we know that all the triplets are correct i.e. for
every triplets it holds that ¢ = a - b. Every check “burns” one of the two triplets.

5. At this point we know that the triplets are correct, but still the adversary might have some extra
knowledge about some of the honest parties’ shares: So we combine the remaining triplets in such a way
that we can “distill” M fully private triplets from a set of O(M + s) triplets, where s of them might
not be private. The way the triplets are combined can be seen as a new and unexpected application of
packed Shamir’s secret sharing [FY92].

6. The last step to achieve UC security is, informally, to ask every party to prove knowledge of their shares
— thus ensuring input independence. To do that, the parties generate some random homomorphic UC
commitments, and open the differences of the triplets and those commitments. Opening the differences
between those commitments can be seen as a very simple proof of knowledge.

UC commitments: For the last step of the protocol sketched above, we need some UC commitments that are
compatible with the homomorphic commitments used during the MPC protocol.

A really easy way to construct UC commitments is to ask a party to provide a commitment Comm(a;r)
together with an encryption of its opening. The encryption is relative to a public key in the common reference
string (CRS). Therefore, the simulator (by choosing the CRS) can “extract” the commitment by decrypting
the ciphertext. Clearly a malicious committer can encrypt something different than the opening of the
commitment. To force honest behavior, we use again a cut-and-choose technique. This protocol also has a
preprocessing flavor, with a heavier preprocessing phase and a light on-line phase.

Informal Theorem 2 Assuming semantic secure encryption and trapdoor homomorphic commitment schemes,
it is possible to implement UC commitments in the CRS model.

! Most “natural” multiplication protocols satisfy these requirement. If not, they can be easily modified to do that.

— The protocol generates M secure UC commitments with probability 1 — 27° using 4M + 4s invocations
of both primitives.

— The actual commit phase uses no cryptographic primitives and in the open phase 1 trapdoor commitment
1s verified.

Higher level operations: Our protocols are designed to be compatible with higher level protocols to perform
complex operation such as exponentiation, bit decomposition and comparison in an efficient way — as in
[DFK*06] and related work

2 Universally Composable Security Framework

If we want to claim that a protocol is secure, we first need to define what secure means. The universally
composable (UC) security framework, introduced by Canetti [Can01], is becoming a standard definition if
one wants proper security guarantees. The strength of this framework relies in the universally composable
theorem, which states that if a protocol is secure in the UC model, then this protocol will preserve the
same security even if composed with an arbitrary number of copies of itself or with other protocols. The
UC framework provides also a way of designing protocols in a modular way, where every sub-protocol is
independently analyzed, as it will be done in this paper.

The price to pay for such a result is the impossibility of constructing any non-trivial protocol that is
secure in the UC model?. In order to develop interesting protocols in the UC model we need some kind
of setup assumptions, like a common reference string (CRS) available to the parties, or a key registration
authority (KR), that checks that the parties know their secret keys and the public keys are well-formed, or
one of many other different assumptions, see [BCNP04,DNO09,LPV09] and references therein.

The UC framework gives us also a way to design our protocols in a modular way: we can design sub-
protocols for simpler tasks and then combine them in more complex protocols, and still we can prove the
security of the sub-protocols independently.

Adversarial model In this paper we consider security against a static adversary i.e., the adversary A chooses
the set of corrupted parties before the protocol starts, as opposed to an adaptive adversary that can corrupt
the players during the protocol.

We say that the adversary is passive or semi-honest if A follows the protocol but tries to extract some
information about the other parties’ input from his view of the protocol. We say that the adversary is
active or malicious if A is allowed to deviate arbitrarily from the protocol specifications. We will say that a
protocol is passive-secure if it is secure against a passive adversary and active-secure if it is secure against
an active adversary. In the UC model the adversary, as well as all the other parties involved, are modeled as
probabilistic polynomial time (PPT) interactive Turing machine (ITM).

The real world We model a real world execution of a cryptographic protocol in the UC model by defining a
PPT ITM Z called the environment, that gives inputs and gets outputs from the parties Py, ..., P, running
the protocol. Moreover, Z communicates with A giving instructions on how to attack the protocol. The
parties and the adversary usually also have access to some ideal functionality H. In all our protocols we
assume that the parties have access to a secure and authenticated point-to-point communication device and
some setup functionality.

The ideal world We define also an ideal world, where the parties Py, ..., P, interact with an ideal functionality
F, that captures the properties we expect from our protocol. Here the parties get their inputs from the
environment Z and simply forward them to F, therefore they are usually referred as the dummy parties.
There is also an ideal adversary S, called the simulator, that communicates with the environment Z and
with the ideal functionality.

2 Actually, it is possible to implement symmetric protocols like secure channels [CK02].

Indistinguishability At the beginning of the protocol all parties, the environment and the adversary are given
a computational security parameter k and a statistical security parameter s. The environment is also given
an auxiliary input z. At some point the environment stops and outputs a bit. We use REALZﬁ A =(k,8,2)

to denote the output of Z in the real world and IDEAL§7S7Z(K,S72) and REALZ;{A’Z,IDEAL%S’Z the
respective distribution ensemble, with x,s € N, z € {0, 1}*.

Definition 1. We say that 7 (k, s)-securely implements F in the H-hybrid model if V.A,3S s.t. REALf’AZ
and IDEAL%&Z are computationally indistinguishable in K, with all but 2—° probability.

The security offered by the statistical security parameter s does not depend on the computational power
of the adversary. Therefore in practice we can set s to be much smaller than «.
The ideal functionality for the CRS setup assumption is detailed in Figure 1.

The functionality Férs, parametrized by a probability distribution D, has the following command

Activation: On input (activate) from all parties, output (activated,crs < D) and halt.

Figure 1. The Fcrs functionality

3 Preliminaries

Homomorphic commitment schemes: A double-trapdoor homomorphic commitment scheme is defined by
four efficient algorithms (Gen, Comm, TOpen, ®), where (ck,71,72) < Gen(1*,p) generates a commitment
key together with two trapdoors, C = Commg(x;r) takes a message z € Z, and randomness r in the
commitment randomness space RC and produces a commitment C. Using one of the trapdoors it is possible
to trapdoor open a commitment C' to any message 2’ # z. Finally the plain-text space defined by the
commitment key ck is the field Z,, of prime order p, with |p| > &, and the commitments are homomorphic
meaning that Comm(x;7) ® Comm(y;s) = Comm(z +y mod p;r + s).3

Definition 2. We call a tuple of algorithms (Gen, Comm, TOpen, ®) a double-trapdoor homomorphic com-
mitment scheme if: let (ck,T1,72) < Gen(1%,p), then the following properties hold:

Trapdoor Security: There is no PPT A s.t. 73_; < A(1%,ck, ;).

Computational Binding: There is an efficient PPT E s.t. 7 + E(ck,z,r,z',r") if Comm(z;r) =
Commg(2;7"), © # 2/, with 7 € {m1,72}.

Statistical Hiding: Vz,2' € Z, and randomness r, let r; = TOpen(C,z,r,z’,7;) with i = 1,2 then
Commygy (z;) = Commeg (2 7}); moreover vy, 14 ’s distributions are statistically close.

Intuitively we need the commitments to have two trapdoors because we need to argue that even after
the simulator opens some commitments towards the adversary using one of the trapdoor, the adversary still
cannot break the binding property of the commitment scheme.

In [CD98] it has been shown that trapdoor homomorphic commitment schemes can be instantiated using
any gq-one-way group homomorphism: this primitive can be built from the discrete logarithm assumption,
RSA, and other standard assumptions.

3 To ease the notation, we will write RC as an additive group.

Semi-honest multiplication protocol: The building block of our protocol is any strong-semi-honest multipli-
cation protocol (c1, c2) < myuw(a,b) where a,b € Z,, are respectively the first and the second party’s inputs,
¢y is random in Z, and c = a-b—c; mod p.

The two party multiplication protocol can be instantiated using a variety of assumption, like homomorphic
encryption, OT, and more. The exact requirements for the multiplication protocol are slightly stronger than
the standard definition of semi-honest security. Most “natural” semi-honest multiplication protocol would
satisfy this stronger requirement, or can be easily modified in order to do so. Intuitively we need the protocol
to be 1) secure also if the adversary chooses maliciously the randomness for the corrupted parties and 2) the
adversary cannot cheat during the protocol and then pretend that he behaved honestly, if that instance of
the protocol is checked during the cut-and-choose.

More in detail, consider any two party semi-honest secure protocol view < m(r1,r2) where r; is the
randomness used by P;. Without loss of generality assume that P; is honest and fix his randomness 7.

Definition 3. A protocol 7 is strongly secure against a semi-honest adversary if m is 1) secure for any
adversary that follows the protocol but chooses its random ro maliciously and 2) if Py deviates from the
protocol w it holds that either a) Py does not break the security of m or b) for all PPT Py : r% < Py (view,r3)
then view # w(ry,15) with all but negligible probability.

4 Instantiating The Protocol

In this section we propose a possible instantiation of the protocol with a particular choice for the commitment
scheme and the semi-honest multiplication protocol.

4.1 Double-Trapdoor Homomorphic Commitment Scheme

A natural instantiation of double-trapdoor homomorphic commitment schemes is given by a Pedersen com-
mitments over a DL group ((G, p, g, h1, ha), 71, 72) < Gen(1%,p) where g, hi, ho are generators of the group
G of prime order p, and h; = ¢g™. Then Commeg(x;r1,r2) = g*hi*hy?, with x, 7,72 € Z,. The homomor-
phic operation @ is just the group operation i.e. Comm(z;r1,r2) @ Comm(y; s1,s2) = g*h|*h"™ - gYhi h®2 =
Comm(x + y;71 + 81,72 + s2). To trapdoor open (r7,74) = TOpen(x,r1,72,2’,7;) one lets r5_, = r3_; and
ri=71"Yz—12')+r.

4.2 Paillier-based Multiplication Protocol

An example of a two party multiplication protocol that is strongly secure against a semi-honest adversary
based on additive homomorphic encryption is given here. For completeness we will present the protocol
using a specific encryption scheme, Paillier [Pai99], but the protocol can be instantiated with many other
alternatives, for instance [OU98,DGKO07,DGKO09].

Paillier’s cryptosystem Paillier’s cryptosystem [Pai99] is an additively homomorphic encryption scheme,
whose semantic security relies on the hardness of the composite residuosity problem.

Let pk = N = p-q an RSA modulo be the public key, and sk = A = ¢(N)/ ged(p — 1,¢ — 1) be the secret
key. Then to compute an encryption of m € Zy, pick r €g Z% and compute ¢ = Encyr(m;r) = (1+ N)™rV
mod N2. To decrypt, compute m = Decgx(c) = A‘l(CXT_l) mod N. It’s easy to verify that the cryptosystem
is homomorphic modulo N.

In order to achieve security according to Definition 3 we will need that Paillier’s ciphertexts are also
binding commitments. It turns out that this is the case, when the public key is “well-formed”.

Definition 4. Let N an integer. If gcd(N,¢(N)) = 1 we say that N is a well-formed Paillier public key.

The next lemma shows that it is actually possible to build a concrete attack if the key is not well-formed.

Lemma 1. 3N, N not well-formed, s.t. Paillier encryption is not perfectly binding.

Proof: Let N = p2q, then (N,¢(N)) # 1. Then if 2’ = 2 — pg mod N and 7’ = r(1 + pg) mod N, then
Enc(z;r) = Enc(z’;7").

(14 N)" (") = Enc(a; r)(1 +pgN) " (14 pg)¥ mod N?
= Enc(z;7)(1 + pgN) " (1 + pgN + p*¢*N(...)) mod N2
= Enc(z;7)(1 + pgN)"*(1 4+ pgN) mod N?
= Enc(x;r)

Lemma 2. Assume N is s.t. gcd(N,¢(N)) = 1. If Enc(x;r) = Enc(z;r’), then x = 2’ mod N.

Proof: (1+ N)*r™ mod N2 = (1+ N)*r" mod N? = (1+ N)¥ = sV mod N2, where y = = — 2’ and
s =r'/r. The right side has order ¢(N), the left has order N. If gcd(V, ¢(NN)) = 1 then only element of Z -
that has order both N and ¢(N) is 1, and the left hand side is equal to 1 just for y =0 mod N.
O
It is possible to efficiently prove that a public key is well-formed by showing that any element of Zy has
a n-th root. An efficient ZK protocol for the task is presented in Figure 2.

Define R(N) = 1 iff ged(N, ¢(N)) = 1. The prover knows ¢(N), and computes w s.t. w- N = 1 mod ¢(N).
Suppose a functionality Feon is available, then:

— The prover P sends N to V.

— Query Foonw for a random string and parse it as r1,...,rs € Zn, and compute a; = r;” mod N. The prover
sends a;.

— The verifier V accept if a¥ = r; mod N.

Figure 2. The zero knowledge protocol for well-formed key

Theorem 1. The protocol in Figure 2 is a ZK protocol for R, with soundness 27°.

Proof: (Completeness) aV = N = pl+k¢(N) — 1 mod N. (Soundness) Suppose gcd(N,¢(N)) = ¢ > 2,
then there are ¢(NN)/q elements of order g in Z%;. Therefore, if R(N) # 1, the verifier accepts every a; with
probability equal to 1/¢g < 1/2. V can boost the soundness up to 1/B by doing trial divisions on N up to the
bound B, in order to be sure that N has no prime factors smaller than B. (Zero-Knowledge) The simulator
samples a; €g Zx, computes r; = al¥ mod N. Force r; to be the output of Feo. The distribution of (a;, ;)
generated by the protocol and by the simulator are negligibly close, as f(a) = a mod N is a permutation

*
over Zy. g

Lemma 3. Consider ¢; = Encpr(a; 8),c2 = Encpi(1;1). For any z,7 € Zy let C = cfch mod N2. Then
computing (x',7') s.t. C =c¥ ¢ mod N? and ' # x is no easier than decrypt c;.

Proof: From the homomorphic property, it follows that C' = Encp(a-x+r mod N). Then from two openings
(x,7) and (z’,7'), one can compute a = (' — r)(z — 2’)~! mod N. O

Implementing my,;, Now we all all the tools we need to design a protocol for 7y, using Paillier’s homomorphic
encryption.

As detailed in Figure 3, P; generates a public/private Paillier key pair, then sends the public key to Py
and proves that N is well-formed. After this step is performed once, an arbitrary number of multiplications
can be computed. Note that N has to be much bigger than p, in particular N > 2p3. This is a natural

requirement when p is the size of a elliptic curve DL group, as in order to guarantee the same level of
security offered by an elliptic curve of size 200 bits one has to choose a composite N of size much bigger
than 600 bits.

Now P; sends P, an encryption of his input a € Z,. The other party, using the homomorphic property
of the Paillier cryptosystem, can multiply b into it and mask it with randomness.

Note that the protocol is not secure against a malicious adversary, as the modulo N of the cryptosystem
and the modulo p of the shares and the commitment schemes are different. Then if an adversary is malicious
an overflow might occur during the encrypted computation, with the result that the computed shares will
not sum up to the product of the initial shares, and the triplet will result incorrect.

P; has input a € Z,, P> has input b € Z,,. At the end P; gets ¢; s.t. ¢1 is random in Z, and ¢1 +c2 = a-b mod p
1. Py generates (N, \) with N > 2p®, and send N to P,
2. Pp uses the protocol in Figure 2 to prove that N is well-formed (these two steps are to be performed once
and for all).
3. P computes o = Ency(a;r) with randomness r and sends it to Ps;
4. P» chooses d €r Z,3;
5. P, computes and sends 8 = a® Ency(1;1)% to Pi;
6. P1 computes ¢1 = Decx(y) mod p;
7. P, computes ca = —d mod p;

Figure 3. A protocol for strongly semi-honest secure multiplication 7y

Lemma 4. Define I'y to be the distribution given by ab+d, for fized a,b € Z,, and d is uniform in Zys. Now
let Iy be the uniform distribution between {0, p> + p?> — 1}. Then the statistical distance d(Iy,I7) < 2/p

Proof: € = d(I0, 1) = § Y g<icpsip2 [Pr[T0 =] — Prl1 =i|.

Then 2¢ = p3 + p? paTlpz—O‘<1/p. O

1 _ 1
p3+p? p3

Theorem 2. The protocol myy, s a multiplication protocol secure against a strong semi-honest adversary
as defined in Definition 3.

Proof: (Correctness) ¢; + c2 = ((ab+d mod N) mod p) —d mod p = ab mod p as N > 2p3. (Privacy)
P; learning any information about a trivially breaks the semantic security of Paillier’s cryptosystem. P, get
statistically no information about b as shown in Lemma 4. (Strong semi-honest security 1) ¢; +c2 = a-b
mod p holds for all a, b, d chosen in the correct range. The argument for P;’s privacy does not depend on any
of Py’s choice and P»’s privacy holds for any a in the correct range (0,p). (Strong semi-honest security 2).
First we note that the view of the protocol commits P; to his randomness and input as shown in Lemma 2
and the view of the protocol commits P, to his randomness and input as shown in Lemma 3: in particular
Py cannot find a,a’,r, 7" with @« < p < @’ and Enc(a;r) = Enc(a’;r’) and Py cannot find (b,d,b’,d") with
b<p,d<p®andb>pord>p*and a’Enc(l;1)¢ = ad Enc(1; 1)d/ without breaking the semantic security
of Paillier’s cryptosystem. O

5 MPC Protocol

In Figure 4 the ideal functionality Fanmpc is presented. This ideal functionality allows n parties to input

values in Z,, manipulate them (via additions and multiplications) and output the result to a given party.
In this description of the protocol we assume that the parties already have secure and authenticated

point to point channels, and a functionality for broadcast. Also, following the modular spirit of the UC

The functionality Fampc has the following commands:

Initialize: On input (init,p) from all parties, activate and store the modulo p.

Rand: On input (rand, P;,varid) from all parties P;, with varid a fresh identifier, pick r + Z, and store
(varid, r).

Input: On input (input, P;,varid,z) from P; and (input, P;,varid, ?) from all other parties, with varid a fresh
identifier, store (varid, x).

Add: On command (add, varidi, varids, varids) from all parties (if varidi,varids are present in memory and
varids is not), retrieve (varidi, z), (varidz,y) and store (varids,z +y mod p).

Multiply: On input (multiply, varid,,varids, varids) from all parties (if varidi, varids are present in memory
and varids is not), retrieve (varidy,), (varids,y) and store (varids,z -y mod p).

Output: On input (output, P;,varid) from all parties (if varid is present in memory), retrieve (varid, z) and
output it to P;.

Figure 4. The ideal functionality for arithmetic MPC

framework we will implement the protocol in the presence of a “trusted dealer” that gives to the party a
public key for the commitment scheme, together with random shared commitments. The ideal functionality
describing the behavior of this trusted dealer is detailed in Figure 5.

The functionality Fraxp has the following commands.

Initialize: On input (init,p) from all parties, activate, generate a key for a double-trapdoor homomorphic
commitment scheme ck < Gen(1", p) with plain-text space Z, and send ck to the parties.

Req. Share: On input (share, sid, a;,r;, P;), with sid a fresh identifier, create and output a shared commitment
Commeg(a,r) with a =Y a;,r = > 7.

Figure 5. The ideal functionality that models Franp

5.1 Notation and Library

We will call a shared commitment of x (and write [z]) the following configuration: P;, i = 1,...,n owns
x; € Zp, r; in the commitment scheme’s randomness space RC and Commeg(x;r), where it holds that
z=>",2; modpandr=>3 7 .

For convenience we define a library of commands that the parties can perform on shared commitments.
Call H, C respectively the sets of honest parties and the set of corrupted parties. HNC = () and HUC = {1,...,n}.
Finally |H| > 1. In Figure 6 some basic commands are introduced and in Figure 7 some advanced commands
are defined.

5.2 On-line Phase

As mentioned our protocol has two phases: the preprocessing phase described in Figure 10 produces many
random triplets, and in the on-line phase the triplets are used to implement the ideal functionality Faypc: the
on-line protocol, detailed in Figure 8, is quite simple. Parties provide inputs and compute multiplications
by opening differences between random commitments generated during the preprocessing and the actual
values of the computation. The security of the protocol intuitively follows from the fact that the random
preprocessing material is used to mask the actual values of the computation. Also, when a value is opened,
the presence of the commitment prevents cheating parties to force a wrong output value.

10

-1
Share Secret: To share an element « € Zj, choose random 21,...,Zn—1 €r Zp, define z, =z — > ;| 2

mod p. Choose random pg 1,. .., pe,n € RC, define p, = > | pe,i and Cp = Commex(z, p). Send [z]; =
(i, pz,i, Cs) to party P;. We denote this operation by [z] = Share(P;, x, ps).
Open Secret: every party P; broadcasts a share pair (27, p, ;). The parties compute the sums z’, p, and check

Commek (2, pl,) = Cs. If yes, output @ = 2/, else output # =_L. We denote this operation by z = Open([z]). If
just a party P; should learn the output, we modify the above protocol in the sense that all parties send their
shares to P;, that verifies the correctness and outputs the result in the same way. We denote this operation
by x = OpenTo(FP;, [z]).

Random Share: To generate a share of a random element r €r Z,, party P; chooses at random (7, pr;) Er
Z, x RC and broadcast C}. = Commc (73, pr,i). Every party computes C, = [}, Ci = Commcy(r, pr), where
T=y 0 Ti,pr =D iy pri. Party P; sets [r]; = (rs, pr.i, Cr). We denote this operation by [r] = Rand().

Addition: We denote by [z] = [z]+ [y] the following: each P; computes [z]; = [z]i + [y]s = (zi+y; mod p, pei+
Py,i, Cz © Cy). From now on we will write commands like [z] = 3[z] — [y] + 2 with the obvious semantic. Any
additive constant ¢ can be interpreted as [c]1 = (¢, 0, Commck(c, 0)), and [c]; = (0,0, Commcx(c, 0)) for ¢ # 1.
Note that no communication is involved in this command.

Figure 6. Basic commands on shared commitments

Shift: Assume the parties have a shared commitment [r]. Then we denote by [z] = Shift(P;, z, [r]) the following

protocol:
1. » = OpenTo(F;, [r]);
2. P; broadcast A =r —x mod p;
3. [a] = [r] - 4;

Multiplication: Assume the parties have a triplet of shared commitments ([a], [b],[c]). Then we define the
following command [z] = Mul([z], [y], [a], [8], [c]) (the output z is equal to z - y if ¢ = a - b). The command is
implemented as:

1. d = Open([z] — [a]); e = Open([y] — [t]);
2. [2] = ela] + dly] — de + [c];

Figure 7. Advanced commands for shared commitments

The protocol implements Fanpc’s commands in the following way:

Initialize: The parties invoke Frano(init, p) and store ck. Run the preprocessing as in Figure 10 to produce a
big enough set of triplets.

Rand: The parties invoke Frano(share, varid) and store the commitment [a].

Input: The parties invoke Frawp(share, varid) and store the commitment [a], then perform [z] = Shift(P;, z, [a]).

Add: To add [z], [y] with identifiers varidi,varids the parties perform [z] = [z] 4 [y] and assign [z] the identifier

varids.
Multiply: To multiply [x], [y] with identifiers varidi,varids the parties take a triplet ([a], [b], [c]) from the set
of the available ones, perform [z] = Mul([z], [y], [a], [b], [¢]) and assign [z] the identifier varids and remove

([a], [B], [c]) from the set of the available triplets.
Output: To output [z] with identifier varid to P; perform = = OpenTo(F;, [z]).

Figure 8. The on-line protocol IIanmpc

5.3 Preprocessing

The main contribution of this paper is in the way the random triplets are generated. The task is to start from
a strong semi-honest multiplication protocol as defined in Definition 3 and a dealer that provides random
shared commitments as described in Figure 5, and finish with a fully secure protocol that outputs triplets of
multiplicative shared commitments. The main technical tool is a somewhat new and surprising application
of packed Shamir’s secret sharing [F'Y92].

We start with a protocol to generate one triplets: the parties use myy, to compute cross products of their
shares and broadcast commitments to their shares (details are given in Figure 9). This protocol is not secure

11

Every party P; does the following:

Choose random shares a;,b; € Zp.

For all j # i, run (dij, ej;) < mau(ai, bj) as party 1.

For all j # i, run (djs, €:5) « muun(a;, b;) as party 2.

Set ¢; = a; - b; + Zj dij +Z]. €ij mod p.

Choose 74, 85, t; € RC, compute A; = Commck(ai, r:),B; = Commek (b, si),
C; = Commeg(ci, t;), and broadcast A;, B;, C;.

6. Everyone computes A = ©®;A;, B = ©;B;,C = ©;C;

GU W=

Figure 9. The protocol to generate one triplet Iy

against a malicious adversary (that could cheat in myy, or commit to inconsistent values): Intuitively to
achieve full security we need the following: 1) the triplets are correct i.e. ¢ = a - b, 2) the triplets are private
i.e. a,b are uniformly random in the view of the adversary and 3) the adversary knows his shares of the
shared commitments. The protocol, presented in Figure 10 will proceed in steps and ensure one property

after the other.

Start by running (1 + X)(4M + 4B — 2) times the protocol ITry. Call M = {([ai], [bi], [ci]) }iz1,....a+2) (aM+4B-2)
the set of produced triplets.

Test: Using Franp sample a string ¢ that determines a subset T C M of size A\(4M + 4B — 2). For every triplet
in 7, the parties reveal all the randomness used during ITig;, myu. If any cheating is detected the protocol
aborts.

Proof of Knowledge: for each of the untested triplets ([a], [0], [c]), sample three random shared commitments
[r], [s], [u] using Fraxp and perform Open([r — al]), Open([s — b]), Open([u — ¢J).

Correctness: For every pair of triplets left ([a], [b], [c]) and ([z], [y], [2]) do: using Fraxo sample a random r € Z,,.
Compute [¢'] = Mul([a], [b], r[x], 7[y], 7*[2]). Then if Open([c — ¢']) # 0 abort the protocol, otherwise store
[a], [b], [¢] for future use and drop [z], [y], [2].

Privacy: We are now left with 2M + 2B — 1 triplets. Let d = M + B — 1.

1. The parties have a set of 2d + 1 triplets ([a], [bi], [ci]), 1 =1,...,2d+ 1

2. The parties generate d + 1 random commitments [f1],. .., [fi+1]
3. The parties generate d + 1 random commitments [g1], ..., [ga+1]
4. Those commitments define two random shared polynomials [F(z)], [G(z)] of degree d, where [F(z)] :=

S5O (@) fi), [G(x)] = S0 609 (2)[gi], where:

d+1

6l (z) = H T
izj—1 v Y
5. The parties locally evaluate [F(d+2)],...,[F(2d 4 1)] and [G(d + 2)],...,[G(2d + 1)]
6. Foralli =1,...,2d + 1, the parties compute [h;] := [F () - G(2)] using one of the triplets ([as], [bs], [ci])
7. These new shared commitments [h;], ¢ = 1,...,2d + 1 define a new shared polynomial [H(z)] :=
Sz (51(200 (2)[hi] of degree 2d.
8. The parties locally compute M mnew triplets [a;], [b;], [ci] where [aj] = [F(—i)], [b]] = [G(=i)],[ci] =

[H(—i)], with i =1,..., M.

Figure 10. The preprocessing protocol Ilpgg

Note that in the protocol of Figure 10 every “distilled” triplets is the product of every produced triplets.
This give a quadratic blow-up in local computation. A solution that might be more efficient in practice is
to change the step Privacy as follows: instead of creating just one big polynomial, randomly partition the

12

remaining triplets in subset of smaller size and use many polynomials of smaller degree. The analysis of this
kind of approach can be found in [NOQ9].

Theorem 3. Let myy, be a strong semi-honest secure two-party multiplication protocol and Comm a double
trapdoor homomorphic commitment scheme, then the protocol I avpc (K, Blogs (14 X))-securely implements
Fampc in the Frann-hybrid model against any static, active adversary that corrupts any number of parties.

Remark: The statistical security of the protocol depends on both parameters B and A. In practice one can
set A =1/4 and B = 3.6s, so to get a protocol that is secure except with probability 2-3-61082(5/4)s < 9—s
where the total number of invocation to Il;g; is now less than 5M + 18s.

Proof (sketch): The simulator Sanpc simulates every call to Franp and keeps a copy of what the internal
state of the corrupted parties should look like if they had followed the protocol. The simulator can do so as
this state is uniquely determined by the output of Fyinp and the protocol execution. A description of the
simulator is provided in Figure 11.

The simulator Sampc maintains at any point a copy of the shares of all parties (honest and corrupted).

Initialize: The simulator runs (ck, 71, 72) < Gen(1%), gives ck to the parties, flips a coin b and stores 7 = 7144,
and discards m2_p. Call init on the ideal functionality Fampc. The simulator simulates the preprocessing by
following the protocol in Figure 10 as an honest party would do, except that it reads the corrupted parties
shares from Firanp-

Rand: Simulate the call to Franp by reading the corrupted parties shares and choose random a;, r; for the honest
parties. Call rand on the ideal functionality Fawmpc, and store internally the shares for all parties.

Output: To simulate an output of [z] to P; where i € H, the simulator receives (z;, ;) from all corrupted parties

Pi, i € C. Let (xi,7:) be the internal shares of the simulator corresponding to P;. If Y7, o @i = >, . #; and
> iecTi = Ziec r; call output on the ideal functionality, otherwise abort the protocol.
To simulate an output of [z] to P; where 7 € C, the simulator receives =’ from the ideal functionality, and the
sum of the internal shares x;,r; is z,r, the opening of C;. The simulator picks the smallest j € H, executes
r5 = TOpen(z;,rj,z; + (x — 2'),7) and sends (z; + (z — 2’),r}), and (zs,7;) for all i € H,4 # j to the
adversary.

Input: To simulate the call for P;, with i € C simulate the call to Franp as described above, and perform
[x] = Shift(P;, z, [a]) as the honest parties would do (check for the abort condition in Open as described
before). Internally update all the parties shares. Given A and a, compute 2’ = A + a mod p and input it
in the ideal functionality Fawmpc.

To simulate the call for P;, with ¢ € H simulate the call to Frano as described above, and perform [z] =
Shift(P;, 0, [a]) (check for the abort condition in Open as described before). Internally update all the parties
shares.

Add: Run the protocol honestly and update all the internal shares and call add on the ideal functionality Fampc.

Multiply: Run the protocol honestly, updating all the internal shares (check for the abort condition in Open
as described before). Call multiply on the ideal functionality Fawpc.

i€C

Figure 11. The simulator Sampc

On-line security: Define an hybrid game where the adversary is restricted to following the protocol dur-
ing the preprocessing phase Ilpzg, and then behaves arbitrarily during the on-line phase. The view of the
protocol (excluding the preprocessing) contains statistically no information about the actual values of the
computation: every value that is opened in Input, Multiply is masked with fresh randomness, and the
commitments are statistically hiding.

Then the only way that the environment can distinguish between the real and the ideal execution is by
forcing an output towards an honest party (or an input of a dishonest party) to be incorrect.

13
To do that, the adversary needs to send a set of shares (x}, r;) with ¢ € C with >_ x; # > z} and such that
Comm(>_ x;; > 1) = Comm(> xf; > rf), where (z;,7;) are the simulator’s internal shares for the corrupted
parties. Using F in Definition 2 we can extract a trapdoor 75« from these values. Given that the view of the
simulated protocol is statistically independent of the trapdoor used by the simulator 7, then Pr[b = b*] = 1/2
and we can turn an adversary that distinguish the the real and the ideal world with probability 1/2 + ¢,
g non negligible, into an adversary that break the security of the commitment scheme with non-negligible
probability ¢/2, and we reach a contradiction.

Preprocessing security: For the sake of simplicity, let’s assume n = 2, P, honest and P, corrupted*. The UC
simulator runs the preprocessing protocol as the honest party would. If the corrupted party send values that
would make a honest party abort, the simulator inputs abort to Faypc on behalf of the corrupted party. If
the simulator does not input abort to Fanpc, the simulator stores the corrupted party’s shares of [a], [b], [c],
namely (ag, 72, bs, S2, ¢2,t2) that he learns during Proof of Knowledge (by simulating Franp) and proceed
to the on-line phase. The simulation of the preprocessing phase is perfect, as the simulator behaves exactly as
an honest party. What remains to argue is that if the protocol did not abort at the end of the preprocessing
phase, then the triplets are correct and the honest parties’ shares are uniformly random in the adversary’s
view, even if the adversary is corrupted.

Note that I1.g, securely produces random multiplicative triplets against a strong semi-honest adversary.
In fact: c =), ¢, =), aib; Z#j di; + Z#j eij = »_; a;ib; + Z#j a;b; = ab mod p. If A can cheat during
IIx; and then pretend he didn’t during Test it can be used to break either the strong semi-honest security
of Ty, or the binding property of Comm.

The step Test doesn’t leak any information as it can be simulated as detailed in Lemma 6. We can use
Lemma 5 to define a good triplet to be one where the adversary could open the triplet during Test and make
an honest party accept, and a bad triplet otherwise. Note that the lemma uses rewinding techniques: this is
fine, as we do not use the lemma to extract the adversary shares — we do this in Proof of Knowledge
— but to prove that the simulation is correct. From the properties of myy;, we know that for a good triplet
c¢=a-band a,b are random in the adversary’s view except with negligible probability. Therefore after Test
we know that (except with negligible probability) the number of bad triplets is bounded by some constant
B except with probability (1 + \)~5.

After the Correctness step, if the protocol doesn’t abort the triplets are correct except with probability
I/p:let z=2-y+ A, modpand c=a-b+ A, then ¢ —c=1r2A, — A, that is # 0 if (4., A.) # (0,0)
with probability 1 — 1/p over the choice of r. Then if the adversary doesn’t break the binding property of
Comm and ¢’ — ¢ # 0 for any pair of triplets the protocol aborts.

In Privacy after the triplets are randomly partitioned, we know that the probability that there are more
than B bad triplets left is less than (1 4+ A\)~5. Therefore the adversary knows less than B points on the
polynomials F, G of degree d, so from Lagrange interpolation theory those polynomials have still M + 1
degrees of freedom in the adversary’s view. So the adversary gains statistically no information about the
newly generated M triplets [a'], [V/], [¢] and, even after M — 1 of those will be opened during the protocol,
the last unopened triplet is still random in his view. (Il

6 UC Commitment Scheme

In this section we show how to implement Fy,xp. For the sake of simplicity, we present a two party protocol for
UC commitments. In order to produce a random commitment between n parties as required by Fpanp it will
suffice to let every party publish a commitment and, using the homomorphic properties of the commitment,
sum them up.

The protocol generates many commitments at once in a preprocessing flavor and it is efficient in the
sense that to construct M UC commitments with security s, one needs O(M + s) call to the primitives —
the efficiency of the protocol is roughly the efficiency of the primitives used.

4 If more malicious parties are present, one can just think of all of them as a new party whose shares are the sum of
their shares. Clearly introducing more honest parties will not help the adversary.

14

The Fucomu functionality is described by the following commands:

Activate: On input (activate) from all parties, the functionality replies (ready) to all parties and S, and start
replying to other commands.

Commit: On input (commit, cid, Pe, Py, x) from party P. output (committed, cid, P., P.) to P, and S if cid was
not previously stored, otherwise ignore the message.

Open: On input (open, cid, P, P;) from party P, if cid is present in memory, retrieve (cid, P., P-,z) from the
memory and output (opened, sid, P, P-,z) to P, and S, otherwise ignore the message.

Figure 12. The Fucomn functionality

Protocol idea: To let a semi-honest party UC commit to a message m one can use the following protocol: the
committer sends the pair Comm(m,r), Enc(ml||r, s) to the receiver, where the encryption and the commit-
ments are relative two public keys in the CRS. To open, the committer sends m, r. The commitment scheme
is UC secure as, intuitively, the simulator can choose the CRS together with the secret key for Enc and the
trapdoor for Comm. So if the sender is corrupted the simulator can extract the message from Enc and if the
receiver is corrupted the simulator can open Comm to any value using the trapdoor. Clearly if the committer
is corrupted by an active adversary, he can send an inconsistent pair and break the security of the protocol.
We solve this by using the cut-and-choose approach to force honest behavior.

First the committer selects at random two polynomials f and g of degree d = 2M +s—1 over Z,. Then the
committer sends to the receiver commitments to 2M + 2s points on both polynomials using the semi-honest
protocol. Now a random challenge is coin-flipped, in order to determine a subset of M + s commitments
to be checked. The committer reveals the points and the randomness used in the semi-honest protocol to
the receiver, who aborts if any opening is inconsistent. If the protocol doesn’t abort we know that, with
probability 1 — 27°, at least M out of the M + s unopened commitments are well-formed. Therefore the
simulator learns the required 2M + s points that uniquely determine f: the first M + s are disclosed during
the cut-and-choose, while the last M are extracted from the unopened (but well-formed) commitments. Also
note that any M out of the M + s unopened points are still uniformly random in the view of the receiver.

In order for this to work, we need to ensure that f is of the right degree d (or the simulator will not have
enough points to determine f): to do so the receiver will send a random challenge w € Z,, and the committer
will reveal h(i) = w- f(i) + g(7) for all i’s. Thanks to the homomorphic properties of the commitment Comm
the receiver can verify that the committer is not lying about these points, and he can check that h has degree
most d. This implies, with probability 1 — 1/p, that f and g have degree at most d. In the test g is used to
mask f, so that the points on f are still random to the receiver.

The protocol actually implements a random commitment functionality. If one wants to commit to specific
messages it is always possible to derandomize the commitments (the committer simply sends the difference
between the random committed value and the actual messages).

6.1 UC Commitments with Preprocessing

In Figure 13 the protocol for UC commitments with preprocessing is presented.

We write (Gen, Enc, Dec) for a semantically secure encryption scheme where (ek, dk) < Gen(1%) is the key
generation algorithm, C' = Encgx(x,7) is an encryption of z using randomness r and given the decryption
key dk is possible to recover the message x = Decyi(C). Security is defined in the standard way.

Theorem 4. The protocol ooy securely (k, s)-implements Fycoum i the Fors-hybrid model.

Proof (sketch): To simulate against a corrupted receiver, just run the protocol honestly but simulate the test
as in Lemma 6 i.e. commit to random values. In Degree check choose a random polynomial h consistent
with the revealed values and trapdoor open the remaining commitments. In Commit: send random A;’s.
When opening, use the trapdoor to open the commitment to the value A; + m; where m; is the message

15

Parse the common reference string CRS as (ek, ck).

Generation:
1. P, chooses two random polynomials f, g of degree at most d = 2M + s — 1;
2. Fori=1,...,2(M + s), P. computes and sends
Fi = Commer (f(i);7:), Us = Encer (f(9)]|ri; ue),
Gi = Commck(g(i); ti), Vi = Encer(g(d)|[ti; vi);
Cut-and-Choose:
1. P. computes and send E. = Commc(ec,7c);
P, sends a challenge e,;
P, opens E;
Let e = e. @ e, define a random subset T C {1,...,2(M + s)} of size M + s;
For i € T the committer P. sends (f(i),7:,u:) and (g(3), t;,v;). The receiver P, checks for consistency
and abort otherwise;
Degree Check:
1. P, sends a random challenge w;
2. Forie{1,...,2(M +s)} \ T the committer P. sends h(i) = w - f(i) + g(i) and t; = w - r; + si;
3. The receiver P, checks that (h(i),t;) is a valid opening of F} - G;, and that h is a polynomial of degree
at most d. If not abort;
4. We renumber sequentially the unopened commitments: Let C; denote the j-th unopened commitment
F;, and (aj, z;) its opening. The committer outputs (Cj,a;, z;) and the sender outputs C; for all j =
1,...,M.
Commit: To commit to the j-th message m;, P. sends A; = a; —m; mod p.
Open: To open a commitment C;, P. sends (mj, z;) to P that accepts if C; = Comm(m; + Aj, z;).

O N

Figure 13. The I1.omu protocol

that the simulator receives from the ideal functionality. If the environment can distinguish, then it can be
turned into an adversary that breaks semantic security of Enc using standard techniques.

In the more interesting case where the committer is corrupted, the proof follows the one of Theorem 3:
we use Lemma 5 to define which pairs are good and which bad. After Cut-and-Choose the number of
openings that the simulator cannot extract is bounded by s with probability 27°. Therefore the simulator
can reconstruct the unique polynomial f’(z) defined by the M + s point seen during Cut-and-Choose and
the M points it can extract from the consistent pairs. Once the simulator knows f’ it can compute the a;’s
for all j’s. Therefore it can extract the committed messages in Commit by just computing m} =a; — 4
mod p. The only way for the environment can distinguish the real game from the simulated one is by forcing
an opening to a message m; different from the one extracted by the simulator m; Such an environment can
be turned into one that break the binding property of Comm using standard techniques. O

Multi-party case: 1t is possible to extend the protocol to the case of multi receivers by replacing the random
choices of the receiver with a coin flip protocol. If one wants to allow multiple parties to play as committer,
several modification to the protocol can be considered:

— Use a longer CRS that contains n key pairs (cky, ekq,. ..,cky,eky,), and every party commits using his
own keys.

— If one wants to keep the CRS short, 1) Comm needs to be a double-trapdoor commitment scheme and 2)
either one uses semantic secure encryption scheme, and require the preprocessing to run sequentially (at
any given point just one party is acting as P. before Commit) or one can replace Enc with a CCA secure
encryption — in this case different parties can all encrypt using the same public key and non-malleability
is still guaranteed. The proof for the multi party protocol is essentially the same as the two-party case.

16

7 Cut-and-Choose Toolkit

In both the protocols presented in this paper we achieve security against a malicious adversary by using a
kind of cut-and-choose reminiscent of the one first used in [NO09]. To make this paper self contained, we
restate two useful lemmas: Let’s just define a component to be the output of a one-way function f : X —):
an image is good if the sender knows the preimage and bad if he doesn’t. The structure of a cut-and-choose
is shown in Figure 14: we will argue the cut-and-choose can be efficiently simulated and if the adversary
passes the test then most of the images are good. The first observation is that if the test goes through then
there are at most B bad images between the unchecked ones, except with probability (1 4 \)~5.

Test: Let M ={1,...,(1+X)M}.

Py computes y; = f(z;) for ¢ € M for random z; and sends them to P»;

P5 sends P; a random challenge r that defines a random T C M of size AM;
Py sends {x; }ieT to Po;

P, accepts if y; = f(x;) for all i € T;

W N

Figure 14. A simple cut-and-choose

Lemma 5 (Extraction). There exist a knowledge extractor E s.t. for any Py in Figure 14 the following
holds: consider an augmented execution of Figure 14 where if Py accepts we run E on Pf. Then: 1) The
augmented execution terminates in expected poly-time and 2) The probability that we start the extractor E,
and the extractor outputs less than (1 + \)M — B preimages x; is negligible in B.

Proof: Let accept be the event of P, accepting the test. Assume pu = Pr[accept] > 2(1 + \)~5 for some
constant B. Then B, the set of bad components for which P} doesn’t know an opening is small.

Formally let r; = 1if i € T and r; = 0 otherwise. Then B = {i| Pr[accept|r; = 1] < u/2}, then |B| < B.
If not:

pw="Pr[FieB:r, =1]Prlaccept|Tie B:r;, =1] +
Pr[Vi € B:r; = 0] Prlaccept|Vi € B :r; = 0]
< 1ou/2+(1+)\)*\3|.1

But then /2 < (14 A\)~1Bl and we have a contradiction.

Now consider the following extractor E that sets W = () and while [W| < (1 4+ X\)M — B, runs the test
with P and stores the new preimages he gets, W = WU {(i, x;) }sc7. The extractor keeps also a counter j
of the number of runs and if it didn’t stop before it stops when j > S = (1 + A\)Z poly(s). When it stops it
outputs W.

For any ¢ € M \ B, consider the probability v that (i,2;) ¢ W when E terminates. Formally v =
Pr[(i,2;) ¢ W < EF1(1°)|i ¢ B]. Remember that the challenges are uniformly random and independent.
Then assuming /2 > (14 \)~5:

s
. , A
v = H (1 — Pr[rl@) =1A acceptm]) < (1 — M) < e~ Tix Poly(s)

J

The expected running time is given by the probability that we start rewinding g times the time that
we spend doing the extraction. If u < 2(1 4+ A\)~Z, then the running time is bounded by p - S = poly(s). If
p>2(1+ X)7B, then the extractor stops with success after expected time S’ = %%M, and therefore the

total expected running is p - " = O(M). O

Lemma 6 (Simulation). For any honest P, there exist an expected poly-time simulator S for the test in
Figure 14 s.t. the view of P, when interacting with an honest Py and the output of S are indistinguishable.

17

Proof: Consider the S that is given as input a set B of up to AM random images y;. S chooses a random
challenge r and orders the y;’s in such a way that 7N B = (. Then S fills M with M random fresh images
yi = f(x;) for random z;. The produced view is distributed exactly as in the protocol. O

Remarks: It is possible to simulate against malicious Pj, by replacing step 2 in Figure 14 with a coin flip
protocol, and in particular an UC coin flip protocol leads to a UC simulator for the test. This means that
running the test doesn’t give Py any advantage when he tries to invert the one way function on y;, i ¢ T.

Acknowledgments The authors would like to thank Jesper Buus Nielsen for the essential suggestions in
the protocol design, and Yuval Ishai, Yehuda Lindell for valuable comments.

References

[BCDT09] Peter Bogetoft, Dan Lund Christensen, Ivan Damgard, Martin Geisler, Thomas Jakobsen, Mikkel
Krgigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter, Michael I. Schwartzbach,
and Tomas Toft. Secure multiparty computation goes live. In Financial Cryptography, pages 325-343, 2009.

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable protocols with
relaxed set-up assumptions. In FOCS, pages 186-195, 2004.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO, pages 420-432,
1991.

[BGWS88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In STOC, pages 1-10, 1988.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS,
pages 136-145, 2001.

[CCO00] Christian Cachin and Jan Camenisch. Optimistic fair secure computation. In CRYPTO, pages 93-111,
2000.

[CCD88] D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure protocols. Proceedings of the
twentieth annual ACM symposium on Theory of computing, pages 11-19, 1988.

[CD98] Ronald Cramer and Ivan Damgard. Zero-knowledge proofs for finite field arithmetic; or: Can zero-
knowledge be for free? In CRYPTO, pages 424-441, 1998.

[CDNO1] Ronald Cramer, Ivan Damgard, and Jesper Buus Nielsen. Multiparty computation from threshold homo-
morphic encryption. In FUROCRYPT, pages 280-299, 2001.

[CK02] Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange and secure channels.
In EUROCRYPT, pages 337-351, 2002.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty (extended abstract).
In STOC, pages 364—-369, 1986.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and
multi-party secure computation. In STOC, pages 494-503, 2002.

[DFKT06] Ivan Damgard, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft. Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In T'CC, pages
285-304, 2006.

[DGKO7] Ivan Damgard, Martin Geisler, and Mikkel Krgigaard. Efficient and secure comparison for on-line auctions.
In ACISP, pages 416-430, 2007.

[DGKO09] Ivan Damgard, Martin Geisler, and Mikkel Krgigaard. A correction to ’efficient and secure comparison for
on-line auctions’. IJACT, 1(4):323-324, 2009.

[DNO3] Ivan Damgard and Jesper Buus Nielsen. Universally composable efficient multiparty computation from
threshold homomorphic encryption. In CRYPTO, pages 247-264, 2003.

[DNOO09] Ivan Damgrd, Jesper Buus Nielsen, and Claudio Orlandi. On the necessary and sufficient assumptions for
uc computation. Cryptology ePrint Archive, Report 2009/247, 2009. http://eprint.iacr.org/.

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of secure computation (extended ab-
stract). In STOC, pages 699-710, 1992.

[GHKLO8] S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. Complete fairness in secure two-party
computation. In STOC, pages 413-422, 2008.

[GK09] S. Dov Gordon and Jonathan Katz. Complete fairness in multi-party computation without an honest
majority. In TCC, pages 19-35, 2009.

18

[GMWS87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness

[GMY04]

[IPS08]
[IPS09]
[IMN10]
[Lin08]
[LPO7]
[LPS08]
[LPVO09]
[NOO9]

[Or109)]
[OU9g]

[Pai99]

theorem for protocols with honest majority. In STOC, pages 218-229, 1987.

Juan A. Garay, Philip MacKenzie, and Ke Yang. Efficient and secure multi-party computation with faulty
majority and complete fairness. Cryptology ePrint Archive, Report 2004/009, 2004. http://eprint.iacr.
org/.

Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - efficiently.
In CRYPTO, pages 572—-591, 2008.

Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with no honest majority.
In TCC, pages 294-314, 2009.

Thomas P. Jakobsen, Marc X. Makkes, and Janus Dam Nielsen. Efficient implementation of the orlandi
protocol. In ACNS, pages 255-272, 2010.

Andrew Y. Lindell. Legally-enforceable fairness in secure two-party computation. In CT-RSA, pages
121-137, 2008.

Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in the presence
of malicious adversaries. In EUROCRYPT, pages 52-78, 2007.

Yehuda Lindell, Benny Pinkas, and Nigel P. Smart. Implementing two-party computation efficiently with
security against malicious adversaries. In SCN, pages 2—-20, 2008.

Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified framework for concurrent
security: universal composability from stand-alone non-malleability. In STOC, pages 179-188, 2009.
Jesper Buus Nielsen and Claudio Orlandi. Lego for two-party secure computation. In TCC, pages 368—-386,
2009.

Claudio Orlandi. Lego and other cryptographic constructions. 2009. http://www.cs.au.dk/~orlandi/.
Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosystem as secure as factoring. In
EUROCRYPT, pages 308-318, 1998.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT,
pages 223-238, 1999.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-party computation

[Yao82]

is practical. In ASIACRYPT, pages 250-267, 2009.
A.C. Yao. Protocols for secure computations. Proceedings of the 23rd Annual IEEE Symposium on
Foundations of Computer Science, pages 160164, 1982.

