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Abstract. A collective signature scheme aims to solve the problem of
signing a message by multiple signers. Recently, Moldovyan and Moldo-
vyan [1] proposed a scheme for collective signatures based on Schnorr
signatures. We show some security weaknesses of the scheme.

1 Introduction

Digital signature schemes are important cryptographic constructions with wide
and diverse applications. A collective signature scheme aims to solve the prob-
lem of signing a message by multiple signers (in a more efficient manner than
concatenating individual signatures of the signers). Various constructions of such
schemes are known, often satisfying additional requirements, e.g. threshold sig-
natures, blind signatures, etc.

Recently, Moldovyan and Moldovyan [1] proposed a scheme (we denote it as
M&M scheme) for collective signatures and its variants – blind collective signa-
ture scheme, and multi-signature scheme for simultaneous signing a package of
contracts. The scheme is based on well known Schnorr digital signature scheme
[2]. The authors of M&M scheme claim the security of their construction, as-
suming the security of Schnorr’s signatures.

Results. We analyze the security and show several security weaknesses of M&M
scheme. In particular we demonstrate:

– how two or more participants can add themselves to any collective signature
(without a consent or participation of the original signers);

– how malicious participants can (in what we call a “related public key attack”)
include arbitrary party in a collective signature using just the knowledge of
his/her public key.

We discuss how these weaknesses affect variants of M&M scheme (blind sig-
natures and simultaneous contract signing). In addition, we propose possible
modifications of the scheme that fix identified vulnerabilities.

? Research supported by VEGA grant No. 1/0266/09.



2 M&M Scheme

Let p be a large prime, and q be a prime such that q | (p− 1). Let g be an ele-
ment with order q in the multiplicative group (Z∗p, ·). We denote the participants
(signers) by P1, . . . , Pm. A private key of the participant Pi is a randomly chosen
value xi from Zq. The corresponding public key is computed as Yi = gxi mod p.
Let H be a hash function.

In order to collectively sign a messageM , the participants P1, . . . , Pm perform
the following computation:

1. Each signer Pi chooses random ti ∈ Zq, and computes Ri = gti mod p.
2. The signers compute the first part of the signature: E = H(M ||R), where
R = R1R2 · . . . ·Rm mod p.

3. Each signer Pi computes Si = ti + xiE mod q.
4. The signers compute the second part of the signature: S = S1+. . .+Sm mod
q.

5. The collective signature is the pair 〈E,S〉.

The validity of the collective signature 〈E,S〉 of M is tested in the following
way (knowing/assuming participants P1, . . . , Pm as signers):

1. Compute the collective public key Y = Y1Y2 · . . . · Ym mod p.

2. The signature is valid, if and only if H(M ||Y −EgS)
?
= E.

Remark 1. The scheme can be stated more generally, in any group G of order q.

3 Security Problems of M&M Scheme

Although the authors of M&M scheme perform a security analysis (see [1]), we
were able to find some weaknesses of the scheme. We present our findings in this
section.

3.1 Joining a Collective Signature

Let us assume that P1, . . . , Pm collectively signed a message M , and the sig-
nature is 〈E,S〉. According the construction in M&M scheme we know that
S =

∑m
i=1 ti + xiE mod q. Any pair of participants, we denote them Pm+1 and

Pm+2 can join the signature without a consent or participation of the original
signers:

1. They select arbitrary tm+1, tm+2 satisfying tm+2 ≡ −tm+1 (mod q). Then
Rm+1Rm+2 mod p = 1, and the value R is unchanged. Subsequently, E is
unchanged as well.

2. Pm+1 and Pm+2 construct new signature:

〈E∗, S∗〉 = 〈E,S + tm+1 + tm+2 + E(xm+1 + xm+2) mod q〉.



The verification of 〈E∗, S∗〉 for signers P1, . . . , Pm+2 will be successful (we denote
Y = Y1 · . . . · Ym mod p, and Y ∗ = Y · Ym+1Ym+2 mod p):

H(M ||Y ∗−E
∗
gS

∗
) = H

(
M ||Y −EY −Em+1Y

−E
m+2 · gS+tm+1+tm+2+E(xm+1+xm+2)

)
= H

(
M ||Y −E · gS+tm+1+tm+2

)
= H

(
M ||Y −E · gS

)
= H(M ||R) = E = E∗

It is straightforward to extend this attack to more than two participants.

Remark 2. There are applications of collective signatures, where such “free join-
ing” property can be desirable (such as signing a petition). However, in other sce-
narios a signer can have an objection to sign a document when arbitrary/unknown
participants can join the signature.

Remark 3. The problem can be easily fixed by adding the number of signers or
their public keys into the computation of E value, i.e. E = H(M ||R ||m) or
E = H(M ||R ||Y1 || . . . ||Ym). Certainly, the signers must check the correctness
of E value (or compute it for themselves) when signing, just like they must do
such check in the original scheme.

3.2 Related Public Key Attack

Assume a collaborating group of malicious participants P1, . . . , Pm−1. Let Pm be
an arbitrary participant (a victim) outside of the group. This group can create
a collective signature of any message M for P1, . . . , Pm in the following way:

1. P1 sets/registers his public key to Y1 = Y −1m mod p. Thus, x1 ≡ −xm
(mod q) although P1 does not known the value of x1.

2. P2, . . . , Pm−1 sign the message M using M&M scheme. They obtain a sig-
nature 〈E,S〉.

3. The final collective signature of M for P1, . . . , Pm is 〈E,S〉.

The verification of 〈E,S〉 for signers P1, . . . , Pm will be successful (we denote
Y = Y1 · . . . · Ym mod p, and Ỹ = Y2 · . . . · Ym−1):

H(M ||Y −EgS) = H(M || Ỹ −E · (Y1Ym)−E · gS)

= H(M || Ỹ −E · gS)

= H(M ||R) = E

Strictly speaking, the attack does not require a collaboration of P1, . . . , Pm−1,
and can be carried by P1 alone as long as someone does not detect a suspicious
public key. On the other hand, the fixes proposed in Section 3.1 do not help in
preventing this attack, since the collaborating group of attackers can construct
E in any way they need. Moreover, the group can collaborate even more and
hide the suspicious (related) public key:



– They choose a random nonempty subset A ⊂ {P1, . . . , Pm−1}.
– The attackers from A selects their public keys so that

∏
i∈A Yi ≡ Y −1m

(mod p). Notice that this can be done such that exactly one attacker from
A does not know the secret key corresponding to his public key.

– The attack proceeds as before – signature of M created by {P1, . . . , Pm−1}r
A is again a valid signature of M for P1, . . . , Pm.

In this case the checking of suspicious public keys requires testing of all possible
sets A – which is infeasible (exponential in m).

An easy fix to related public key attack is to sum participants’ secret keys into
S in a nonuniform way. For example, each participant can compute his/her Si as
Si = ti +Ewixi mod q, where wi = H(Yi ||E). Computation of S is unchanged:
S = S1 + . . .+ Sm mod q. The signature is still the pair 〈E,S〉. Notice that the
values w1, . . . , wm can be computed from E and public keys, therefore they are
not part of the signature. However, the verification must be changed accordingly:

H(M || (Y w1
1 . . . Y wm

m )−E · gS)
?
= E.

Certainly, the security properties of this modification must be analyzed in detail.
Moreover, the modification increases computational complexity of signing and
verification.

3.3 Impact on M&M Variants

The authors [1] proposed two variants of the original collective signature scheme:
the blind collective signature scheme, and the multi-signature scheme for simul-
taneous signing a package of contracts.

Since the “blind” variant creates exactly the same signatures as the original
scheme, both attacks described in previous sections can be applied to this scheme
as well. Moreover, also the fixes proposed there can be included into this variant.

The problem of simultaneous signing a package of contracts is to produce a
collective signature of m participants P1, . . . , Pm for n documents M1, . . . ,Mn,
where each participant Pi signs the document Mαi

, αi ∈ {1, . . . , n}. The variant
of M&M scheme dealing with this problem works in the following way:

1. Each signer Pi chooses random ti ∈ Zq, and computes Ri = gti mod p.
2. The signers compute the first part of the signature: E = f(R), where R =
R1R2 · . . . · Rm mod p and f is some compression function, e.g. f(R) =
R mod q.

3. Each signer Pi computes Si = ti + xihiE mod q, where hi = H(Mαi
).

4. The signers compute the second part of the signature: S = S1+. . .+Sm mod
q.

5. The collective signature is the pair 〈E,S〉.

The validity of such collective signature 〈E,S〉 is verified as follows:

1. Compute the collective “data-dependent” public key Y = Y h1
1 · . . . ·Y hm

m mod
p, where hi = H(Mαi).



2. The signature is valid, if and only if f(Y −EgS) = E.

Since the value R is computed in the same way as in the original scheme, the
“joining” attack presented in the Section 3.1 works here as well. Moreover, the
participants Pm+1 and Pm+2 can choose, which document they sign (even outside
the set {M1, . . . ,Mn}).

The related public key attack described in the Section 3.2 can be applied to
this variant with one restriction. The malicious signer P1 (or all signers from the
set A in a more general scenario) must sign the same document as the victim
Pm. In this case h1 = hm, so if P1 sets his public key Y1 = Y −1m mod p then

the collective “data-dependent” public key Y = Y h1
1 Y h2

2 · . . . · Y hm−1

m−1 Y hm
m mod

p for P1, . . . , Pm is the same as for P2, . . . , Pm−1. Hence, as described in the
Section 3.2 the malicious participants P1, . . . , Pm−1 can force the victim Pm to
sign an arbitrary document.
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