
Universally Composable Symbolic Analysis of Diffie-Hellman based

Key Exchange∗

Ran Canetti and Sebastian Gajek

School of Computer Science†

Tel Aviv University, Israel

May 20, 2010

Abstract

Canetti and Herzog (TCC’06) show how to efficiently perform fully automated, computation-
ally sound security analysis of key exchange protocols with an unbounded number of sessions.
A key tool in their analysis is composability, which allows deducing security of the multi-session
case from the security of a single session. However, their framework only captures protocols
that use public key encryption as the only cryptographic primitive, and only handles static
corruptions.

We extend the [CH’06] modeling in two ways. First, we handle also protocols that use
digital signatures and Diffie-Hellman exchange. Second, we handle also forward secrecy under
fully adaptive party corruptions. This allows us to automatically analyze systems that use an
unbounded number of sessions of realistic key exchange protocols such as the ISO 9798-3 or TLS
protocol.

A central tool in our treatment is a new abstract modeling of plain Diffie-Hellman key ex-
change. Specifically, we show that plain Diffie-Hellman securely realizes an idealized version of
Key Encapsulation.

Keywords: Automated Proofs, Universal Composition, Diffie-Hellman key exchange, forward
secrecy

∗This research was supported by a grant of the Checkpoint Institute. The second author was supported by a
fellowship of the Israelian Council of Higher Education (VATAT).
†Contact: {canetti|gajek}@tau.ac.il

Contents

1 Introduction 1
1.1 The Importance of Automated Security Analysis . 1
1.2 Contributions . 2
1.3 Related Work . 3
1.4 Organization . 4

2 Universally Composable Symbolic Analysis 5

3 The Symbolic Model 10
3.1 Symbolic Algebra . 10
3.2 Symbolic Protocol . 12
3.3 Dolev-Yao Attacker . 13

4 Simple Protocols 16
4.1 Key Encapsulation Mechanism Functionality . 17

4.1.1 Equivalence to IND-CPA-KEM . 18
4.1.2 Plain Diffie-Hellman realizes FKEM . 21
4.1.3 Key Encapsulation Mechanisms under Adaptive Corruptions 22
4.1.4 3-Round Plain Diffie-Hellman realizes F+

KEM 24
4.2 Revised Certification Functionality . 26
4.3 The Syntax of Simple Protocols . 28
4.4 Concrete Semantics . 29
4.5 Symbolic Semantics . 31

5 Mapping Lemma 32

6 Security Definition for Key Agreement Protocols 36
6.1 Key Exchange Functionality . 36
6.2 Symbolic Security Criterion . 37
6.3 Soundness of the Symbolic Criterion . 39

7 Automatically Proving Simple Protocols with ProVerif 40
7.1 Protocol ADH1 and ADH2: DY2KE without Forward Secrecy 41
7.2 Protocol ADH2 and ADH3: DY2KE with Forward Secrecy 45

8 Conclusion 46

A Proverif Implementations 52

1 Introduction

1.1 The Importance of Automated Security Analysis

Modern cryptography has always striven for rigorous analysis of cryptographic protocols within
mathematical models that precisely define the adversarial resources and the security properties we
expect from the protocol. The standard approach in cryptography is a reduction proof to a (compu-
tational) hardness assumption. This approach captures the grain of cryptographic applications. It
is sufficiently expressive to address a variety of security properties and to parameterize the desired
security level either asymptotically or in a more quantitative and parameterized way. Such proofs,
however, are technical and sophisticated. They require human creativity and are prone to errors.
An inherent consequence is the complexity of proofs, even for simple protocols. Furthermore, to-
day’s systems are complex. They involve multiple parties, layers, and various primitives that run
in concurrent processes and interact with other parts of the system (which may not be security
aware) [32]. A major problem here is scalability. Hand-made proofs cannot scale for such large (or
even medium) systems. We are thus left with an acute problem: How to harness the knowledge of
the cryptographic community to analyze the security of real-life systems?

A natural approach to coping with the analytical complexity of large-scale systems is automa-
tion. Here there are several alternative methods. One method is to mechanize the cryptographic
process of proof by reduction and perform the automated analysis directly in the computational
model [31, 12, 8]. Given the protocol specification and the hardness assumption, tools, such as
CryptoVerif, suggest a proof by reduction and output a sequence of games. These methods are
potentially very powerful; however, they are not guaranteed to come up with a decisive answer,
and they still require human intervention and ingenuity. (For instance, the user must parameterize
the tool with the assumption the protocol might be reducible to, and might need to help the tool
in finding the right reductions.) Furthermore, the demand of human intervention increases with
the complexity of the system.

Another path to automation goes via symbolic analysis [25]. Here cryptographic algorithms are
abstracted out, randomization is replaced by non-determinism, and adversaries are limited in their
power by an abstract term algebra. Cryptographic primitives are modeled as terms of the algebra
which are defined to have idealized security properties. (For instance, the term dec(k; enc(k,m))
permits only the owner of the key k to decrypt message m.) This simplicity makes symbolic
analysis amendable to mechanization and automation. Furthermore, an impressive recent body
of work shows for many classes of protocols that symbolic analysis can be used to verify security
properties in a cryptographically sound way [1, 7, 38, 34, 20, 22, 37].

There are two main techniques for automated analysis of symbolic security properties. One
is to use theorem provers (e.g. Isabelle [41], Otter [44]) to deduce that some conjecture is a
logical consequence of a set of axioms and hypotheses. Given an appropriate formulation (which is
typically expressed in a higher-order logic of the problem as axioms, hypotheses, and a conjecture), a
theorem prover verifies whether the conjecture is correct. The main advantage here is generality and
expressivity. However successful resolution is not guaranteed and is highly sensitive to the precise
modeling of the problem and the formulation of the goal. If the problem statement and axioms are
not carefully defined, the mechanized verification may fail. Finding appropriate formulations is an
iterative process that requires human interaction and great expertise. Also here, the complexity
of the analysis and the need for human intervention increases rapidly with the complexity of the
analyzed system.

1

An alternative technique is model checking (e.g. ProVerif[11], CCS [39]). A model checker gets
a full description of the protocol and adversarial behavior. It checks that a security property (say
that a state in the model is never reached) is fulfilled. The great advantage of model checkers is
their operational simplicity: They are fully automated, in the sense that all the user needs to do is
to run the tool on the analyzed code; no human intervention is needed during the analytical process.
The drawback of model checkers is its computational complexity, which again increases very rapidly
with the complexity of the analyzed system: In general, testing whether a symbolic multi-party
protocol is secure can be undecidable [28]; this holds even for the case where the number of parties is
part of the input and the number of sessions is finite [42]. When the number of sessions is bounded
and given as part of the input the problem is NP-hard; this holds even if data constructors, message
depth, and message width are bounded by constants [26].

To sum up, neither of the existing techniques for automating security analysis scales up to deal
with systems of even moderate size. (Some fully automated tools (such as ProVerif [11]) include
heuristics for handling some systems with many sessions. However, there inherently cannot exist
any guarantee that these tools will always terminate in reasonable amount of time.)

Composability to the Rescue. A natural approach to managing the complexity of security
analysis is to make the analysis modular: Partition the system to small components, analyze the
security of each component separately, and then deduce the security of the entire system. This
means that the automated tool only needs to run on small components, yet the security guarantee
is global. Composability can potentially provide dramatic improvements in any of the three paths to
automation. However, the improvement is perhaps most dramatic in the context of fully automated
analysis. This effect is demonstrated in [16], who analyze the security of systems consisting of an
unbounded number of key exchange sessions via fully automated analysis of a single key exchange
session. The key to their approach is that the cryptographic property that they assert is composable.
Specifically, to gain composability in their setting they use the UC framework and in particular
the UC with joint state theorem [18]. To demonstrate the viability of their approach the authors
use the fully automated Proverif tool [11] to analyze the security of the composite system very
efficiently.

However, the work of [16] only handles a very limited set of protocols, namely protocols where
the only cryptographic primitive in use is CCA-secure public key encryption. While this modeling
still allows expressing a number of protocols from the literature, it has very limited expressivity.
Furthermore, it only considers static party corruptions.

1.2 Contributions

We extend the framework of [16] in two ways. First, we show how to model and analyze also
protocols that use Diffie-Hellman key exchange (DHKE) and digital signatures (with certified public
keys). Second, we show how to symbolically model and analyze security in the presence of adaptive
party and session corruption, and in particular how to capture and assert forward secrecy. This in
particular allows us to provide fully automated security analysis of strong security properties for
multiple sessions of realistic protocols such as the ISO 9798-3 standard, TLS, SSL and others.

The Diffe-Hellman exchange has been tricky to represent in an abstract or symbolic way because
it uses the underlying algebraic structure in a very concrete way (see Related Work). Indeed,
several different and quite intricate extensions of the symbolic language have been proposed for
this purpose, with limited success [36]. We avoid this problem by capturing Diffie-Hellman as

2

an abstract key encapsulation mechanism (KEM), where the first message represents the public
key and the second message represents the ciphertext. The encapsulated key is then the result
of the exchange. Our approach leaves the analysis of algebraic attacks against the structure of
Diffie-Hellman within the computational model. Moreover, expressing Diffie-Hellman in terms of a
KEM naturally circumvents encryption cycles, which is a typical limitation of symbolic analysis of
encryption. (Indeed, a KEM is a one-time encryption of a random key.)

The proof that Diffie-Hellman exchange securely realizes the key encapsulation mechanism
functionality is rather delicate. In particular, it requires modifying the standard notion of UC
security to the case of restricted environments, a technique that has recently been introduced
in [3]. The restriction is later justified by asserting (automatically) that the analyzed protocol
complies with the restriction. The analysis is done in two steps: First we show that realizing this
functionality is equivalent to having IND-CPA-KEM schemes. Next we show that plain Diffie-
Hellman is IND-CPA-KEM secure. The restriction on the environment is simple: We require the
functionality to decapsulate ciphertexts that it has seen before. We note that mechanized tools
easily verify this temporal condition.

To model signatures, we use a variant of the signature functionality from [13]. We then recall
that ideal signatures can be realized using standard signature schemes plus a bulletin-board style
certificate authority [14].

We capture forward secrecy in several steps. First, we modify the ideal key exchange func-
tionality to guarantee that the key remains secure even if one of the two peers is corrupted after
outputting the key. Next, we formulate a symbolic forward secrecy property within the symbolic
framework. This turns out to be tricky, especially since we wish the symbolic property to imply
a composable and simulation-based cryptographic property. In fact, we propose two incomparable
options for such a symbolic condition before proceeding with one of the formulations. To the best
of our knowledge, this is the first treatment of forward secrecy in a computationally sound way.

We use the developed framework to analyze several commonplace key exchange protocols, such
as the ISO 9798-3 standard, and some closely related protocols. This is done using the ProVerif
tool [11]. It is stressed that the analysis is fully automated, and at the same time asserts security
even for systems with an unbounded number of instances of these protocols.

1.3 Related Work

Bridging the gap between symbolic and computational analysis of key establishment protocols has
been a subject of very active research. Other than [16], the work that’s perhaps the closest to ours
is that of Micciancio and Warinschi [38], who show computational soundness of symbolic treatment
of key exchange protocols. This line follows the pattern matching approach introduced by Abadi
and Rogaway [1]. However, their model provides no composability guarantees.

Backes, Pfitzmann, and Waidner prove within their Dolev-Yao style library [7] several key
establishment protocols using symmetric and asymmetric encryption [5, 2]. Their completeness and
soundness theorem for secure key exchange builds on a similar notion of real-or-random secrecy [6]
as we use in the present work. Although the Dolev-Yao library currently contains no abstraction
of Diffie-Hellman exponentiation, we believe that the technique developed in this work can be
transferred to their framework. However, this result would differ in two main issues: First, an
analysis in the framework of [7] applies to multi-session systems, since the Dolev-Yao style library
is formulated in a multi-session way. Second, the framework of [7] leaves open whether one can
prove a composition theorem with joint state. This composition theorem is inherently useful in

3

DHKE protocols for authentication. Thus, the framework is susceptible to the intrinsic complexity
limitations of deduction tools, which this work attempts to overcome.

Gupta and Shmatikov present a computationally sound analysis of the authenticated Diffie-
Hellman protocol [30]. They use the protocol composition logic (PCL) in [21] for proving security
of key exchange protocols. Their work can be considered as complementary. It differs in that the
results do not hold under arbitrary composition and require automated analysis of multiple-sessions.
Specifically, the PCL composition theorems only apply when a protocol is composed with protocol
steps that respect specified invariants. There are no implications for composition with protocols
that violate invariants. Datta et al. extend this approach and prove computational soundness of
the ISO-9798-3 key agreement protocol using PCL [22].

Blanchet et al. model Diffie-Hellman in ProVerif. It is one of the most promising tools for the
analysis of cryptographic protocols. Protocol analysis is w.r.t. an unbounded number of protocol
sessions that may run concurrently and without putting a bound on the size of messages an attacker
produces. The only algebraic property axiomatized is commutativity for a fixed basis of exponents
[11]. Meadows et al. apply the NRL analyzer [27]. The authors model Diffie-Hellman with regard to
the commutativity property. Küsters and Truderung extend ProVerif to cope with inverse operation
[36]. These works leave out attacks which exploit a richer class of algebraic properties. In contrast,
we consider Diffie-Hellman as a key encapsulation in the computational model where we make no
restrictions on the algebraic structure as long as the decisional Diffie-Hellman problem is hard.

Patil finds some misconceptions in the formulation of the public key encryption and signature
functionality [40]. (The issues have already been addressed in [13]). The author proves soundness
of the two functionalities in the Canetti-Herzog model. In this work, we define a certification
functionality which is simpler than Patil’s. Our definition is much more in the spirit of the revised
signature functionality from [13]. Küsters and Tuengerthal extend the soundness and completeness
theorem for simple protocols with respect to symmetric encryption [37]. Further, they instantiate
the symbolic model with the π-calculus and show the flexibility of the UCSA framework. Delaune et
al. show that the entire UC machinery can be expressed in terms of the π-calculus. Comon-Lundh
and Cortier show that computational indistinguishability is implied by the underlying security
definition of the π-calculus for symmetric encryption [19].

Recently, Basin and Cremers capture in their symbolic model several variants of adaptive cor-
ruption queries to model attacks against key establishment protocols [9], which were used in com-
putational models so far. They do not prove computational soundness. Bhargavan, Fournet and
Gordon present a modular framework for analysis of cryptographic implementations based on typing
[10].

1.4 Organization

The remainder of the paper is structured as follows. We introduce the framework of Universally
Composable Symbolic Analysis in Section 2. We present in Section 3 the symbolic model where
protocols are expressed in an abstract term algebra including a syntax for key encapsulation and
certification. In Section 4, we introduce the extended class of simple protocols for DHKE protocols.
We prove a mapping lemma for the soundness theorem in Section 5. Section 6 defines secure key
exchange and proves the soundess of DHKE protocols. In Section 7 we analyze example Diffi-
Hellman based key exchange protocols within Proverif in a fully automated and computationally
sound way. Finally, Section 8 concludes.

4

Presentational Remark. The present work builds on top of the [16] formalism and extends it
significantly. For the benefit of readers not familiar with the details of [16], we present the entire
formalism from scratch, including the parts that remain unchanged from there. Still, we make sure
to clearly delineate the advances in this work over the previous ones.

2 Universally Composable Symbolic Analysis

The Universally Composable Symbolic Analysis (UCSA) framework amends the UC framework
to carry out automated proofs of security. This work addresses the fully automated analysis of
Diffie-Hellman based key exchange protocols and its main result is summarized by the following
informal theorem:

Theorem 1 (Computational Soundness) A protocol Π (based on Diffie-Hellman and signa-
tures) securely realizes ideal key exchange (with forward secrecy), if the corresponding symbolic
protocol Π̄ fulfills the symbolic security criterion (with forward secrecy) for secure 2-party key ex-
change.

Checking that a protocol satisfies the symbolic security criterion can be efficiently done by a protocol
checker. Our theorem implies then that security holds in the UC setting. To prove the theorem we
have to come up with a machinery that enables us to reason about protocol security in a symbolic
model and also in a computational one. A significant effort is then devoted to reconcile the two
models. It is non-intuitive to assume that two “seemingly orthogonal” models relate in such a way
that proofs in one model imply security in the other. The symbolic model bases on symbols defined
over an abstract term algebra (in contrast to bitstings in the computational model); messages
(e.g. random values, keys) are symbols; cryptographic primitives (e.g., encryption schemes) are
functions on/to symbols. The symbolic (also called Dolev-Yao) attacker operates on these symbols
by applying instructions consisting of a subset of symbols and functions of the algebra. For instance,
the attacker may decrypt a ciphertext message, if he deduces the decryption key from the interaction
with the protocol. Security thus differs from the computational paradigm: It is modeled, but not
defined with respect to the bounded running time of the attacker; either the attacker breaks the
security (typically expressed by deducing a symbol he is not allowed to know) or the cryptographic
protocol is assumed to be secure. The bottom line is a binary security model. There is no security
parameter that allows for scaling the desired security level.

Reconciling the two models of cryptography is involved and requires care. The core idea of the
soundness proof consists in normalizing the two models. We prove that the bitstring representation
of the protocol maps to a symbolic representation with regard to a computational attacker (whose
instructions are not restricted) with probability negligibly away from 1. Then we show that if the
symbolic protocol does not satisfy the symbolic criterion, then we can construct an environment
in the UC setting that distinguishes between the concrete protocol execution with the dummy
adversary and the ideal-world protocol for ideal key exchange. The environment internally simulates
an execution of the protocol and simply maps the finite sequence of calculations, receptions, and
transmissions of the Dolev-Yao attacker.

Let us elaborate on some details. (Fig. 1 illustrates the ingredients of the proof.)

Simple Protocols: A Meta-Language for Protocol Specification. We translate the proto-
col into a symbolic form such that it is subjected to mechanized analysis. However, an arbitrary

5

Simple
Protocol

Concrete
Protocol Π

Symbolic
protocol Π̄

UC security
FKE

DY criterion
(DY2KE)

[Symbolic Semantics (Def. 15)][Concrete Semantics (Def. 14)]

[Soundness (Thm. 20)]

[Mapping (Lem. 17)]

Figure 1: The UCSA approach to mechanized security proofs of key exchange protocols: Formulate
the protocol in the language of simple protocols and check that it achieves the DY2KE criterion. If
so, then security in the UC setting is implied. Lemma 17 is a key tool in the proof of Theorem 20.

protocol in the UC setting may not have a natural or clear symbolic form. For this purpose, the
UCSA framework defines a specification language for a class of protocols, called simple protocols.
The language is simple because it offers restricted commands. In fact, this work considerably ex-
tends this language and makes it more expressive. Simple protocols serve as a dummy language
whose syntax is parsed into computational representation and symbolic one. It is a simplistic
higher-order language that mimics the compilation into the specification language of the protocol
checker. An alternative approach would have been to directly adapt the syntax and semantics of
a distinguished protocol checker, such as the Applied-π calculus1 [23, 37]. However, our approach
has several advantages. First, having a tool-independent approach contributes to a general theory
that attempts to bridge the two very different views of provable security. Second, the simplicity of
simple protocols allows for keeping the complexity low. The language of simple protocols covers
security-relevant aspects only, namely the smallest set of instructions to carry out automated anal-
ysis. It neglects aspects that are irrelevant for the security analysis, but part of a specific protocol
checker’s machinery.

In this work, we augment the grammar of simple protocols from [16] to key encapsulation and
certification. Furthermore, we add a command for secure erasure. This command allows for erasing
ephemeral secrets of a party and is attractive for designing forward secure DHKE protocols. The
semantics of simple protocols define how a protocol is interpreted as a concrete protocol in the UC
setting and a symbolic protocol in the symbolic model. It is notable that simple protocols “abstract
out” the party and session identifiers (aka pid, sid) that are central in the UC framework. These

1Proverif relies on this process calculus.

6

elements are incorporated in concrete protocols as part of the translation process from a simple
protocol to a concrete one. As usual they will be determined upon invocation of the protocol
instance by writing the pid, sid on the identity tape.

The semantics of simple protocols in the computation model invoke Diffie-Hellman key estab-
lishment, signature generation and verification algorithms via calls to the ideal key encapsulation
and certification functionality. A central point in the definition of the ideal key encapsulation func-
tionality FKEM is the imperfection: FKEM is strictly limited to distinguished environments. This
results from the fact that we wish to use a weak notion of security for realizing FKEM. We show
that any key encapsulation mechanism scheme indistinguishable under chosen plaintext attacks
(IND-CPA-KEM) securely realizes FKEM, if and only if the functionality is asked for decapsulation
of valid ciphertexts. A ciphertext is said to be valid, if the instance of FKEM has generated the
ciphertext. Otherwise, there is an environment that distinguishes between the ideal and real world
with overwhelming probability. Formally, we capture this situation by deliberately adding a bug
to the functionality. If the ciphertext has not been generated by FKEM, then it outputs a forbidden
message. On the flip side, the notion of IND-CPA-KEM is sufficient to prove that the two-round
unauthenticated Diffie-Hellman protocol securely realizes FKEM. In terms of the symbolic analysis,
this result implies that we may abstract out the complexity of modular exponentiation. This ob-
servation is central to our treatment of analyzing computational soundness of Diffie-Hellman key
exchange protocols.

At first glance, conditioning the functionality stays in sharp contrast to preserve security in
arbitrary environment. However, in some cases (as in this paper for the analysis of Diffie-Hellman
key exchange protocols) it is not possible to achieve this strong notion of universality. Still, it is
meaningful to apply a restricted definition of ideal protocol behavior without loss of generality.
In order to re-gain the advantages of universally composable security, an ultimate prerequisite is
that simple protocols ensure that the condition under which FKEM is insecure occurs only with
negligible probability.

Security Definition for Key Exchange In the spirit of the UC framework, key exchange
protocols are formulated via an ideal key exchange functionality FKE. We start from the standard
functionality for ideal key exchange from [13]. In addition to the key agreement and secrecy
property (as initiated in [16]), the present formulation captures forward secrecy—a property that
Diffie-Hellman based key exchange protocols advantageously offer over key transport protocols. A
key exchange protocol is deemed forward secret, if the attacker does not extract the session key
from expired sessions. Formulating an appropriate ideal key exchange functionality requires care.
The critical point in the formulation of FKE is to devise what information the functionality reveals
upon corruption. If the attacker corrupts a party before the key was recorded, then it may choose
the key. If the adversary corrupts a party after the peer output the key, it learns the key. Otherwise,
it learns nothing about the key—thereby guaranteeing forward secrecy.

As in [16], our symbolic security criterion for key exchange casts the (1) agreement and (2) real-
or-random game from computational security definitions (as pursued in [16]) within the symbolic
model. The agreement property checks that if two parties establish a session and terminate, then
they output the identical key. Our real-or-random definition considers two traces of symbolic
executions. In one trace, the attacker observes an execution of the symbolic protocol. In the ideal
world, the attacker observes an execution of the symbolic protocol, however, the key symbol is
replaced by a fresh symbol that did not appear in the execution before. For the protocol to be

7

secure, the two traces should “look the same” for the adversary. We apply the notion of pattern
matching after renaming from [1, 16] to compare the two traces. This approach goes over any
message of the trace, blinds undecryptable messages, renames random messages, and checks for
equality with the other trace. This way, randomization and secrecy of encryption schemes is
captured in the symbolic model. Different encryptions of the same message result in the same
symbol, and thus leak no information about the plaintext. To address the prerequisite that simple
protocols appropriately handle calls to the encapsulation mechanism, we add a third condition to
the security criterion. We require that protocol patterns exclude a “forbidden” message, which is
added only when decapsulations of unknown ciphertexts are requested.

Two Approaches to symbolic Forward Secrecy. We add to this criterion the property of
forward secrecy. This is done by allowing the traces to include corruption commands by the
adversary even after the keys were generated by the parties. To account for the inherent asynchrony
of the network, we allow the case where a party is corrupted before having generated the output
key, while its peer has already generated a key. The critical point is that the attacker gets to see
both the output key and the local state of the corrupted party that potentially allows to reconstruct
the key. The “real-or-random” secrecy criterion with forward secrecy requires the output key and
the key computed from the corrupted party’s local state to be identical. However, to avoid making
the definition trivially unsatisfiable, we replace key symbols with fresh symbols within the states
of both parties. We consider two ways to link an output key within one party to internal values
within the other party.

One approach is to operate on the syntactic level of simple protocols. We augment the grammar
of simple protocols with commands for precomputation of the session key. By precomputation,
a party puts the session key into a “buffer”, and only then it outputs the buffered key (either
immediately or after receiving another message). This approach is general enough to be applied for
any protocol. However, it has some limitations. Consider the following counterexample. Assume
a party copies to another variable the key before it buffers it. In the “real-or-random” experiment
the attacker would use this additional, non-buffered copy of the key to tell apart between the real
and random world.

Another approach and the one taken in this work is to refine the pattern function. The pat-
tern function in [16] was applied to “blind” encryptions. We adapt their pattern function to key
encapsulation mechanisms. In addition to the ciphertext, the pattern function applies to the en-
capsulated key. Here, the pattern function goes over the encapsulation key symbol in the trace
and consistently renames the symbol. In such way, the key symbols are entangled. This is possible
because the key symbols are linked via the same instance of the key encapsulation. One can verify
that the previous counterexample does not hold anymore. Since the pattern function applies to
any key symbol, it consistently renames the symbols that are copies of the key. However, the flip
side of this approach is that it is tailored to key encapsulations. A general security criterion inde-
pendent of the language of simple protocols in the light of the first approach to define a forward
secrecy criterion is desirable. We leave it as an open problem and stick in this paper to the pattern
approach.

Mapping Lemma: Mapping symbolic and computational Executions. A key ingredient
for demonstrating computational soundness is the mapping lemma. It proves that the “seemingly”
greater comprehensiveness of the computational attacker does not help the analysis to discover

8

attacks the symbolic adversary (whose attack strategies are restricted by the algebra) is not aware
of. The proof consists of two steps. First, we define a mapping function that relates the bitstring
representation of the computational model to the algebra of the symbolic model. Technically, we
extend the mapping of [16] to the case of Diffie-Hellman, signatures, and adaptive corruptions. Next,
we show that any attack on a concrete protocol translates into an attack on the symbolic counterpart
unless the computational attacker breaks some underlying security assumption. The heart of the
mapping is to establish a one-to-one correspondence between concrete and symbolic executions. In
fact, concrete executions map to symbolic executions for any environment except with negligible
probability. We can now pursue a purely symbolic analysis without loss of computational precision.

Soundness Theorem: Bridging the computational and symbolic view of Cryptography.
The key technique to achieve soundness results for DHKE protocols are the composition theorems.
Let us briefly sketch why it is the case. Security in the UC framework is defined by comparing two
processes: the real and ideal process. In the real process, parties execute a protocol in front of the
adversary A; in the ideal process, the parties interact with an ideal functionality F , which acts
as a trusted third party and guarantees that the ideal-process adversary, called the simulator S,
receives messages it is allowed to see. The formalism to compare the two processes is captured by
the environment Z. It mimics all external processes. Z bootstraps the parties, interacts with the
adversary A in arbitrary way, and occasionally receives some output from the parties. A protocol is
deemed secure if for any environment Z (instructing the adversary to pursue any attack strategy)
there exists a simulator S, such that Z cannot tell apart between the ideal and real process.
Specifically, a key exchange protocol Π is said to be secure, if no environment Z distinguishes
between the case where the parties execute protocol Π in front of the adversary A and the case
where the parties interact with the ideal key exchange functionality FKE in presence of the simulator
S. Put in other words, if no environment Z tells apart the two processes, then the real protocol
is as secure as the ideal protocol (for some functionality F). Security is implied by the fact that
the ideal process is secure per se. An immediate corollary is that the ideal process’ input/output
behavior is identical to the real process except with negligible probability; from the environment’s
point of view the two processes are observationally equivalent.

The corollary is instructive to prove the mapping lemma. Instead of analyzing a DHKE protocol
with respect to the algebraic properties of modular exponentiation, we apply the ideal key encap-
sulation functionality FKEM that performs the same cryptographic task, but has a more simplistic
interface. In fact, the functionality acts (in the spirit of ideal public key encryption) as a repository
of ciphertext-key pairs and only outputs encapsulation keys to legitimate parties. This way, FKEM

omits the cryptographic details of key generation, encapsulation, and decapsulation. The function-
ality abstracts out those complexity-theoretical aspects, which are hardly modelable in the symbolic
model. This simplification is an essential step towards the symbolic model because FKEM is close
to the formulation of key encapsulation mechanism in the symbolic model. In particular, FKEM’s
syntax immediately maps to the syntax of symbolic key encapsulation mechanism. Moreover, a
single reduction rule similar to that of public key encryption (a widely studied primitive for which
computational soundness results exist) suffices to formulate the symbolic core of the functionality.

The main idea of our approach is to analyze the individual sessions of a key-exchange, and then
to use the universal composition theorem of the UC framework to extract security properties for
the multi-session protocol. (Recall that analysis of a single-session protocol implies security against
parallel and concurrent attacks. This is so because security is quantified over an environment that

9

may execute multiple copies of the protocol in its head, and feed the attacker with messages to
interleave the session under analysis.)

However, the universal composition theorem only applies when the parties running the protocol
have disjoint local states and make independent random choices in the individual sessions. In
contrast, in some cases and in the case of key exchange, each party owns a long-term authentication
module, where this module is reused in all sessions the party participates. Using the universal
composition operator compiles a protocol in which each protocol session uses a different long-term
authentication key. The resulting compilation is an inefficient or specification-variant protocol.
The composition theorem with joint state (JUC) avoids this unnecessary complexity. Composition
with joint state is similar to universal composition except that this operation asserts security where
parties have access to some joint functionality. More formally, let F be an ideal functionality.
Let π be a protocol in the F-hybrid model (protocol π calls F as subprotocol), and let ρ̂ be the
protocol that securely realizes F̂ , the multi-session extension of F (F̂ essentially multiplexes queries
to copies of F). Then the composed protocol π[ρ̂] emulates protocol π in the F-hybrid model.

Composition with joint state is another tool to drop analytical complexity in the present ap-
proach. It facilitates analysis of computationally sound key exchange protocols in the following way.
We instantiate the long-term authentication module with the certification functionality FCERT,
which is an ideal protocol for signature generation and verification in presence of a certificate au-
thority (PKI). Basically, emulating FCERT in presence of dynamically corrupting adversaries is
equivalent to using an EU-CMA secure signature scheme with a certificate authority. By the UC-
security definition, we ensure that calls to the signature scheme safely replace calls to FCERT. As
for ideal key encapsulation, the simplistic formulation of FCERT can be expressed in terms of the
symbolic model. Here, we take advantage of the fact that the ideal functionality abstracts out com-
putational details of the cryptographic implementation without loss of generality. Next, we analyze
key exchange protocols with respect to a single instance of FCERT. The JUC-operation guarantees
security for a protocol where the parties invoke multiple independent instances of FCERT. Now,
we apply the UC-operation to derive multi-session security of an individual instance of the key
exchange protocol that invokes independent instances of FCERT and FKEM.

We remark that Küsters and Tuengerthal identified some cases where composition with joint
state does not hold [35]. They show technical flaws in the instantiation of the system model with
ITMs from [13]. They also show how to fix these flaws. We stress that the basic idea of joint-state
composition is sound. Moreover, the identified flaws from [35] do not effect JUC composition of
FCERT in the ITM model of [13]. We also remark that the protocol (SSI from [18]) that realizes the
multi-session extension F̂CERT in the FCERT-hybrid model requires to sign the identifier of the copy
of FCERT. This technicality is a consequence of the “service” oriented treatment of cryptographic
tasks in a multi-process model. However, the technicality does not necessarily lead to inefficient
protocols. In some cases, a careful decomposition of the protocol and appropriate choice of the
identifier JUC-composes to the desired multi-session extension protocol.

3 The Symbolic Model

3.1 Symbolic Algebra

We start with the description of the protocol algebra. The algebra compounds the space of messages
that parameterize the protocol input, network output and local output including operators to

10

compute functions of atomic messages or sets thereof. The protocol algebra comprises message
elements, party identifiers to identify protocol participants acting either in the role of the initiator
or responder, and nonces. Nonces are useful to devise random values. In this paper, we use nonces
to define session keys established by the key exchange protocol. Compound messages are created
by a set of functional symbols. For simplicity, we restrict our attention in this work to composition
and decomposition of messages, key encapsulation and decapsulation, as well as generation of
signatures over messages from the algebra and their verification. In the spirit of the Dolev-Yao
model, we assume that a trusted third party certified the signature keys and the corresponding
verification keys are publicly known. Signatures are in case of Diffie-Hellman protocols useful for
entity authentication. A party authenticates by producing a valid signature for the corresponding
verification key. We explicitly use expressions for (public and private) keys in order to be closer to
standard definitions of cryptographic algorithms. The semantics of symbolic protocols (Definition
15) describe how party identifiers are associated to key.

More formally, we define the following protocol algebra:

Definition 2 (Protocol Algebra) The messages m1,m2, . . . ,mi, i ∈ N of the Dolev-Yao algebra
are assumed to be elements of an algebra A of values. There are several types of atomic message:

• Party identifiers (P) which are thought of as public and predictable. These are denoted by
P1,P2 . . . ,Pn, n ∈ N. We assume there to be a finite number n of names in the algebra. With
each identifier Pn we associate a role On which is a value in some finite set O. For instance,
it may be that O = {0, 1}. Then P0 plays the role of the initiator and P1 the responder.2

• Random-string symbols (R) which are thought of as private and unpredictable. These symbols
are denoted by r1, r2 . . . rj, j ∈ N. Random strings have two purposes: First, they are useful as
nonces to ensure freshness of messages and responses. Second, they can also be used as shared
keys (i.e., output by key-exchange protocols). For the rest of the work, we assume there to be
an unbounded number j of random strings in the algebra A that may change from run to run.

• Public encapsulation keys (PK), denoted by the symbols pk1, pk2, . . . , pkn and corresponding
private decapsulation keys (PK−1) denoted by the symbols pk−1

1 , pk−1
2 , . . . , pk−1

n , of which we
assume there to be an unbounded number of public and private key pairs.

• Public signature verification keys (VK), denoted by the symbols vkP1 , vkP2 , . . . , vkPn, and cor-
responding secret signature keys (SK), denoted by the symbols skP1 , skP2 , . . . , skPn. We assume
there to be an unbounded number of signing and verification key pairs and associated with a
party identifier.

• A symbol establish-key to indicate the start of a protocol and a symbol key to indicate the
execution end.

• A composite element (>) to represent a true evaluation and indicate that the protocol execution
shall continue; a composite symbol (⊥) to represent a failure (e.g. signature verification) and
indicate to abort the protocol execution.

2Of course, a party can be both an initiator or responder in different sessions. Since in the UC framework security
of multi-session protocols is implied by the analyses of single-session protocols, we can assume that each party has a
single role.

11

• A symbolic garbage symbol Ḡ; and an empty message symbol ξ.

Furthermore, following function symbols are available in the algebra:

• pair(m1,m2) : A×A→ A when two messages m1 and m2 are concatenated.

• unpair(m) : A → A ×A when a compound message m is decomposed into messages m1 and
m2.

• setup(): {} → PK×PK−1

• encaps(pk): PK → R × A when an encapsulation nonce r and a corresponding ciphertext
message m is generated to public key pk.

• decaps(pk−1,m) : PK−1 ×A→ R when a message m is decapsulated for private key pk−1.

• sign(sk,m) : SK×A→ A when a message m is signed with private key sk

• verify(vk,m1,m2) : VK×A×A→ {>,⊥} when message m1 is evaluated on verification key
vk to be a signature of message m2.

We write m1|m2 for pair(m1,m2), {|r|}pk for encaps(pk), and [|m|]sk for sign(sk,m). The asso-
ciation of party identifiers and signature keys is captured by the mapping SignKeyOf : P → SK
that maps each identity to one signature key. Further, we require an inverse mapping f−1 :
PK−1 ∪ SK→ PK ∪VK between private keys and public keys.

Each element of the algebra A has a unique representation. For any pair of two messages m1,m2

the symbol unpair() inverts the pairing unpair(pair(m1,m2))= m1,m2.
As for encapsulation and decapsulation algorithms, the application of the decapsulation function

symbol to a ciphertext message of the encapsulation algorithm under a public key yields the random
nonce (key) r in case the corresponding private key is used. Let (r,m)← encaps(pk). Then the
following holds: decaps(pk−1,m)= r. Note that this cancellation works only when pk−1 is the
private key that is associated to the corresponding public pk in the parse tree used to encaps the
key symbol r.

The verification of a signature for the verification key vk is valid, denoted by symbol>, only if the
signer used the corresponding private key sk to sign message m. That is, verify(vk, sign(sk,m),m) =
>. (Otherwise, the signature is invalid and the verification yields the cancellation element ⊥.)

3.2 Symbolic Protocol

A symbolic protocol is a algorithm that based on initial input and interaction with the network
computes some output. We capture this intuition in the symbolic model by a state transition
system. This provision keeps our model general and serves as abstraction for concrete instantiations
of the underlying system model, such as the π-calculus [23, 37].

Each party in the symbolic model is defined by (1) an input port, where the party is parame-
terized by its initial input and state; the initial input includes the party identity and its role; (2)
a communication port, where the party sends and receives messages in algebra A; (3) an internal
state. The internal state consists of all messages received and processed in the execution so far;
based on the initial input, the incomes of the communication port, and previous internal states, the

12

internal state captures the precomputation of values in a protocol execution; (4) an output port,
where the party locally outputs elements of A; the output includes the party identity, its role, and
some other elements in algebra A according to the protocol specification.

The following definition captures more formally the notion of a symbolic protocol in algebra A.

Definition 3 (Symbolic Protocol) A symbolic protocol Π̄ is a mapping from the set of states
S = (A)∗, the set O of roles, an element in the algebra A (including the empty symbol ξ), and the
set P of identities, to a value in {⊥,>} (indicating an internal state transition or failure), or a
value in {“message”}×A (indicating an outgoing message), or a value {“output”×L} (indicating
whether the party generates output where L is the protocol specific output set) plus a new state S
(which is the old state with the addition of the new incoming message and own internally computed
messages). That is:

Π̄ : S×O× ({ξ} ∪A)×P→ {⊥,>} ∪ ({“message”} ×A) ∪ {“output”× L} × S

Let L = ({establish-key,key})×A be the set of outputs for key exchange protocols.

The intended semantics is that, when an honest participant receives a message in the algebra
A, it produces, based on its identity and role, either a local output or an outgoing message that
goes on the network, or a transition to a new state. It is important to note that the new state
consists of the set of messages to produce the outgoing message or the local output. It can also
terminate, which is represented by the special state >.

3.3 Dolev-Yao Attacker

In the Dolev-Yao model, the attacker fully controls the network. Any message from a honest party
first traverses the attacker who forwards, erases or rescrambles the message. It is important to note
that the adversary (in contrast to the computational attacker) operates on symbolic expressions.
The attacker applies a clearly defined set of instructions (events): It may deduce messages from
his knowledge based on initial input and state, and eavesdropped messages from the honest parties
by applying any rule from a set of predefined re-writing rules. (This simplification results from
the fact that we intend to automate the adversary. A necessary provision to avoid a performance
penalty of protocol checkers is the restriction of the adversarial operations.)

Defining what the attacker derives from a message. The adversary’s initial knowledge
includes (1) all the identifiers of all the participants (P), all public encapsulation keys (PK), all
verification keys (VK). Furthermore, the knowledge contains (2) the random-string symbols the
adversary generates itself (RAdv ⊂ R), which, by the freeness of the algebra, are distinct from
all the random-string symbols generated by honest participants. In addition to that, the attacker
knows the (3) decapsulation keys (PK−1

Adv) and (4) signature keys (SKAdv) of all the parties in
(PAdv ⊂ P), which includes all the parties in P except for the legitimate (and honest) participants
in the protocol. In other words, PAdv includes the set of corrupted parties.

To derive new messages, the adversary accesses a small number of re-writing rules. Roughly, the
rules translate a symbolic expression into another. The rules are useful to model security properties
of cryptographic schemes. Consider, for example, symmetric encryption. A re-writing rule is that
the ciphertext symbol parses to the corresponding plaintext symbol, if the attacker knows the secret
key.

13

In this work we assume the attacker to pair two known elements of the algebra, separate a
pair into its elements, encapsulate, decapsulate with known keys, and sign messages with known
signature keys. The notion of a closure captures more formally the expressions derivable by the
adversary given a set AAdv of symbolic expressions. Informally, the meaning is that, if the adversary
has “seen” the expressions (or messages) in (AAdv ⊂ A), then it can only learn messages in C[AAdv].
(Note that in contrast to the computational model the attacker’s capabilities are binary. Either the
attacker can apply the rule or not. This captures the idealized deployment of cryptography that
either leads to full contamination of the primitive, or no information is leaked at all.)

The following definition captures the above discussions on the adversarial capabilities.

Definition 4 (Closure) Let (RAdv ⊂ R) denote the set of random-string symbols associated with
the adversary, let SKAdv = {sk : ∃PAdv ∈ PAdv s.t. SignKeyOf(PAdv) = sk} be the set of signature
keys known to the adversary, i.e., those keys of corrupted parties. Then the closure of a set AAdv ⊆
A of expressions, written C[AAdv], is the smallest subset of A, i.e. AAdv ⊆ C[AAdv], such that:
(1) AAdv ⊂ C[AAdv], (2) P ∪ VK ⊂ C[AAdv], (3) RAdv ∈ C[AAdv], (4) PK−1

Adv ⊂ C[AAdv],
(5) SKAdv ⊂ C[AAdv]; (6) If m1|m2 ∈ C[AAdv], then m1 ∈ C[AAdv] and m2 ∈ C[AAdv];(̄7) If
m1 ∈ C[AAdv] and m2 ∈ C[AAdv], then m1|m2 ∈ C[AAdv], where m1,m2 are elements of A; (8) If
r ∈ C[AAdv] and pk ∈ C[AAdv], then {|r|}pk ∈ C[AAdv]; (9) If pk−1 ∈ PK−1

Adv and r ∈ C[AAdv],
then {|r|}pk ∈ C[AAdv]; (10) If m ∈ C[AAdv] and sk ∈ SKAdv , then 〈|m|〉sk ∈ C[AAdv].

Defining how the attacker interacts with the protocol. Having said what the adversary’s
rewriting-rules are, we step towards the definition of the symbolic attacker. In a nutshell, the
attacker as an algorithm, called the adversary strategy, that operates based on a set of adversarial
events with the protocol. The algorithm recursively applies the re-writing rules and adversarial
events to enrich the attacker’s knowledge. It produces a sequence of messages, called Dolev-Yao
trace, that formulates the attacker’s interaction with the protocol.

Before we proceed with the definition of the adversary strategy, we recall the notion of a Dolev-
Yao trace. Informally, a Dolev-Yao trace is a sequence of events producing messages m1,m2, . . . ,mi, i ∈
N in A starting from the initial input of honest participants and describing their interaction with
the adversary who produces messages according to some adversary strategy, leading either to the
output or cancellation message of the honest participants, or the attacker’s abort.

We enrich the previous definition of the Dolev-Yao trace from [16] with adversarial events to
handle signatures and encapsulations. The attacker introduces new signature and verification keys,
as well as encapsulations and decapsulation keys for the invocation of the corresponding algorithms.
(We decided to assign different key symbols to improve readability.)

In the following we define more formally what we understand under a Dolev-Yao trace:

Definition 5 (Dolev Yao Trace) Let t̄ be the trace of protocol Π̄ with the Dolev-Yao adversary
Ā. Then let t̄ be a sequence of events E0, E1, . . . , Es, where Es is either (i) init event of the form
[“input”,Pn,P

′
n,Sn,init], which indicates the input of participant Pn including initial state Sn,init ∈ S

who interacts with partner P′n, where (Pn,P
′
n ∈ P); (ii) or an attacker event of one of the following

forms (where l,m < s):

• [“name”,ms], in which case ms ∈ P representing the introduction of some participant,

• [“random”,ms], in which case ms ∈ RAdv representing the generation of some new random
nonce,

14

• [“encapskey”,ms], in which case ms ∈ PK representing the introduction of a public encap-
sulation key,

• [“decapskey”,ms], in which case ms ∈ PK−1 representing the introduction of a private
decapsulation key,

• [“sigkey”,ms], in which case ms ∈ SK representing the introduction of a signature key,

• [“verkey”,ms], in which case ms ∈ VK representing the introduction of a verification key,

• [“deliver”,ms,Pn], in which case the message ms is delivered to party Pn representing the
delivery of message ms to Pn,

• [“pair”,ml,mm,ms], in which case ms = ml|mm representing the pairing of ml and mm,

• [“extract-l”,ml,ms], in which case ml = ms|mm for some ml ∈ A representing the extraction
of the left half of the pairing,

• [“extract-r”,ml,ms], in which case ml = mm|ms for some mm ∈ A representing the extraction
of the right half of the pairing,

• [“encaps”,ml,mm,ms], in which case mm ∈ PK and ms = {|ml|}mm representing the genera-
tion of an encapsulated key pair (ml,ms for public key mm,

• [“decaps”,ml,mm,ms], in which case ml = {|ms|}f−1(mm) and mm ∈ PK−1
Adv representing the

decapsulation of key ml from ciphertext ms to secret key f−1(mm),

• [“sign”,ml,mm,ms] in which case mm ∈ SKAdv and ms = 〈|ml|〉mm representing the generation
of signature ms over message ml for signing key mm.

• [“verify”,ml,mm,ms] in which case mm ∈ VK and ms = 〈|ml|〉mm representing the verification
of signature ms over message ml for verification key mm.

• [“corrupt”,Pn] in which case Pn is the party to be corrupted. Then the attacker receives the
state Sn of the corrupted party.

or (iii) a honest participant event of the form [“message”,ms,Pn] or [“output”,ms,Pn], in which
case the most recent adversarial event in the trace is [“deliver”,mm,Pn], and the protocol action
for Pn, upon reception of message mm, is to send/output message ms according to the protocol
specification Π̄(Sm,On,mm,Pn) ∈ ({“output”, “message”},ms,Ss), where Sm is the current state
and Ss the resulting state of Pn, and On is the role of Pn in this instance of the protocol. (The value
of On is taken from the transcript of the execution so far.) A Dolev-Yao trace is valid, if honest
party events are consistent with protocol Π̄.

The classical Dolev-Yao intruder model deals with attackers that know the identities of cor-
rupted parties in advance. In order to consider a dynamic corruption model, where the attacker
corrupts the participants during the protocol execution, we introduce a corrupt event. The protocol
executes in the normal way except that any input message to the corrupted party goes first to the
attacker. Any output message of the corrupted party goes to the attacker. Formally, the attacker
corrupts a party by invoking the event [“corrupt”,Pn] and gains control over all information the
party has stored in the current state Sn.

15

Note also that we explicitly consider adversarial verification events. Otherwise, we would de-
crease the attacker’s capabilities. Consider, for example, the protocol where a party communicates
a bit b by sending a valid/invalid signature. Denying the attacker to verify the signature means that
signatures can be used as encryption schemes, an unnecessarily oversimplification of the Dolev-Yao
model.

Validity of Dolev-Yao traces is an important property to enable consistency with the protocol:
Valid traces exclude traces that deviate from the protocol. They result from message/output events
of honest parties acting according to the protocol and the adversarial interaction.

We now are ready to define the adversary strategy. It is an algorithm that enables the attacker
to “simulate” protocol executions and produce traces of the form Ψ(Π̄) where the attacker mounts
arbitrary attack against protocol Π̄ based on the Dolev-Yao assumptions. The set of deduction
and transmission rules to program the simulation is defined by applying the adversarial events
(Definition 5) in any order and independent of the message the honest participants produced.

More formally,

Definition 6 (Adversary Strategy) Let an adversary strategy Ψ be a sequence of adversary in-
structions I0, I1, . . . , Is, where i, j, k are integers, and where each Ii is either: (1) [“receive”, i],
(2) [“name”, i], (3) [“random”, i], (4) [“encapskey”, i], (6) [“decapskey”, i], (7) [“sigkey”, i], (8)
[“verkey”, i], (9) [“deliver”, j,Pi], (10) [“pair”, j, k, l], (11) [“extract-l”, j, i], (12) [“extract-r”, j, i],
(13) [“encaps”, j, k, i], (14) [“decaps”, j, k, i], (15) [“sign”, j, k, i], (16) [“verify”, j, k, i], (17) [“cor-
rupt”,Pn]

When executed against protocol Π̄, a strategy produces the following Dolev-Yao trace Ψ(Π̄). Go
over the instructions in Ψ one-by-one, and:

1. For each [“receive”, i] instruction, if this is the first activation of party Pi, or Pi was just
activated with a delivered message m, then add to the adversary trace a participant event
(Pj,O,m) which is consistent with protocol Π̄. Else output the trace ⊥, indicating a failure.

2. For any other instruction, add the corresponding event to the trace, where integers i, j, k are
replaced by the corresponding message expression in the i-th event in the trace so far. (If the
event results in an invalid trace, then output the trace ⊥).

The adversary strategy is essential to define security of protocols. Recall our running example
of symmetric encryption. Semantic security means that no adversary strategy (we assume the
adversary’s closure includes the re-writing rule from the previous example) helps the attacker to
tell apart between the encryption of the plaintext symbol and the encryption of a random symbol.
Assume there exist such a strategy. Then the attacker’s strategy produces a trace that enriches the
attacker’s knowledge with the plaintext symbol.

We will apply the adversary strategy in Section 6 to cast a real-or-random security criterion
for key exchange protocols. The next section is devoted to devise a corresponding computational
model.

4 Simple Protocols

The original model in [16] allowed for the analysis of a restricted class of key exchange protocols,
dubbed simple protocols. Simple protocols are limited to encryptions and nonces. They cover the

16

class of key transport protocols. We extend in this section the language of simple protocols to
deal with Diffie-Hellman like key agreement and signature primitives. In this section, we define the
task of ideal encapsulation, certification and the syntax of simple protocols. (Proofs, the semantic
interpretation of the protocol syntax in a symbolic and computational model, and the crucial
mapping lemma appear in the appendix.)

4.1 Key Encapsulation Mechanism Functionality

The idea of idealized key encapsulation is to generate an encapsulated key-pair where the key is
computationally unrelated to the ciphertext, but at the same time the decapsulator may obtain
the encapsulated key when presenting the corresponding ciphertext. To this end, the functionality
maintains a database of encapsulation key-pairs. We illustrate FKEM in Fig. 2.

Functionality FKEM

FKEM proceeds as follows when parameterized with security parameter k and a distribution
of keys KeySp(k).

• Setup: Upon receiving a value (Setup, sid) from party D, check that sid = (D, sid′) for
some sid′. If not, then abort. Else hand (Setup, sid) to the adversary. Upon reception
of (Algorithms, sid, e, d) from the adversary, where e, d are descriptions of PPT ITMs,
output (Encaps Algorithm, sid, e) to D.

• Encapsulation: Upon receiving a value (Encaps, sid, e′) from party E, do: If e′ 6= e, or
D is corrupted, set (K,C)← e′. Else execute e to obtain (K∗, C∗) and K

r←− KeySp(k),
then set (K,C)← (K,C∗). Record the tuple (K,C∗) and output (Encapsulated Key-Pair,
sid, K, C) to E.

• Decapsulation: Upon receiving a value (Decaps, sid, C ′) from party D (and only D),
do: If there is a recorded pair (K,C ′) for some K, output (Key, sid, K) to D. Else if D
is corrupted, then return (Key, sid, d(C ′)) to D. Else return (forbidden, sid) to D. (If
there are more than one K recorded for C ′, then output an error message.)

Figure 2: The Key Encapsulation Functionality

Description of the Key Encapsulation Functionality. The functionality is parameterized
by the security parameter k and the distribution of encapsulation keys KeySp(k). FKEM takes
three types of input: setup, encapsulation, and decapsulation. Upon reception of a key generation
request, the functionality first verifies that the identity of D appears in the session identifier.
This guarantees that the decapsulator D only is permitted to obtain the encapsulation key from
the functionality. Next, the functionality asks the adversary to devise two descriptions of PPT
algorithms: an encapsulation algorithm e and a decapsulation algorithm d. Note that the algorithms
may be probabilistic. The functionality returns the specification of the encapsulation algorithm
to D. As in the case of the public key encryption functionality FPKE (see [13, Fig. 22]), the

17

encapsulation algorithm is considered being public and provided to the environment (via D); the
decapsulation algorithm is abstracted out as “implementation” detail, and does not appear in the
interface between FKEM and the parties. The rationality behind granting the adversary the privilege
to choose the algorithms is to capture the fact that standard security notions of key encapsulation
mechanisms make no constraints on the values, as long as the ciphertexts do not relate to the
encapsulation keys.

Upon reception of an encapsulation request from some party E to compute an encapsulated
key-pair with algorithm e′, the functionality operates in two different ways. If e′ = e then the
functionality generates a legitimate encapsulated key-pair as follows: It invokes the encapsulation
algorithm e to compute the key-pair (K∗, C∗). Next, the functionality chooses a key K from the key
distribution at random. It records the pair (K,C∗) and outputs (K,C∗). ChoosingK independently
of C∗ guarantees ideal secrecy. If e′ 6= e or D is corrupted, then the functionality computes
the encapsulation key-pair by invoking the “incorrect” encapsulation mechanism e′. Here, the
functionality captures the invocation with inappropriate keys. In this case, no secrecy is guaranteed,
since C∗ may depend on K. Moreover, no correct decapsulation may be guaranteed anymore.

Upon reception of a request to decapsulate C ′, FKEM checks that a record of the form (K,C ′)
exists. If so, then the functionality outputs K. This guarantees correctness, namely that for any
ciphertext computed by this instance of FKEM a corresponding encapsulation key is generated. (If
there were more ciphertexts stored, a correct decapsulation would be impossible. In which case,
the functionality outputs an error message.) If C ′ is not recorded, then the adversary manipulated
the ciphertext. FKEM answers with a forbidden message.

4.1.1 Equivalence to IND-CPA-KEM

We show that realizing FKEM is equivalent to indistinguishability under chosen plaintext attacks.
Recall, a key encapsulation scheme KEM with associated key distribution KeySp(k) is a triple of
PPT algorithms (Setup,Encaps,Decaps) such that Setup takes as input the security parameter 1k

and outputs a public key PK and a secret key SK; Encaps takes as input the security parameter
1k, the secret key SK, and outputs an encapsulation key K ∈ KeySp(k) and a ciphertext C;
Decaps takes as input the secret key SK, the ciphertext C, and outputs either the encapsulation
key K or an error element ⊥. We require for correctness that for all k, all (PK,SK) generated
by Setup(1k), and all (K,C) generated by Encaps(PK, 1k), we have that Decaps(SK,C) = K. An
encapsulation scheme KEM is deemed secure against chosen plaintext attacks if the advantage of any
PPT adversary A in the following game is negligible in the security parameter k. Setup(1k) outputs
(PK,SK). A is given PK, which it may use to generate any number of encapsulated key-pairs
(within polynomial bounds). At some point, a challenge encapsulated key-pair is computed: A valid
encapsulated key-pair (K0, C) ← Encaps(PK, 1k) is generated. An alternate key K1

r←− KeySp(k)
is chosen uniformly at random from the key distribution. A bit b r←− {0, 1} is chosen at random and
A is given the encapsulated key-pair (Kb, C). A wins the game, if it outputs the correct guess b
with overwhelming probability.

We show:

Theorem 7 Let KEM = (Setup,Encaps,Decaps) be a key encapsulation scheme with associated key
distribution KeySp(k). Then KEM is IND-CPA-KEM secure, if and only if πKEM securely realizes
FKEM in front of static-corruption adversaries and no forbidden event occurred.

18

Protocol πKEM

1. When party D receives a message (Setup, sid), it verifies that sid is of the form (D, sid′)
for some sid′. If not, it aborts. Otherwise, it computes the public key PK and secret
key SK by invoking the algorithm Setup, and obtains the encapsulation algorithm e←
Encaps(PK, 1k) and decapsulation algorithm d ← Decaps(SK, ·). Finally, D outputs
(Encaps Algorithm, sid, e).

2. When party E, executing protocol πKEM receives a message (Encaps, sid, e), it computes
the encapsulated key-pair (K,C) by running algorithm e and outputs (Encapsulated
Key-Pair, sid, K, C).

3. When party D receives the message (Decaps, sid, C) in the execution of protocol πKEM,
it computes the encapsulated key K by running algorithm d(C) and outputs (Key, sid,
K).

Figure 3: Transformation of the KEM scheme

Proof. The proof idea is to transfer a KEM scheme into a protocol πKEM that aims at realizing
FKEM. Protocol πKEM is illustrated in Fig. 3. We first show that if πKEM securely realizes FKEM

in front of a statically corrupting adversary, then πKEM is IND-CPA-KEM secure. Assume by
contradiction that there exists an adversary F that wins the IND-CPA-KEM game with probability
1/2 + ε. We construct an environment that distinguishes with probability ε between an interaction
with protocol πKEM and the (dummy) adversary A and an interaction with the ideal protocol for
FKEM and any simulator S. We construct Z as follows:

1. Z initiates D with input (Setup, sid) and waits for the answer (Encaps Algorithm, sid, e). It
hands the encapsulation algorithm e to F .

2. Z initiates E with input (Encaps, sid, e), and waits for the encapsulated key-pair (K0, C).
Z chooses an alternate key K1

r←− KeySp(k) at random from the key distribution and flips a
coin b

r←− {0, 1}. It forwards the challenge (Kb, C) to the attacker F .

3. When F outputs a bit b′, so does Z and halts.

We claim that Z distinguish the interaction with the real-world protocol execution and (dummy)
adversary with probability 1/2 + ε. To see this, observe that in the above simulation Z neither
instructs to corrupt a party nor communicates with the (dummy) adversary. It exactly mimics
the IND-CPA-KEM game. Thus, we have in this case that the environment outputs b′ = b with
probability significantly better than 1/2 + ε. In contrast, we claim that when Z interacts with the
ideal-world protocol for FKEM and the simulator S it outputs b′ = b with probability exactly 1/2.
This is so because F ’s view is statistically independent of b. It includes key-pairs from previous
encapsulations (generated by the ideal functionality FKEM) plus the challenge key-pair. Since
ciphertexts and encapsulation keys are statistically independent from b (the encapsulation key is
generated at random, not from the decapsulation algorithm d), the argument follows.

19

We now show that if KEM is IND-CPA-KEM secure, then πKEM securely realizes FKEM in
front of static-corruption adversaries. We construct a simulator S, such that no environment Z
can tell apart between the interaction with the ideal-world protocol for FKEM and the simulator
S, and the interaction between the real protocol πKEM and a dummy adversary. Note that the
dummy adversary is totally inactive in this simulation. The role of the dummy adversary is to
report messages to the environment or corrupt parties. Since the key encapsulation mechanism
consists of local algorithms, no messages pass the network and are observed by the dummy adver-
sary. Furthermore, there are no corruption instructions by the environment, since we cope with
a static corruption model. S remains thus the task to provide the encapsulation algorithm e and
decapsulation algorithm d to FKEM. More precisely, S proceeds as follows:

1. When S receives the input (Setup, sid), the adversary runs the setup algorithm and receives
(PK,SK). It sets e ← Encaps(PK, ·) and d ← Decaps(SK, ·). It hands the algorithms to
FKEM by answering with query (Algorithms, sid, e, d).

2. When either party E, D is corrupted, S proceeds by emulating an instance of protocol πKEM,
just as a honest party would play it.

Analyzing S, observe that Z’s views when interacting with the real-world protocol πKEM in
front of the dummy adversary and Z’s views when interacting with the ideal-protocol for FKEM

and simulator S are identical if either party is corrupted. This follows from the fact that the
functionality provides the same interfaces to S as the encapsulation protocol πKEM. Thus, the only
way S effects the view of Z is by interacting with FKEM. Assume by contradiction that there exist
an environment Z that distinguishes between the real and ideal interactions with probability ε. We
show how to use this environment to construct an adversary F that breaks the IND-CPA-KEM
security such that adversary F guesses the bit b with probability 1/2 + ε/2p where p is the number
of encapsulations that were computed by Z.

Given algorithm e, adversary F proceeds as follows. It chooses a value v
r←− {1, . . . , p} at

random. Next, F runs Z on the following simulation of protocol πKEM in front of the dummy
adversary, where (Ki, Ci) denotes the i-th encapsulated key pair.

1. When the environment activates D on input (Setup, sid), F instructs Z to let D mount
algorithm e, the algorithm in the IND-CPA-KEM game.

2. When the environment activates E on message (Encaps, sid, e), F instructs Z to proceed as
follows:

(a) For the first v − 1 times, F lets E run algorithm e and output (Ki, Ci).

(b) For the p − v times, F lets E run e and compute (Ki, Ci). It generates a random key
K∗i

r←− KeySp(k) and makes E output (K∗i , Ci).

(c) For the special case v, F lets E output the challenge key-pair (Kb
i , Ci) from the IND-

CPA-KEM game. Recall, if b = 0 E computes a valid encapsulation key; if b = 1 E
generates a random key.

3. When the environment sends D message (Decaps, sid, C ′), where C ′ = Ci, F lets D output
the corresponding key Ki. If C ′ 6= Ci, F lets D output forbidden.

4. When Z halts, F outputs whatever Z outputs and halts.

20

Analyzing F , we first define an event FE (for forbidden event). Essentially, FE is the event where
F instructs D to output forbidden. We show that Z distinguishes the two worlds with overwhelm-
ing probability under the condition that event FE occurs. We construct Z in a straightforward
way. Whenever Z receives output (forbidden, sid) from D, it says “ideal” simulation; whenever it
receives output (Key, sid, K) from D, it says “real” simulation. It is easy to see that Z wins with
overwhelming probability. This is so because for any invalid ciphertext C ′ 6= Ci, the real-world
distributions include bitstrings of the form (Key, sid, d(C ′)), whereas the ideal-world distribution
consists of bitstrings of the form (forbidden, sid).

In the rest of the proof we assume that event FE occurs with negligible probability. We analyze
the success probability of F in the IND-CPA-KEM game via standard hybrid arguments. Let the
random variable Hi denote the output of Zi when interacting with the ideal-world protocol for
FKEM and the simulator S, except that the first i-th encapsulated key pairs (Ki, Ci) are output of
the encapsulation algorithm e (rather than choosing K at random). It can be seen that the output
of H0 is identical to the output of Z in the real-world protocol emulation. This is so because
d(C)→ K with overwhelming probability. Hp is statistically close to the output of Z in the ideal-
world protocol simulation. If the value Kb

v that F receives as challenge in the IND-CPA-KEM game
is output of e, then Z’s output has the distribution Hv−1. If the value Kb

v is randomly chosen, then
Z’s output has the distribution Hv. This completes the proof. �

4.1.2 Plain Diffie-Hellman realizes FKEM

We now demonstrate that the plain Diffie-Hellman protocol can be expressed in terms of a key
encapsulation mechanism. The plain DH protocol runs between two parties A, B. Let p, q, q/p− 1
be primes and g a generator of order q in Z∗p that are public. The protocol proceeds as follows: A
chooses a random value x r←− Z∗p. It sends X = gx to B.

A→ B: gx

When B receives the value X, it chooses a random value y r←− Z∗p and outputs the key κ = Xy. It
sends Y = gy to B.

B → A: gy

When A receives a value Y , it outputs the key κ = Y x.
Using the technique as before, we transform this protocol to a key encapsulation mechanism

protocol πdh
KEM running between E, D. An illustration of protocol πdh

KEM is depicted in Fig. 4.
Recall, the transformation transfers an interactive protocol into a local algorithm. Queries to
πdh

KEM reflect the messages in the interaction of E and D of the 2-round plain Diffie-Hellman key
exchange. More precisely, the key generation algorithm Setup outputs on security parameter the
encapsulation and decapsulation pair (PK,SK) = (gx, x), where x r←− Z∗p is chosen at random.
The encapsulation algorithm Encaps on input the public key PK = gx and security parameter
computes an encapsulated key-pair (K,C) = (gxy, gy), where y r←− Z∗p is chosen at random. The
decapsulation algorithm Decaps on input the secret key SK = x and the ciphertext C = gy outputs
the key K = gxy.

We show:

21

Protocol πdh
KEM

Let p, q, q/p − 1 be primes and g a generator of order q in Z∗p that are public. πdh
KEM runs

between E, D on security parameter k.

Setup: When party D receives a message (Setup, sid), it verifies that sid is of the form
(D, sid′) for some sid′. If not, it aborts. Otherwise, it computes the public key PK and
secret key SK by invoking the key generation algorithm (gx, x)← Setup(1k), where Setup
randomly chooses x r←− Z∗p, and obtains the encapsulation algorithm e← Encaps(PK, 1k)
and decapsulation algorithm d← Decaps(SK, ·). Finally, D outputs (Encaps Algorithm,
sid, e).

Encapsulation: When party E receives a message (Encaps, sid, e), it computes the encapsu-
lated key-pair (K,C) by running algorithm e that picks y r←− Z∗p at random, K = PKy

and C = gy. Next, the encapsulator locally outputs (Encapsulated Key-Pair, sid, K, C).

Decapsulation: When party D receives the message (Decaps, sid, C) in the execution of
protocol πdh

KEM, it computes the encapsulated key K = d(C) where algorithm d computes
Cx = d(C). Finally, D outputs (Key, sid, K).

Figure 4: Plain DH protocol formulated as Key Encapsulation Mechanism

Theorem 8 Assume the Decisional Diffie-Hellman assumption holds, then protocol πdh
KEM securely

realizes FKEM in front of static-corruption adversaries under the condition that no forbidden event
occurred.

Proof. We apply the equivalence theorem established in Theorem 7 for the proof. Assume by
contradiction that protocol πdh

KEM is not IND-CPA-KEM secure, and there exists an adversary F that
guesses the bit b in the game with overwhelming probability. We construct a distinguisher G using F
to break the DDH assumption. More precisely, given g, ga, gb, and gz the adversary G distinguishes
between the case z = xy and z = r, where r r←− Z∗p is chosen at random, with probability significantly
better than 1/2. G simulates for F the IND-CPA-KEM game as follows. It hands F the public key
PK = gx. When F asks for the challenge, G sends the pair (K,C) = (gz, gy). If F outputs a guess
b, so does G. It can be readily seen that G using F is good distinguisher to tell apart between the
case z = xy (b = 0) and the case z = r (b = 1). This completes the proof. �

4.1.3 Key Encapsulation Mechanisms under Adaptive Corruptions

We now wish to define idealized key encapsulation mechanism under adaptive corruption. Dealing
with a model, where the attacker corrupts a protocol during the execution is of particular interest
for key agreement protocols. It allows to analyze protocols with respect to (perfect) forward secrecy.
As pointed out in [15, 17], the definition of security under adaptive corruption is delicate. The crux
is a “commitment” problem. When a party outputs some value to the environment before the
peer, it commits to value that is statistically independent of the value from the ideal functionality.

22

Suppose the peer gets corrupted and is assumed to output the same value. In this case, the simulator
gets into troubles: It has to come up with the value of the ideal functionality without ever seeing
it.

We encounter a commitment problem in the above definition of idealized key encapsulations.
When the encapsulator outputs an encapsulated key-pair, the key is statistically independent from
the ciphertext. Suppose the adversary corrupts the decapsulator after the encapsulator generated
output of the form (K,C). Then the simulator must produce a ciphertext that decapses to the key
chosen by the ideal functionality. Due to the statistical independence, the odds of this event occur
with negligible probability. Thus, the environment distinguishes the two worlds with overwhelming
probability.

To makes the problem clearer, we explain how the above discussion applies to the simulation of
the plain Diffie-Hellman protocol. Specifically, we show

Claim 9 Protocol πdh
KEM does not securely realize FKEM in front of dynamic-corruption adversaries.

Proof. We construct an environment Z that distinguishes with overwhelming probability between
an interaction of the parties running protocol πdh

KEM in front of the dummy adversary A and the ideal
protocol for functionality FKEM in presence of the simulator S. Z pursues the following strategy:
It instructs A to eavesdrop protocol πdh

KEM. Z (via the dummy adversary A) observes an execution
of the messages α = gx; it observes the message β = gy and receives the key K = αy from B′s
output. Before A delivers message β, Z instructs the adversary A to corrupt A. This way, the
environment gets access to A’s internal state including the randomness x. The environment claims
to view the real protocol, if βx := K and gx := α. Otherwise, it claims to view the ideal protocol.
Notice that the simulator S receives the key K r←− KeySp(k) chosen at random by the functionality
FKEM in the ideal world; K is statistically independent of the key computed from the execution of
protocol πdh

KEM. To complete the simulation, S has to come up with the randomness x, such that
βx := K and gx := α. However, the simulator fails to do so because the probability this event to
occur is 1/q. Thus, Z wins with overwhelming probability. �

Description of the Relaxed Key Encapsulation Functionality. To circumvent the tech-
nicality, we additionally condition the environment: We require the decapsulator to output the
encapsulation key prior to the encapsulator. Formally, we capture this provision by introducing a
relaxed key encapsulation functionality F+

KEM. The functionality is depicted in Fig 5. The relaxed
key encapsulation mechanism functionality is identical to FKEM except that we split the encap-
sulation query into an encapsulation ciphertext and encapsulation key query. (We remark that
the separation of the encapsulation algorithm does not contradict the notion of key encapsulation
mechanism. It is a simple implementation detail to divide the encapsulation into two algorithms
that either output the key or the ciphertext.) Then we define early key as the event where the
encapsulator outputs the query (Encapsulation Key, sid, K) prior to the decapsulator’s query (Key,
sid, K). To keep track whether the event has occurred, the functionality manages a flag b.

Adaptive corruption is defined according to the corruption model in [13]. When the attacker
mounts a corrupt query (Corrupt, sid, P), the corresponding party is marked as corrupted. Hereby
the attacker notifies that it compromises party P .

23

Functionality F+
KEM

F+
KEM proceeds as follows when parameterized with security parameter k and a distribution

of keys KeySp(k).

• Setup: Upon receiving a value (Setup, sid) from party D, check that sid = (D, sid′) for
some sid′. If not, then abort. Else hand (Setup, sid) to the adversary. Upon reception
of (Algorithms, sid, e, d) from the adversary, where e, d are descriptions of PPT ITMs,
output (Encaps Algorithm, sid, e) to D.

• Encapsulation Ciphertext: Upon receiving a value (Encaps Ciphertext, sid, e′) from
party E, do: If e′ 6= e, or D is marked corrupted, set (K,C) ← e′. Else execute e
to obtain (K∗, C∗) and K

r←− KeySp(k), then set (K,C) ← (K,C∗). Record the tuple
(K,C∗, 0) and output (Encapsulation Ciphertext, sid, C) to E.

• Encapsulation Key: Upon receiving a value (Encaps Key, sid) from the attacker, do:
If there is no tuple (K,C, b) recorded, output an error message. Else, if b = 1, return
(early key, sid) to E. Else, output (Encapsulation Key, sid, K) to E. If E is marked
corrupted, then hand K to the adversary.

• Decapsulation: Upon receiving a value (Decaps, sid, C ′) from party D (and only D),
do: If there is a recorded pair (K,C ′, b) for some K, output (Key, sid, K) to D. Else
if D is marked corrupted, then return (Key, sid, d(C ′)) to D. In both cases, set b = 1.
Else return (forbidden, sid) to D. (If there are more than one K recorded for C ′, then
output an error message.)

• Corruption: Upon receiving a value (Corrupt, sid, P) from the adversary, where P ∈
(E,D), mark the party as corrupt.

Figure 5: The Relaxed Key Encapsulation Functionality

4.1.4 3-Round Plain Diffie-Hellman realizes F+
KEM

We present a Diffie-Hellman protocol that securely realizes F+
KEM under adaptive corruptions in

a restricted environment. The protocol is a variant of the plain Diffie-Hellman protocol with two
additional properties: a third round and erasure of ephemeral DH secrets. The third round consists
in sending an “ack” message. We do not constrain the message type to keep the protocol structure
general. The purpose is to delay the output of the session key and change the order which party
outputs the session key. We say any 3-round Diffie-Hellman protocol has the “ack”-property, if the
initiator outputs the session key prior to the responder.

Let p, q, q/p − 1 be primes and g a generator of order q in Z∗p that are public as before. The
protocol πdh+

KEM (using the ack-property and secure erasure) proceeds as follows: A chooses a random
value x r←− Z∗p. It sends X = gx to B.

A→ B: gx

When B receives the value X, it chooses a random value y r←− Z∗p, computes κ = Xy, and erases x.

24

It sends Y = gy to B.

B → A: gy

When A receives a value Y , it outputs the key κ = Y x, erases x, and replies with an “ack” message.

A→ B: ack

When B receives the acknowledgment, it outputs κ.

Protocol πdh+
KEM

Let p, q, q/p − 1 be primes and g a generator of order q in Z∗p that are public. πdh
KEM runs

between E, D on security parameter k.

Setup: When party D receives a message (Setup, sid), it verifies that sid is of the form
(D, sid′) for some sid′. If not, it aborts. Otherwise, it computes the public key PK and
secret key SK by invoking the key generation algorithm (gx, x)← Setup(1k), where Setup
randomly chooses x r←− Z∗p, and obtains the encapsulation algorithm e← Encaps(PK, 1k)
and decapsulation algorithm d ← Decaps(SK, ·). Finally, D locally outputs (Encaps
Algorithm, sid, e).

Encapsulation Ciphertext: When party E receives a message (Encaps Ciphertext, sid, e), it
computes the encapsulated key-pair (K,C) by running the algorithm e that picks y r←− Z∗p
at random, computes K = PKy and C = gy, and erases y. Next, the encapsulator locally
outputs (Encapsulation Ciphertext, sid, C) and stores K.

Decapsulation: When party D receives the message (Decaps, sid, C) in the execution of
protocol πdh

KEM, it computes the encapsulated key K = d(C) where algorithm d computes
Cx and erases x. Finally, D locally outputs (Key, sid, K).

Encapsulation Key: When party E receives a message (Encaps Key, sid), it locally outputs
(Encapsulation Key, sid, K).

Figure 6: 3-round Plain Diffie-Hellman expressed as relaxed Key Encapsulation Mechanism

Using the natural technique as before, we transform this protocol to a key encapsulation mech-
anism protocol πdh+

KEM running between E, D. An illustration of protocol πdh+
KEM is depicted in Fig. 6.

Recall, the transformation transfers an interactive protocol into a local algorithm. Queries to πdh+
KEM

reflects the messages in the interaction of E and D of the 3-round plain Diffie-Hellman key ex-
change. In particular, the acknowledgment message triggers the event to output the encapsulator’s
encapsulation key.

We show:

Theorem 10 Assume the Decisional Diffie-Hellman assumption holds, then protocol πdh+
KEM securely

realizes F+
KEM in front of adaptive-corruption adversaries under the condition that no forbidden and

early key event occurred.

25

Proof. We have to construct a simulator S such that no conditioned environment distinguishes
between an interaction with the parties running protocol πdh+

KEM in the light of the dummy adversary
A and an interaction with the ideal-world protocol for F+

KEM in front of the simulator S. Observe
that the simulator is totally passive. There is no network communication between E and D. This
is so because the ideal functionality F+

KEM has the same interfaces as πdh+
KEM. Thus, the task of the

simulator is simplified to provide the encapsulation and decapsulation algorithms as well as the
internal state simulation of a corrupted party. We construct such simulator S as follows:

Simulating the Generation of Algorithms: When S receives the input (Setup, sid) from F+
KEM,

it internally invokes a simulation of D. S mimics the decapsulator’s invocation of the Setup
algorithm by choosing x

r←− Z∗p. S sets PK = gx and SK = x. It fixes the encapsula-
tion and decapsulation algorithms e ← Encaps(PK, 1k) and d ← Decaps(SK, ·) and outputs
(Algorithms, sid, e, d) to F+

KEM.

Simulating Party Corruptions: When A corrupts E, D then S simulates an internal copy of
the corrupted party running πdh+

KEM and hands A the internal data of the party. In particular:

1. If D is corrupted prior to the generation of the encapsulation ciphertext, then S hands
A the secret key SK = x from the simulation of the setup.

2. If E is corrupted after generation of the ciphertext, then S deploys the algorithm e used
to generate the encapsulated key-pair (K,C). It hands K to A.

3. If D is corrupted after decapsulation, all ephemeral secrets should be erased. Then S
hands A the encapsulation key K = d(C ′).

4. If E is corrupted prior to output of the encapsulation key, then S hands A the encapsu-
lation key K (from step 2). All ephemeral secrets should be erased.

Analyzing S Assume that no forbidden and early key event occurred, then it can be seen that Z
exactly views an execution of protocol πdh+

KEM when interacting with the ideal-protocol for F+
KEM and

S. The only difference is that (a) in Z’s real-world view the encapsulation key K is computed by
the encapsulation algorithm E, whereas (b) in Z’s ideal-world view the key is chosen independently
from the ciphertext by the ideal functionality F+

KEM. However, it can be shown by reduction to the
DDH assumption that the two views are indistinguishable from another (see previous proof). �

4.2 Revised Certification Functionality

The idea of idealized certification is to permit a registered party to generate signatures over arbi-
trarily many messages while any party may verify the signatures. In fact, the functionality FCERT

captures the task of authenticated signatures where parties registered with a trusted third party.
Idealized certification has been introduced in [14]. There, it has been shown that a signature func-
tionality FSIG in presence of a certification authority FCA that mimics a public bulletin board
securely realize ideal certification; it has also been shown that any signature scheme weakly un-
forgeable against chosen message attacks (WUF-CMA) emulates FSIG in presence of a certificate
authority.

It turns out that the present security notion in the case of idealized signatures from [14] and,
for us more importantly, in the case of idealized certification is weaker than required in certain

26

applications. Some problems have been identified in the earlier version of FSIG. We refer the
reader to [4, 40] for a more technical discussion. The identified problems have led to a renovation
of FSIG in [13][Fig. 21]. A corresponding notion of idealized certification was introduced in [40].
The functionality is depicted in Fig 7.

Functionality FCERT

FCERT proceeds as follows when parameterized with security parameter k.

• Signature generation: Upon receiving a value (Sign, sid, m) from some party S check
that sid = (S, sid′) for some sid′. If not, then abort. Else hand (Setup, sid) to the
adversary. Upon reception of (Algorithms, sid, s, v) from the adversary, where s, v are
descriptions of PPT ITMs, output (Signature Algorithm, sid, s) to S. Set σ = s(m),
record the tuple (m, σ, 1) and output (Signature, sid, m, σ) to S.

• Signature verification: Upon receiving a value (Verify, sid, m, σ) from some party P ,
do: If there is an entry (m, σ, b′), send (Verified, sid, m, b′) to P . Else if the signer is
not marked corrupted, record the entry (m, σ, 0) and return (Verified, sid, m, 0) to P .
Otherwise, record the entry (m, σ, v(m,σ)) and return (Verified, sid, m, v(m,σ)) to P .

• Corruption: Upon receiving a value (Corrupt, sid, P) from the adversary, where P is
a signer or verifier, mark the party as corrupt.

Figure 7: Certification Functionality

Description of the Certification Functionality. It offers two interfaces: signature generation
and verification. In contrast to FSIG, this functionality has no key generation interface. (This
results from the fact that the keys are registered with a certificate authority.) When receiving a
signature generation request, the functionality first checks that the identity of the signer S appears
in the session identifier. If not, it aborts. FCERT binds signatures directly to the identity of protocol
participants. There is no secret key which, if disclosed, will enable a third party to sign on behalf
of the purported signer. Moreover, the provision avoids the distribution of keys in the spirit of
the Dolev-Yao model (where key distribution is implicit). Next, the functionality requests the
adversary to provide two descriptions of ITM algorithms for signature generation and verification.
This is the workaround to prevent that the attacker learns the message to be signed. Instead of
asking the attacker to generate the signature in this revised version of FCERT the attacker delivers
the algorithms. The functionality can compute and verify the signature itself.

Upon reception of the verification request, the functionality checks that a matching message-
signature entry exists. If so, it outputs the corresponding bit b′. This requirement ensures con-
sistency between multiple verification requests. Next, the functionality checks whether the signer
is corrupted. If not, it outputs that the signature-message pair is invalid (b = 0). (This is so
because the functionality has not generated the pair.) If so, the functionality deploys the verifi-
cation algorithm provided by the attacker to verify the signature pair. This requirement reflects
that a corrupted party may manipulate the verification algorithm and dictate the outcome of the

27

verification.
We remark that the certification functionality guarantees security with respect to dynamic

corruptions. Corruption is defined according to the corruption model in [13]. When the attacker
mounts a corrupt query, the corresponding party is marked as corrupted. Then the attacker gets
access to the party’s internal state. Since the functionality maintains no secret values, the attacker
gets access to the functionality via the interfaces.

Realizing FCERT. The functionality can be realized given a number of setup assumptions. The
realization in [14] was proven with respect to a certification authority FCA. That is:

Theorem 11 Assume a WUF-CMA secure signature scheme and a certificate authority FCA, then
FCERT can be securely realized in presence of dynamic-corruption adversaries.

See [40] for the proof.

4.3 The Syntax of Simple Protocols

We formulate the syntax of simple protocols. The formulation adapts the definition of simple
protocols from [16] with the addition that we define a calculus for Diffie-Hellman like two-party
protocols and certification. Our augmentation includes commands for the generation of public and
private encapsulation keys, computation of encapsulated key-pairs, decapsulation of random keys
from ciphertexts, signature generation and verification, and secure erasure of ephemeral secrets
computed in the protocol execution.

PROGRAM ::= initialize(self, other);
COMMAND-LIST

COMMAND-
LIST

::= COMMAND COMMAND-LIST

| done
COMMAND ::= receive(v);

| send(vc);
| output(vc);
| newrandom(v);
| pair(vc1,vc2,v);
| separate(vc,v1,v2);
| setup(vc1,v);
| encaps(vc1,v);
| decaps(vc1,vc2,v);
| sign(vc1,vc2,v);
| verify(vc1,vc2,vc3)
| erase(vc1)

(Command encaps(vc1,v) is divided into subroutine encaps c(vc1,v) and encaps k(vc1,v) in
case of adaptive corruptions.)

Figure 8: Syntax of Simple Protocols

28

Definition 12 (Syntax of Simple Protocols) A simple protocol is a pair of programs Π = (Π0,
Π1), each of which is given by the grammar as illustrated in Fig. 8, where v, v1, v2 and vc, vc1,
vc2 are variables and constants.

An important notion in the framework are concrete traces. They capture the intuition of their
symbolic pendant. Concrete traces are a sequence of environmental, adversarial, or honest partici-
pants events. In terms of the UC framework, concrete traces are the view of the environment when
interacting with the honest participants running the concrete protocol in front of the adversary.
We recall the definition from [16].

Definition 13 (Concrete Protocol Trace) Let TRACEΠ,A,Z(k, z) be the trace of executing pro-
tocol Π with the dummy adversary A and environment Z on input z and security parameter k to be
a sequence of events H0, H1, . . . , Hs, where Hs is either (i) an environmental “init” event writ-
ten on the input tape of the form [“init”, sid, pidi, pidī] indicating that party pidi and pidī execute
the sid-th instance of the protocol. MΠ resets the program counter and invokes the first program
instruction; or (ii) an attacker event of one of the form [“adversary”,m, sid, pidi] in which case
the adversary delivers message m to party pidi; or (iii) a honest participant event of the form

• [“message”,m, sid, pidi], in which case the message m dedicated to be delivered to pidi written
on the communication tape is delivered to the adversary,

• [“output”,m, sid, pidi], in which case the message m is the local output of party pidi.

We denote the ensemble {TRACEΠ,A,Z(z, k)}k∈N,z∈{0,1}∗ as EXECπ,A,Z .

4.4 Concrete Semantics

The UC framework is based on the system model of probabilistic polynomial time-bounded ITMs.
Interactions in the two worlds are expressed by an environmental, adversarial, and a protocol
machine. In particular, the latter machine captures the task of the participants executing the
protocol Π. A session identifier sid and the program code Π including additional input parameters
(such as the identities of the parties) parameterize the input of the protocol machine. When
the protocol machine MΠ is invoked with session identifier sid, it creates instances of Interactive
Turing machines. Each instance runs a subprogram Πi ∈ Π, capturing the protocol instructions of
a participant Pi.

In the following definition we show how a Turing machine interprets a two-party simple protocol
Π = (Π0,Π1).

Definition 14 (Concrete Semantics of Simple Protocols) The concrete protocol Π associ-
ated with a pair of programs (Π0,Π1) is an ITM M . The transition function for this machine
is defined over the states SM = {init} ∪ S0 ∪ S1, where “init” represents the initial state of MΠ

and each state Si = (Πi,∆i,Γi) for i ∈ {0, 1} represents the protocol program of the corresponding
party Πi, a program counter Γi which indicates the current command of Πi, and a store command
∆ which maps variable names in Πi to locations on the work tape. The transition function over
these states encodes the execution of either program Π0 or Π1. The transition is defined as follows:

If MΠ is in the initial state “init”, it will read off the following information from its tapes: the
security parameter k, the session identifier sid′, the party identifier pidi, and the peer identifier pidī
which represents the identity of the other participant of this protocol execution. Then MΠ initializes
the storage and writes

29

• self: MΠ writes [“name”, pidi, sid] indicating that pidi is the initiator of the session sid =
sid′.

• other: MΠ writes [“name”, pidī, sid] indicating that pidī is the responder in the session
sid = sid′.

It increments the program counter Γi to the next instruction of Πi, and executes that statement.
Next transitions depend on the command of Πi indicated by the counter Γi:

• receive(v): If the command has already been executed in this activation, MΠ waits to be
reactivated. If not, or after re-activation, MΠ reads a message from the communication tape
and stores it in v. It increments the counter and proceeds with the next command.

• send(vc): MΠ writes the value of vc on the communication tape, increments the program
counter, and waits for re-activation.

• output(vc): MΠ writes the value of vc to the local output tape, increments the program
counter, and waits for activation.

• newrandom(v): MΠ generates a random value r r←− {0, 1}k, stores [“random”, r] in v, and
continues with the next command.

• pair(vc1,vc2,v): MΠ stores [“pair”,vc1,vc2] in v and proceeds with the next command.

• separate(vc,v1,v2): If the value of vc is [“pair”, a, b], MΠ stores v1 = a and v2 = b. It
increments the program counter, and proceeds with the next command. Else, MΠ terminates.

• setup(vc1,v): MΠ sends (Setup, sid) to FKEM with sid = (pid, sid′), where pid = vc1

contains the identity of some decapsulator D. MΠ reads from the subroutine output tape the
encapsulation algorithm e and decapsulation algorithm d written by the functionality FKEM.
It stores [“algorithms”, sid, e, d] in v, increments the counter, and proceeds with the next
command.

• encaps(vc1,v): MΠ sends (Encaps, sid, e) with sid = (pid, sid′) to FKEM, where pid = vc1

contains the identity of some decapsulator D. MΠ reads from the subroutine output tape
the encapsulated key-pair (K,C) written by FKEM. It stores [“key-pair”, sid,K,C] in v,
increments the counter, and proceeds with the next command. Alternatively,

– encaps c(vc1,v): MΠ sends (Encaps Ciphertext, sid, e) with sid = (pid, sid′) to F+
KEM,

where pid = vc1 contains the identity of some decapsulator D. MΠ reads from the sub-
routine output tape the encapsulation ciphertext C written by F+

KEM. It stores [“encap-
sulation ciphertext”, sid, C] in v, increments the counter, and proceeds with the next
command.

– encaps k(vc1,v): MΠ sends (Encaps Key, sid) with sid = (pid, sid′) to F+
KEM, where

pid = vc1 contains the identity of some decapsulator D. MΠ reads from the subroutine
output tape the encapsulation key K written by F+

KEM. It stores [“encapsulation key”, sid,
K] in v, increments the counter, and proceeds with the next command.

– When F+
KEM answers with an early key message, then MΠ stores a termination request

[“early key”,
sid].

30

• decaps(vc1,vc2,v): MΠ sends (Decaps, sid, C) to FKEM with sid = (pid, sid′), where pid =
vc1 contains the identity of some decapsulator D, vc2 = C the encrypted key and waits
until the functionality FKEM writes on the subroutine output tape the decapsulation key K. It
stores [“key”, sid,K,C] in v and proceeds with the next command. If the answer is a forbidden
message, then MΠ writes a termination request [“forbidden”, sid].

• sign(vc1,vc2,v): MΠ sends (Sign, sid,m) to FCERT with sid = (pid, sid′), where pid = vc1

contains the identity of some signer S and m = vc2 is the message to be signed. It waits
until the functionality FCERT wrote on the subroutine output tape the signature σ. MΠ stores
[“signature”, sid,vc2, σ] in v, increments the program counter, and proceeds with the next
command.

• verify(vc1,vc2,vc3): MΠ sends (Verify, sid,vc2, σ) to FCERT with sid = (pid, sid′), where
pid = vc1 contains the identity of some signer S, m = vc2 is some message, and σ is the last
element of vc3 = [“signature”, sid,m′, σ′]. (The element σ′ is obtained by recursively running
the separate() command on input vc3.) It waits until the functionality FCERT wrote some
bit b on the subroutine output tape. It outputs the pattern [“verified”, sid,m, b]. If b = 1,
MΠ increments the program counter, and proceeds with the next instruction. Otherwise, MΠ

terminates.

• erase(vc1): MΠ erases the value vc1 from its work tape.

4.5 Symbolic Semantics

In the previous section, we have shown how concrete protocols formulated in the syntax of simple
protocols are interpreted in the computational model. We now define how simple protocols map to
the symbolic model.

Definition 15 (Symbolic Semantics of Simple Protocols) Let Π = (Π0,Π1) be a simple pro-
tocol. Let Π̄ be the symbolic protocol as in definition 3 where the set of states S = (Γ,∆) contain (1)
a program counter Γ which indicates the next command of Π to execute, and (2) a store command ∆
which maps variable names in Π to symbols in the algebra A. For simplicity, ∆ maps constants to
themselves and is initiated with the names in P for the variables self and other. Let O ∈ {0, 1} be
the roles of the participants in the execution of a simple protocol Π = (Π0,Π1). For all (Γ,∆) ∈ S,
O ∈ O, m ∈ A, and P ∈ P, the mapping Π̄ is defined on the commands in Π = (Π0,Π1):

• If Γ points to a command of the form send(vc), then

Π̄((Γ,∆),O,m,P)→ (“message”,∆(v), (Γ′,∆′))

where Γ′ points to the next command.

• If Γ points to a command of the form output(vc), then

Π̄((Γ,∆),O,m,P)→ (“output”,∆(v), (Γ′,∆′))

where Γ′ points to the next command.

31

• If Γ points to one of the following commands, then

Π̄((Γ,∆),O,m,P)→ Π̄((Γ′,∆′),O,m,P)

where Γ′ points to the next command and ∆′ is equal to ∆ except that

Case receive(v) : ∆′(v) = m. (If m is an empty message, then Γ points to the next
command.)

Case newrandom(v) : ∆′(v) is set to the first nonce symbol in R which is not in the range
of ∆′.

Case setup(vc1,v) : ∆′(v) = (pk∆′(vc1), pk−1
∆′(vc1)) is the output of setup(), i.e. a public

encapsulation and decapsulation key not already in the range of ∆′.

Case encaps(vc1,v) : ∆′(v) = encaps(∆′(vc1)) where ∆′(vc1) is a public encapsulation
key stores an encapsulated key-pair which is not already in the range of ∆′. (In the case of
encaps c(vc1,v) and encaps k(vc1,v) store an encapsulation ciphertext and key, respec-
tively, which is not in the range of ∆′.) Else ∆′(v) = Ḡ is the garbage symbol.

Case decaps(vc1,vc2,v) : ∆′(v) = decaps(∆′(vc1),∆′(vc2)) where ∆′(vc1) is a private
decapsulation key and ∆′(vc2) some message. Otherwise, it stores ∆′(v) = Ḡ the garbage
symbol.

Case sign(vc1,vc2,v) : ∆′(v) = sign(∆′(vc1,∆′(vc2))) if ∆′(vc1) is a signing key and
∆′(vc2) is some message. Otherwise, store ∆′(v) = > the failure symbol to abort.

Case verify(vc1,vc2,vc3) : if verify(∆′(vc1,∆′(vc2),∆′(vc3))) = ⊥, then set ∆′ = ⊥. Else
set ∆′ = >.

Case pair(vc1,vc2,v) : ∆′(v) = ∆′(vc1)|∆′(vc2).

Case separate(vc,v1,v2) : if ∆′(vc) = m1|m2, then ∆′(v1) = m1 and ∆′(v2) = m2.
Otherwise, store the symbol > to indicate a failure.

• If Γ points to a command of the form erase(vc1), then

Π̄((Γ,∆),O,m,P)→ Π̄((Γ′,∆′),O,m,P)

where Γ′ points to the next command and ∆′ is equal to ∆ except that it does not contain the
value ∆(vc1).

5 Mapping Lemma

An essential tool in proving computational soundness of simple protocols is the mapping lemma.
This lemma states that for any simple protocol the dummy adversary in the computational setting
has a negligible probability to produce traces which a Dolev-Yao attacker would produce in the
symbolic model. That is, if TRACEΠ,A,Z(k, z) is a concrete trace of the simple protocol Π, then t̄

is a Dolev-Yao trace of the symbolic protocol Π̄ except with negligible probability. Technically, the
mapping lemma ensures that a simple protocol has a valid symbolic representation.

We begin with the description of the mapping algorithm that translates bitstring representations
of the concrete trace to symbols. Next, we prove the validity of this transformation.

32

Definition 16 (Mapping Algorithm) Let Π be a simple protocol and TRACEΠ,A,Z(k, z) be a
trace of an execution of protocol Π with security parameter k, environment Z with input z and
dummy adversary A. Let Π̄ be the corresponding symbolic protocol and t̄ be the symbolic trace of an
execution of protocol Π̄ in front of the Dolev-Yao adversary Ā. We define the mapping δ from the
concrete trace TRACEΠ,A,Z(k, z) to the symbolic trace t̄ to be the output of the following two-pass
algorithm:

1. In the first pass, the algorithm reads through the trace TRACEΠ,A,Z(k, z) character by char-
acter in order to build a partial mapping δ : {0, 1}∗ → A from bit-strings to elements of the
symbolic algebra A according to the cases below. (Note that the patterns may be nested and
overlapping. A pattern is recognized as soon as the last character in the pattern is read.)

• The UC garbage string ? is mapped to the symbolic garbage term Ḡ.

• The bitstrings Establish-Key and Key are mapped to the symbols establish-key and key,
respectively.

• Pairing and separation use the symbolic operators.

• Termination > and continue ⊥ symbols use the same operator.

• The bitstring (Corrupt, sid, pid) is mapped to the symbolic adversary event [“corrupt”,P],
where δ(pid, sid) := P. (See remark below.)

• When parsing a pattern [“name”, pid, sid] do: if δ(“name”, pid, sid) is not yet defined,
then set δ(“name”, pid, sid) := P where P is the first element of P not in the range of
δ so far; if δ(“sigkey”, 〈pid, sid〉) is not defined, then set δ(“sigkey”, 〈pid, sid〉) := skP

where skP is the first element of SK in the range of δ associated with the party identifier
P. Associate a corresponding verification key δ(“verkey”, 〈pid, sid〉) =: f−1(skP) to be
the first element of VK in the range of δ.

• When parsing a pattern [“pair”, a, b] do: if δ(a) or δ(b) is not yet defined, then set
δ(a) := Ḡ (resp. δ(a) := Ḡ). Else, set δ(“pair”, a, b) := δ(a)|δ(b).
• When parsing a pattern [“random”, r], do: if [“random”, r] is not defined yet, then set
δ(“random”, r) := r where r is the first element of R (resp. RAdv) in the range of δ in
case of a honest participant event (resp. adversarial event).

• When parsing a pattern [“algorithms”, sid, e, d] do: if δ(sid, e) or δ(sid, d) is not yet
defined, then set (δ(“encapskey”, sid), δ(“decapskey”, sid)) := setup(), where δ(“encaps-
key”, sid) := pk is the first element of PK in the range of δ and δ(“decapskey”, sid) :=
pk−1 is the first element of PK−1 in the range of δ. Set δ(sid, e) := encaps(pk) and
δ(sid, d) := decaps(pk−1).

• When parsing a pattern [“key-pair”, sid,K,C] do: At this point, both δ(“encapskey”,
sid) := pk and δ(“decapskey”, sid) := pk−1 must be defined. Then set δ(“key-pair”, sid,
K,C) := (r, {|r|}pk) where r is the first element of R. Alternatively, when parsing
[“encapsulation ciphertext”, sid, C] or [“encapsulation key”, sid,K] do: Both δ(“encaps-
key”, sid) := pk and δ(“decapskey”, sid) := pk−1 must be defined. Then set δ(“encaps-
ulation ciphertext”, sid, C) := {|r|}pk and δ(“encapsulation key”, sid,K) := r where r
is the first element of R. When parsing a pattern an early key event [“early key”, sid]
then it is mapped to [“early key”].

33

• When parsing a pattern [“key”, sid,K] do: At this time, the encapsulation key δ(“encaps-
key”, sid) := pk, decapsulation key δ(“decapskey”, sid) := pk−1 and the encapsulated
key-pair δ(“key-pair”, sid,K,C) := (r, {|r|}pk) must be defined. Then set δ(“key”, sid,K)
:= decaps(pk−1, δ(sid, C)). If the pattern is a forbidden event [“forbidden”, sid] then it
is mapped to [“forbidden”]

• When parsing a signature pattern [“signature”, sid,m, σ] do: If δ(sid,m) is not de-
fined yet, then δ(sid,m) := Ḡ. Else set δ(“signature”, sid,m, σ) := [|m|]sk where
m := δ(sid,m) and sk := δ(“sigkey”, sid).

• When parsing a verification pattern [“verified”, sid,m, b] do: If δ(sid,m) is not defined
yet, then δ(sid,m) := Ḡ. Next, if b = 0, then M outputs ⊥ and terminates. If, b = 1,
M outputs >, increments the program counter, and processes the next instruction.

2. In the second pass, the algorithm constructs the actual Dolev-Yao trace. Let H0, H1, . . . , Hs,
where Hs be concrete traces. Then the resulting Dolev-Yao trace is produced by simulating the
execution of the symbolic participants. It then proceeds through the concrete traces as follows:

• If Hs := [“init”, sid, pidi, pidī], then generate the symbolic event [“input”,Pi,P
′
ī
,Si] where

Pi := δ(“name”, pid, sid) is the initiator and P′
ī
:= δ(“name”, pidī, sid) is the responder.

• If Hs := [“adversary”,m, sid, pidi], then let m := δ(m). There are two cases:

(a) There exists a finite sequence of adversarial events that produces m from previous
messages of the trace. Then Hs is mapped to this sequence of symbolic events Es,0,
Es,1, . . . , Es,n′ so that the message of Es,n′ is [“deliver”,m,P] (where P is the
participant who received the message from the adversary in the concrete protocol).

(b) Otherwise, m is not in the above closure. In this case, Hs maps to the Dolev-Yao
event [“fail”,m].

• If Hs := [“message”,m, sid, pidi], then the event maps to [“message”,m,Pi] with m =
δ(m) and P := δ(“name”, pidi, sid).

• If Hs := [“output”,m, sid, pidi], then the event maps to [“output”,m,Pi] with m = δ(m)
and Pi := δ(“name”, pidi, sid).

Remark. We explicitly include the adversary’s corruption event into the mapping function. When
the attacker corrupts a party P in the computational model, it has access to the party’s internal state
S. In which case, the mapping algorithm δ recursively applies to the state variable S and transfers
the state into a corresponding sequence of symbols. That is, the symbolic event [“corrupt”,P]
produces a trace of symbols representing the internal state of P. This state mapping is instrumental
in the proof of the mapping lemma.

We now proceed with the mapping lemma.

Lemma 17 Let δ be the mapping function from the concrete trace TRACEΠ,A,Z(k, z) to the symbolic
trace t̄ as in Defintion 16. For all simple protocols Π, environments Z, and inputs z of length
polynomial in the security parameter k:

Pr[t← EXECΠ,A,Z : t̄ is not a DY-trace for Π̄] ≤ neg(k).

34

Proof. To demonstrate the validity of the above mapping we first need to show that (1) no
attacker in the computational model is more powerful than the Dolev-Yao attacker and (2) any
actions of the honest participants in the computational model have a counterpart action in the
symbolic model. Let TRACEΠ,A,Z(k, z) be a trace of the concrete protocol Π. We first show that
the symbolic trace t̄ contains an element of the form [“fail”,mi] with negligible probability. Next,
we show that t̄ is a valid Dolev-Yao trace.

Let m1,m2, . . . denote the messages generated by the honest participants in trace t̄. Assume
for the moment that t̄ contains a fail element of the form [“fail”,mi]. This means, there exists an
environment Z that created a message mi in the computational model. There is an attack strategy
in the computational model that cannot be expressed in terms of a sequence of adversarial events
based on the attacker’s closure in the symbolic model. We show that this event occurs with only
negligible probability.

Let C[AAdv] denote the smallest subset of symbolic terms that can be generated from a sequence
of adversarial events. Let C[mj, j < i] be the set of messages that can be generated from the
messages in the trace prior to mi. Observe the parse tree of mi. By definition of the symbolic
algebra, if two siblings in the parse tree are both in C[mj, j < i], so is the parent node. Thus, if
every path in the parse tree of mi from root to leaf has a node in C[mj, j < i], so does C[mi]. This,
however, is a contraction. Hence, there must be a leaf, say ml, in the parse tree of mi, such that
the path of ml has no node in C[mj, j < i]. Since mi is in the trace t̄, it must be the case that
there is an environment Z in the computational world that instructed an adversary A0 to generate
a bitstring mi, such that δ(mi) = mi. We use this environment to construct another adversary A1

that produces a bitstring m∗, such that δ(m∗) = m∗, where m∗ is the message on the path from
mi to ml (including the missing node in C[mj, j < i]). Z runs an internal copy of A0 to produce
mi, maps the bitstring to symbolic terms using the two-pass algorithm δ, and recursively applies
deconstructors to parse from mi to ml.

There are three possibilities. The first possibility is that m∗ is of the form {|r|}pk . However,
since m∗ is not in the closure C[mj, j < i], it must be the case that r and pk−1 are neither in the
closure C[mj, j < i]. Hence, the view of A1 (who produced m∗) is independent of mj. The only way
this to occur is that A1 executed Setup() and created an encapsulated key-pair by evaluating the
encapsulation algorithm Encaps(PK) that decapsulates to a key symbol r generated by a honest
participant. (Otherwise, a forbidden (resp. early key) event occurs that maps to the symbolic event
[“forbidden”] (resp. [“early key”]).) Since honest parties query the key encapsulation functionality
FKEM/F

+
KEM for encapsulations and decapsulation, the key that maps to r is chosen at random

from the keyspace KeySp(k) and statistically independent of the ciphertext. By the definition of
ideal key encapsulation, the event that the adversary generated this key-pair occurs with negligible
probability. Thus, the probability of the event [“fail”,mi] to happen is negligible.

The second possibility is that m∗ is of the form r and the nonce is not in the closure C[mj, j < i]
of the attacker. It must be the case that A1 produced it. Since honest participants choose nonces
at random from a uniform distribution {0, 1}k, the probability that A1 generated the nonce is 2−k.
Since there are at most a polynomial number of nonce bitstrings, the probability that m∗ maps to
m∗ is at most poly(k) · 2−k, which is negligible in the security parameter k. Thus, the likelihood of
the event [“fail”,mi] to happen is negligible.

The third possibility is that m∗ is of the form [|m|]sk . Since m∗ is not in the closure C[mj, j < i],
it must be the case that m and sk are neither in the closure C[mj, j < i]. Hence, the view of A1

(who produced m∗) is independent of mj. The only way that A1 produced a bitstring m∗ that

35

maps to m∗ is that the adversary created a signed message that is valid when verified by a honest
participant. Since honest parties call FCERT to generate signatures, it must be the case that A1

created a valid signature for some message, which was never generated by the honest participants.
By the definition of ideal certification functionality, the odds of this event are negligible. Thus,
event [“fail”,mi] happens with negligible probability.

We now show that t̄ is a Dolev-Yao trace. Since no event of the form [“fail”,mi] occurs, we
have by the Definition 5 of symbolic traces that all adversarial events are valid. It remains to show
that all honest participants are valid. However, this fact follows from the symbolic semantics of
simple protocols in Definition 15.

This completes the proof. �

6 Security Definition for Key Agreement Protocols

In this section we state when a Diffie-Hellman protocol is deemed secure. We formulate the security
properties for the UC setting based on ideal key exchange; we define an analogous security criterion
for the symbolic setting. Finally, we motivate and prove the main theorem of this paper, namely
the computational soundness of the symbolic criterion.

6.1 Key Exchange Functionality

A key exchange protocol in the computational model is deemed secure if it fulfills the following two
requirements: an agreement and a secrecy property. The key agreement property states informally
that if two parties (P0, P1) negotiate keys in a protocol session, and associate these keys with each
other, then the keys are equal. This is implied by a matching conversation of the two parties. The
secrecy property states that in this case the attacker learns no information about the session key
κ. We capture the two security requirements by an ideal key exchange functionality FKE. The
functionality is illustrated in Fig. 9.

Description of the Key Exchange Functionality. The functionality offers two interfaces:
session establishment and key delivery. It is parameterized with a security parameter k, a session
identifier sid and the involved party identifiers pid0 and pid1, representing the parties P0 and P1.

Upon receiving a session establishment request from party P0, the functionality records the
invoking party as initiator, and forwards the message to the adversary. Similarly, when the func-
tionality receives a session establishment request from party P1, it records the party as responder,
and forwards the request to the adversary. At this time, the two parties indicate to participate in
the same instance of the key exchange.

Upon receiving a key delivery message from the adversary, the functionality checks whether a
party is corrupted. If not, it fixes a key at random from the uniform distribution. This captures the
secrecy requirement. Otherwise, it sets the key provided by the attacker as the session key. This
provision captures the fact that a key exchange protocols guarantees no secrecy of the session key
when a party is corrupted. We remark that the definition does not capture the contributiveness of
key exchange protocols, where a (corrupted) party contributes to the session key. Indeed, in such
cases the adversary cannot opt for the session key. Since we consider the functionality as subroutine
for the composition of advanced protocols, such as secure channels, we leave this security property

36

Functionality FKE

FKE proceeds as follows when parameterized with security parameter k.

• Session Establishment: Upon receiving an input (Establish-Key, sid, pid0, pid1) from
party pid0, mark the party as initiator, and relay the message to the adversary. Upon
receiving the message (Establish-Key, sid, pid1, pid0) from some other party pid1, mark the
party as responder, and relay the message to the adversary.

• Key Delivery: Upon receiving an answer (Key, sid, P , κ̃) from the adversary, where
P ∈ {pid0, pid1} is either the initiator or responder, do: If neither party is marked corrupted,
and there is no recorded key, fix κ uniformly from {0, 1}k. If a party is marked corrupted,
and there is no recorded key, record κ ← κ̃ as the adversary. Send message (Key, sid, P , P̄ ,
κ) to P .

• Corruption: Upon receiving a value (Corrupt, sid, P) from the adversary, where P ∈
(pid0, pid1) is either initiator or responder, mark the party as corrupt. If the attacker corrupts
a party after κ is chosen and before κ is sent to that party, then hand κ to the adversary.
Otherwise provide no information to the adversary.

Figure 9: Key Exchange Functionality

out of the definition in order to keep the definition simple. Hofheinz et al. have shown in [33] how
to deal with this technicality.

The functionality captures the notion of forward secrecy. The attacker is allowed to send a
corrupt query at any time. If the attacker corrupts a party before the session key is recorded, it
may choose the key. No guarantees about the secrecy of a key exchange protocols can be made.
If the attacker corrupts a party after the partner has fixed the key, then the adversary learns
the key. Note, however, that the functionality prevents the attacker from fixing the key. If the
attacker corrupts a party thereafter, he learns nothing about the session key. This addresses the
requirements of forward secrecy.

6.2 Symbolic Security Criterion

We now define the symbolic criterion for key exchange. Analogously, the Dolev-Yao criterion for key
exchange requires to fulfill the agreement and secrecy property. The symbolic agreement property
is a direct adaption. It states that when a party P0 agrees to establish a session with some party P1

and vice versa, then both parties output the same session key r. (Note that this criterion considers
a single-session execution of protocol Π̄.) The secrecy property is more involved. It adapts the well-
established notion of real-or-random secrecy from computational analysis of key exchange protocols
[17]. We consider two executions of the symbolic protocol. In the first execution, the real world,
the adversary is given the session key from the protocol execution. In the second execution, the
ideal world, the adversary is given a randomly fixed session key symbol. We say the session key
is secret, if the two situations look identical for any behavior of the adversary. The behavior is

37

defined by an adversarial strategy Ψ.
We wish to require that any adversary strategy produces the identical trace in the interaction

with the real and ideal world. Then the real-world protocol is as secure as the ideal world. Since
the ideal-world fulfills the secrecy property per definition, secrecy in the real-world is implied. It
remains to define when two traces look identical. A conjecture is that two traces are identical
after renaming the variables. This approach seems to naturally exclude the hiding property of
encapsulation ciphertexts. As long as the attacker does not know the decapsulation key, the two
traces are observationally equivalent. A definition that captures the observational equivalence of
traces is pattern matching, introduced in the seminal paper of Abadi and Rogaway [1]. Thus, we
require that two traces look identical when their patterns after renaming are equal.

Patterns of encapsulation ciphertexts are handled as public key patterns of encryptions. That is,
the attacker perceives ciphertexts as encryptions of a random key symbol as long as the decryption
keys is in his closure. Otherwise, the attacker learns nothing about the key. In order to be consistent
with the definition of public key patterns in [14], the pattern replaces the key symbol with a blinding
symbol. As mentioned in Section 2, for forward secrecy we require the pattern of the encapsulation
key symbol to be consistent provided it is a session key. The pattern replaces any encapsulated key
in the pattern message with a consistent key symbol. More formally,

Definition 18 (Pattern) Let pattern() be the pattern function as defined in [14] with the following
addition. Let T ∈ PK be the set of keys that the adversary can decrypt with. Let m ∈ A be a
message. We define the pattern function pattern(m,T) to be:

pattern({|r|}K,T) =

{
{|r|}K ∧ ∀r ∈ m : rkey if K ∈ T ∧ r is a session key rkey

{|�|} otherwise, where � denotes a blinding symbol

Putting all together, we define the Dolev-Yao security criterion:

Definition 19 (Symbolic Criterion for Key Exchange) A Dolev-Yao protocol Π̄ provides Dolev-
Yao two-party secure key exchange (DY2KE) with forward secrecy, if

1. (Agreement) For all P0 and P1 6∈ PAdv and Dolev-Yao traces, in which participant P0 out-
puts message 〈establish-key,P0,P1〉 and participant P1 outputs message 〈establish-key,P1,P0〉,
if P0 produces output message 〈key,m0〉 and P1 produces output message 〈key,m1〉, then
m0 = 〈P0,P1, r〉 and m1 = 〈P1,P0, r〉 for some r ∈ R.

2. (Real-or-Random Secrecy) Let Π̄Random be the real protocol Π̄Real except that a fresh key
rRandom ∈ R is output of a terminating participant instead of the real key rReal. Let (·)[r1→r1]

be an expression in A, where every symbol r1 is renamed to r2. Then for every adversary
strategy Ψ, the following holds

pattern(Ψ(Π̄Real)) = pattern(Ψ(Π̄Random)[rRandom→rReal])

3. (Encapsulation Test 1) For all Dolev-Yao traces check that no [“forbidden”] pattern
exists.

4. (Encapsulation Test 2) For all Dolev-Yao traces check that no [“early key”] pattern
exists.

38

The first condition captures the consistency property of key exchange protocols where the two
parties are uncorrupted. We have no requirement on the session-key where one of the partners
was corrupted before the session completed—in fact, in which case most DHKE protocols allow
to strongly influence the session key. The second condition captures the heart of the definition,
namely the secrecy property. The third and forth condition are additional properties that origin
from the restriction of the KEM functionality.

Remark. The forth condition is relevant only if security with respect to dynamic-corruption
adversaries matters. If analysis of Diffie-Hellman key exchange protocols in front of static corruption
and without forward secrecy suffices, the forth condition may be left out of the definition.

6.3 Soundness of the Symbolic Criterion

We now state the main theorem. Note that this theorem generalizes the soundness results from
[14]. There, the authors defined a theorem for a simple class of protocols where the only crypto-
graphic primitive in use is public key encryption. Note also that their theorem holds under static
corruption. Thus, their work excludes the analysis of a natural class of practical key exchange pro-
tocols. We present a generalized theorem for computational sound key exchange protocols which is
independent of the internal structure of simple protocols. In fact, any key exchange protocol Π can
be reformulated in the F-hybrid model, where the call to the cryptographic primitive is replaced
by a query to the ideal functionality F . The crucial point is the existence of a mapping lemma for
this protocol. Our theorem states that for any simple protocol, and any attack strategy, if there
exists a mapping from concrete to symbolic traces, then Π is a UC-secure key exchange protocol,
if the corresponding symbolic protocol is DY2KE-secure.

Theorem 20 For any adversary strategy Ψ, any simple protocol Π, if there exists a mapping δ from
concrete to symbolic traces, then the following holds except with negligible probability: Π securely
realizes FKE under dynamic corruption, if Π̄ is DY2KE-secure.

Proof. The heart of the proof follows the line of [16]. We show that if Π̄ achieves Dolev-Yao
two-party key exchange security, then Π UC-realizes FKE. Assume by contradiction that Π̄ is not
DY2SKE-secure. Then one of the following events occurs, contradicting either the agreement or
secrecy property of the definition:

(1) There is a Dolev-Yao trace (Key, sid, P ′0, P ′1, r′) where the parties finished the protocol
execution either with another peer P ′0 6= P0, P ′1 6= P1 or an alternate key symbol r′ 6= r. We use
this attacker to construct an environment Z that tells apart between the interaction with ideal-
world protocol and the simulator and the interaction with the protocol and the dummy adversary.
Z converts the Dolev-Yao attack strategy to an attack in the computational real-world. This
attack does not happen in the ideal-world protocol execution (because the functionality will always
distribute the same session key to both parties). Thus, Z distinguishes the ideal and real world
with overwhelming probability.

(2) There is exists an adversary strategy Ψ against the symbolic protocol Π̄, such that

pattern(Ψ(Π̄Real)) 6= pattern(Ψ(Π̄Random)[rRandom→rReal])

That is, a key symbol exists in one world which does not have a counterpart in the other world.
We use this strategy to construct an environment Z that distinguishes between the concrete protocol
execution with the dummy adversary and the ideal-world protocol for FKE. Z internally simulates

39

an execution of protocol Π and simply maps the finite sequence of calculations, receptions, and
transmissions that is described in the strategy Ψ. It then translates the trace TRACEΨ

Π,A,Z(k, z)
of the execution to a symbolic trace t̄ using the transformation in Definition 16, except that it
makes sure that the key exchanged by the protocol and key output by the participants are mapped
to the same symbol; that is, if they are mapped to different symbols, the one which receives the
mapping second is mapped to the symbol already assigned to the other. (Notice that the trace of
the concrete execution is deducible from the view of the environment.)

Then, the environment checks whether

pattern(̄t) = pattern(Ψ(Π̄Random)[rRandom→rReal]).

If the patterns are equal then the environments outputs “ideal”. Otherwise, it outputs “real”.
To see that this environment is a good distinguisher between the real and the ideal cases, we

observe that: (a). If the environment interacts with protocol Π, then t̄ is the result of strategy
Ψ interacting with the Π̄. Thus, t̄ = Ψ(Π̄), and pattern(̄t) = pattern(Ψ(Π̄)). (b). In contrast, if
the environment interacts with the ideal protocol for FKE, then the key output by the participants
is independent from the simulator’s view. Thus, t̄ results from strategy Ψ interacting with a
protocol run which is actually independent of the key output by the participants. Thus, t̄ =
Ψ(Π̄Random)[rRandom→rReal], and pattern(̄t) = pattern(Ψ(Π̄Random)[rRandom→rReal]). Thus, the fact that

pattern(Ψ(Π̄Real)) 6= pattern(Ψ(Π̄Random)[rRandom→rReal])

means that the environment can always distinguish the real setting from the ideal setting. �

7 Automatically Proving Simple Protocols with ProVerif

Having defined a specification language of simple protocols that captures the structure of Diffie-
Hellman protocols, their semantics in the symbolic and computational model, and a computa-
tionally sound, symbolic criterion for secure key exchange, we give an example instantiation of
the framework. The intention of this section is to demonstrate the applicability of our theory in
terms of a concrete protocol checker. In particular, we show how simple protocols and the DY2KE
criterion are expressed within Proverif.

Command Description

free c creates a global (random) variable c
new x creates a local (random) variable x
let x=y in P sets variable x to the value of y in process P
if A then B if-then clause
out(c, m) sends message m on channel c
in(c, m) receives message m on channel c
P|Q executes the processes P and Q concurrently
0. terminates the process
ev:X(a) creates an event X that outputs the value a
choice[a,b] creates two identical processes that differ by the terms a and b

Figure 10: Syntax of Proverif

40

ProVerif is a fully automatic cryptographic protocol checker. This tool verifies protocols based
on a representation of Horn clauses. Additionally, it supports specifications in the π-calculus which
are parsed into Horn clauses. Table 10 shows the specification language in the syntax of the π-
calculus. Proverif can handle various cryptographic primitives specified as re-writing rules. (We
make use of equations to formulate encapsulations mechanisms and certification. Details follows.)
Proverif can cope with an unbounded number of sessions of the protocol (even in parallel) and an
unbounded message space. This tools uses approximations to get rid of the analytical complexity.
In some cases, the approximations may result into a false-positive attack detection. However, if
the tool claims that a protocol fulfills a security property, then the property is actually satisfied.
If Proverif is not able to check the property, then it attempts to reconstruct the attack. Proverif
supports the verification of secrecy, authentication, strong secrecy, and equivalence properties. The
property we are interested in this work is the latter one: The tool checks that two processes
that differ only by terms are equivalent. (The equivalence property turns out to be the desired
mechanism to model the real-or-random game.)

As a case study, we analyze a class of Diffie-Hellman based key exchange protocols. We proceed
in two independent ways: we clearly separate between what is known cryptographically about
these protocols and what our automated analysis says. We stress that the two agree. In detail, we
start by presenting two versions of an authenticated Diffie-Hellman protocol, ADH1 and ADH2, of
which the first is insecure and contradicts the agreement property. It is susceptible to an identity
misbinding attack. Indeed, it does not securely realizes FKEM. The latter protocol is essentially the
version 3 variant in the ISO-9798 standard, which was shown to realize FKE in [17]. It is notable
that the ISO-9798 protocol has been used to instantiate many practical protocols. Among them
is the SSL/TLS protocol family [24] whose handshake protocol based on ephemeral Diffie-Hellman
and client signatures is basically the same as the ISO-9793 standard. See [29] for details. We carry
forward the running example and analyze protocol ADH2 with regard to forward secrecy. The
protocol falls prey to attack. It contradicts the real-or-random secrecy property of the DY2KE-
criterion (because the attacker reconstructs the session key from the internal state of the corrupted
party.) Following the discussions in Section 4.1.4 we ask whether secure erasure mitigates the flaw.
We adopt this mechanism to the revised protocol, called ADH3, and use automated analysis to
verify that indeed the protocol satisfies the definition of secure Dolev-Yao 2-party key exchange
with forward secrecy. Recall, the analysis is done in a fully-automated way and carried out with
respect to a single protocol session. We executed Proverif on a 2Ghz Intel Dual-Core processor
with 1GB memory. The verification of a single protocol session enjoyed great performance; the
mechanized analyses required less than a second per protocol.

7.1 Protocol ADH1 and ADH2: DY2KE without Forward Secrecy

Protocol Description. We begin with the specification of protocol ADH1 as a simple protocol.
A formulation in the syntax of simple protocols is depicted in Fig. 11. The protocol runs between
two parties A, B. Let p, q, q/p − 1 be primes and g a generator of order q in Z∗p that are public.
Let (Sign, Vrfy) be a signature scheme. Let (SKi, V Ki) be the signing and verification key for
i ∈ (A,B). We assume that both parties own a signing key and the peer knows the corresponding
verification key. Protocol ADH1 proceeds as follows: A chooses a random value x r←− Z∗p. It sends
its name A and gx to B.

A→ B: A, gx

41

Initiator(Π0) Responder(Π1)

initialize(self ,other) initialize(self ,other)
setup(self ,keysi) receive(m′1)
separate(keysi,pki, ski) separate(m′1, idi,pk′i)
pair(self ,pki,m1) encaps(pk′i,kpair)
send(m1) separate(kpair, skeyr, c)
receive(m′2) pair(pk′i, c, s1)
separate(m′2, s

′
2, σ
′
r) pair(self , c, s2)

separate(s′2, id
′
r, c
′) sign(self , s1, σr)

pair(pki, c
′, s4) pair(s2, σr,m2)

verify(other, s4, σ
′
r) send(m2)

pair(other, s4, s
∗
4) pair(self , s1, s

∗
1)

sign(self , s∗4, σi) receive(σ′i)
decaps(ski, c

′, skeyi) verify(other, s∗1, σ
′
i)

send(σi) output(self ,other, skeyr)
output(self ,other, skeyi) done
done

Figure 11: Protocol ADH1 in the syntax of Simple protocols

When B receives the value A,X, it chooses a random value y r←− Z∗p and outputs the key κ = Xy.
It computes the signature σr = Sign(SKB, 〈X, gy〉) and sends its name, gy, and the signature σr to
A.

B → A: B, gy, σr

When A receives a value A, Y, σr, it first verifies the signature by evaluating Vrfy(V KB, 〈gx, Y 〉,
σr). If not, it aborts. Otherwise, it computes a signature σi = Sign(SKA, 〈gx, Y, B〉) over the
Diffie-Hellman exponents and the receiver’s name, acknowledges the reception by sending σi to B,
and locally outputs the tuple (A,B, κ), where κ = Y x is the session key.

A→ B: σi

When B receives the value σ′i, it checks that the signature from A is valid, i.e. it evaluates
Vrfy(V KA, 〈X, gy, B〉, σ′i). If not, it aborts. Otherwise, B locally outputs the tuple (B,A, κ), where
κ = Xy is the session key.

A Flaw in the Agreement Property of Protocol ADH1. It seems that protocol ADH1 follows
the design principals of “good” key exchange protocols. Each party signs its own Diffie-Hellman
exponent to prevent against man-in-the-middle attacks. The freshness of the peers DH value
protects against replay. However, the weakness of the protocol is that the attacker may bind the
protocol to a wrong identity—a contradiction to the agreement property. Although the attacker
does not learn the session key, he may act as legitimate peer. More precisely, we construct the
attacker C as follows:

When C receives from A the message A, gx, it replaces A’s name with its own name and forwards

C → B: C, gx

When B answers with the message B, gy, σr, where σr = Sign(SKB, 〈gx, gy〉) is the signature
over the Diffie-Hellman exponents, C forwards the message to A

42

C → A: B, gy, σr

When A outputs the final message σi, where σi = Sign(SKA, 〈gx, gy, B〉) is the signature over
the Diffie-Hellman exponents and the peer name, C forwards the message to B as its own

C → A: σi

In this way, A terminates the protocol with output (A,B, gxy) whereas B terminates with
output (B,C, gxy), violating the agreement property.

Proverif Implementation: Checking the Agreement Criterion. We utilize the ProVerif
tool to check our results, where we define functions to handle encapsulations and decapsulation.
These functions represent the step-wise processing of the encapsulation algorithm in the spirit of
public-key encryption. We split the encapsulation algorithm in two functions, one for the ciphertext
generation (KEM encaps to ciphertext) and one for the session key generation (KEM encaps to key).
The KEM setup algorithm is modeled by choosing a new (x) and computing the public key term
(KEM pk(x)). Correctness of KEM is captured by the equation (i.e. re-writing rule)

KEM decaps(x, KEM encaps to ciphertext(y)) = KEM encaps to key(y, KEM pk(x))

This way, the equation does not verify the encapsulation test of the DY2KE criterion, namely
that neither a forbidden (i.e. the decapsulator decrypts ciphertexts generated by the encapsulator
only) nor an early-key (i.e. the decapsulator outputs the encapsulation key prior to the encapsulator)
event occurred We manage to implement the tests by formulating a correspondance relation of
events. For the purpose of a clear presentation, we introduce events and verify the order of their
occurrence in the execution of the protocol by the following queries

query ev : Adecaps(ctext) ==> ev : Bencaps(ctext). (1)

query ev : Boutput(key) ==> ev : Aoutput(key) (2)

(1) verifies whether the forbidden event occurs whereas (2) checks for the early-key. The certification
functionality is captured by the functions (CERT sign) for signature generation and (CERT verify).
The equational theory

CERT verify(host(sk), msg, CERT sign(sk, msg)) = true

ensures that signatures are valid, if they have been signed by the owner of the secret key. In the
code example, each party has a secret key skA (resp. skB) and the corresponding verification key
host(skA) (resp. host(skB) is public.

We begin by formulating an appropriate definition of the DY2KE agreement property. (We treat
secrecy properties in the next section.) In terms of Proverif, we express the agreement property
also by a correspondence relation of events. A crucial point is the definition of the exact occurrence
of the events. Otherwise, Proverif can deduce a trivial attack trace. We wish to require that (3) if
A establishes with B a session, then B terminates the protocol with the same session key gtothexy;
and (4) if B establishes a session with A, then A terminates the session with B

query ev : Bkey(a, b, d) ==> ev : Akey(a, b, d). (3)

43

query ev : AkeyB(a, b, d) ==> ev : Bestablish(a, b, d) (4)

The transcript of the mechanized analysis is specified in Fig. A. ProVerif identifies the flaw in
protocol ADH1; it fails to verify correspondence (4).

Initiator(Π0) Responder(Π1)

initialize(self ,other) initialize(self ,other)
setup(self ,keysi) receive(m′1)
separate(keysi,pki, ski) separate(m′1, idi,pk′i)
pair(self ,pki,m1) encaps(pk′i,kpair)
send(m1) separate(kpair, skeyr, c)

receive(m′2) pair(pk′i, c, s∗1)

separate(m′2, s
′
2, σ
′
r) pair(s∗1,other, s1)

separate(s′2, id
′
r, c
′) pair(self , c, s2)

pair(pki, c
′, s∗4) sign(self , s1, σr)

pair(s∗4, self , s4) pair(s2, σr,m2)

verify(other, s4, σ
′
r) send(m2)

pair(s∗4,other, s∗∗4) receive(σ′i)

sign(self , s∗∗4 , σi) pair(s∗1,other, s∗∗1)

decaps(ski, c
′, skeyi) verify(other, s∗∗1 , σ′i)

send(σi) output(self ,other, skeyr)
output(self ,other, skeyi) done
done

Figure 12: Protocol ADH2 in the syntax of Simple Protocols

Revising the Protocol. A measure to counter the attack is to sign the Diffie-Hellman exponents
plus the name of the peer. This property guarantees that the recipient of the signature knows that
the message is addressed to him, and not to a malign party. A specification of the revised protocol
ADH2 in the syntax of simple protocols is depicted in Fig. 12. Let protocol ADH2 be as the
previous protocol except that the name of the message recipient is added to the sender’s signature.
A specification of the revised protocol ADH2 in the syntax of simple protocols is depicted in Fig.
12. That is, when B sends the values

B → A: B, gy, σr

the signature is σr = Sign(SKB, 〈X, gy, A〉). Similarly, when A receives the message, it verifies that
the signature contains its name in addition to the DH exponentiations.

Proverif Implementation: Checking the Real-or-Random Criterion. We continue the
analysis and ask Proverif to check that the revised protocol ADH2 is a secure DY2KE protocol.
We extend Proverif’s specification to verify the real-or-random criterion in the following way. We
apply the choice operator to output either the party’s session key derived from the protocol or a
randomly chosen value randomkey

out(c, choice[gtothexy, randomkey]) (5)

44

This way, Proverif creates two processes. The first process is the execution of the protocol
where the parties output the (real) key gtothexy; the second process is identical except that Proverif
replaces the term gtothexy with the (random) term randomkey. Proverif checks whether the two
processes are observationally equivalent. Informally, two processes are deemed observationally
equivalent, if no observer (environment) notifies the replacement (of the session key term). See [11]
for a precise definition. (Loosely speaking, observational equivalence is the symbolic pendant of
indistinguishability in cryptography.)

A listing of Proverif’s code is illustrated in Fig. A. Proverif confirms that protocol ADH2 is
secure in the sense of DY2KE (without forward secrecy); it passes the checks (1,3-5).

7.2 Protocol ADH2 and ADH3: DY2KE with Forward Secrecy

We complete the analysis by asking whether protocol ADH2 is a Dolev-Yao secure 2-party key
exchange protocol with forward secrecy. This requires to change the model and handle dynamic
corruptions. The attacker corrupts parties during the execution of the protocol and learns the
internal state of the compromised party. Such behavior enriches the adversary’s knowledge. It may
learn the ephemeral and long-term secrets of the compromised party. The DY2KE criterion with
forward secrecy requires to be fulfilled despite the fact that the attacker has compromised parties
from expired sessions. In order to obey the inherent asynchrony of the network, the criterion must
hold even for the case where one party outputs the key and the partner gets compromised.

A Flaw in the Real-or-Random Property of Protocol ADH2. Simulating this protocol
ADH2 with respect to forward secrecy is impossible. Consider the following adversary strategy.
The attacker C observes a simulation of protocol ADH2. C wiretaps the values A,α and B, β, σ′r.
It decides to corrupt, say party B before the last message σ′i has been delivered to B. In the random
experiment, C learns a key κ chosen at random. To make the view consistent, the simulator has
to come up with B’s internal state y, such that κ = αy and β = gy. However, since the values
α, β have been chosen independently of κ, this event occurs with negligible probability. Thus, the
attacker wins the real-or-random experiment with overwhelming probability.

Proverif Implementation: Checking Forward Secrecy. Proverif has no instructions to au-
tomatically check for forward secrecy. In particular, it has no explicit instructions to invoke a
dynamically corrupting adversary. We solve the problem by giving the attacker manually access to
the internal state. We define a variable state containing all secret values of the compromised party
and reveal the variable to the attacker

out(c, state)

In our example (see Fig. A), this query publishes B’s internal state consisting of the ephemeral
secret y and the long-term signature secret skB. To avoid trivial attack traces, we limit the attacker
to eavesdropping. That is, the attacker observes an execution of the protocol. Then we feed the
attacker with the variable state and allow arbitrary computation. We again ask Proverif to verify
the DY2KE criterion in terms of the equations (1-5). Note that the way we formulated equation
(3) implicitly includes to check for the case that no early-key event occurs (i.e. the encapsulator B
outputs the session key prior to the decapsulator A).

Proverif identifies an attack trace, contradicting the real-or-random criterion. It produces a
trace where the adversary verifies that randomkey is not output of the (real) protocol execution by

45

comparing the session key computed from its knowledge with randomkey. In fact, Proverif outputs
the above attack.

Proverif Implementation: Checking DY2KE with Forward Secrecy. We introduce a
revised protocol ADH3. The protocol proceeds as before except that it erases the ephemeral secrets
prior to output the key and the session key prior to termination. Fig. 13 presents a more formal
specification in the language of simple protocols. The Proverif specification is depicted in Fig. A.
We model secure erasure by excluding the ephemeral secret y from the variable state.

Proverif concludes the analysis with no attack.

Initiator(Π0) Responder(Π1)

initialize(self ,other) initialize(self ,other)
setup(self ,keysi) receive(m′1)
separate(keysi,pki, ski) separate(m′1, idi,pk′i)

pair(self ,pki,m1) encaps c(pk′i, c)

send(m1)

receive(m′2) pair(pk′i, c, s∗1)

separate(m′2, s
′
2, σ
′
r) pair(s∗1,other, s1)

separate(s′2, id
′
r, c
′) pair(self , c, s2)

pair(pki, c
′, s∗4) sign(self , s1, σr)

pair(s∗4, self , s4) pair(s2, σr,m2)

verify(other, s4, σ
′
r) send(m2)

pair(s∗4,other, s∗∗4) receive(σ′i)

sign(self , s∗∗4 , σi) pair(s∗1, self , s
∗∗
1)

decaps(ski, c
′, skeyi) verify(other, s∗∗1 , σ′i)

send(σi) encaps k(pk′i, skeyr)

output(self ,other, skeyi) output(self ,other, skeyr)

erase(keysi) erase(skeyr)

erase(skeyi) done

done

Figure 13: Protocol ADH3 in the syntax of Simple Protocols

8 Conclusion

Todays cryptographic systems are highly complex. They consist of multiple components where
each component is a protocol running in concurrent executions. Due to the inherent complexity,
traditional (hand-made) proofs with respect to standard cryptographic assumptions do not scale
well and are prone to errors. Mechanized analysis of larger systems is a natural approach to
reduce the complexity and to strengthen the believe in the soundness of the proof. However, each
mechanized analysis becomes too complex when the analyzed system is large. The decomposition of
the whole system into smaller building blocks and their stand-alone analysis is a promising direction
to tame complexity and circumvent the limitations of tool-supported approaches.

46

In this work, we establish a framework on the basis of [16] to automatically reason about the
security of Diffie-Hellman based key exchange protocols in a composable way. An essential tool in
the framework to devise a symbolic representation of Diffie-Helman without omitting the crucial
algebraic properties of modular exponentiation is the abstraction as key encapsulation mechanism.
So far, computational soundness results have held for constrained algebraic properties. We also
add digital signatures to our machinery. With this in mind, we introduce a new symbolic criterion
for secure 2-party key exchange. A central point of the criterion is that it supports the analysis
of forward secrecy. The study of forward-secret key exchange protocols in an automated matter is
another contribution that has not been addressed before to the best of our knowledge. Finally, we
demonstrate the applicability of the framework within Proverif by analyzing the security of several,
practical Diffie-Helman based key exchange protocols.

There are several directions to continue this line of research. Here, we list a few which seem to
be most promising:

• Find ideal abstractions for other algebraic properties. The Achilles heel of today’s protocol
checkers is the modeling of algebraic properties. Identifying ideal abstractions (as pursued for
Diffie-Helman in this work) for algebraic properties is an interesting direction. This would lay
the foundations to analyze, e.g., (fully) homomorphic encryption or pairing-based schemes.

• Generalize the framework to deal with additional functionalities. The present framework
is limited to the analysis of 2-party key exchange protocols (with forward secrecy). An
extension to more general cryptographic tasks (as for the native UC framework) is highly
desirable. In particular, can we come up with a generalized framework that adapts the
composition theorems directly to the symbolic model. This would considerably decrease the
analytical complexity of protocol checkers. We could already decompose the whole system
under analysis in the symbolic model and separately check security for each building block.
By contrast, the composition theorems in this work were instrumental in the computational
model.

• Implement a protocol checker with regard to a simulation-based framework. A generalization of
the UCSA framework motivates the design of protocol checkers that scrutinize security criteria
in the sense of ideal functionality specifications. For a fully-automated analysis, however, an
ultimate requirement is the automatic construction of the simulator. This task demands
human ingenuity. It is an open question whether a simulator is automatically generateable.

Acknowledgement

We would like to thank Bruno Blanchet and Bogdan Warinschi. Bruno provided invaluable help in
the correct use of Proverif. Bogdan pointed out that the p-q DDH assumption is useful to generalize
the symbolic abstraction of Diffie-Hellman protocols. (We have not pursued the direction in this
work.)

References

[1] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational sound-
ness of formal encryption). In J. van Leeuwen, O. Watanabe, M. Hagiya, P. D. Mosses, and

47

T. Ito, editors, IFIP TCS, volume 1872 of Lecture Notes in Computer Science, pages 3–22.
Springer, 2000.

[2] M. Backes, I. Cervesato, A. D. Jaggard, A. Scedrov, and J.-K. Tsay. Cryptographically
sound security proofs for basic and public-key kerberos. In D. Gollmann, J. Meier, and
A. Sabelfeld, editors, ESORICS, volume 4189 of Lecture Notes in Computer Science, pages
362–383. Springer, 2006.

[3] M. Backes, M. Dürmuth, D. Hofheinz, and R. Küsters. Conditional reactive simulatability.
Int. J. Inf. Sec., 7(2):155–169, 2008.

[4] M. Backes and D. Hofheinz. How to break and repair a universally composable signature
functionality. In K. Zhang and Y. Zheng, editors, ISC, volume 3225 of Lecture Notes in
Computer Science, pages 61–72. Springer, 2004.

[5] M. Backes and B. Pfitzmann. A cryptographically sound security proof of the needham-
schroeder-lowe public-key protocol. IEEE Journal on Selected Areas in Communications,
22(10):2075–2086, 2004.

[6] M. Backes and B. Pfitzmann. Relating symbolic and cryptographic secrecy. In IEEE Sympo-
sium on Security and Privacy, pages 171–182. IEEE Computer Society, 2005.

[7] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested
operations. In S. Jajodia, V. Atluri, and T. Jaeger, editors, ACM Conference on Computer
and Communications Security, pages 220–230. ACM, 2003.

[8] G. Barthe, B. Grégoire, R. Janvier, and S. Z. Béguelin. Formal certification of code-based
cryptographic proofs. Cryptology ePrint Archive, Report 2007/314, 2007. http://eprint.
iacr.org/.

[9] D. Basin and C. Cremers. From dolev-yao to strong adaptive corruption: Analyzing security
in the presence of compromising adversaries. Cryptology ePrint Archive, Report 2009/079,
2009. http://eprint.iacr.org/.

[10] K. Bhargavan, C. Fournet, and A. D. Gordon. Modular verification of security protocol code
by typing. In M. V. Hermenegildo and J. Palsberg, editors, POPL, pages 445–456. ACM, 2010.

[11] B. Blanchet. Automatic verification of correspondences for security protocols. Journal of
Computer Security, 17(4):363–434, 2009.

[12] B. Blanchet and D. Pointcheval. Automated security proofs with sequences of games. In
C. Dwork, editor, CRYPTO, volume 4117 of Lecture Notes in Computer Science, pages 537–
554. Springer, 2006.

[13] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols
(dec 2005). Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.org/.

[14] R. Canetti. Universally composable signature, certification, and authentication. In CSFW,
pages 219–, 2004.

48

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[15] R. Canetti and M. Fischlin. Universally composable commitments. In CRYPTO’01: Proceed-
ings of the 21st Annual International Cryptology Conference on Advances in Cryptology, pages
19–40, 2001.

[16] R. Canetti and J. Herzog. Universally composable symbolic analysis of mutual authentication
and key-exchange protocols. In TCC, pages 380–403, 2006.

[17] R. Canetti and H. Krawczyk. Universally composable notions of key exchange and secure
channels. In EUROCRYPT, pages 337–351, 2002.

[18] R. Canetti and T. Rabin. Universal composition with joint state. In CRYPTO’03: Proceedings
of the 23rd Annual International Cryptology Conference on Advances in Cryptology, pages 265–
281, 2003.

[19] H. Comon-Lundh and V. Cortier. Computational soundness of observational equivalence.
In Proceedings of the 15th ACM Conference on Computer and Communications Security
(CCS’08), pages 109–118, Alexandria, Virginia, USA, Oct. 2008. ACM Press.

[20] V. Cortier and B. Warinschi. Computationally sound, automated proofs for security protocols.
In Sagiv [43], pages 157–171.

[21] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Secure protocol composition. In M. Backes
and D. A. Basin, editors, FMSE, pages 11–23. ACM, 2003.

[22] A. Datta, A. Derek, J. C. Mitchell, and B. Warinschi. Computationally sound compositional
logic for key exchange protocols. In CSFW, pages 321–334. IEEE Computer Society, 2006.

[23] S. Delaune, S. Kremer, and O. Pereira. Simulation based security in the applied pi calculus.
In R. Kannan and K. Kumar, editors, Foundations of Software Technology and Theoretical
Computer Science - FSTTCS 2009, Leibniz International Proceedings in Informatics, 12 2009.

[24] T. Dierks and C. Allen. The TLS protocol version 1.0. Technical Report 2246, 1999. Proposed
Standard.

[25] D. Dolev and A. C.-C. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2):198–207, 1983.

[26] N. A. Durgin, P. Lincoln, and J. C. Mitchell. Multiset rewriting and the complexity of bounded
security protocols. Journal of Computer Security, 12(2):247–311, 2004.

[27] S. Escobar, C. Meadows, and J. Meseguer. State space reduction in the maude-nrl protocol
analyzer. In S. Jajodia and J. López, editors, ESORICS, volume 5283 of Lecture Notes in
Computer Science, pages 548–562. Springer, 2008.

[28] S. Even and O. Goldreich. On the security of multi-party ping-pong protocols. In FOCS, pages
34–39. IEEE, 1983.

[29] S. Gajek, M. Manulis, O. Pereira, A.-R. Sadeghi, and J. Schwenk. Universally composable
analysis of tls. In 2nd Provable Security International Conference (ProvSec), LNCS. Springer,
2008.

49

[30] P. Gupta and V. Shmatikov. Towards computationally sound symbolic analysis of key exchange
protocols. In V. Atluri, P. Samarati, R. Küsters, and J. C. Mitchell, editors, FMSE, pages
23–32. ACM, 2005.

[31] S. Halevi. A plausible approach to computer-aided cryptographic proofs. Cryptology ePrint
Archive, Report 2005/181, 2005. http://eprint.iacr.org/.

[32] S. Halevi, P. A. Karger, and D. Naor. Enforcing confinement in distributed storage and a
cryptographic model for access control. Cryptology ePrint Archive, Report 2005/169, 2005.
http://eprint.iacr.org/.

[33] D. Hofheinz, J. Müller-Quade, and R. Steinwandt. Initiator-resilient universally composable
key exchange. In ESORICS, pages 61–84, 2003.

[34] R. Janvier, Y. Lakhnech, and L. Mazaré. Completing the picture: Soundness of formal en-
cryption in the presence of active adversaries. In Sagiv [43], pages 172–185.

[35] R. Kuesters and M. Tuengerthal. Joint state theorems for public-key encryption and digital
signature functionalities with local computation. In 21st IEEE Computer Security Foundations
Symposium (CSF 2008). IEEE Computer Society, 2008.

[36] R. Küsters and T. Truderung. Using ProVerif to Analyze Protocols with Diffie-Hellman Ex-
ponentiation. In Proceedings of the 22nd IEEE Computer Security Foundations Symposium
(CSF 2009), pages 157–171. IEEE Computer Society, 2009.

[37] R. Küsters and M. Tuengerthal. Computational Soundness for Key Exchange Protocols with
Symmetric Encryption. In Proceedings of the 16th ACM Conference on Computer and Com-
munications Security (CCS 2009). ACM Press, 2009. To appear.

[38] D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active
adversaries. In M. Naor, editor, TCC, volume 2951 of Lecture Notes in Computer Science,
pages 133–151. Springer, 2004.

[39] J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic protocol
analysis. In 8th ACM Conference on Computer and Communication Security, pages 166–175.
ACM SIGSAC, November 2001.

[40] A. Patil. On symbolic analysis of cryptographic protocols. Master’s thesis, Massachusetts
Institute of Technology, 2005.

[41] L. C. Paulson. Isabelle - A Generic Theorem Prover (with a contribution by T. Nipkow),
volume 828 of Lecture Notes in Computer Science. Springer, 1994.

[42] M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions is np-
complete. In CSFW, pages 174–. IEEE Computer Society, 2001.

[43] S. Sagiv, editor. Programming Languages and Systems, 14th European Symposium on Program-
ming,ESOP 2005, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings, volume 3444 of Lecture
Notes in Computer Science. Springer, 2005.

50

http://eprint.iacr.org/
http://eprint.iacr.org/

[44] P. Youn. The analysis of cryptographic apis using the theorem prover otter. Master’s thesis,
Massachusetts Institute of Technology, 2004.

51

A Proverif Implementations

f r e e c .

(∗ Host ∗)
fun host /1 .

(∗ Secrecy assumptions ∗)
not skA .
not skB .

(∗ Ce r t i f i c a t i o n . ∗)
data true /0 .
fun CERT sign /2 .
reduc CERT verify (host (sk) , msg , CERT sign (sk , msg)) = true .

(∗ KEM ∗)
fun KEM pk/1 .
fun KEM encaps to ciphertext /1 .
fun KEM encaps to key /2 .
reduc KEM decaps (x , KEM encaps to ciphertext (y))
= KEM encaps to key (y , KEM pk(x)) .

query ev : Bkey (a , b , d) ==> ev : Akey (a , b , d) .
query ev :AkeyB(a , b , d) ==> ev : Be s tab l i sh (a , b , d) .
(∗∗ query ev : Adecaps (c t ex t) ==> ev : Bencaps (c t ex t) .∗∗)

(∗∗∗∗∗∗∗ Process s p e c i f i c a t i o n ∗∗∗∗∗∗∗)
l e t processA =

(∗ Message 1 ∗)
new x ;
l e t Agtothex = KEM pk(x) in
out (c , (hostA , Agtothex)) ;
(∗ Message 2 ∗)
in (c , m2) ;
l e t (AhostB , Agtothey , m2 signature) = m2 in
i f CERT verify (AhostB , (Agtothex , Agtothey) , m2 s ignature) = true then
(∗ Message 3 ∗)
l e t gtothexy = KEM decaps (x , Agtothey) in
(∗∗ i f AhostA=hostA
event Adecaps (Agtothey) ;∗∗)
(∗OK∗)
event Akey(hostA , AhostB , gtothexy) ;
out (c , (CERT sign (skA , (Agtothex , Agtothey , AhostB)))) ;
i f AhostB = hostB then
event AkeyB(hostA , hostB , gtothexy) .

l e t processB =
(∗ Message 1 ∗)
in (c , m1) ;
l e t (BhostA , Bgtothex) = m1 in
(∗ Message 2 ∗)
new y ;
l e t Bgtothey = KEM encaps to ciphertext (y) in
l e t gtothexy = KEM encaps to key (y , Bgtothex) in
(∗∗ i f BhostA=hostA then
event Bencaps (Bgtothey) ;∗∗)
event Bes tab l i sh (BhostA , hostB , gtothexy) ;
out (c , (hostB , Bgtothey , CERT sign (skB , (Bgtothex , Bgtothey)))) ;
(∗ Message 3 ∗)
in (c , m3) ;
i f CERT verify (BhostA , (Bgtothex , Bgtothey , hostB) , m3) = true then
(∗ done ∗)
i f BhostA = hostA then
event Bkey (BhostA , hostB , gtothexy) .

p roce s s
new randomkey ;
new skA ;
new skB ;
l e t hostA = host (skA) in
l e t hostB = host (skB) in
out (c , hostA) ;
out (c , hostB) ;
(processA | processB)

Figure 14: Proverif Specification of the flawed Authenticated Diffie-Hellman protocol ADH1

52

f r e e c .

(∗ Host ∗)
fun host /1 .

(∗ Secrecy assumptions ∗)
not skA .
not skB .

(∗ Ce r t i f i c a t i o n . ∗)
data true /0 .
fun CERT sign /2 .
reduc CERT verify (host (sk) , msg , CERT sign (sk , msg)) = true .

(∗ KEM ∗)
fun KEM pk/1 .
fun KEM encaps to ciphertext /1 .
fun KEM encaps to key /2 .
reduc KEM decaps (x , KEM encaps to ciphertext (y))
= KEM encaps to key (y , KEM pk(x)) .

(∗∗ query ev : Bkey (a , b , d) ==> ev : Akey (a , b , d) .
query ev :AkeyB(a , b , d) ==> ev : Be s tab l i sh (a , b , d) .∗∗)
(∗∗ query ev : Adecaps (c t ex t) ==> ev : Bencaps (c t ex t) .∗∗)

(∗∗∗∗∗∗∗ Process s p e c i f i c a t i o n ∗∗∗∗∗∗∗)
l e t processA =

(∗ Message 1 ∗)
new x ;
l e t Agtothex = KEM pk(x) in
out (c , (hostA , Agtothex)) ;
(∗ Message 2 ∗)
in (c , m2) ;
l e t (AhostB , Agtothey , m2 signature) = m2 in
i f CERT verify (AhostB , (Agtothex , Agtothey , hostA) , m2 s ignature) = true then
(∗ Message 3 ∗)
l e t gtothexy = KEM decaps (x , Agtothey) in
(∗∗ i f AhostA=hostA
event Adecaps (Agtothey) ;∗∗)
(∗OK∗)
event Akey(hostA , AhostB , gtothexy) ;
out (c , (CERT sign (skA , (Agtothex , Agtothey , AhostB)))) ;
i f AhostB = hostB then
event AkeyB(hostA , hostB , gtothexy) ;
out (c , cho i c e [gtothexy , randomkey]) .

l e t processB =
(∗ Message 1 ∗)
in (c , m1) ;
l e t (BhostA , Bgtothex) = m1 in
(∗ Message 2 ∗)
new y ;
l e t Bgtothey = KEM encaps to ciphertext (y) in
l e t gtothexy = KEM encaps to key (y , Bgtothex) in
(∗∗ i f BhostA=hostA then
event Bencaps (Bgtothey) ;∗∗)
event Bes tab l i sh (BhostA , hostB , gtothexy) ;
out (c , (hostB , Bgtothey , CERT sign (skB , (Bgtothex , Bgtothey , BhostA)))) ;
(∗ Message 3 ∗)
in (c , m3) ;
i f CERT verify (BhostA , (Bgtothex , Bgtothey , hostB) , m3) = true then
(∗ done ∗)
i f BhostA = hostA then
event Bkey (BhostA , hostB , gtothexy) ;
out (c , cho i c e [gtothexy , randomkey]) .

p roce s s
new randomkey ;
new skA ;
new skB ;
l e t hostA = host (skA) in
l e t hostB = host (skB) in
out (c , hostA) ;
out (c , hostB) ;
(processA | processB)

Figure 15: Proverif Specification of the revised Authenticated Diffie-Hellman protocol ADH2

53

param at tacke r=pas s i v e .
f r e e c .

(∗ Host ∗)
fun host /1 .

(∗ Secrecy assumptions ∗)
not skA .

(∗ Ce r t i f i c a t i o n . ∗)
data true /0 .
fun CERT sign /2 .
reduc CERT verify (host (sk) , msg , CERT sign (sk , msg)) = true .

(∗ KEM ∗)
fun KEM pk/1 .
fun KEM encaps to ciphertext /1 .
fun KEM encaps to key /2 .
reduc KEM decaps (x , KEM encaps to ciphertext (y))
= KEM encaps to key (y , KEM pk(x)) .

(∗∗ query ev : Bkey (a , b , d) ==> ev : Akey (a , b , d) .
query ev :AkeyB(a , b , d) ==> ev : Be s tab l i sh (a , b , d) .∗∗)
(∗∗ query ev : Adecaps (c t ex t) ==> ev : Bencaps (c t ex t) .∗∗)

(∗∗∗∗∗∗∗ Process s p e c i f i c a t i o n ∗∗∗∗∗∗∗)
l e t processA =

(∗ Message 1 ∗)
new x ;
l e t Agtothex = KEM pk(x) in
out (c , (hostA , Agtothex)) ;
(∗ Message 2 ∗)
in (c , m2) ;
l e t (AhostB , Agtothey , m2 signature) = m2 in
i f CERT verify (AhostB , (Agtothex , Agtothey , hostA) , m2 s ignature) = true then
(∗ Message 3 ∗)
l e t gtothexy = KEM decaps (x , Agtothey) in
(∗∗ i f AhostA=hostA
event Adecaps (Agtothey) ;∗∗)
(∗OK∗)
event Akey(hostA , AhostB , gtothexy) ;
out (c , (CERT sign (skA , (Agtothex , Agtothey , AhostB)))) ;
i f AhostB = hostB then
event AkeyB(hostA , hostB , gtothexy) ;
out (c , cho i c e [gtothexy , randomkey]) .

l e t processB =
(∗ Message 1 ∗)
in (c , m1) ;
l e t (BhostA , Bgtothex) = m1 in
(∗ Message 2 ∗)
new y ;
l e t Bgtothey = KEM encaps to ciphertext (y) in
l e t gtothexy = KEM encaps to key (y , Bgtothex) in
(∗∗ i f BhostA=hostA then
event Bencaps (Bgtothey) ;∗∗)
event Bes tab l i sh (BhostA , hostB , gtothexy) ;
out (c , (hostB , Bgtothey , CERT sign (skB , (Bgtothex , Bgtothey , BhostA)))) ;
(∗ Message 3 ∗)
l e t s t a t e=(skB , y) in
out (c , s t a t e) .

p roce s s
new randomkey ;
new skA ;
new skB ;
l e t hostA = host (skA) in
l e t hostB = host (skB) in
out (c , hostA) ;
out (c , hostB) ;
(processA | processB)

Figure 16: Proverif Specification of the Authenticated Diffie-Hellman protocol ADH2 with regard
to Forward Secrecy

54

param at tacke r=pas s i v e .
f r e e c .

(∗ Host ∗)
fun host /1 .

(∗ Secrecy assumptions ∗)
not skA .

(∗ Ce r t i f i c a t i o n . ∗)
data true /0 .
fun CERT sign /2 .
reduc CERT verify (host (sk) , msg , CERT sign (sk , msg)) = true .

(∗ KEM ∗)
fun KEM pk/1 .
fun KEM encaps to ciphertext /1 .
fun KEM encaps to key /2 .
reduc KEM decaps (x , KEM encaps to ciphertext (y))
= KEM encaps to key (y , KEM pk(x)) .

(∗∗ query ev : Bkey (a , b , d) ==> ev : Akey (a , b , d) .
query ev :AkeyB(a , b , d) ==> ev : Be s tab l i sh (a , b , d) .∗∗)
(∗∗ query ev : Adecaps (c t ex t) ==> ev : Bencaps (c t ex t) .∗∗)

(∗∗∗∗∗∗∗ Process s p e c i f i c a t i o n ∗∗∗∗∗∗∗)
l e t processA =

(∗ Message 1 ∗)
new x ;
l e t Agtothex = KEM pk(x) in
out (c , (hostA , Agtothex)) ;
(∗ Message 2 ∗)
in (c , m2) ;
l e t (AhostB , Agtothey , m2 signature) = m2 in
i f CERT verify (AhostB , (Agtothex , Agtothey , hostA) , m2 s ignature) = true then
(∗ Message 3 ∗)
l e t gtothexy = KEM decaps (x , Agtothey) in
(∗∗ i f AhostA=hostA
event Adecaps (Agtothey) ;∗∗)
(∗OK∗)
event Akey(hostA , AhostB , gtothexy) ;
out (c , (CERT sign (skA , (Agtothex , Agtothey , AhostB)))) ;
i f AhostB = hostB then
event AkeyB(hostA , hostB , gtothexy) ;
out (c , cho i c e [gtothexy , randomkey]) .

l e t processB =
(∗ Message 1 ∗)
in (c , m1) ;
l e t (BhostA , Bgtothex) = m1 in
(∗ Message 2 ∗)
new y ;
l e t Bgtothey = KEM encaps to ciphertext (y) in
l e t gtothexy = KEM encaps to key (y , Bgtothex) in
(∗∗ i f BhostA=hostA then
event Bencaps (Bgtothey) ;∗∗)
event Bes tab l i sh (BhostA , hostB , gtothexy) ;
out (c , (hostB , Bgtothey , CERT sign (skB , (Bgtothex , Bgtothey , BhostA)))) ;
(∗ Message 3 ∗)
l e t s t a t e=(skB , y) in
out (c , s t a t e) .

p roce s s
new randomkey ;
new skA ;
new skB ;
l e t hostA = host (skA) in
l e t hostB = host (skB) in
out (c , hostA) ;
out (c , hostB) ;
(processA | processB)

Figure 17: Proverif Specification of the Authenticated Diffie-Hellman protocol ADH3 with regard
to Forward Secrecy

55

	Introduction
	The Importance of Automated Security Analysis
	Contributions
	Related Work
	Organization

	Universally Composable Symbolic Analysis
	The Symbolic Model
	Symbolic Algebra
	Symbolic Protocol
	Dolev-Yao Attacker

	Simple Protocols
	Key Encapsulation Mechanism Functionality
	Equivalence to IND-CPA-KEM
	Plain Diffie-Hellman realizes FKEM
	Key Encapsulation Mechanisms under Adaptive Corruptions
	3-Round Plain Diffie-Hellman realizes F+KEM

	Revised Certification Functionality
	The Syntax of Simple Protocols
	Concrete Semantics
	Symbolic Semantics

	Mapping Lemma
	Security Definition for Key Agreement Protocols
	Key Exchange Functionality
	Symbolic Security Criterion
	Soundness of the Symbolic Criterion

	Automatically Proving Simple Protocols with ProVerif
	Protocol ADH1 and ADH2: DY2KE without Forward Secrecy
	Protocol ADH2 and ADH3: DY2KE with Forward Secrecy

	Conclusion
	Proverif Implementations

