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Abstract. Many real-world protocols, such as SSL/TLS, SSH, IPsec, IEEE 802.11i, DNSSEC, and Kerberos, de-
rive new keys from other keys. To be able to analyze such protocols in a composable way, in this paper we extend
an ideal functionality for symmetric and public-key encryption proposed in previous work by a mechanism for key
derivation. We also equip this functionality with message authentication codes (MACS) and ideal nonce generation.
We show that the resulting ideal functionality can be realized based on standard cryptographic assumptions and
constructions, hence, providing a solid foundation for faithful, composable cryptographic analysis of real-world
security protocols.

Based on this new functionality, we identify sufficient criteria for protocols to provide universally composable key
exchange and secure channels. Since these criteria are based on the new ideal functionality, checking the criteria
requires merely information-theoretic or even only syntactical arguments, rather than involved reduction arguments.
As a case study, we use our method to analyze two central protocols of the IEEE 802.11i standard, namely the
4-Way Handshake Protocol and the CCM Protocol, proving composable security properties. As to the best of our
knowledge, this constitutes the first rigorous cryptographic analysis of these protocols.

1 Introduction

Security protocols employed in practice, such as SSL/TLS, SSH, IPsec, IEEE 802.11i, DNSSEC, and Kerberos, are
very complex, and hence, hard to analyze. In order to tame this complexity a viable approach is composable security
analysis based on the framework of simulation-based security, in particular universal composability/reactive simu-
latability [14, 39]: Higher-level components of a protocol are designed and analyzed based on lower-level idealized
components, called ideal functionalities. Composition theorems then allow to replace the ideal functionalities by their
realizations, altogether resulting in a system without idealized components. Typically, the higher-level components are
shown to realize idealized functionalities themselves. By this, they can be used as low-level idealized components in
even more complex systems.

This appealing approach has so far, however, only been rarely applied to real-world protocols (see the related
work). One crucial obstacle has been the lack of suitable idealized functionalities and corresponding realizations for
the most basic cryptographic primitives. While functionalities for public-key encryption and digital signatures have
been proposed early on [14, 39, 3,33], only recently a functionality, which we denote by ¥, here, for symmetric
encryption [35] was proposed. This functionality allows parties to generate symmetric and public/private keys and to
use these keys for ideal encryption and decryption. The encrypted messages may contain symmetric keys and parties
are given the actual ciphertexts, as bit strings. To bootstrap encryption with symmetric keys, ¥, also enables parties
to generate and use pre-shared keys as well as public/private key pairs.

However, by itself ¥, is still insufficient for the analysis of many real-world protocols. The main goal of our work
is therefore to augment this functionality (and its realization) with further primitives employed in real-word protocols
and to develop suitable proof techniques in order to be able to carry out manageable, composable, yet faithful analysis
of such protocols.

Contribution of this Paper. The first main contribution of this paper is to extend ¥, by a mechanism for key
derivation, which is employed in virtually every real-word security protocol, as well as by MACs, digital signatures,
and nonce generation; we call the new functionality Ferypio. We show that Ferypio can be realized based on standard
cryptographic assumptions and constructions: IND-CCA secure or authenticated encryption, UF-CMA secure MACs
and digital signatures, and pseudo-random functions for key derivation, which are common also in implementations of
real-world protocols. Our proof requires a non-trivial extension of the hybrid argument in [35]. Since Ferypro 1S a rather
low-level ideal functionality and its realization is based on standard cryptographic assumptions and constructions, it is



widely applicable (see below and [35, 34]) and allows for a precise modeling of real-word security protocols, including
precise modeling of message formats on the bit level.

The second main contribution of our paper are criteria for protocols to provide universally composable key ex-
change and secure channels. These criteria are based on our ideal functionality Fcypo, and therefore, can be checked
merely using information-theoretic arguments, rather than much more involved and harder to manage reduction proofs;
often even purely syntactical arguments suffice, without reasoning about probabilities. Indeed, the use of Ferypio
tremendously simplifies proofs in the context of real-world security protocols, as demonstrated by our case study
(see below), and in other contexts (see, e.g., 35, 34]). Without Frypio, such proofs quickly become unmanageable.

The third main contribution of this paper is a case study in which we analyze central components of the wireless
networking protocol WPA2, which implements the standard IEEE 802.11i [29, 28]. More precisely, we analyze the pre-
shared key mode of WPA2 (WPA2-PSK), which includes the 4-Way Handshake protocol (4WHS) for key exchange
and the CCM Protocol (CCMP) for secure channels. Based on F¢ypio and our criteria, we show that 4WHS realizes
a universally composable key exchange functionality and that 4WHS with CCMP realizes a universally composable
secure channel functionality; we note that 4WHS with TKIP (instead of CCMP) has recently been shown to be insecure
[42,38]. Since we use standard cryptographic assumptions and constructions, our modeling of WPA2-PSK, including
the message formats, is quite close to the actual protocol. As to the best of our knowledge, this constitutes the first
rigorous cryptographic analysis of these protocols. The framework presented in this paper would also allow us to
analyze other real-world security protocols in a similar way, including several modes of Kerberos, SSL/TLS, DNSSEC,
and EAP.

Structure of this Paper. In Section 2, we first recall the model for simulation-based security that we use. The
functionality Fcrypro and its realization are presented in Section 3. The criteria for secure key exchange and secure
channel protocols are established in Section 4. Our case study is presented in Section 5. We conclude with related
work in Section 6. Further details and proofs are provided in the appendix.

2 Simulation-based Security

In this section, we briefly recall the IITM model for simulation-based security (see [32] for details). In this model,
security notions and composition theorems are formalized based on a relatively simple, but expressive general compu-
tational model in which II'TMs (inexhaustible interactive Turing machines) and systems of II'TMs are defined. While
being in the spirit of Canetti’s UC model [16], the IITM model has several advantages over the UC model and avoids
some technical problems, as demonstrated and discussed in [32, 33, 35, 27].

2.1 The General Computational Model

The general computational model is defined in terms of systems of IITMs. An inexhaustible interactive Turing machine
(IITM) M is a probabilistic polynomial-time Turing machine with named input and output tapes. The names determine
how different IITMs are connected in a system of IITMs. An IITM runs in one of two modes, CheckAddress and
Compute. The CheckAddress mode is used as a generic mechanism for addressing copies of IITMs in a system of
IITMs, as explained below. The runtime of an IITM may depend on the length of the input received so far and in every
activation an IITM may perform a polynomial-time computation; this is why these ITMs are called inexhaustible.
However, in this extended abstract we omit the details of the definition of IITMs, as these details are not necessary to
be able to follow the rest of the paper.

A system S of IITMs is of the form S = My | --- M| M} | --- | !M;, where the M; and M;. are IITMs such that
the names of input tapes of different IITMs in the system are disjoint. We say that the machines M’, are in the scope of
a bang operator. This operator indicates that in a run of a system an unbounded number of (fresh) copies of a machine
may be generated. Conversely, machines which are not in the scope of a bang operator may not be copied. Systems in
which multiple copies of machines may be generated are often needed, e.g., in case of multi-party protocols or in case
a system describes the concurrent execution of multiple instances of a protocol.

In a run of a system S at any time only one IITM is active and all other IITMs wait for new input; the first ITM
to be activated in a run of S is the so-called master II'TM, of which a system has at most one. To illustrate runs of



systems, consider, for example, the system S = M| | !M, and assume that M, has an output tape named ¢, M, has an
input tape named c, and M; is the master IITM. (There may be other tapes connecting M; and M,.) Assume that in
the run of S executed so far, one copy of M», say M/, has been generated and that M just sent a message m on tape c.
This message is delivered to M) (as the first, and, in this case, only copy of M,). First, M runs in the CheckAddress
mode with input m; this is a deterministic computation which outputs “accept” or “reject”. If M}, accepts m, then M,
gets to process m and could, for example, send a message back to M;. Otherwise, a new copy M} of M, with fresh
randomness is generated and M’ runs in CheckAddress mode with input m. If M7} accepts m, then M7 gets to process
m. Otherwise, M7 is removed again, the message m is dropped, and the master II'TM is activated, in this case M,
and so on. The master IITM is also activated if the currently active IITM does not produce output, i.e., stops in this
activation without writing to any output tape. A run stops if the master IITM does not produce output (and hence, does
not trigger another machine) or an IITM outputs a message on a tape named decision. Such a message is considered
to be the overall output of the system.

We will consider so-called well-formed systems, which satisfy a simple syntactic condition that guarantees poly-
nomial runtime of a system.

Two systems P and Q are called indistinguishable (P = Q) iff the difference between the probability that
outputs 1 (on the decision tape) and the probability that Q outputs 1 (on the decision tape) is negligible in the security
parameter.

2.2 Notions of Simulation-Based Security

We need the following terminology. For a system S, the input/output tapes of II'TMs in S that do not have a matching
output/input tape are called external. These tapes are grouped into 7/O and network tapes. We consider three different
types of systems, modeling i) real and ideal protocols/functionalities, ii) adversaries and simulators, and iii) environ-
ments: Protocol systems and environmental systems are systems which have an I/O and network interface, i.e., they
may have I/O and network tapes. Adversarial systems only have a network interface. Environmental systems may
contain a master [ITM. We can now define strong simulatability; other equivalent security notions, such as black-box
simulatability and (dummy) UC can be defined in a similar way [32].

Definition 1 ([32]). Let P and F be protocol systems with the same /O interface, the real and the ideal protocol,
respectively. Then, P realizes F (P < F ) iff there exists an adversarial system S (a simulator or ideal adversary) such

that the systems P and S |F have the same external interface and for all environmental systems &, connecting only to
the external interface of P (and hence, S| ) it holds that E|P = E|S|F.

2.3 Composition Theorems

We restate the composition theorems from [32]. The first composition theorem handles concurrent composition of a
fixed number of protocol systems. The second one guarantees secure composition of an unbounded number of copies
of a protocol system. These theorems can be applied iteratively to construct more and more complex systems.

Theorem 1 ([32]). Let Py, P>, F1, T2 be protocol systems such that Py and P, as well as F, and F, only connect via
their I/O interfaces, P1 | P> and F1 | T are well-formed, and P; < T, for i € {1,2}. Then, P |P2 < F1|F>-

In the following theorem, ¥ and P are the so-called session versions of # and #, which allow an environment to
address different sessions of # and P, respectively, in the multi-session versions !# and !# of ¥ and P.

Theorem 2 ([32]). Let P, F be protocol systems such that P < F. Then, P <!F.

3 Our Crypto Functionality

In this section, we describe our ideal crypto functionality Ferypo and show that it can be realized under standard
cryptographic assumptions. For the ideal functionality we provide an informal description and, in Appendix B, a



formal description in pseudo code. While the informal description already contains all details (plus some explanation),
the pseudo code is convenient in some proofs.

As mentioned in the introduction, Ferypo €xtends Fene, proposed in [35], by key derivation, MACs, digital signa-
tures, and ideal nonce generation; also pre-shared keys can now be used just as other symmetric keys. More precisely,
parties can use Ferypio 1) to generate symmetric keys, including pre-shared keys, ii) to derive symmetric keys from other
symmetric keys, iii) to encrypt and decrypt bit strings (public-key encryption and both unauthenticated and authenti-
cated symmetric encryption is supported), iv) to compute and verify MACs and digital signatures, and v) to generate
fresh nonces, where all the above operations are done in an ideal way. All symmetric and public keys can be part of
plaintexts to be encrypted under other symmetric and public keys. We emphasize that derived keys can be used just
as other symmetric keys. We also note that the functionality can handle an unbounded number of commands for an
unbounded number of parties with the messages, ciphertexts, MACs, etc. being arbitrary bit strings of arbitrary length.
We leave it up to the protocol that uses Ferypio how to interpret (parts of) bit strings, e.g., as length fields, nonces,
ciphertexts, MACs, digital signatures, non-interactive zero-knowledge proofs, etc. Since users of Frypio are provided
with actual bit strings, Ferypto can be combined with other functionalities too, including those of interest for real-word
protocols, e.g., certification of public keys (see, e.g., [15]).

3.1 The Ideal Crypto Functionality

The ideal crypto functionality Frypio is parameterized by what we call a leakage algorithm L, a probabilistic poly-
nomial time algorithm which takes as input a security parameter r7 and a plaintext x, and returns the information that
may be leaked about x. Typical examples are i) L(17, x) = O and ii) the algorithm that returns a random bit string
of length |x|. Both leakage algorithms leak exactly the length of x. We call a leakage algorithm L length preserving if
it always holds true that |L(1", x)| = |x] for all  and m. The functionality Fcryp is also parameterized by a number n
which defines the number of roles in a protocol that uses Ferypio (€.8., # = 3 for protocols with initiator, responder, and
key distribution server). To address the different roles, every role is associated with an I/O input and output tape.

In Ferypio, Symmetric keys are equipped with types. Keys that may be used for authenticated encryption have type
authenc-key, those for unauthenticated encryption have type unauthenc-key. We have the types mac-key for MAC
keys and pre-key for keys from which new keys can be derived. All types are disjoint, i.e., a key can only have one
type, reflecting common practice that a symmetric key only serves one purpose. For example, a MAC key is not used
for encryption and keys from which other keys are derived are typically not used as encryption/MAC keys.

While users of Ferypro, and its realization, are provided with the actual public keys generated within Ferypio (the
corresponding private keys remain in Feypio), they do not get their hands on the actual symmetric keys, but only on
pointers to these keys, since otherwise no security guarantees could be provided. These pointers may be part of the
messages given to Ferypro for encryption. Before a message is actually encrypted, the pointers are replaced by the keys
they refer to. Upon decryption of a ciphertext, keys embedded in the plaintext are first turned into pointers before the
plaintext is given to the user. In order to be able to identify pointers/keys, we assume pointers/keys in plaintexts to be
tagged according to their types. To describe tagging more formally and flexible, we introduce two extra types: tuple to
structure messages and data for every thing else, i.e., arbitrary bit strings.

To tag messages, any tagging function tag can be used that maps a type ¢ and bit strings x,...,x, (where n
might depend on ¢) to a tagged bit string tag,(x;, . . ., x,) with the following properties: tag is injective, computable and
invertible in polynomial-time in the length of the input, and it is length regular, i.e., [tag,(x1, . . ., x,)| = [tag,(x{, ..., x})|
for every type ¢ and bit strings xq, X/, ..., X,, X, Where |x;| = |x]| for all i < n. Pointers are tagged with the type of the
key they refer to. We say that a bit string x is well-tagged if x = tag,(y) for some type ¢ # tuple and a bit string y or
(recursively defined) x = tagype(x1, ..., x,) for some n > 1 and well-tagged bit strings xi, ..., x,. We say that a bit
string x has fype t if it is well-tagged and x = tag,(xy, ..., x,) for some n > 1 and xi, ..., x,. We will only require that
plaintexts to be encrypted are well-tagged; MACs, digital signature, decryption, and key derivation operations take
arbitrary bit strings as input.

We note that our tagging policy, which, as mentioned, is only required for plaintexts anyway, is very liberal. We
need to distinguish keys and tuples from other data, in order to be able to parse plaintexts. Everything which is not a
key or a tuple is considered to be of type data. We leave it up to the protocol how to interpret these bit strings, e.g., as
length fields, nonces, ciphertexts, MACs, digital signatures, non-interactive zero-knowledge proofs etc. For real-world



protocols, including those mentioned in the introduction, it is typically possible to find a tagging function such that the
message formats used in these protocols are captured precisely on the bit level; see for example Section 5.

A user of Ferypio is identified, within Ferypio, by the tuple (p, Isid, r), where p is a party name, r < n a role, and Isid
a local session ID (LSID), which is chosen and managed by the party itself. In particular, on the tape for role r, Ferypto
expects requests to be prefixed by tuples of the form (p, Isid), and conversely Ferypio prefixes answers with (p, Isid).

The functionality Ferypio keeps track of which user has access to which keys (via pointers) and which keys are
known to the environment/adversary, i.e., have been corrupted or have been encrypted under a known key, and as
a result became known. For this purpose, Ferypio maintains a set % of all keys stored within the functionality, a set
Kinown C K of known keys and a set Kynknown := K \ Kinown Of unknown keys. Every key in K is of the form (z, k) for
t € {authenc-key, unauthenc-key, mac-key, pre-key} and a bit string k; 7 is the type of the key and k the actual key. A
partial function key yields the key key(ptr, p, Isid, r) € K pointer ptr refers to for user (p, Isid, r).

Before any cryptographic operation can be performed, Ferypio €Xpects to receive (descriptions of) algorithms from
the (ideal) adversary, also called simulator, say encaythenc, d€Cauthenc fOT €ncryption and decryption with keys of type
authenc-key, encunauthencs @€Cunauthenc for encryption and decryption with keys of type unauthenc-key, encpie, decpie
for encryption and decryption with public/private keys, mac, mac-verify for creating and verifying MACs, and sig,
sig-verify for creating and verifying digital signatures. These algorithms my fail, i.e., they either return a bit string or
the special error symbol L. Also, Ferypo €Xpects to receive public/private keys (pk, sk) for encryption/decryption and
signing/verification for every party from the adversary. The adversary may decide to statically corrupt a public/private
key of a party at the moment she provides it to Ferypio. In this case Ferypio records the public/private key of this party
as corrupted. We do not put any restrictions on these algorithms; all security guarantees that Fcrypo provides are made
explicit within Ferypio in a rather syntactic way, without relying on specific properties of these algorithms. As a result,
when using Ferypro in the analysis of more complex systems, one can abstract from these algorithms entirely. When
executing the algorithms, Frypio has to do this in polynomial-time, hence, Frypio €ventually has to abort the execution
of the algorithms after a given time. Therefore, Frypio additionally is parameterized by a polynomial g and Ferypio
simulates the algorithms for at most g(/) steps where [ is the length of the input. If the algorithm would take more than
q(D) steps, then the output of the computation is considered to be the error symbol L. The random coins that might be
used by the algorithms are chosen by Fcrypto. The algorithms for decryption and verification of MACs and signatures
are simulated in a deterministic way. Even if they use random coins, Ferypio uses the zero bit string.

We now describe the operations that F¢yp provides in more detail (see Appendix B for a formal specification of
Ferypto in pseudo code).

Generating fresh, symmetric keys [(New,?)]. A user (p,Isid,r) can ask Ferypo to generate a new key of type
t € {authenc-key, unauthenc-key, mac-key, pre-key}. The request is forwarded to the adversary who is supposed
to provide such a key, say k. The adversary can decide to corrupt k right away, in which case (¢, k) is added to Kinown
(and K), and otherwise (¢, k) is added to Kynknown (and K). However, before adding (1, k) to a set, Ferypio ensures that
k is fresh and key guessing is prevented, i.e., in case k is uncorrupted, it may not belong to K, and in case k is cor-
rupted, it may not belong t0 Kunknown- If Ferypto accepts k, a new pointer pir to (t, k) is created for user (p, Isid, r), i.e.,
key(ptr, p,Isid, r) := (t,k), and ptr is returned to (p, Isid, r). The value of the pointer, i.e., ptr, does not need to be
secret. In fact, new pointers are created by increasing a counter. There is a different counter for every user, i.e., a user
cannot tell how many keys have been created by other users from observing his pointers. If the adversary decided to
corrupt k, then the pointer ptr is recorded as corrupted for user (p, Isid, r). We emphasize that the difference between
Kinown and Kynknown 18 not whether or not the adversary knows the value of a key (she provides these values anyway).
The point is that if (#,k) € Kunknown, cryptographic operations with it are performed ideally, e.g., the leakage of a
message is encrypted under the key k instead of the message itself. Conversely, if (¢, k) € Kinown, the cryptographic
operation is performed as in the real world, e.g., the actual message is encrypted under k. So, no security guarantees
are provided in this case. In the realization of Feryp0, however, keys corresponding to keys in Kynknown Will of course
not be known to the adversary.

Public key requests [(GetPubKeyPKE, p’) or (GetPubKeySig, p’)]. A user (p, Isid, r) can ask Ferypo to get the public
key for party p’ for encryption (resp., verification). If Fcryp has recorded this public key (because the adversary
previously provided it, see above), then it is returned to the user. Otherwise, an error is returned to the user. We note
that if users request the public key of another party, then this assumes that public keys are distributed somehow, e.g.,
by some kind of public key infrastructure.



Establishing pre-shared keys [(GetPSK, ¢, name)]. A user (p, Isid, r) can ask Ferypio to obtain the pre-shared key of
type t € {authenc-key, unauthenc-key, mac-key, pre-key} with name (or identifier) name. Then, Frypio forwards this
request to the adversary who is supposed to provide such a key, say k. Similarly to generating fresh keys, the adversary
can decide to corrupt k. However, F¢rypo only accepts k under the following conditions: i) if a key (¢, k) is recorded for
(t,name), then k = k' and k is not corrupted (i.e., the adversary did not decide to corrupt k), ii) if (¢, name) is (recorded
as) corrupted, then k is corrupted, iii) if k is corrupted, then (¢, k) ¢ Kunknown, and iv) if no key (¢, k") is recorded for
(t, name) and k is not corrupted, then (¢, k) ¢ K. If Ferypio accepts k, then it creates a new pointer ptr to (t, k) for user
(p, Isid, r) and returns ptr to the user. Furthermore, if k is corrupted, then Ferypo adds (7, k) to Kinown (and K), records
(¢, name) as corrupted, and records ptr as corrupted for user (p, Isid, r). If k is not corrupted, then Ferypio adds (2, k) to
Funknown (and K) and records (¢, k) for (¢, name).

This allows users to establish shared keys: For example, users (p, Isid, r) and (p’, Isid’, r’) can obtain pointers to
a fresh key k shared between p and p’ by each sending the request (GetPSK, ¢, (p, p)) to Ferypro- While, by such a
request, p (p’) gets a new pointer in every local session and role, this pointer will point to the same key k because of
condition i). Another example is WPA2 (see Section 5), where requests of suppliers (e.g., laptops) and authenticators
(e.g., access points) are of the form (GetPSK, 1, kid), with kid being a key ID (instances of) suppliers and authenticators
obtain from the environment (e.g. a system administrator) upon initialization. For corrupted pre-shared keys, i.e., where
(t, name) is corrupted, the adversary can choose a different key for every user; condition ii) and iii) guarantee that these
keys are corrupted (more precisely, the pointers to corrupted pre-shared keys are corrupted) and do belong to Knknown-
Condition iv) guarantees that new pre-shared keys do not collide with any other key.

Key derivation [(Derive, ptr,t’, s)]. A user (p, Isid, r) can ask Ferypio to derive a new key of type t € {authenc-key,
unauthenc-key, mac-key, pre-key} (using a seed s) from a key (¢, k) = key(ptr, p, Isid, r) pointer ptr points to for user
(p,Isid, r). The seed s is an arbitrary bit string. It is required that the key from which the new key is derived is of
type pre-key, i.e., t = pre-key. Then, Ferypio forwards this request to the adversary who is supposed to provide such
a key, say k’. However, Ferypio Only accepts k" under the following conditions: i) if a key (#', k") is recorded as being
derived from (¢, k) with seed s, then k” = k’, ii) if no key (¢, k”’) has been recorded as derived from (z, k) with seed
s and (¢, k) € Kunknown, then (¢, k") ¢ K, and iii) if no key (¢, k") has been recorded as derived from (¢, k) with seed
s and (¢, k) € Kinown, then (t', k") ¢ Kunknown- If Ferypro accepts k', then it creates a new pointer ptr to (¢, k") for user
(p, Isid, r) and returns ptr to the user. Furthermore, if (¢, k) € Kunknown, then Ferypio adds (', k) t0 Kunknown (and K) and
records (¢, k) as derived from (¢, k) with seed s. If (t, k) € Kinown, then Ferypio adds (', k') t0 Kinown (and K).

Condition i) guarantees that key derivation is deterministic, i.e., key derivations from the same key with the same
seed yield the same key. Similar to generating fresh keys, condition ii) guarantees that new keys derived from unknown
keys do not collide with any other key and condition iii) guarantees that new keys derived from known keys at least
do not collide with K nxnown keys. Note that we do not put any restrictions on how the adversary chooses derived keys.
All security guarantees that Frypio provides do not rely on this. In Ferypio, @ key derived from a key marked unknown
is treated just like a freshly generated key which is marked unknown. For example, if the derived key is an encryption
key, then it is used for ideal encryption, i.e., not the actual message is encrypted but its leakage, see below.

Store [(Store, t,k)]. A user (p,Isid, r) can ask Ferypio to store some bit string k with some type ¢ € {authenc-key,
unauthenc-key, mac-key, pre-key} as a key. If (¢, k) belongs t0 Kunknown> Ferypro Will return an error message to the
user, modeling that unknown keys cannot be guessed. Otherwise, Ferypio Creates a new pointer to (¢, k) which is given
to the user. The pair (¢, k) is added to Kipown (and K).

Retrieve [(Retrieve, ptr)]. A user (p, Isid, r) can ask Ferypo to retrieve a key (1,k) = key(ptr, p, Isid, r) pointer ptr
points to for user (p, Isid, ). Then, Frypio returns k to the user and adds (7, k) t0 Kinown-

Equality test [(Equal?, ptr, ptr')]. A user (p, Isid, r) can ask Ferypo Whether two of its pointers ptr, ptr’ refer to the
same key.

Encryption under symmetric keys [(Enc, ptr, x)]. A user (p, Isid, r) can ask Ferypio to encrypt a well-tagged mes-
sage x under a key (¢,k) = Kkey(ptr, p,Isid, r) pointer ptr points to for user (p,Isid, r) where t € {authenc-key,
unauthenc-key}. For every pointer tag, (ptr) in x (for some ¢ € {authenc-key, unauthenc-key, mac-key, pre-key}),
Ferypto checks whether ptr is a pointer of this user to a key of type ¢, i.e., whether key(ptr, p, Isid, r) is defined and
yields (¢, k") for some k. If this check fails, Fypio returns an error message to the user. If the check succeeds, tag, (ptr)



in x is replaced by tag, (k"). This is done for every pointer of the form tag, (ptr) in x, resulting in a message x’. We
distinguish two cases:

1) If (¢, k) € Kunknown, the leakage x = L(17, x") of x’ is encrypted under k using either enc,ymene OF €nCynauthenc (the
encryption algorithms provided by the adversary) depending on ¢. Let y denote the resulting ciphertext. Then, Ferypio
checks if the decryption of y under k using either decyyihenc OF deCynaumenc (the decryption algorithms provided by the
adversary), depending on ¢, yields the leakage x. If this check fails, Frypio returns an error message to p.! Otherwise,
the pair (x’, y) is stored for the key (z, k) (for later decryption) and y is given to the user.

i) If (t,k) € Kinown, all keys in x’ are added to Kinown, as they are encrypted under a known key. Then, x" is
encrypted under k using either encyyhenc O €nCynauthenc depending on z. The resulting ciphertext is given to the user.

Decryption under symmetric keys [(Dec, ptr, y)]. A user (p, Isid, r) can ask Ferypro to decrypt a ciphertext y (an arbi-
trary bit string) under a key (¢, k) = key(ptr, p, Isid, r) pointer ptr points to for user (p, Isid, r) where t € {authenc-key,
unauthenc-key}. We distinguish two cases:

D) If (1,k) € Kunknown> Ferypro checks whether there exists exactly one x” such that (x',y) is stored for (¢, k) (see
above). If 50, Ferypio Creates new pointers to every key in x” and replaces the keys by the corresponding pointers. The
resulting message x is given to the user. If there is more than one x’ with (x’, y) stored for (¢, k), an error is returned to
the user, since unique decryption is not possible. If there is no such x’, the following is done: If = authenc-key, an
error is returned, since for authenticated encryption it should not be possible to generate valid ciphertexts outside of
the functionality. If # = unauthenc-key, y is decrypted under k using decynauene (the decryption algorithm provided
by the adversary) and the following is done (*): If the resulting plaintext x” is not well-tagged, an error is returned.
Furthermore, if x” contains a key that belongs to Kynknown, an error is returned, modeling that these keys cannot be
guessed. Otherwise, Ferypto adds all keys in x” to Kinown (and K), creates new pointers to every key in x’, and replaces
the keys by the corresponding pointers. The resulting message x is given to the user.

ii) If (£, k) € Kinown» Ferypto decrypts y under k with dec,ythenc OF deCupauthenc, depending on ¢, and proceeds as in ()
above.

Encryption under public keys [(PKENc, p’, pk, x)]. A user (p, Isid, r) can ask Ferypio to encrypt a well-tagged message
x under the public key pk of party p’. Such an encryption request is handled similarly as symmetric encryption requests.
First, pointers in x are turned into keys, obtaining x’. Then, if pk is the recorded public encryption key of party p’ and
it is not corrupted, the encryption is performed ideally, i.e., the leakage L(1",x") of x" is encrypted under pk using
encpk. (the public-key encryption algorithm provided by the adversary) and the pair (x", y) (where y is the ciphertext)
is recorded for party p’ (for later decryption). If pk is not the recorded public encryption key of party p” or the public
encryption key of party p’ is corrupted, then all keys in x” are marked known and x” is encrypted under pk using encpye.
The resulting ciphertext is returned to the user.

We note that Fene [35] uses an ideal functionality F k. for public-key encryption (and decryption) and forwards
public-key requests to (instances of) Fyr.. While we could have defined Ferypio such that it is based on Fp. (nothing
would change considering reasoning based on Fcrypi0), We decided to directly describe public-key encryption in Ferypios
to have everything in one place.

Decryption under private keys [(PKDec, y)]. A user (p, Isid, r) can ask Ferypio to decrypt a ciphertext y (an arbitrary
bit string) under its private key (i.e., the private key of party p). Such a decryption request is handled similarly as
decryption requests under symmetric keys of type unauthenc-key. If the private decryption key of p is corrupted or
there is no recorded pair (x’, y) for party p (for any x”), then y is decrypted under the recorded private decryption key
sk of party p using the public-key decryption algorithm decyy. (provided by the adversary). Ferypio returns an error
message to the user if the resulting plaintext, say x’, is not well-tagged or there exists a key in x’ that belongs to
Kunknown, modeling that these keys cannot be guessed. All keys in x” are added to Kynown (and K).

! Note that every reasonable encryption scheme satisfies that the decryption of the encryption yields the plaintext again. However,
as we do not put any restrictions on the algorithm provided by the adversary, Ferypo does not know whether they have this
property. Because of the test that the decryption of the ciphertext yields the leakage X, it is guaranteed that the ciphertext contains
not only at most the information of x but exactly the information of X, hence, if the leakage algorithm L has high entropy, i.e.,
collisions between leakages do not occur (except with negligible probability), then ciphertexts do not collide and the adversary
cannot guess ciphertexts not known to her (except with negligible probability). This is sometimes useful when reasoning about
protocols that use nested encryption, see [35, 34].



Otherwise, i.e., if the private decryption key of p is not corrupted and there exists an x” such that (x’, i) is recorded
for party p (see above), Ferypto checks whether there exists exactly one such x’. If this check fails, an error is returned
to the user, since unique decryption is not possible.

Finally, Frypio Creates new pointers to every key in x” and replaces the keys by the corresponding pointers. The
resulting plaintext x is given to the user.

MAC [(Mac, ptr, x)]. A user (p, Isid, r) can ask Ferypo to MAC an arbitrary (uninterpreted) bit string x under a key
(t,k) = key(ptr, p,Isid, r) pointer ptr points to for user (p, Isid, r) where t = mac-key. Then, Ferypo computes the
MAC of x under k using mac (the MAC algorithm provided by the adversary). Let o be the resulting MAC. If o is
not a valid MAC for x under £, i.e., it does not verify using mac-verify (the MAC verification algorithm provided by
the adversary), then F¢rypo Teturns an error message to the user. Otherwise, it gives o to the user. If (7, k) € Kunknown,
Ferypto Tecords x for the key (z, k) (for later verification); we allow an adversary to derive a new MAC from a given one
on the same message, which is why Frypio does not record o~ along with x.

Note that, since we leave the message x uninterpreted, one cannot use Ferypto to compute the MAC over a message
that contains unknown keys. This restriction is motivated by the fact that a MAC itself does not provide confidentiality.
We could abandon this restriction by extending our functionality further such that MACs are not directly returned but
only pointers to it. But this would make the functionality more complicated while many real-world protocols, including
SSL/TLS, SSH, IPsec, IEEE 802.11i, and Kerberos do not require this. We note that MACs that take unknown keys
could also be approximated by modeling them as authenticated encryption.

Verify MAC [(MacVerity, ptr, x,0)]. A user (p, Isid, r) can ask Ferypro to verify a MAC o for some message x under
a key (¢,k) = key(ptr, p, Isid, r) pointer ptr points to for user (p, Isid, r) where t = mac-key. Then, Ferypo verifies
the MAC using mac-verify (the MAC verification algorithm provided by the adversary). If the MAC verifies but
(t,k) € Kunknown and x has not been recorded for (¢,k) (see above), Ferypio returns an error message to the user,
preventing forgery. Otherwise, Ferypio Teturns the result of the verification to the user.

Sign [(Sign, x)]. Similar to MACing, a user (p, Isid, r) can ask Ferypio to sign an arbitrary (uninterpreted) bit string
x under its private signing key. Then, Frypo computes the signature of x under the recorded private signing key sk
of party p using sig (the signing algorithm provided by the adversary). Let o be the resulting signature. If o is not a
valid signature for x under the recorded public verification key pk of party p, i.e., it does not verify using sig-verify
(the signature verification algorithm provided by the adversary), then Fypo returns an error message to the user.
Otherwise, it gives o to the user. If the private signing key of party p is not corrupted, then Ferypio records x for p (for
later verification); we allow an adversary to derive a new signature from a given one on the same message, which is
why Ferypio does not record o along with x.

Note that, since we leave the message x uninterpreted, one cannot use Ferypo t0 compute the signature over a
message that contains unknown keys. We could extend Fcrypio to allow this, see the remarks for MACs.

Verify signatures [(SigVerify, p’, pk, x, o)]. A user (p, Isid, r) can ask Ferypio to verify a signature o for some message
x under the public key pk for party p’. Then, Feypo verifies the signature using pk and sig-verify (the signature
verification algorithm provided by the adversary). If the signature verifies but pk is the recorded public verification key
of party p’, pk is uncorrupted, and x has not been recorded for p’ (see above), Ferypio T€tUrns an error message to the
user, preventing forgery. Otherwise, Ferypio returns the result of the verification to the user.

Generating fresh nonces [(NewNonce)]. A user (p,Isid, r) can ask Ferypio to generate a fresh nonce. The request
is forwarded to the adversary who is supposed to provide a nonce, say x. However, Fypo Only accepts x if it is not
already recorded as a nonce (for anybody), modeling that x is fresh. Then, ¥y records x as a nonce and sends x to
the user.

We note that nonces are not confidential, their actual bit string is directly given to the user. Hence, Frypio Only
prevents collisions of nonces. It would be easy to extend Ferypio to model confidential nonces. A nonce would be just a
like a symmetric key (of some extra type for nonces). Users could refer to nonces by pointers and crypio Would record
the known/unknown status of nonces. Of course, nonces could not be used as a key (e.g., for encryption) but they could
be part of plaintexts.



Corruption status request. The environment can ask, for a user (p, Isid, r), whether a pointer ptr of this user is
recorded as corrupted for this user. Similarly, the environment can ask whether the public/private key for encryp-
tion/signatures of a party is recorded as corrupted.

This concludes the description of Ferypo. As explained for encryption requests, if a message x is encrypted under a
known key (or by a corrupted public key), all keys in x are marked known in Ferypo. Yet, if in an application the
ciphertext y for x is encrypted again under an unknown key and y is always kept encrypted under an unknown key, the
keys in x might not be revealed from the point of view of the application. While in such a case, Ferypro Would be too
pessimistic concerning the known/unknown status of keys, this case does typically not seem to occur: First, ciphertexts
are typically sent unencrypted at some point. We are, in fact, not aware of any key exchange or secure channel protocol
where this is not the case. Second, if in a session of a protocol symmetric keys known to the adversary are used,
typically no security guarantees are provided for that session anyway.

As explained above, corruption is modeled on a per key basis. This allows to model many types of corruption,
including corruption of single sessions and of complete parties (Section 5 provides details for our case study).

3.2 A Realization of the Ideal Crypto Functionality

In this section, we provide a realization Pypo 0Of the ideal crypto functionality Ferypro-

Let 2authencs Zunauthenc» 2pub b€ schemes for symmetric and public-key encryption, respectively, 2, be a MAC
scheme, Z;, be a digital signature scheme, and F' = {F,},,ex be a family of pseudo-random functions with F;: {0, 1}7x
{0, 1}* — {0, 1}" for all n € N. For simplicity of presentation, we assume all symmetric keys to be chosen uniformly
at random from {0, 1}"7 (where 7 is the security parameter). Considering the family of pseudo-random functions F, we
assume that the function F,(k, -) for a randomly chosen k € {0, 1}" is indistinguishable from a random function, see
Appendix A.5 for the precise definition of pseudo-randomness. These schemes induce a realization Pcrypio Of Ferypto N
the obvious way where key derivation is realized by the family F of pseudo-random functions. To setup public/private
keys for encryption/signatures, the adversary can send requests to Perypo t0 generate these keys for a party p. In this
case Perypro Will generate public/private keys using the key generation algorithms in 2, or X, respectively, and
stores them for party p. Instead, the adversary might decide to corrupt the public/private key for encryption/signatures
of the party p. In this case, the public/private keys are provided by the adversary and recorded as corrupted by Perypro-
The realization Py maintains symmetric keys and pointers to these keys in the same way as Ferypio does, but it does
not maintain the sets Kinown and Kunknown- Perypto answers requests similarly to Ferypio as follows:

Generating fresh, symmetric keys [(New, r)]. Upon generation of fresh, symmetric keys, the adversary is asked
whether she wants to corrupt the key, in which case she provides the key and the pointer to this key is then marked
corrupted in Perypro. Otherwise, Perypio chooses the key uniformly at random from {0, 1}7.

Public key requests [(GetPubKeyPKE, p’) or (GetPubKeySig, p’)]. A user (p, Isid, r) can ask Ferypio to get the public
key for party p’ for encryption (resp., verification). If Frypio has recorded this public key (because it has been generated
upon request of the adversary, see above), then it is returned to the user. Otherwise, an error is returned to the user. We
note that if users request the public key of another party, then this assumes that public keys are distributed somehow,
e.g., by some kind of public key infrastructure.

Establishing pre-shared keys [(GetPSK, ¢, name)]. Upon a request by a user to establish a pre-shared key of type
t and with name name, Prypio checks whether a key (2, k) is recorded for (¢, name) and (¢, name) is not corrupted. In
this case, Perypro Creates a new pointer to (¢, k) and returns it to the user. (We note that such a setup assumption for
pre-shared keys is often made, e.g., it models manual distribution of keys by a system administrator.) Otherwise, i.e.,
no key is recorded for (¢, name) or (¢, name) is corrupted, we distinguish the following cases:

If (z, name) is corrupted, the request is forwarded to the adversary who is supposed to provide a key k. Then, Perypio
creates a new pointer to (¢, k), records this pointer as corrupted, and returns it to the user.

If (¢, name) is not corrupted but no key is recorded for (¢, name), the request is forwarded to the adversary who
is asked whether the key is corrupted. In the case the key is corrupted the adversary provides the key k and Perypio
proceeds as in the case above. If the key is not corrupted, Perypio chooses the key k uniformly at random from {0, 1}7
and records (t, k) for (t, name). Then, Pcrypo creates a new pointer to (¢, k) and returns it to the user.



Key derivation [(Derive, ptr, ', s)]. Upon a request by a user to derive a new key of type ¢’ from a key k of type
pre-key with seed s, Perypro computes k' = F(k, tag, (s)), creates a new pointer ptr to (¢',k’) for this user, and gives
ptr to the user. Note that F;, is used with the seed tag, (s), instead of just s. This guarantees that keys of different types
are derived with different seeds. This kind of tagging is common also in real-world protocols in order to ensure that
the same (derived) key is not used for different cryptographic operations.

Store [(Store, 1, k)], retrieve [(Retrieve, ptr)], equality test [(Equal?, ptr, ptr’)]. These requests are handled as in
Ferypto €xcept that Kinown and Kunknown are not maintained.

Encryption under symmetric and public keys [(Enc, ptr,m), (PKEnc, p’, pk,m)]. Upon a request by a user to
encrypt a well-tagged message m under a symmetric key k of type ¢ € {authenc-key, unauthenc-keys}, all pointers in m
are replaced by the keys they refer to (just as in Ferypio). Unlike Ferypio, the resulting message, say m’, is then encrypted
under k by running the encryption algorithm of 2yyhenc OF Zunauthenc, depending on ¢, and the resulting ciphertext c is
returned to the user. (Note that no extra randomness or tagging is added.) Requests for encryption under public keys
are handled similarly using the encryption algorithm of 2, and the public key pk contained in the request.

Decryption under symmetric and private keys [(Dec, ptr, c), (PKDec, c)]. Requests for the decryption of a ci-
phertext ¢ under a symmetric key k of type ¢ € {authenc-key, unauthenc-key} are answered by running decryption
algorithm of 2yymenc OF Zunauthenc, depending on z, on the inputs k and c. If the decryption is successful and returns
a well-tagged message, say m’, then all keys in m’ are replaced by new pointers (just as in Frypio) and the resulting
message m is returned to the party. Otherwise, an error is returned. Requests for decryption under private keys are
handled similarly using the decryption algorithm of 2, and the private key recorded for this party.

Computing and verifying MACs [(Mac, ptr, m), (MacVerify, ptr,m, o)]. Upon a request to MAC a message m under
a key k of type mac-key, Perypio Simply returns the MAC computed using the MAC algorithm of 2,c. Upon a MAC
verification request, Perypro Simply returns the result of the MAC verification algorithm of 2.

Computing and verifying signatures [(Sign, x), (SigVerify, p’, pk, x,0)]. Upon a request to sign a message x, Perypio
simply returns the signature computed using the signing algorithm of X, and the private key recorded for party p.
Upon signature verification request, Perypio simply returns the result of the signature verification algorithm of X using
the public key pk contained in the request.

Generating fresh nonces [(NewNonce)]. Upon generation of fresh nonces, Prypio chooses the nonce uniformly at
random from {0, 1}"7 and gives it to the user.

Corruption status request. Similarly to %¢ryp0, the environment can ask whether a pointer of a user or a public/private
key of a party is corrupted.

3.3 Proving that Pyype realizes Ferypio

In this section, we prove that Py 1S in fact a realization of Ferypio-

As discussed in [35] for Fepe, one cannot prove that Perypio realizes Ferypro (in the presence of arbitrary environ-
ments) for standard assumptions about the symmetric encryption schemes 2yuhenc and Zynauthenc, Namely authenticated
encryption (IND-CPA and INT-CTXT security) and IND-CCA security, respectively, because it is easy to see that
such a theorem does not hold in the presence of environments that may produce key cycles or cause the commitment
problem: It is well-known that standard assumptions about symmetric encryption schemes are too weak to deal with
key cycles [12, 5]. In the context of symmetric encryption, the commitment problem occurs if a key is revealed after
it was used to encrypt a message. Before the key is revealed, messages encrypted under this key are encrypted ideally,
i.e., the leakage of the message is encrypted. After the key has been revealed, the functionality would have to come
up with a key such that the ciphertexts produced so far decrypt to the original messages. However, this is typically not
possible (see, e.g., [4]). Therefore, as in [35] and similarly to [4], we restrict the class of environments that we consider
basically to those environments that do not produce key cycles or cause the commitment problem, where, unlike [35]
and [4], we now, when defining the class of environments, also need to be concerned about key derivation.

To formulate such a class of environments that captures what is typically encountered in applications, we observe,
as was first pointed out in [4], that once a key has been used in a protocol to encrypt a message, this key is typically not

10



encrypted anymore in the rest of the protocol. Let us call these protocols standard. This observation can be generalized
to used-order respecting environments, which we formulate based on Fcrypo: In what follows, we say that an unknown
key k of type authenc-key, unauthenc-key, or pre-key has been used (for encryption or key derivation), if Ferypo
has been instructed to encrypt a message under k or to derive a new key from k. If k is of type unauthenc-key, we
also consider k as used if it has successfully been used to decrypt a message. Now, an environment & (for Ferypio) is
called used-order respecting if it happens only with negligible probability that, in a run of &| Fcrypto, an unknown key
k (i.e., k is marked unknown in Fcyp0) that has been used at some point is encrypted itself by an unknown key &’
used for the first time later than k. Clearly, such environments do not produce key cycles among unknown keys, with
overwhelming probability. (We do not need to prevent key cycles among known keys.) Note that MAC keys are not
problematic because they cannot be used to MAC other keys.

We say that an environment & does not cause the commitment problem (is non-committing), if it happens only
with negligible probability that, in a run of & | Frypio. after an unknown key k has been used to encrypt a message or
to derive a new key, k becomes known later on in the run, i.e., is marked known by F¢yp. It is easy to see that for
standard protocols, as introduced above, the commitment problem does not occur; see Section 5 for an example.

We can now state the theorem which shows that, given that F is a pseudo-random function family, realizing
Ferypto DY Perypto 18 equivalent to the encryption and MAC schemes being IND-CCA, authenticated (IND-CPA and
INT-CTXT), and UF-CMA secure, respectively, where we use the standard definitions of these security notions. (See
Appendix A for a precise definition of these cryptographic security definitions.) In other words, Ferypio exactly captures
IND-CCA security, authenticated encryption, and UF-CMA security.

In the theorem, stated below, instead of explicitly restricting the class of environments described above, we in-
troduce a functionality ¥~ that provides exactly the same I/O interface as Ferypio (and hence, Perypro), but before
forwarding requests t0 Ferypro/Perypto checks whether the used-order is still respected and the commitment problem is
not caused. Otherwise, * raises an error flag and from then on blocks all messages, i.e., effectively stops the run. It
is easy to see that all information needed to perform these checks can be obtained from observing the I/O interface of
7__crypt0-

Theorem 3. Let 2authenc> 2unauthenc> 2pub be encryption schemes as above, where the domain of plaintexts is the set of
well-tagged bit strings. Let 2o be a MAC scheme, Xg be a signature scheme, and F be a pseudo-random function
family as above. Let L be a leakage algorithm which leaks exactly the length of a message. Then,

* *
F |Pcrypt0 <F |7:crypt0

if and only if Zynauthenc and 2pup, are IND-CCA, XZyythenc i IND-CPA and INT-CTXT, and Xy,c and X, are UF-CMA
secure. (The direction from right to left holds for any plaintext domains of the encryption schemes.)

Since derived keys can be encrypted and used as encryption keys, the security of encryption depends on the
security of key derivation and vice versa. Therefore, we need to carry out a single hybrid argument, intertwining both
encryption and key derivation. Next, we present a proof sketch (see Appendix C for a full proof).

Proof sketch. The direction from left to right is easy to prove by standard cryptographic reductions and can be found in
the appendix. To prove the direction from right to left, we proceed as follows. First, we replace public-key encryption
and digital signatures in Prypo by the ideal functionalities F k. and F;, for public-key encryption and digital signa-
tures, respectively, presented in [33]. We note that similar ideal functionalities for public-key encryption and digital
signatures have been presented previously, e.g., [16, 19, 15]. Using results proved in [33] (and that 2, is IND-CCA
and Zy;, is UF-CMA secure), we then show for the resulting system £y, that 7 | Perypio < F [Pgpypio- 1t remains
to prove that ¥ [P0 < F 7 [ Faypo- Roughly speaking, the simulator Simerypo We use for that answers requests
from Ferypo in such a way that they match the behavior of Pérypto except that Simcryp generates a fresh key upon key
derivation from an unknown key (instead of using the pseudo-random function for key derivation). The rest of the
proof proceeds by a hybrid argument:

We define hybrid systems ¥ for every r € N. The r-th hybrid ")

crypto crypto
following. ﬁgpm keeps track of the order in which unknown keys are first used for encryption, key derivation, or
decryption (in case of unauthenticated encryption). The first key used for one of these operations has used-order 1,

the second has used-order 2, and so on. Now, all keys that have used-order less than r are treated ideal, i.e., as in

behaves like Ferypio except for the
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Simerypto | Ferypto» While the others are treated real, i.e., as in Pcrypm. All MAC keys are treated real; we replace real
MACs by ideal MACs in a second step. Then, we show that the O-th hybrid is indistinguishable from the real system
and that the p(7n)-th hybrid (where 1 is the security parameter and p is a polynomial that bounds the runtime of the
environment) is indistinguishable from the ideal system. The latter requires a hybrid argument itself to replace real
MAC:s by ideal MACs. Finally, we show that the r-th hybrid is indistinguishable from the (r + 1)-th hybrid: The two
hybrids only differ in the handling of the r-th key, say k, which is treated ideal and real, respectively. If k was obtained
by key derivation, it was derived by one of the keys with used-order < r, and hence, it was derived in an ideal way,
distributed just like a fresh key. Moreover, k is at most encrypted by keys with used-order < r, and hence, encrypted
ideally. This now allows the reduction to the indistinguishability games for encryption (if & is of type authenc-key or
unauthenc-key) and key derivation (if & is of type pre-key). O

Theorem 3, together with the composition theorems, yields the following corollary, which gets rid of the func-
tionality 7, assuming that Frypo is used by what we call a non-committing, used-order respecting protocol. A pro-
tocol system P that uses Ferypo 18 called non-committing, used-order respecting if the probability that in a run of
EIPIF ™ | Ferypro the functionality F* raises the error flag, is negligible for any environment &, connecting to both
I/O and network interfaces. As mentioned above, most protocols have this property and this can typically be easily
checked by inspection of the protocol. For example, standard protocols (see above) are non-committing and used-order
respecting because unknown keys are never encrypted (by other keys) after they have been used. In particular, since
corruption of keys is static, if the key is unknown at the moment it is first used, it will remain unknown. We note
that corruption of whole parties (or users) where the adversary controls the party can be defined in such a way that
a corrupted party cannot obtain a pointer to a key marked unknown. Thus, even for such a modeling of corruption, a
protocol can be standard, and hence, non-committing and used-order respecting; see Section 5 and [35] for examples.

Corollary 1. Let 2authenc: Zunauthenc: 2pubs 2mac» 2sig» £» and L be given as in Theorem 3. Let P be a non-committing,
used-order respecting protocol system. Then,

P | Pcryplo <P | ‘7:crypt0
if Zunauthenc and 2y are IND-CCA, Zyyhenc is IND-CPA and INT-CTXT, and 2, and 2, are UF-CMA secure.

As demonstrated in the following sections, with Theorem 3 and Corollary 1 protocols can first be analyzed based
on Ferypto and then Frypio can be replaced by its realization Perypio-

We note that the joint state composition theorems for public-key encryption and symmetric encryption under pre-
shared keys in [35] carry over to Ferypio. That is, we can prove that a—so called—joint state realization of Ferypio
realizes the multi-session version of Feryp0. However, as explained in Section 4, we do not use composition with joint
state in this paper.

4 Applications to Key Exchange and Secure Channels

In this section, we consider a general class of key exchange and secure channel protocols which use the functionality
Ferypto (OT its realization Perypio) and develop criteria to prove universally composable security for such protocols.
Since our criteria are based on Fypio, proving the criteria merely requires information-theoretic arguments or purely
syntactical arguments (without reasoning about probabilities), rather than involved cryptographic reduction proofs.

Our criteria are formulated w.r.t. multiple protocol sessions. Alternatively, we could formulate them for single
sessions and then extend them to the multiple session case by joint state theorems [19, 33, 35]. However, in order for
our models to be very close to the actual (real-world) protocols, in this paper, we avoid these theorems: First, they rely
on the setup assumption that the parties participating in a session already “magically” agreed upon a unique session
identifier (SID). Real-world protocols do not rely on this assumption. Second, in joint state realizations, SIDs are
explicitly added to messages before encryption, signing, and MACing, i.e., in a session with SID sid, instead of the
actual message, say m, the message (sid, m) is encrypted, signed, or MACed. While this is a good design principle, it
modifies the actual protocols.
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4.1 A Criterion for Universally Composable Key Exchange

We define an ideal functionality for (multi-session) key exchange ¥y, formulate a general class of key exchange
protocols that use Ferypo for cryptographic operations, and present a criterion which allows us to prove that a key
exchange protocol in this class realizes Fye.

The Ideal Key Exchange Functionality. The basic idea of an ideal functionality for key exchange ¥, see, e.g.,
[16], is that parties can send requests to ¥y, to exchange a key with other parties and then, in response, receive a
session key which is generated by F. and guaranteed to be i) the same for every party in the same session and ii) only
known to these parties. As mentioned above and unlike other formulations, our functionality directly allows to handle
an unbounded number of sessions between arbitrary parties.

More precisely, similarly to Fcrypio, Our ideal key exchange functionality #y. is parameterized by a number 7 and
has n I/O input and output tapes, one pair for each role, e.g., n = 2 in case of a two-party key exchange protocol. To
address multiple sessions of a party, the parties identify themselves to Fi. as a user (similarly to Ferypio), represented
by a tuple (p, Isid, r), where p is the PID of the party, Isid a local session ID chosen and managed by the party itself,
and the role r € {1,...,n}. On the tape for role r, 7. expects requests to be prefixed by tuples of the form (p, Isid),
and conversely Fy. prefixes answers with (p, Isid). For every user a corresponding local session is managed in Fye,
which contains the state of the key exchange for this user. To initiate a key exchange, a user, say (p, Isid, r), can send
a session-start message of the form (Start, py, ..., p,), with p = p,, to Fi., where the PIDs p, ..., p, are the desired
partners of p in the n roles for the key exchange. Upon such a request, 7. records this session-start message as a local
session for user (p, Isid, r) and informs the (ideal) adversary about this request by forwarding it to her. The adversary
determines (at some point) to which global session local sessions belong, by sending a session-create message of
the form (Create, (p1, Isidy, 1), ..., (pn, Isid,, n)) to Fy., containing one local session for every role. The functionality
Fre only accepts such a message if it is consistent with the local sessions: The mentioned local sessions all exist,
are uncorrupted (see below) and are not already part of another global session, and the desired partners in the local
sessions correspond to each other. For a global session, Fy. creates a fresh key—called the session key—according
to some probability distribution. For a local session (p, Isid, r) which is part of a global session in ¥, the adversary
can send a session-finish message of the form (Finish, (p, Isid, r)) to Fx., upon which Fy. sends a session-key-output
message of the form (SessionKey, k) to the user (p, Isid, r), which contains the session key k for this session.

The adversary can corrupt a local session (p, Isid, r) which is not already part of a global session by sending a
corrupt message of the form (Corrupt, (p, Isid, r)) to Fy.. For a corrupted local session, the adversary may determine
the session key by sending a session-finish message of the form (Finish, (p, Isid, r), k) to Fi., upon which F. sends
a session-key-output message of the form (SessionKey, k) to the user (p, Isid, r), which contains the session key k
chosen by the adversary. As usual, the environment can ask whether a local session is corrupted or not.

Key Exchange Protocols. An % .ypi0-key exchange protocol (Ferypio-KE protocol) P is of the form P =My | ... | IM, |
F1l ... |F;for some n and machines (IITMs) My, ..., M, and ideal functionalities (formally, protocol systems) 71, . . .,
1. Each machine (IITM) M, represents one role in the protocol and there can be multiple instances of each machine,
namely, one instance of M, for each local session (p, Isid, r); this can be ensured by the CheckAddress mode of M,.
An instance may arbitrarily communicate with the adversary (the network) and may use Fcrypro and the ideal func-
tionalities #7, ..., #; we note that the environment cannot directly access the 1/O interfaces of ¥, ..., 1, Feryptos
only via the ITMs M|, ..., M,. The functionalities 77, ..., ¥; may provide additional cryptographic operations such
as public-key certification. Analogously to 7., a user (p, Isid, r) initiates a key exchange by sending a session-start
message to M, (on the I/O interface), which creates a new instance of M,.. At some point, every instance of M, may re-
turn a session-key-pointer-output message of the form (SessionKeyPointer, ptr) to the user (p, Isid, r) which contains
a pointer ptr, called the session key pointer, to the actual session key stored in Ferypio; S0, unlike Fie, only a pointer to
the session key, rather than the actual key, is output (see below for a variant of £ which is closer to Fy.). This instance
then provides the user (p, Isid, r) with an interface to Ferypo Where initially only the session key pointer ptr may be
used (but subsequently other pointers can be generated). More precisely, the user (p, Isid, r) may send any request
for Ferypro t0 M., such as encryption, decryption, and key derivation requests. Upon such a request, M, forwards this
request to Ferypio and waits for receiving an answer from Ferypio Which is forwarded to the user (p, Isid, r). However, we
require that all pointers in such a request have been output by M, to this user before and that the session key pointer is
never encrypted or explicitly revealed by a retrieve command (see below for an example). Before forwarding requests
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t0 Feryptos M, checks whether this requirement is satisfied; if the check fails, M, returns an error message to the user
(p,Isid, r).

For example, after having received (SessionKeyPointer, ptr) from M,, the user (p, Isid, r) might send the request
(New, r) to M, upon which M, will forward it to Ferypro- Then, Ferypro Will return a new pointer ptr’ to M, which is
forwarded by M, to the user (p, Isid, r). To encrypt a message m which contains the pointer p#r’ (and no other pointer,
say) under the session key pointer ptr, (p, Isid, r) sends the request (Enc, ptr,m) to M,. Then, M, will forward this
message to Ferypro because all pointers in this request, i.e., ptr and p#r’, have been output to this user before. Finally,
the ciphertext returned by Ferypio is forwarded to the user (p, Isid, r).

We do not fix a special form of corruption but leave the modeling of corruption to the definition of the protocol P,
up to the following conditions: i) the environment can ask about the corruption status of local sessions (as in Fy), ii)
once a local session is corrupted, it stays corrupted, and iii) a local session cannot be corrupted after it has returned a
session-key-pointer-output message. (See our case study in Section 5 for an example.)

We also consider a variant # of an Ferypto-KE protocol P defined as follows: Instead of sending session-key-point-
er-output messages, P sends session-key-output messages (as F.) which contain the actual key the session key pointer
refers to. This key is obtained using the retrieve command (Retrieve, ptr) of Frypio. Furthermore, in contrast to P, P
does not provide the environment with an interface to Ferypro, 1.€., P does not forward requests t0 Ferypio. Note that
the protocol P has the same I/O interface as the ideal functionality Fy.; it is in fact meant to realize ¥y, (see below).
The advantage of  over P is that a session key pointer can still be used for ideal cryptographic operations, e.g., ideal
encryption or even to establish an ideal secure channel (see below).

Criterion for Secure Key Exchange Protocols. We now present a sufficient criterion for an Frypo-KE protocol to
realize Fy., and hence, to provide universally composable key exchange. The criterion is based on partnering functions.

A partnering function T for an Frypio-KE protocol # is a polynomial-time computable function that maps a se-
quence of configurations of P | Ferypio to a set of tuples of the form (sy, ..., s,), where s, is of the form (p, Isid, r), i.e.,
s, refers to an instance of M,, for all » < n. We say that the instances s, ..., s, form a (global) session according to
7. We call 7 valid for P if for any environment & for P | Ferypio and any run of &|P | Ferypio the following holds, where
7 operates on the projection of the runs to configurations of #|Ferypio: 1) All instances occur in at most one session
(according to 7). ii) Instances in one session agree on the PIDs of the desired partners. iii) 7 is monotonic, i.e., once a
session has been established according to 7, it continues to exist. Now, we are ready to state our criterion.

Definition 2. We say that an Fcrypio-KE protocol P is strongly Ferypio-secure (with type £y of a key) w.r.t. a partnering
function 7 and an environment & of P | Ferypio if for runs of E|P | Ferypio the following holds with overwhelming prob-
ability: For every uncorrupted instance of M,, say (p, Isid, r), which has output a session key pointer to say the key k
in Ferypro it holds that:

i) The local session (p,lsid, r) belongs to some global session (according to t) which contains only uncorrupted
local sessions.
ii) The key k is of type ty and marked unknown in Ferypro.
iii) The key k has never been used in Forypo as a key for encryption, key derivation, or to compute a MAC by any user,
except through the interface to Ferypio provided to the environment after a session-key-pointer-output message.
iv) Session key pointers (if any) of other instances point to the same key k if and only if they belong to the same
session as (p, Isid, r) (according to 7).

An Ferypro-KE protocol P is strongly Ferypro-secure if there exists a valid partnering function t for P and P is
strongly Ferypro-secure w.r.t. T and & for every environment & for P | Ferypto-

The following theorem states that this criterion is indeed sufficient for an Fypo-KE protocol to realize the ideal
key exchange functionality Fe.

Theorem 4. Let P be an Ferypio-KE protocol. If P is strongly Ferypro-secure and P is used-order respecting and non-
committing, then P |Perypro < Fre-
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Proof. Let S = ﬁlSimmpm | Ferypto» Where Simerypo 18 the simulator used to prove Theorem 3. We note that, by
Corollary 1, it holds that & P |Perypio = E1S for every environment &. Next, we define a simulator Sim for ¥y, and
show that §|S = &| Sim | Fy. for every environment &, which completes the proof.

Since P is strongly Ferypio-secure, there exists a valid partnering function 7. The simulator Sim is defined as follows:
It basically emulates S. More precisely, if ¥y, receives a session-start message, ¥y forwards it to Sim which forwards
it to (the emulated) S. Hence, every local session, say (p, Isid, r), in Fy. corresponds to the instance (p, Isid, r) in
S. If an instance in S gets corrupted, i.e., would return corrupted upon a corruption request from the environment,
Sim corrupts the corresponding local session in F.. If a corrupted instance outputs a session key &, Sim instructs the
corresponding local session in ¥y, to output k. If an uncorrupted instance outputs a session key, Sim determines the
session, i.e., an instance for every role, by using the partnering function 7. Note that by i) of Definition 2, all instances
in this session are uncorrupted. Then, Sim sends two messages to ., first, a session-create message which contains
the determined session and, second, a session-finish message for the corresponding local session. Note that since T
is valid and all instances in this session are uncorrupted, Fy. accepts all these messages. Network communication is
forwarded directly by Sim between the environment and the emulated S.

It is now possible to define a mapping from every run p of the real system &|S, excluding the (negligible set of)
runs for which one of the conditions in Definition 2 is not satisfied, to a set S, of runs of the ideal system &| Sim | Fi
such that the probability of p is the same as the one for S, and the overall output of p (on tape decision) is the same
as the overall output of every run in S,. Such a mapping implies that &|S = &|Sim | Fi.. The mapping is defined as
follows: Let p be a run of &| S which satisfies the conditions in Definition 2. We now define S, to be the set of runs of
&|Sim | Fe Where

i) & uses the same random coins as & in p,

ii) the random coins of 7. are defined such that the keys that are generated and output as session keys by Fie
correspond to the keys generated by S and output as session keys by S to & in p (this is to make sure that the
session keys output in the ideal and real system coincide), and

iii) the random coins of Sim are defined such that the emulated S (within Sim) uses the same random coins as S in p,
except that we use fresh keys for keys generated by S and output as session keys by S to & for uncorrupted local
sessions in p. Every such fresh key induces one run in §,. Note that for corrupted local sessions & determines the
session keys, and hence, in such a case the ideal and real system behave in the same way.

Note that this mapping is well-defined because p satisfies the conditions in Definition 2. By construction, the proba-
bilities of p and S, are equal. Based on the following observations, one can easily show, by induction on the length
of runs, that the view of & in p is the same as the view of & in every run p” in §,, and hence, the overall output is
the same: The only difference between p and p’ is that for every key that is output as a session key in an uncorrupted
local session in p’, Sim does not use this session key in its simulation, but a freshly generated key. By definition of the
randomness of p’, the corresponding session in ¥, contains the actual session key. For this reason, output at the I/O
interface of p and p’ coincide: The session keys output by uncorrupted local sessions coincide in both runs, p and p’.
As for the network interface, even though p” does not use the actual session key, & cannot observe this: By assump-
tion, p satisfies the conditions in Definition 2. Thus, keys output in p as session keys in uncorrupted local sessions
are marked unknown, and hence, they have always been encrypted ideally. Moreover, these keys were never used as
keys for encryption, MACing, or key derivation. So, & cannot distinguish whether the actual session keys or freshly
generated keys have been encrypted. O

We note that the concept of partnering functions has been used in game-based security definitions which led

to discussions whether the obtained security definitions are reasonable, see, e.g., [9, 10,8, 17,20, 31]. Here, we use
partnering functions as part of our criterion but not as part of the security definition; security means realizing ..

4.2 Applications to Secure Channels

A secure channel, see, e.g., [18], between two parties provides confidentiality and authenticity of the messages sent
over the channel and prevents rearrangement and replay of messages. Some secure channels also prevent message loss.
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In this section, we first define two ideal functionalities for secure channels ¥ and ¥, where, unlike %, 7o
prevents message loss. Just as Fy. and in contrast to previous formulations, our functionalities directly allow to handle
an unbounded number of sessions between arbitrary parties.

We consider two generic realizations of . and ¥}, namely Py and Py, respectively, which use an Ferypio-key
exchange protocol P as a sub-protocol. Every session of Py (analogously for $7.) runs a session of £ to exchange a
session key. This session key is then used to establish secure channels between the parties of the session; one channel
for each pair of parties in that session. For this purpose, before a message is encrypted under the session key, the PIDs
of the sender and receiver are added to the plaintexts as well as a counter. While P tolerates message loss, Py, does
not.

Finally, we provide a criterion for Fcrypio-KE protocols and show that Py and P, realize ¥ and ¥, respectively,
if the underlying ¥ rypio-KE protocol P satisfies this criterion. We could use the criterion “strongly Ferypo-secure”, but
in fact a weaker variant suffices, which we call @-Frypio-secure. Unlike strong Ferypio-security, a-Ferypo-security allows
that session keys are used in the key exchange protocol (e.g., for key confirmation). But then, messages encrypted
under these keys in the key exchange protocol should not interfere with messages sent over the secure channel. We
therefore consider a set of messages a which contains at least all possible plaintexts that potentially can occur in the
key exchange protocol encrypted under the session key. Usually, (an over-approximation of) @ can be described based
on the different message formats in the protocols.

The Ideal Secure Channel Functionalities. We first describe #.. It has the same I/O and network interface as i,
and is parameterized by a number n which defines the number of roles in the protocol. Just as ¥y, Fsc manages
local sessions of users and (global) sessions: A user (p, Isid, r) can send session-start messages which create local
sessions. The (ideal) adversary groups local sessions to form (global) sessions by sending session-create messages
and completes local sessions by sending session-finish messages.

Upon a session-finish message, in contrast to ¥, which sends a session-key-output message to the user, . sends
a session-established message to the user notifying it that the secure channel has been established successfully. Now,
this user, say (p, Isid, r), can send messages to its partners in the same session by sending send requests of the form
(Send, m) to F. where m is the message that is supposed to be sent. Upon receiving such a request, ¥ adds m to a
queue for this local session and the intended recipient, i.e., one of the partners in the local session. Then, . forwards
this request to the adversary but replaces m by 0", revealing the length of m but nothing more. The adversary can
now instruct . to deliver or drop messages. If the adversary sends a deliver message for a local session to Fy., Fc
removes the first message from the queue for this local session and intended recipient and sends it to the intended
recipient, i.e., to the user corresponding to it. If the adversary sends a drop message for a local session to F, then 7.
only removes the first message from the queue but does not send it to the intended recipient.

Similarly to Fy., the adversary has the ability to corrupt a local session of a party if it is not already part of a
session. If a corrupted local session receives a send request, this request is forwarded to the adversary unaltered, i.e.,
the message is revealed to the adversary. Furthermore, the adversary can instruct 7. to deliver arbitrary messages to
the user of a corrupted local session. (See below for the discussion of arbitrary network input.)

The variant ! coincides with ¥, except that the adversary does not have the ability to drop messages, i.e., F.f
does not accept drop messages.

We note that, for an uncorrupted session both . and Ff guarantee secrecy and authenticity of messages and that
messages arrive in the right order, without replay. But ¥ allows message loss while #% prevents this. Clearly, if a
protocol realizes ¥, it also realizes ¥, because we have Ff < F..

Generic Secure Channel Protocols. We define two generic secure channel protocols Py and Pj, of the form
IMy|...| M, which use an Ferypo-KE protocol, say $ =!M{| ... | !M;|F1|...|F, as a sub-protocol. In a nut-
shell, a session of Py (and also PY) runs a session of P to exchange a session key. This session key is then used to
establish secure channels between the parties of the session, one channel for each pair of parties in that session. For
this purpose, before a message is encrypted under the session key, the PIDs of the sender and receiver are added to the
plaintexts as well as a counter. While P tolerates message loss, 7, does not.

The protocols Py, and P, are parameterized by what we call a plaintext construction function f which takes
two PIDs py, p,, a counter v, and a message m and outputs a plaintext f(pi, p2, v, m). We require that f(py, p», v, m)
is a well-tagged bit string which does not contain any pointers, that f is computable and invertible in polynomial-
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time, and that f is length regular, i.e., |f(x1,...,x4)| = |f(x],..., x})| for all bit strings xi, x}, ..., x4, x; where |x| =
lxq s ..o Dxal = g

Now, we describe P (f) =M | ... | !M, in more detail. Just as for Frypo-KE protocols, there is one machine M,
for every role i < n which has an I/O input and output tape to communicate with the parties and a network input and
output tape to communicate with the adversary, modeling the the network. Note that Py, and 7. have the same 1/O
interface. Similarly to Fy., Py Waits for session-start messages from users. For simplicity, we require that the PIDs for
the roles in the request are pairwise different. For every such request, say from user (p, Isid, r), a new instance of M,
is created which handles all requests of user (p, Isid, r). Upon receiving a session-start message, M, forwards it to M,
(the key exchange protocol) and waits for receiving a session-key-pointer-output message from M.. Then, M, sends a
session-established message to the user.

Every instance of the M, maintains counters S ; and R; for counting messages send to/received from role j, for all
Jj < n, j# r. All counters are initialized with 0.

After a session has been established and upon receiving a send request triggering M,, say for user (p, Isid, r), to
send a message m to the party with role j (in the same session), M, constructs the message m’ = f(p, p’,S j, m) where
p’ is the PID of the receiver, increases S ; by one, encrypts m’ with the session key pointer received from M, (using
Ferypto through M7), obtains a ciphertext c, and sends (p, p’, c) to the adversary (network).

Whenever an instance of M,., say for user (p, Isid, r), receives a message from the adversary (network) of the form
(p’, p,c) where p’ is the PID of an intended partner of (p, Isid, r) for some role, say j # r, M, decrypts c using the
session key pointer ptr. If the decryption succeeds and the plaintext is of the form f(p’, p, v, m) for some number v > R;
and some message m, then M, sets R; = v+ 1 and outputs m to the user (p, Isid, r). Otherwise, M, silently discards the
message.

An instance of M, can directly be corrupted by the adversary in which case the adversary controls the secure
channel. However, the corruption needs to occur before M, has output the session-established message. The instance
of M, is also considered corrupted if the corresponding local session of the key exchange protocol P is corrupted. The
environment may ask whether or not an instance of M, has been corrupted.

Unlike Py, P?. discards messages from the adversary if, when decrypted, they are not of the form f(p’, p, v, m) for
v = R, i.e., message loss is not tolerated by P,

Note that the messages received by M, from the network are again output (at least parts of these messages) by M,..
Because the network input tapes are consuming, the length of these message has to be bound by a polynomial in the
security parameter plus the length of messages received from the user (environment) so far. (Recall that the messages
received from the user are received on enriching tapes.) This aspect has not been discussed in the description above.
We can allow the environment to send resources to M,. This way it is possible that arbitrary many network inputs of
arbitrary length can be processed. This mechanism has been first used in [33].

Criterion for Secure Channel Protocols. We now provide a criterion for Frypo-KE protocols and prove that the
generic secure channel protocols Py and P, realize Fy. and ¥, respectively, if the underlying Ferypio-KE protocol
satisfies this criterion. We could use the criterion “strongly Fcrypo-secure”, but in fact a weaker variant suffices where

the session key may have been used by the key exchange protocol, e.g., for key confirmation.

However, in order to be able to prove the desired property with this weaker criterion, we need to require that
messages sent over the secure channel cannot be confused with messages exchanged in the key exchange protocol.
This is typically the case because of different message formats used in the key exchange and secure channel protocol,
e.g., messages may be tagged with the protocol names. To capture this formally, we consider a set of messages «
which contains at least all possible plaintexts that potentially can occur in the key exchange protocol encrypted under
the session key. As mentioned, (an over-approximation of) @ can typically be described based on the different message
formats in the protocols.

Definition 3. Let a be a set of bit strings such that @ can be decided in polynomial time. Furthermore, let ty be some
type of a key. We say that an Frypo-KE protocol P is a-Fcrypo-secure (with type to) if it is strongly Ferypro-Secure,
except that we replace condition iii) for strong Ferypo-security by the following condition, with (p, Isid, r) and (t, k) as
in Definition 2:
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iii) The key (t,k) has only been used in Ferypo as a key by users that belong to the same session as (p, Isid, r)
(according to T) to encrypt messages that belong to a, except through the interface t0 Feypio provided for the
environment after a session-key-pointer-output message.

We note that strongly Ferypio-secure protocols are a-Fcrypio-secure for all a, in particular for & = 0.

The following theorem states that if the plaintexts constructed by the secure channel protocols Py, and Py, do
not interfere with the plaintexts encrypted by the key exchange protocol, then our criterion is sufficient for the secure
channel protocols to realize the ideal secure channel functionalities.

Theorem 5. Let P be an Ferypro-KE protocol, a be a set of messages as above, and f be a message construction
Sfunction such that f(p1, p2,v,m) & « for all bit strings py, p2, v, m. If P is a-Fcrypo-secure with type authenc-key, then
P (NP Ferypro < Fse and Pi(f) P | Ferypo < Foo- (The leakage algorithm used in Ferypio is assumed to leak only
the length of a message.)

Proof. First, we consider ¥, see below for F.f. We define a simulator Sim for ¥, which is similar to the one defined
in the proof of Theorem 4. Given a partnering function 7 which exists because P is Ferypo-secure Sim emulates a
local copy of the system S = Py |P | Ferypro and establishes sessions using the partnering function 7. Message send
request are forwarded to (the emulated) S and if S delivers a message, then Sim checks how many messages have been
dropped and instructs ¥ to drop that many messages. More precisely, if the delivered message has count value v and
Rj is the corresponding counter, then Sim instructs . to drop v — R; messages. (Note that, by definition of Py, v > R,
otherwise, the message would not have been delivered.) Then, Sim instructs . to deliver the next message. As in the
proof of Theorem 4, ¥ and S correspond on local sessions/instances, sessions, and corruption.

Upon corruption requests from the environment the systems S and Sim|F. do not differ, i.e., the view of the
environment is the same. The systems S and Sim | 5. potentially only differ i) upon a message send request for some
message, say m1, because in S the message f(p’, p,v,m) gets encrypted while in Sim | Fy. the message f(p’, p,v, 0"
gets encrypted or ii) upon delivery of messages to the parties because S outputs the decrypted received message while
Sim | . drops some messages and outputs the next message in the queue. Next, we show that the systems in fact do
not differ.

ad i) Since P is a-Ferypro-secure, every (uncorrupted) local session of a session uses the session key and this is
marked unknown (in Ferypeo). Then, from the definition of Ferypo it follows that in S not f(p’, p, v, m) but its leakage
is encrypted. Similar, in Sim | Fy. not f(p’, p,v,0"™) but its leakage is encrypted. Since these messages have the same
length (because f is length regular) and the leakage algorithm leaks only the length of a message, the distribution of
the produced ciphertext is the same in both systems.

ad ii) Assume that & sends a network message that contains a ciphertext c¢. Then both systems P and Sim | Fg
decrypt ¢ using the session key pointer for the receiving local session. If the obtained plaintext is not of the form
f(p’, p,v,m) for some v > R; and some message m then both systems discard this message. Otherwise, S delivers m to
the user for party p while Sim instructs ¥ to drop v — R; messages and to deliver the next message, say m’, to p. We
need to show that m = m’. Since P is @-Fcrypro-secure, the used session key is marked unknown (in Ferypio) and of type
authenc-key. Then, by definition of F¢ryp0, Only plaintexts are returned that have been previously encrypted under the
same key using Ferypro- Since P is a-Ferypro-secure and f(p’, p,v,m) ¢ a for any r, some local session of this session
must have encrypted this plaintext. They are all uncorrupted and, hence, it must have been the user for party p” when
sending the v-th message to p. Note that R; is exactly the number of messages p has already received from p’ (in this
session). Since v — R; messages are dropped, ¥ will deliver the R; + (v — R;) = v-th message that party p’ has sent to
p. We conclude that m = m’.

In the case of 7% we can use the same simulator Sim except that it emulates Py, | P | Ferypro instead of Pye | P | Ferypro-
Note that Sim will never try to instruct ¥, to drop messages because, by definition of Py, v = R; if a message is

sc?
delivered. The rest of the proof is analogously to the case of Fy. O

5 Security Analysis of IEEE 802.11i

Using our results and methods developed in the previous sections, we now analyze two central protocols of WPA2-
PSK (IEEE 802.11i) [28,29], namely the 4-Way Handshake (4WHS) protocol and the CCM Protocol (CCMP). We
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1.A = S: pa,na, [, PMKID]
2.8 — A: ps,ns,c, MACkck(ns, ¢2)
3.A-S: PA,FZA,C3,MACKCK(I1A,C3)
4.§ — A: pS7C4’MACKCK(C4)

Fig. 1. The 4-Way Handshake protocol.

prove that 4WHS provides universally composable key exchange and that 4WHS with CCMP provides universally
composable secure channels. Without Fypt0, our modular approach, and our criteria, the proof would be considerably
more complex and would involve non-trivial reduction proofs. In particular, due t0 Ferypo, OUr proofs only require
syntactic arguments and they illustrate that Ferypo can be used in an intuitive and easy way for the analysis of real-
world security protocols.

5.1 The 4-Way Handshake Protocol

Description of the 4WHS Protocol. The 4-Way Handshake (4WHS) protocol consists of two roles, an authenticator
A, e.g., an access point, and a supplicant S, e.g., a laptop, which share a Pairwise Master Key (PMK). The authenticator
may communicate with several supplicants using the same PMK, which in WPA2-PSK is a pre-shared key (PSK). On
an abstract level, the message exchange between an authenticator A and a supplicant S is shown in Figure 1, where py4
and ps are the names (Media Access Control (MAC) addresses) of A and S, respectively, n4 and ng are nonces gener-
ated by A and §, respectively, and cy, .. ., c4 are pairwise distinct constants used to indicate different messages. From
the PMK, A and S derive a Pairwise Transient Key PTK by computing PTK = F(PMK, “Pairwise key expansion” ||
min(pg, ps) || max(pa, ps) || min(ng4, ng) || max(ny, ns))), where F is an HMAC, which according to the IEEE 802.11i
standard is assumed to be pseudo-random. The PTK is then split into the Key Confirmation Key (KCK), the Key En-
cryption Key (KEK), and the Temporary Key (TK), where TK is used in CCMP to establish a secure channel between
A and S (see below). By MACkck(m) we denote the MAC of the message m under the key KCK. The first message of
the 4WHS optionally includes PMKID = F(PMK, “PMK Name”||p4||ps) to indicate the corresponding PMK.

Modeling the 4WHS Protocol. Modeling the 4WHS protocol as an Fypio-KE protocol is straightforward. We em-
phasize that, since Ferypio provides a low-level interface to basic cryptographic primitives with a very liberal use of
tagging, our modeling of the 4WHS protocol, including message formats, the use of cryptographic primitives, and
cryptographic assumptions, is quite close to the actual standard. We note that in our modeling of 4WHS parties may
not play both the role of an authenticator and a supplicant with the same pre-shared key. Otherwise, 4WHS would be
insecure. Indeed, a reflection attack would be possible [25], and our security proofs would fail.

The Ferypio-KE protocol 4WHS consists of two roles: 4WHS =M, | !Ms. As defined in Section 4.1, there can be
multiple instances of M4 and My and each instance is addressed by a PID and a LSID.

A natural way to model the pre-shared key PSK would be the following: At first, every instance (of My or My)
establishes a pre-shared key (in Ferypo) using the PID of the authenticator as the name of the pre-shared key. This
way, all supplicants talking to the same authenticator use the same pre-shared key. But this modeling yields that
an authenticator, say A, uses the same PSK in every session. For example, A cannot change the PSK. Also, different
authenticator would necessarily use different pre-shared keys. Therefore, we model the pre-shared key PSK as follows:
We allow the environment to decide which instance uses which pre-shared key. To do so, we require that every LSID
is a pair (Isid’, psk-name) of the actual LSID Isid’ and the name of the pre-shared key psk-name this instance uses.
Whenever an instance (of M, or M) is first activated, it checks if its LSID is of the form (Isid’, psk-name) and obtains
a pointer to the pre-shared key with name psk-name using Ferypio- (If this check fails, the instance terminates.)

After having received a session-start message and established the PSK (as described above), every instance of M4
and My executes the 4WHS protocol as expected using Ferypio to generate nonces, derive keys (the key KCK is of type
mac-key and the key TK is of type authenc-key), and compute and verify MACs. Finally, the pointer to TK (later
used to establish a secure channel) is output as the session key pointer.

As mentioned above, a simple reflection attack on the 4WHS protocol is possible if there is a party playing both
the role of an authenticator and a supplicant using the same pre-shared key, see [25] and our proof of Theorem 6. To
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prevent such an unusual environment, we use a (polynomial-time computable) predicate for the PIDs which separates
PIDs for authenticators from PIDs for supplicants. Every instance of M4 and My first checks (using the predicate)
whether its own PID is allowed for the role of an authenticator or supplicant, respectively. (If this check fails, the
instance terminates.)

Recall that in the 4WHS protocol, the keys KCK, KEK, and TK are derived from PMK by first deriving PTK and
then splitting it, as described above. We do not model this directly because we do not model bit string operations like
splitting of keys in Ferypio. Instead of deriving KCK||KEK||TK = PTK = F(PMK, seed) we derive every key separately
KCK = F(PMK, seed||0), KEK = F(PMK, seed||1), and TK = F(PMK, seed|2). Note that it is easy to show that F' is
a pseudo-random function if and only if F’ is a pseudo-random function where F’ is defined by F’(k, s||i) = m;(F(k, s))
for all k, s and i € {0, 1, 2} where my, 71, 5 partitions the input into disjoint parts. Hence, our modeling is faithful.

We model corruption as follows. The adversary can corrupt an instance of M4 and Mg by sending a special corrupt
message to it. This has to be the first message this instance receives from the adversary. A corrupted instance forwards
all messages from the user to the adversary and vice versa. (See Section 4.2 for the discussion of arbitrary network
input.) Furthermore, it allows the adversary to send requests to Fcrypio (the responses are forwarded to the adversary)
in the name of the user.

If the instance is corrupted, all pointers of this user to pre-shared keys and other symmetric keys this user (on
demand of the adversary) has created in Frypio should be corrupted (in Ferypro) as well. We therefore require that the
adversary corrupts all keys a corrupted instance creates using Ferypio- A corrupted instance always checks (by asking
Ferypto) if its keys created in Ferypo indeed have been corrupted by the adversary and terminates if they have not
been corrupted. Note that since keys in Ferypio 0f a corrupted instance are known, it is not a problem if the adversary
generates key cycles or causes the commitment problem with those keys. Conversely, uncorrupted instances always
check that the pre-shared key PSK, and the nonce, n4 or ng, they have created using Fcrypio are uncorrupted at the
time of their creation. We note that this modeling implies that a corrupted local session never obtains a pointer to an
unknown key. Hence, the adversary can use Ferypio (through the corrupted local session) only with known keys. Of
course, since the adversary provides all algorithms and keys used in Fypio, She can encrypt and decrypt messages on
her own, i.e., outside of Frypro-

In the literature, (static) corruption is often modeled on a per party basis, i.e., if a party is corrupted, then all its
keys are corrupted and the adversary is in full control of that party. We note that this is a special case of our modeling
of corruption because the adversary can decide to corrupt all keys and local sessions of a corrupted party.

The messages c1, . . . , ¢4 consist of several fields. For simplicity of the analysis, our modeling ignores some of these
fields or fixes them to be constants, as described next (conceptually, it would not be a problem to model these fields
precisely): The messages cy, ..., cs contain counters used for re-keying, which we ignore. The information contained
in ¢; and c3 for negotiating cipher suites and avoiding version rollback attacks is modeled as constants. Finally, we
ignore an optional field in c¢3 for multicast communication.

Next, we provide more insight into how message formats of the 4WHS protocol are modeled on the bit level. All
four 4WHS messages are EAPOL-Key frames, see Figure 2, which are defined in the IEEE 802.11 standard, e.g., the
field Key Nonce contains the nonces of the authenticator or supplicant, respectively, and the field Key MIC contains
the MACs. Since every instance (of M4 and My ) knows the bit strings of all parts of an EAPOL-Key frame, e.g., the
nonces and MACs, it can easily construct precisely these EAPOL-Key frames. We note that, since our cryptographic
model is asymptotic, the length of e.g. keys and nonces depends on a security parameter 1, and hence, we need to
generalize EAPOL-Key frames so that the length of some fields depends on 7.

Security Analysis. We first show that 4WHS is strongly Fcrypio-secure.
Theorem 6. The protocol AWHS is strongly Fcrypio-secure with type authenc-key.

Proof. First, we define a partnering function 7 for 4WHS: Two instances are defined to form a session if a) they have
different roles, namely A and §, respectively, b) they are both uncorrupted, c) the party names of the desired partner
correspond to each other, d) they use the same pre-shared key, e) the values of the nonces correspond to each other,
and f) one of them has already output a session key pointer. Because Ferypio guarantees that (uncorrupted) nonces are
unique for every instance, there are at most two such instances, and hence, it is easy to see that 7 is a valid partnering
function for 4WHS.
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Protocol Version Packet Type ‘ Packet Body Length
— 1 octet — 1 octet — 2 octets
Descriptor Type — 1 octet
Key Information — 2 octets | Key Length — 2 octets
Key Replay Counter — 8 octets
Key Nonce — 32 octets
EAPOL-Key IV — 16 octets
Key RSC - 8 octets
Reserved — 8 octets
Key MIC — 16 octets
Key Data Length — 2 octets Key Data — n octets

Fig. 2. EAPOL-Key frame [28, Figure 8-23]

It remains to show that 4WHS is strongly Ferypro-secure w.r.t. T and every environment & of 4WHS | Frypio: Let p
be a run of &|4WHS | Ferypro and let (p, Isid, r) be some uncorrupted instance (i.e., an instance of M,) in p which has
output a session key pointer to a key, say k, in Ferypio, and which established the pre-shared key PSK and derived KCK
and TK from it in Ferypro-

First, we observe that, by our corruption model, since (p, Isid, r) is uncorrupted, PSK is uncorrupted (in Ferypto)-
Also, every other instance that established PSK must be uncorrupted as well since keys created by corrupted instances
are required to be corrupted. In uncorrupted instances, PSK is only used to derive keys, hence, PSK is always marked
unknown in Ferypo. In particular, no corrupted local session has a pointer to PSK. Now, by definition of F¢ryp0, KCK
and TK can only be derived by instances that have a pointer to PSK, leaving only uncorrupted instances. Moreover,
again by Ferypio, these uncorrupted instances have to use the same seed s as (p, Isid, r), which contains the party
names, p and p’ say, and two nonces. Since uncorrupted nonces generated by Ferypio are guaranteed to be unique, by
the construction of s, it follows that besides (p, Isid, r) at most one other (uncorrupted) instance (p’, Isid’, r’), for some
p’, Isid’, and ', uses s, and hence, has a pointer to KCK and TK by derivation. By the definition of the protocol,
uncorrupted instances only use KCK for MACing and TK is at most used after being output in a session-key-pointer-
output message, but then TK may not be encrypted or retrieved. By definition of Fypio, it follows that KCK and TK
are always marked unknown in F¢ypeo and only (p, Isid, r) and, if present, (p’, Isid’, r") have pointers to KCK and TK.

We now show that (p’, Isid’, r’) exists and that (p, Isid, r) and (p’, Isid’, r") belong to the same session (according
to 7), which implies i) of Definition 2: We assume that r = A; the proof for r = § is similar. The instance (p, Isid, r)
verified a MAC in a message of the form p’,n”, ¢y, MACkck(n”, c2). Since r = A and the constants ¢, and c3 are
distinct, (p, Isid, r) has not created such a MAC. By definition of Frypio, MACkck(n”, c2) can only have been created
by some instance that has a pointer to KCK, which must be the (uncorrupted) instance (p’, Isid’, r’) from above. It
follows that # = S since an uncorrupted instance with # = A would not create a MAC of such a form. By our
assumption that a party does not play both the role of A and S with the same pre-shared key, it follows that p” # p.
(Our assumption, and the implied fact, p” # p, is crucial; without it the proof would fail and in fact a reflection attack
would be possible [25].) We can now show that (p, Isid, r) and (p’, Isid’, ') belong to the same session according to 7:
We already know that conditions a), b), d), and f) for 7 (as defined above) are satisfied. Since p # p’, it follows that the
intended partner of (p’, Isid’, r’) is p, since, by definition of Ferypo and KCK, otherwise (p’, Isid’, r’) could not have
derived KCK. So c) is satisfied. (Without our assumption mentioned above, this could not be concluded.) Similarly,
condition e) is satisfied since otherwise the two instances would not have derived the same KCK.

We already know that TK (= k) is marked unknown in Ferypio. It is of type authenc-key since, by definition of the
protocol, it has been derived as a key of this type. So ii) of Definition 2 follows.

We also know that only (p, Isid, r) and (p’,Isid’,r’) have a pointer to TK in Ferpo. Hence, iv) of Definition 2
follows. Since both instances are uncorrupted, by the definition of the protocol, iii) follows as well. O

Trivially, 4WHS (recall that 4WHS outputs the session key instead of a pointer to it) is a standard protocol (as de-
fined in Section 3) because it never encrypts an unknown key after it has been first used. We note that, by our modeling
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of corruption, corrupted local sessions do not have pointers to unknown keys and, hence, even upon corruption, no
unknown key is encrypted after it has been first used. In fact, no key is encrypted at all by uncorrupted local sessions.
It is easy to see that 4WHS is used-order respecting and non-committing. Using Theorem 4 and 6 we immediately
obtain that AWHS is a universally composable key exchange protocol.

Corollary 2. 4WHS |Perypio < Fre-

5.2 The CCM Protocol

Description of the CCM Protocol. WPA2-PSK uses CCMP with the Temporal Key (TK) which has been exchanged
by 4WHS to establish a secure channel between the authenticator and the supplicant. In CCMP, both parties maintain
and use counters for the messages they send and received just like P.. Encryption is done using the block cipher AES
(with the key TK) in the CCM (Counter with CBC-MAC) encryption mode.

Modeling the CCM Protocol. We model CCMP as the protocol CCMP = P..(f) using a message construction
function f that closely models the message formats of CCMP. More precisely, we define the function f such that the
plaintexts f(p, p’, v, m) (recall that p/p’ is the PID of the sender/receiver, v is the value of a counter, and m the actual
message that is sent over the secure channel) are well-tagged with type data. Furthermore, we define tagging in Ferypio
such that f(p, p’,v, m) precisely models the format of plaintexts in the CCMP protocol, see [28, Section 8.3.3] for a
definition of these message formats. The CCM encryption mode is a secure authenticated encryption mode [30] and,
hence, can be modeled as an authenticated encryption scheme. Altogether, the protocol CCMP [4WHS | Prypio is quite
close to the actual cryptographic implementation of CCMP using 4WHS for key exchange.

Security Analysis. By Theorem 5 and 6 we obtain that CCMP using 4WHS and the ideal crypto functionality is a
secure channel protocol.

Corollary 3. CCMP [4WHS | Ferypio < Fc-

Itis easy to see that CCMP |4WHS is a standard protocol (as defined in Section 3), hence, it is used-order respecting
and non-committing. From Corollary 1 and 3 (and the composition theorems) we obtain that WPA2-PSK modeled as
the protocol CCMP |[4WHS | Prypt0 is a secure channel protocol.

Corollary 4. CCMP [4WHS | Perypio < Fc-

As mentioned in the introduction, it has been recently shown that 4WHS with TKIP (instead of CCMP) is insecure
[42,38]. The attacks exploit that TKIP uses the stream cipher RC4 in an encryption mode which does not yield a
secure authenticated encryption scheme.

6 Related Work

Backes et al. (see, e.g., [4]) proposed a Dolev-Yao style cryptographic library. The main purpose of the library is to
provide a Dolev-Yao style abstraction to the user, in the spirit of computational soundness results [36,22,2,34]. In
contrast, our functionality provides a much lower-level idealization, aiming at wide applicability and faithful treatment
of cryptographic primitives. More specifically, unlike ¥y, based on the Dolev-Yao library only those protocols can
be analyzed which merely use operations provided by the library (since the user, except for payload data, only gets
his/her hand on pointers to Dolev-Yao terms in the library, rather than on the actual bit strings, internally everything is
represented as terms too) and these protocols can only be shown to be secure w.r.t. non-standard encryption schemes
(since, e.g., extra randomness and tagging with key identifiers is assumed for encryption schemes) and assuming
specific message formats (all types of messages—nonces, ciphertexts, pairs of messages etc.—, are tagged in the
realization). While the Dolev-Yao library considers symmetric encryption (key derivation is not considered at all) [4],
it is an open problem whether there is a reasonable realization; the original proof of the realization of the crypto library
in [4] is flawed, as examples presented in [21] illustrate (see also [35]).
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Our criteria for secure key exchange and secure channel protocols presented in Section 4 are related to the con-
cept of secretive protocols proposed by Roy et al. [40,41] (see also [35]). However, unlike our criteria, which can
be checked based on information-theoretic/syntactical arguments, checking whether a protocol is secretive requires
involved cryptographic reduction proofs. Also, Roy et al. do not prove implications for composable security and they
do not consider secure channels.

The only work we are aware of that attempts to perform a cryptographic analysis of the 4-Way Handshake protocol
of IEEE 802.11i is [43]; secure channels are not considered. However, this work is quite preliminary: The security
assumptions and theorems are not formulated precisely and no security proofs or proof sketches are available. In
He et al. [26], the first symbolic analysis of IEEE 802.11i has been presented, based on their Protocol Composition
Logic (PCL). There are only a few other papers on the analysis of real-world protocols that involve key derivation:
(fragments of) TLS were analyzed in [23, 37, 11], assuming session identifiers in ciphertexts [23] or the random oracle
for key derivation [37, 11]. Cryptographic analysis of Kerberos was carried out in [1, 13], where in [13] key derivation
is modeled by pseudo-random functions within CryptoVerif. However, this analysis considers more abstract message
formats and does not yield composable security guarantees.
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A Security Definitions for Cryptographic Primitives

In this section, we present the standard cryptographic schemes and security notions which we use to realize our ideal
crypto functionality.

A.1 Symmetric Encryption
In this section, we recall the notion of [6, 7] for symmetric encryption schemes.

Definition 4. A symmetric encryption scheme 2 = (gen, enc, dec) with plaintext domain dom(2) C {0, 1}* consists
of three polynomial-time algorithms. The probabilistic key generation algorithm gen expects a security parameter n
and returns a key gen(1"). The probabilistic encryption algorithm enc expects a key k and a plaintext m and returns
a ciphertext enc(k,m) € {0, 1}* or enc(k,m) = L (where L ¢ {0,1}" is a special error symbol) if encryption fails.
The deterministic decryption algorithin dec expects a key k and a ciphertext ¢ € {0, 1}* and returns the plaintext
dec(k, c) € {0, 1}* or dec(k, c) = L if decryption fails.

It is required that for every security parameter 1 and key k generated by gen(17) it holds that i) enc(k,m) = L if
and only if m ¢ dom(2) and ii) dec(k, enc(k, m)) = m for every plaintext m € dom(X).

We assume that every encryption scheme is associated with a polynomial g that bounds the runtime of the algo-
rithms and the length of there description in some standard encoding. We say that 2 is g-bounded. For all symmetric
encryption schemes considered in this paper, we assume that the key generation algorithm chooses keys uniformly at
random from {0, 1}".

We define LR(mg, m, b) = my, for every b € {0, 1} and mg, m; € {0, 1}* of same length. If my and m, are not of
same length, we define LR(mqg, m;,b) = L.

Definition 5 (IND-CPA secure). A symmetric encryption scheme X is called IND-CPA secure if for every proba-
bilistic polynomial-time algorithm A°™) with access to an oracle O, the IND-CPA advantage of A with respect to
2

Advxd;-cl)a(lﬂ,a) = Prlk « gen(17) : AWIRC-D) (7 ) = 1] — Prlk « gen(17) : ASKIRC-0) (11 gy = 1]
is negligible as a function in 1 and a.”

2 A function f: {1}* x {0, 1}* — Ry is called negligible if for all polynomials p and g there exists 75, € N such that for all 5 > 7,
and all bit strings a € {0, 1}* with length |a|] < g(n7) we have that (17, a) < 1/p(n).
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Definition 6 (IND-CCA secure). A symmetric encryption scheme X is called IND-CCA secure if for every proba-
bilistic polynomial-time algorithm A% )00 with access to two oracles Oy, 0> which never queries O, with a bit
string returned by Oy, the IND-CCA advantage of A with respect to X

Advj);’(;cca(ln’a) — Pr[k P gen(l”) . Aenc(k,LR(.,A,l)),dec(k,.)(lq’a) _ 1]
— Prlk « gen(17) : AWIRC-ONdeclhd (g = 1]

is negligible as a function in n and a.

Definition 7 (INT-CTXT secure). A symmetric encryption scheme X is INT-CTXT secure if for every probabilistic
polynomial-time algorithm A% V020 with access to two oracles Oy, Oy, the INT-CTXT advantage of A with respect to
X

Advi;“’;“’“(l” ,a) = Prlk « gen(17) : A"k (11 4y makes a query ¢ to dec(k, -) such that

dec(k, c) # L and c was not previously returned by enc(k, )]

is negligible as a function in n and a.

A.2 Public-Key Encryption
In this section, we recall the notion of [6] for public-key encryption schemes.

Definition 8. A public-key encryption scheme 2" = (gen, enc, dec) with plaintext domain dom(2) C {0, 1}* consists of
three polynomial-time algorithms. The probabilistic key generation algorithm gen expects a security parameter 1 and
returns a pair of keys (kq, k.), the secret (or decryption) key k, and the public (or encryption) key k.. The probabilistic
encryption algorithm enc expects a public key k, and a plaintext m and returns a ciphertext enc(k,,m) € {0, 1}* or
enc(k,,m) = L (where L ¢ {0, 1}* is a special error symbol) if encryption fails. The deterministic decryption algorithm
dec expects a private key k; and a ciphertext ¢ € {0, 1}* and returns the plaintext dec(ky, c) € {0, 1}* or dec(ky,c) = L
if decryption fails.

It is required that for every security parameter 1 and key pair (k.,k;) generated by gen(17) the following holds: i)
enc(k.,m) = L if and only if m ¢ dom(2) and ii) dec(ky, enc(k,, m)) = m for every plaintext m € dom(2).

We assume that every encryption scheme is associated with a polynomial ¢ that bounds the runtime of the algo-
rithms and the length of there description in some standard encoding. We say that 2 is g-bounded.

As above, we define LR(mq, m;, b) = my, for every b € {0, 1} and mgy, m; € {0, 1}* of same length. If my and m; are
not of same length, we define LR(mg, m;,b) = L.
Definition 9 (IND-CCA secure). A public-key encryption scheme X is called IND-CCA secure if for every proba-

bilistic polynomial-time algorithm A2 with access to two oracles Oy, 0, which never queries O, with a bit
string returned by Oy, the IND-CCA advantage of A with respect to X

AdVS(17, a) = Pr{(k,, kg) < gen(1") : APelRO-IMdeckadqn g k) = 1]
= Pr{(k,, ky) < gen(17) : Arehe RGN deckad(qn g ) = 1]

is negligible as a function in n and a.

A.3 Message Authentication Codes

In this section, we recall the notions of [24] for message authentication codes.
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Definition 10. A message authentication code (MAC) scheme 2 = (gen, mac, mac-verify) consists of three polynomial-
time algorithms. The probabilistic key generation algorithm gen expects a security parameter 11 and returns a key
gen(1"). The (possibly) probabilistic MAC algorithm mac expects a key k and a message m and returns a message
authentication code mac(k, m). The deterministic verification algorithm mac-verify expects a key k, a message m, and
a message authentication code o and returns mac-verity(k, m, o) € {false, true}.

It is required that for every n € N, key k generated by gen(17), and message m € {0,1}* it holds that
mac-verify(k, m, mac(k, m)) = true.

For all MAC schemes considered in this paper, we assume that the key generation algorithm chooses keys uni-
formly at random from {0, 1}7.

Definition 11. A MAC scheme X is called existentially unforgeable under adaptive chosen-message attacks (UF-CMA
secure) if for every probabilistic polynomial-time algorithm A%'©-02C) with access to two oracles Oy, O, the advantage
of A with respect to X

Advﬂ}c(l”, a) = Pr[k « gen(1"), (m, o) « Amactk).mac-verifyke) (n gy - mac-verify(k, m, o) = true and

A has not previously called mac(k, m)]

is negligible as a function in n and a.

A.4 Digital Signatures
In this section, we recall the notions of [24] for digital signature schemes.

Definition 12. A (digital) signature scheme 2 = (gen, sig, sig-verify) consists of three polynomial-time algorithms.
The probabilistic key generation algorithm gen expects a security parameter 1 and returns a pair of keys (k, k),
the secret (or signing) key ks and the public (or verification) key k,. The (possibly) probabilistic signing algorithm
sig expects a private key ks and a message m € {0, 1} and returns a signature sig(ky,m). The deterministic verifi-
cation algorithm sig-verify expects a public key k,, a message m € {0, 1}, and a signature o € {0, 1}* and returns
sig-verity(k,, m, o) € {false, true}.

It is required that for every security parameter n € N, key pair (ky, k,) generated by gen(17), and message m €
{0, 1}* it holds that sig-verify(k,, m, sig(ky, m)) = true.

Definition 13. A digital signature scheme X is called existentially unforgeable under adaptive chosen-message attacks
(UF-CMA secure) if for every probabilistic polynomial-time algorithm A°C with access to a signing oracle O, the
advantage of A with respect to X

Advj’gz(l’],a) = Pr[(ks, ky) < gen(17), (m, o) « ASEEI (1M g k) sig-verify(k,, m, o) = true and
A has not previously called sig(ky, m)]

is negligible as a function in n and a.

A.5 Pseudo-Random Functions

Let h: {0, 1}* — {0, 1}7 be the following probabilistic, stateful algorithm. It maintains a set H which is initially empty.
Upon input s € {0, 1}*, h returns x if there exists an x such that (x, s) € H. Otherwise, & chooses x uniformly at random
from {0, 1}7, adds (x, s) to H, and returns x.

Definition 14. A family of functions F = {F,},ex with Fy: {0, 1}7 x {0, 1}* — {0, 1}" for all n € N is called a pseudo-
random function family if it is efficiently computable and for any probabilistic polynomial-time adversary A°® with
access to an oracle O, the advantage of A with respect to F

of

Advi (17, a) = Pr[k &10, 137 - AFEIT gy = 1] = Pr[A"O(17, a) = 1]

is negligible as a function in n and a.
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OraCIG(ba Z‘authencv Zunauthenc > Zmaca F» L)

Tapes: enriching I/O input tape Tf;ade, 1/O output tape Ton,.
State: The state of Oracle consists of the following variables: state € {init, authenc, unauthenc, mac, prf} (initially init),
k € {0, 1}* U {L} (initially L), Table C {0, 1}* (initially 0)
CheckAddress: Every message on every tape is always accepted.
Compute:
1. Upon receiving (Init, #) from Tj,‘:aclc where state = init and 7 € {authenc, unauthenc, mac, prf} do: Set state := 7. Choose
k «R{0,1}" and set k := k. Send (Ack) to T o
2. Upon receiving (Enc, x) from T} . where state € {authenc, unauthenc} and m € dom(L), do: If b = real, then compute
y « enc(k, x) (where enc is the encryption algorithm of 2, henc OF Zunauthenc depending on ) and send y to Topacle. Otherwise,
compute X < L(17, x) and z < enc(k, X). Then, add (x, y) to Table and send y to T2 .
3. Upon receiving (Dec, y) from T} . where state € {authenc, unauthenc} and y € {0, 1}* do: If b = real, then compute

x := dec(k, y) (where dec is the decryption algorithm of 2,yhenc OF Zunautmenc depending on #) and send x to T(‘j;‘;de. Otherwise,

compute
x if Alx": (m’,c) € Table (exists unique x’)
x = {dec(k,y) if state = unauthenc and Vx': (x’,y) ¢ Table
L otherwise

out
and send x to Tor' | .

4. Upon receiving (Mac, x) from T

oracle

where state = mac do: Compute o < mac(k, x), add x to Table, and send o to T°"

. oracle*
5. Upon receiving (MacVerify, x, o) from T} . where state = mac do: If b = ideal, mac-verify(k, x, o) = true, and x ¢ Table,

then send L to 70w . (This indicates forgery.) Otherwise, send the result of mac-verify(k, x, o) to T .

6. Upon receiving (PRF, s) from T'" = where state = prf and s € {0, 1}* do: If b = real, then compute x := F,(k, s) and send x
to T“)’rlf;d .- Otherwise, if Jx: (s, x) € Table, then send x to T(‘)’:‘;d .- (Note that if such an x exists, it is unique.) Otherwise,

choose x «R{0, 1}7, add (s, x) to Table, and send x to Tgr“;de.

Fig. 3. The IITM Oracle is parameterized by a variable b € {real, ideal}, two symmetric encryption schemes 2, hene and Zypauthenc> &
message authentication scheme 2., a pseudo-random function family F, and a leakage algorithm L.

A.6 Oracle Functionality

To link the game based definitions and our ideal functionality more easily, we define the IITM Oracle (Figure 3)
which is parametrized by a variable b € {real, ideal}, two symmetric encryption schemes 2yyhenc and Zynauthenc, and a
message authentication scheme 2},,., a pseudo-random function family F, and a leakage algorithm L. The machine
Oracle is used in the proof of Theorem 3. The variable b specifies the behavior; real or ideal behavior. The IITM has an
enriching I/O input tape T(i)‘r‘acle and an 1/O output tape 79w . First, Oracle waits for receiving a initialization message
which contains a type ¢ for which Oracle then generates a key. Then, the environment of Oracle can use it to perform
the chosen cryptographic operation with it.

If Zuthencs Zunauthenc> 2mac» £ and L are clear from the context, Oracle(d, Zauhenc, Zunauthencs 2pubs 2mac» F> L) s ab-
breviated by Oracle(b), for b € {real, ideal}.

The following lemma can be proven by standard cryptographic reductions, see [35] for the case of symmetric
encryption.

Lemma 1. Let 2, ythenc, Zunauthenc b€ encryption schemes as above. Let 2y, be a MAC scheme and F be a function
family as above. Let L be a leakage algorithm which leaks exactly the length of a message. Then,

&| Oracle(real) = &| Oracle(ideal)
for every environment & for Oracle if and only if Xinauthene 1S IND-CCA, Zauthenc i IND-CPA and INT-CTXT, and 2,

is UF-CMA secure, and F is a pseudo-random function family. (The direction from right to left holds for any length
preserving leakage algorithm L.)
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B Formal Specification of the Ideal Crypto Functionality

Our ideal crypto functionality Ferypio is formally defined as pseudo code in Figure 4 to 6. As mentioned, the informal
description provided above contains all necessary details to understand how Frypo Works. However, the pseudo code
is convenient in some proofs. Next, we describe some notation and terminology which is used in these figures.

The description of Frypio is divided into three parts: Tapes, State, and Compute. The first part is used to describe
the input and output tapes. The second part is used to describe the variables that describe the state of Ferypo and also
the initial state while the last describes the behavior of Ferypio in mode Compute. (In mode CheckAddress, Ferypio
accepts all messages.) The description in mode Compute, consists of a sequence of blocks where every block is of
the form (condition) : (actions). Upon activation, the conditions of the blocks are checked one after the other. If a
condition is satisfied the corresponding actions are carried out.

A condition is often of the form “receive m on #” for a message m and a tape t. This condition is satisfied if a
message is received on tape ¢ and the message is of the form m.

In the description of actions we often write “send m on ”. This means that Fyp, Outputs message m on tape ¢
and stops for this activation. In the next activation the IITM will not proceed at the point where it stopped, but again
go through the list of conditions, starting with the first one, as explained above. However, if we write “send m on ¢
and wait for receiving m’ on t'”, then Frypo does the following: It outputs m on tape ¢ and stops for this activation.
In the next activation with a message for the same user, it will check whether it received a message on input tape ¢’
and check whether this message matches with m’. If it does, the computation continues. Otherwise, Ferypio stops for
this activation without producing output. In the next activation, it will again check whether it received a message on
input tape ¢’ and whether this message matches with m’ and behaves as before, and so on, until it receives the expected
message on . However, if Fypo receives a message for another user, then Fepypio Will start where this users activation
last stopped, i.e., either with the first condition or at some “wait for receiving m’ on ¢'” statement. That is, Ferypro
maintains one “thread” for every user. For example, if a user (p, Isid, r) sends a request to generate a fresh symmetric
key to Ferypro, then Ferypio forwards this request to the adversary and waits for a response from the adversary. Now, if
another user (p’, Isid’, r’) sends a request to Ferypio 0 also generate a fresh symmetric key before Ferypio received the
response for user (p, Isid, r) from the adversary, then Ferypro Will alSO Ferypro forwards this request to the adversary and
waits for a response from the adversary. That is, now Ferypio i Waiting for two responses from the adversary, one for
user (p, Isid, r) and one for user (p’, Isid’, r’).

Given a configuration of Frypo, by “create a new pointer ptr (for (p,lIsid,r)) to (t,k) € K” we denote the al-
gorithm that finds the lexicographically smallest bit string ptr such that key(ptr, p, Isid, r) is not defined and sets
key(ptr, p, Isid, r) := (t, k).

A bit string x is called a valid user plaintext (for party p in role r with LSID Isid) if x is well-tagged and for
every bit string tag,(ptr) contained in x where r € {authenc-key, unauthenc-key, mac-key, pre-key} it holds that
key(ptr, p, Isid, r) is defined and key(ptr, p, Isid, r) = (t, k) for some k.

C Proof of Theorem 3

The direction from left to right is easy to prove by standard cryptographic reductions. Because the domain of plaintexts
is the set of well-tagged bit strings, using the store and retrieve commands, Ferypto/Perypto €an be used to encrypt any
plaintext. Now, it is easy to see that Frypio Offers at least the possibilities as Oracle, (defined in Appendix A.6), Foe,
and ¥ ;. By Lemma 1 and the results in [33], we can conclude that if 7 | Perypio < F | Ferypros then Zunauthenc and Zpup
are IND-CCA secure, Zyyphenc is IND-CPA and INT-CTXT secure, and 2y, and 2;, are UF-CMA secure.

To prove the direction from right to left we use a hybrid argument, see Section 3.3 for a sketch of this proof. As
mentioned in the proof sketch, we first introduce an intermediate system %, where we replace public-key encryp-
tion with 2, and digital signatures with 2;, by the use of the ideal functionalities ¥ for public-key encryption and
Fsig for digital signatures presented in [33]. More precisely, P’Crypm uses (instances of) Fpre and Fig as a sub-protocol.
There will be one instance of ¥k, and one of F;, for every party which handles all requests for public/private keys

of this party. The addressing can be done using the session version Fpe (resp., Fig) of Fpre (resp., Fig) where the

PID is used as a session ID to address the different instances of Fpie (resp., ﬁigﬁe [33] for details. In [33], it has
been shown that realizing ¥k by a public-key encryption scheme is equivalent to the public-key encryption scheme
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Ferypro(@> 11, L)

Tapes: input: 7™ forall r € {1,...,n} (enriching I/O tapes), T:.SV (network tape)
output: 77 for all r € {1,..., n} (I/O tapes), Toy (network tape)
We say that “m is received from (p, Isid, r)” if (Isid, p, m) is received on tape T,". By “send m to (p, Isid, r)” we denote that
(Isid, p,m) is sent on tape T°". Similarly, we say that “m is received from/sent to T,q,” if m is received on tape le‘c“v or m is
sent on tape T, respectively.
State: The state of Frypo consists of the following variables:
— eNCyyhenc> A€Cauthencs €NCunauthenc » A€Cunauthenc €NCpie, d€Cy . mac, mac-verify, sig, sig-verify € {0, 1}* U {1} (initially L;
interpreted as algorithms)
— K c {authenc-key, unauthenc-key, mac-key, pre-key} x {0, 1}* (initially 0)
- 7<.known c K (lnltlally 05 7(unknown =K \ (](known)
— key: {0, 1}* x {0, 1}* x {0, 1}* x N — K U {_L} (initially key(ptr, p, Isid, r) := L for all ptr, p, Isid, r)
= PKkes SKpkes PKgig» SKyig {0, 1} — {0, 1}* U { L} (initially p ~ L for all p)
N c {0, 1} (initially Q)
Corrupt C {0, 1}* (initially 0)
Furthermore, Forypio keeps track of several operations that have been performed.
For all variables that are interpreted as algorithms (e.g., €NCayenc), Ferypro Simulates its execution as follows: Given a
(description of an) algorithm A, by “y «— A(x)” we denote that a probabilistic execution of A is simulated on input x. If the
simulation terminates within at most q(|x|) steps, then y is set to its result, otherwise, y is set to L. Similarly, by “y := A(x)”
we denote (enforced) deterministic execution of A.
CheckAddress: Every message on every tape is always accepted.
Compute:
Network input: Upon receiving a message m from T,q4, do:
1. If m = (Algorithms, e, d, ¢’, d’, mac, mac-verify, sig, sig-verify) and enc,ypenc = L, then: Set encyypenc = e,
dec,yhene := d, €NCypauthenc ‘= €, d€Cynauthene := d’, Mac := mac, mac-verify := mac-verify, sig := sig,
sig-verify := sig-verify, and send (Ack) to Tyqy.
2. 1t m = (KeysPKE, p, pk, sk, corrupt) such that corrupt € {false, true} and pk.(p) = L, then: Set pk,.(p) := pk and
skyie(p) = sk. If corrupt = true, then add (pke, p) to Corrupt. Send (Ack) to Ty .
3. It m = (KeysSig, p, pk, sk, corrupt) such that corrupt € {false, true} and pkg;,(p) = L, then: Set pk,(p) := pk and
skgg(p) := sk. If corrupt = true, then add (sig, p) to Corrupt. Send (Ack) to Tyay.
1/O input: Upon receiving a message m from (p, Isid, r) do:
4. Symmetric key generation: If m = (New, ) for some ¢ € {authenc-key, unauthenc-key, mac-key, pre-key}, then:

(a) Send (p, Isid, r, New, t) to T,q, and wait for receiving (p, Isid, r, Continue, corrupt, k) from T,q, Where
corrupt € {false,true} and ((¢, k) ¢ K or (corrupt = true and (¢, k) € Kinown))-

(b) Add (t,k) to K (if (¢, k) ¢ K). Create a new pointer ptr for (p, Isid, r) to (¢, k).

(c) If corrupt = true, then add (ptr, (p, Isid, r), ptr) to Corrupt and add (¢, k) to Kinown-

(d) Send (Pointer, ptr) to (p, Isid, r).

5. Public key requests: If m = (GetPubKeyPKE, p’) (resp., m = (GetPubKeySig, p’)), then send (PubKey, pk) to
(p.Isid, r) where pk = pkyy, (p') (resp.. pk = pky,(p")).

6. Nonce generation: If m = (NewNonce), then: Send (p, Isid, r, NewNonce) to 7,4, and wait for receiving
(p, Isid, r, Continue, corrupt, x) from T,q, where x ¢ N. Add x to N (if x ¢ N). Send (Nonce, x) to (p, Isid, r).

7. Pre-shared keys: If m = (GetPSK, ¢, name) for some ¢ € {authenc-key, unauthenc-key, mac-key, pre-key} and
name € {0, 1}*, then:

(a) Send (p,Isid, r, GetPSK, t, name) to T,q, and wait for receiving (p, Isid, r, Continue, corrupt, k) from T4, wWhere
corrupt € {false, true} and the following is satisfied: i) if a key (¢, k’) is recorded for (¢, name), then k = k' and
corrupt = false, ii) if (psk, t, name) € Corrupt, then corrupt = true, iii) if corrupt = true, then (¢, k) ¢ Kunknown>
and iv) if no key (¢, k’) is recorded for (¢, name) and corrupt = false, then (¢, k) ¢ K.

(b) Add (t,k) to K (if (1, k) ¢ K). Create a new pointer ptr for (p, Isid, r) to (¢, k).

(c) If corrupt = true, then add (psk, #, name) and (ptr, (p, Isid, r), ptr) to Corrupt and add (z, k) to Kinown-
Otherwise, record (¢, k) as the pre-shared key name.

(d) Send (Pointer, ptr) to (p, Isid, r).

Fig. 4. Ideal Crypto Functionality F¢ryp0; parameterized by a polynomial ¢, a number n € N which defines the I/O interface, and a
leakage algorithm L.
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ﬁrypto(qy n, L)

8. Encryption under symmetric keys: If m = (Enc, ptr, x) for some ptr, x where (¢, k) = key(ptr, p, Isid, r) for some
t € {authenc-key, unauthenc-key} and some &, x is a valid user plaintext, and enc, # L (i.e., the encryption algorithm is
defined), then:

(a) In the following, let ideal = true if (¢, k) € Kunknown, Otherwise, let ideal = false.
(b) Translate pointers in x to keys, obtain x’: Obtain x’ from x by replacing every pointer tag, (ptr’) in x (i.e., where
' € {authenc-key, unauthenc-key, mac-key, pre-key}) by tag, (k") where (', k') = key(ptr’, p, Isid, r).
(c) Encrypt x', obtain ciphertext y:
if x’ ¢ dom(L), then
y:=1
else if ideal = true then
X« L"), y « enc,(k,x), X := dec,(k,y)
if X' = X then record (', y) for key (¢, k) (for later decryption) else y:= L
else {ideal = false}
y < enc,(k, x')
(d) Update Kinown- If y # L and ideal = false, then: For every key tag, (k') in x’ (i.e., where
t' € {authenc-key, unauthenc-key, mac-key, pre-key}), add (¢, k) to Kinown-
(e) Return ciphertext: Send (Ciphertext, y) to (p, Isid, r).

9. Encryption under public keys: If m = (PKEnc, p’, pk, x) for some p’, pk, x where x is a valid user plaintext, ency. # L,
and pk,,.(p") # L then perform the encryption as the encryption under symmetric keys, i.e., 8. (a) to (e), expect that: i)
ideal = false iff (pke, p’) € Corrupt or pk,.(p’) # pk, ii) enc,(k, ) is replaced by encye(pk, -), iii) dec;(k, y) is replaced by
decyic(sKpke ('), i), and iv) “record (x', y) for key (¢, k)” is replaced by “record (x', y) for p"”.

10. Decryption under symmetric keys: If m = (Dec, ptr, y) for some ptr,y where (¢, k) = key(ptr, p, Isid, r) for some
t € {authenc-key, unauthenc-key} and some k, y € {0, 1}*, and enc, # L, then:
(a) In the following, let ideal = false if (¢, k) € Kynown OF (f = unauthenc-key and there exists no x’" such that (upon
encryption) (x’, y) has been recorded for (¢, k)), otherwise, let ideal = true.
(b) Decrypt y, obtain plaintext x':
if ideal = true then
if dx;, x2: x; # x, and both (x;, y) and (x,, y) have been recorded for (z, k) then
X' =1
else if dx”: (x”, y) has been recorded for (7, k) then
X =x"
else {Note that in case r = unauthenc-key, this cannot occur by definition of ideal}
xXi=1
else {ideal = false}
x' = dec,(k, y)
if x” is not well-tagged then x’ := L
(c) Prevent guessing: If x' # L, ideal = false, and there exists a key tag, (k') in x" such that (¢, k") € Kunknown, then set
X' =1
(d) Update Kinown: If X' # L and ideal = false, then for every key tag, (k') in x’, add (¢, k") to K and Kinown-
(e) Translate keys in x' to pointers, obtain x: Let x be the bit string obtained from x’ by doing the following for every key
tag, (k') in x": Create a new pointer ptr’ for (p, Isid, r) to (¢, k'), and replace tag, (k') by tag, (ptr’) in x’.
(f) Return plaintext: Send (Plaintext, x) to (p, Isid, r).
11. Decryption under private keys: If m = (PKDec, y) for some y € {0, 1}*, decpi. # L, and sky.(p) # L, then perform the
decryption as the decryption under symmetric keys of type ¢ = unauthenc-key, i.e., 10. (a) to (e), expect that: i)
ideal = false iff (pke, p) € Corrupt or there exists no x’ such that (upon encryption) (x’, y) has been recorded for p, ii)
dec;(k, y) is replaced by decy.(Skpke (D), y), iii) “.. . recorded for (¢, k)” is replaced by “...recorded for p”.

Fig. 5. Ideal Crypto Functionality #yp0; parameterized by a polynomial ¢, a number n € N which defines the I/O interface, and a
leakage algorithm L. (continued)
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f:ryplo (q’ n, L)

12. Key derivation: If m = (Derive, ptr,t', s) for some ptr where (¢, k) = key(ptr, p, Isid, r) for some k and r = pre-key,
¢’ € {authenc-key, unauthenc-key, mac-key, pre-key}, and seed s € {0, 1}*, then:
(a) Send (p, Isid, r, Derive, t, k,t', s, known) to T4, Where known = true iff (¢, k) € Kinown and wait for receiving
(p, Isid, r, Continue, k') from T,4, where the following condition is satisfied:
if exists k” such that (¢, k") has been derived from (¢, k) with seed s then k' = k”
else if (7, k) € Kynknown then (7', &) ¢ K
else (I/» k’) ¢ (](unknown
(b) If (t, k) € Kinown, then add (', k") to Kinown- Add (¢, k") to K. Record (', k') as derived from (z, k) with seed s. Create a
new pointer ptr’ for (p, Isid, r) to (¢', k). Send (Pointer, ptr’) to (p, Isid, r).
13. MAC: If m = (Mac, ptr, x) for some ptr, x where (t, k) = key(ptr, p, Isid, r) for some k and t = mac-key, x € {0, 1}*, and
mac # L, then:
(a) Compute MAC: Compute o < mac(k, x) and b := mac-verify(k, x, o). If b # true, then set o := L. If (£, k) € Kinknown
and o # L, then record x for (¢, k) (for later verification).
(b) Return MAC: Send (Mac, o) to (p, Isid, r).
14. Verify MAC: If m = (MacVerify, ptr, x, o) for some ptr, x, o where (¢, k) = key(ptr, p, Isid, r) for some k and ¢t = mac-key,
x,0 € {0, 1}, and mac # L, then:
(a) Verify MAC: Compute b := mac-verify(k, x, o).
(b) Prevent forgery: If (t,k) € Kunknown, b = true, and (upon MACing) x has not been recorded for (¢, k), then set b := L.
(¢) Return verification result: Send (MacVerify, b) to (p, Isid, r).
15. Sign: If m = (Sign, x) for some x € {0, 1}*, sig # L, and sk, (p) # L, then:
(a) Compute signature: Compute o « sig(skis(p), x) and b := sig-verify(pk
(sig, p) ¢ Corrupt, then record x for p (for later verification).
(b) Return signature: Send (Sign, o) to (p, Isid, r).
16. Verify signature: If m = (SigVerify, p’, pk, x, o) for some p’, pk, x, o, sig # L, and pk
(a) Verify signature: Compute b := sig-verify(pk, x, o).
(b) Prevent forgery: If b = true, pk = pk,,(p’), (sig, p’) ¢ Corrupt, and (upon signing) x has not been recorded for p’, then
seth:= 1.
(¢) Return verification result: Send (SigVerify, b) to (p, Isid, r).
17. Store: If m = (Store, t, k) for some ¢ € {authenc-key, unauthenc-key, mac-key, pre-key} and k € {0, 1}*, then: If
(t, k) € Kunknown» then send (Store, L) to (p, Isid, r). Otherwise, add (¢, k) to K and Kynown, create a new pointer ptr for
(p, Isid, r) to (t, k), and send (Pointer, ptr) to (p, Isid, r).
18. Retrieve: If m = (Retrieve, ptr) for some ptr where (t, k) = key(ptr, p, Isid, r) for some ¢, k, then: Add (¢, k) to Kinown and
send (Key, k) to (p, Isid, r).
19. Equality test: If m = (Equal?, ptr, ptr’) for some ptr, ptr’ where (1, k) = key(ptr, p, Isid, r) and (', k') = key(ptr’, p, Isid, r)
for some t,k, ¢, k’, then: If t = ¢’ and k = k’, send (Equal, true) to (p, Isid, r), otherwise, send (Equal, false) to (p, Isid, r).
20. Corruption request for a symmetric key: If m = (Corrupted?, ptr), then send (Corrupted, b) to (p, Isid, r) where b = true
if (ptr, (p, Isid, r), ptr) € Corrupt and, otherwise, b = false .
21. Corruption request for a public/private key: If m = (CorruptedPKE?, p’) (resp., m = (CorruptedSig?, p’)), then send
(Corrupted, b) to (p, Isid, r) where b = true if (pke, p’) € Corrupt (resp., (sig, p’) € Corrupt) and, otherwise, b = false.

sig(P), x,0). If b # true, then set o := L. If

sig(P’) # L then:

sig

Fig. 6. Ideal Crypto Functionality Fcryp0; parameterized by a polynomial ¢, a number n € N which defines the I/O interface, and a
leakage algorithm L. (continued)
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being IND-CCA secure. Furthermore, in [33], it has been shown that realizing ¥, by a digital signature scheme is
equivalent to the digital signature scheme being UF-CMA secure. From this, we obtain that Perypio < Porypo-

Next, we show that |\, < F " |Ferypo Which completes the proof. Note that public-key encryption and
digital signatures in P, and Ferypro is already done identically in an ideal way. In the following, we do not consider
keys of type unauthenc-key. For such keys the presentation of the proof is slightly more complicated because a key
of type unauthenc-key which is marked unknown could be used for decryption before it is used for encryption. Now,

if this is the r-th key than this decryption in the hybrid F  will be handled by Oracle. But then, the r-th key might

crypto
become known (F* does not prevent this because it is not a commitment problem) and F_ v

crypto €€dSs to have the ability
to extract the key from Oracle; see [35] for details.

Formulation of the Simulator. The simulator Simyp, is defined as follows: On the first activation it provides the
encryption, decryption, MAC, and signature algorithms to Frypto. Upon generation of fresh keys, pre-shared keys, and
nonces, Sincrypro chooses keys and nonces as ?;rypm. Upon key derivation from an unknown key, Simcrypio chooses a
fresh key uniformly at random from {0, 1}". Otherwise, it uses the pseudo-random function F' as %, does. Further-

crypto
more, Simcrypo Simulates the network interface of (instances of) Fy. and i, as it exists in P’Crypto.

Formulation of the Hybrid Systems. We define the hybrid systems ?;(rry)pw and ?’i(rry)pm
ﬁ(gpm behaves like Ferypio €Xxcept that the order in which unknown keys are used is tracked, as in #*. All keys with
order < r are treated ideal (as in Ferypo) but keys with order > r are treated real (as in the realization P;rypto). In Ferypto
the adversary was not able to insert keys (upon key generation, store, decryption, or key derivation with corrupted or
known keys) that collide with unknown objects (guessing of objects that are ideally not known). Here, this is only
guaranteed for keys of order < r or as long as there are no keys of order > r.

More formally: The system Tc(r?pto has an additional variable nextused € N (initially 1) and maintains a partial
function used from keys () to numbers (N) to keep track of the order in which unknown keys are used. Preventing
key guessing is relaxed as follows:

for all r € N. The system

1. For symmetric key generation [(New, f)], when receiving a key from the adversary, the condition “(t,k) ¢ K or
(corrupt = true and (1, k) € Kinown)” is replaced by “(t,k) ¢ K or (corrupt = true and Guess"”(t, k) = false)”
where Guess(¢, k) := true iff (¢, k) € Kynimown and (L # used(t, k) < r or nextused < r).

We note that for every pair (¢, k) we have that Guess”(t, k) = true iff (1, k) € Kynknown Where p bounds the runtime
of the environment that uses Ferypto. Furthermore, GuessV(z, k) = false for every pair (¢, k).

2. For storing keys [(Store, 1, k)], the statement “If (¢, k) € Kunknown, then send (Store, L) to (p, Isid, r).” is replaced
by “If Guess”(t, k) = true, then send (Store, L) to (p, Isid, r).”

3. For symmetric and public-key decryption [(Dec, ptr,y) and (PKDec, y)], in Preventing guessing, we replace the
condition “(#', k") € Kunknown” by “Guess” (', k') = true”.

Furthermore, for encryption and decryption under symmetric keys [(Enc, ptr, x) and (Dec, ptr, y)] the definition of
ideal (which determines whether encryption/decryption is performed ideal or real) is modified:

1. For symmetric encryption:
if (¢, k) € Kunknown then
if used(t,k) = L then used(t,k) := nextused++
if used(t, k) < r then

ideal := true
else
ideal := false
else
ideal := false

2. For symmetric decryption:
if (7, k) € Kunknown then
if L # used(t, k) < r or nextused < r then

ideal := true
else
ideal := false
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else
ideal := false

Finally, also key derivation [(Derive, ptr, t’, s)] changes:

Key Derivation: If m = (Derive,ptr,t’, s) for some ptr where (t,k) = Key(ptr, p,lsid,r) for some k and t = pre-key, ¢’ €

{authenc-key, unauthenc-key, mac-key, pre-key}, and seed s € {0, 1}*, then:

(a) If there exists a bit string k£’ such that (', k") has been derived from (¢, k) with seed s, then create a new pointer ptr’ for
(p, Isid, r) to (¢, k') and send (Pointer, ptr’) to (p, Isid, r). Otherwise, continue.

(b) If (¢, k) € Kinown, then set k" := F,(k, tag,(s)).
Otherwise, if used(t,k) is undefined (i.e., used(t,k) = 1), then used(t,k) := nextused++. If used(t,k) < r, then choose
k' <R{0, 1}7. Otherwise, set k' := F,(k, tag, (s)).

(c) If (t, k) € Kinown and Guess(z, k) = true, then produce empty output in this activation.
Otherwise, add (¢, k") to K and record (¢, k') as derived from (¢, k) with seed s. If (¢, k) € Kinown, then add (¢, k") to Kinown-
Create a new pointer ptr’ for (p, Isid, r) to (', k’). Send (Pointer, ptr’) to (p, Isid, r).

except that it connects to Oracle and the key with order r is relayed out and
handled by calls to Oracle. More formally: fc(gpm has the additional I/O output tape Té‘r‘a e and I/O input tape T .
When a key gets assigned order r, i.e., used(t,k) := r is computed (either upon encryption or key derivation), then

Oracle is initialized, i.e., (Init, authenc) or (Init, prf), respectively, is sent to Oracle. (Recall that we do not consider
keys of type unauthenc-key in this proof, see above.) Now, upon encryption [(Enc, ptr, x)] every thing is exactly as

in ?'C(:y)pm except that if (£,k) € Kynknown and used(t, k) = r, then the ciphertext y is obtained by sending (Enc, x") to

Oracle and waiting to receive y from Oracle. Similarly, upon decryption [(Dec, ptr, y)] every thing is exactly as in

f:(;;)pm except that if (¢, k) € Kunknown and used(t, k) = r, then the plaintext x” is obtained by sending (Dec, y) to Oracle

and waiting to receive x’ from Oracle. Likewise, upon key derivation [(Derive, ptr, ¢, s)] every thing is exactly as in
Fo except that if (, k) € Kunknown and used(t, k) = r, then the key k’ is obtained by sending (PRF, tag, (s)) to Oracle

crypto
and waiting to receive k' from Oracle.

The system ﬁ:;pm behaves like Tc(gpm

/

Completing the Proof of Theorem 3. Let & be an environment for 7 [#(,, ., and pg be a polynomial such that the
overall length of all messages output by & in any run of &|Q(1", a) for any system @, security parameter 7 € N and
initial input a € {0, 1}* is bound by pg(n + |a|). Since & is an environmental system (all input tapes are consuming)
such a polynomial always exists.
For all € N, b € {real, ideal} we define the following combined systems:
C = &| Simerypio | F* | FL)

crypto

CY = &|Siterypio | T | F oot

| Oracle(b) .

Next, we define an error set (i.e., a negligible set of runs we do not want to consider) for collisions of honestly generated

keys and nonces. Let Bg))u(l", a) be the set of runs of C(17, a) where the simulator Simerypio OF ?"C(rry)pm generates a new

key of some type, say ¢, or a nonce, that collides with some key in K or a nonce in N, respectively.

The following lemma is used in the proofs of Lemma 3 and 4. It is easy to prove because we assume that all keys
and nonces are chosen uniformly at random. But even without this assumption the lemma is simple to prove because
key collisions with non-negligible probability can be used to construct an adversary with non-negligible advantage.

Lemma 2. There exists a negligible function f.oy such that for allr € N, n € Nand a € {0, 1}*
Pr[BY (1", )] < fen(1",a) . (1)

In the following, we call two systems P and Q f-indistinguishable (P =y Q) iff the difference between the prob-
ability that P outputs 1 (on the decision tape) and the probability that Q outputs 1 (on the decision tape) is bounded
from above by f(17, a) for all security parameter 7 € N and external input a € {0, 1}*.

Lemma 3. There exists a negligible function fy such that

CY =, 817" | Playpio @
C(pa) =5 &l Simcrypto Vil |7:cryplo . 3)
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Proof. Let f.on(17,a) = Pr [B(O) (1", a)]. By Lemma 2 we have that f, is negligible.

ad (2): Now, we show thcaoil EI1F " | Playpio =foon C. Note that in every run of C”(17, ) it always holds that
nextused > 1 and for any (t,k) € K it holds that used(t,k) = L or used(t,k) > 0. In particular this implies that
GuessV(t, k) = false for all (1,k) € K. One easily verifies that every run of C©(17, a) where Bi?u(lﬂ,a) does not
occur corresponds, i.e., can be injectively mapped, to a run of &|F | P,

rypto(17, @) with the same overall output and
probability. We conclude that

|Pr[E1F " | Playpio(17, @) ~ 1] = Pr[CO(17,a) ~ 1]| < feon(1,a) 3

rypto

ad (3): First, we define an intermediate system @ which is defined exactly like the ideal system & | Siterypio | ™ |
Ferypto €Xcept that verification of a MAC is done as in the real system, i.e., the request (MacVerify, ptr, x, o) is handled
as in P, . In every run of CPeD)(17, a) it always holds that nextused < pg(n + lal), hence, for all pairs (1, k) we
have that GuessPe"" D) (1, k) = true iff (1,k) € Kunnown. One easily verifies that every run of C?e(r)(17, q) where
Bif) 151(7“'”‘))(1’7, a) does not occur corresponds, i.e., can be injectively mapped, to a run of Q(17, a) with the same overall

output and probability. We conclude that
[Pr[Q(17, @) ~ 1] = Pr[CPeT D (17, a) ~ 1]| < feon(17,a)

Next, by a hybrid argument, we prove that Q = &|Simcrypio | F* | Ferypo Which completes the proof. Therefore, we
define the hybrid systems Q" for r € N which connect to Oracle. The system Q" is defined like Q except that we
order the keys of type mac-key in the order they are created (i.e., generated upon request of the form (New,?) or
(Derive, ptr,t', s)). Note that this order is independent of the used-order defined above. Now, Q™ handles every MAC
key of order < r as in @, every key with order > r as in &|Simerypio | 7 | Ferypro» and the key of order r is externally
handled in Oracle. Using Lemma 1, by a standard hybrid argument we obtain that Q = &| Simerypio | F* | Ferypto- O

The next lemma is used to show that the r-th hybrid is indistinguishable from the (r + 1)-th hybrid.
Lemma 4. There exist negligible functions freal, fideal SUch that

c =, C’;E;L, forallr € N and “4)

¢V =, CY  forallreN . (5)

Proof. We only show (4), the proof of (5) is similar. First, we note that the two systems C” and agal are already very
close to each other because every key (including the r-th key) is treated in the same way (real or ideal) in the two

systems. The only difference is that in C”) the r-th key is handled inside 77C(rry)pw while in 5&;" cryptographic operations

with the r-th key are handled inside Oracle and ﬁgpm uses a different key than the key in Oracle if the r-th key is
encrypted. Since the used-order is respected, the r-th key is always encrypted ideally, i.e., not the key itself is encrypted
but its leakage. Hence, the actual value of the key when encrypted does not matter. Furthermore, even if the r-th key
is a derived key, it has been derived ideally, i.e., chosen uniformly at random, and hence, it is distributed just like the
key in Oracle. Thus, the only difference between C'” and d;; occurs upon key collisions (if a freshly generated key
by Simcrypio collides with some other key) or if the environment is able to guess the r-th key (see below). But because
this keys was only encrypted ideally, we can show that this probability is negligible.

More formally, to show (4), we define a mapping from every run p of C”, excluding a negligible set B"” of error
runs (see below), to a set S, of runs of C’;ir)al such that the probability of p is the same as the one for S, and the
overall output of p (on tape decision) is the same as the overall output of every run in S ,. Such a mapping implies that
c”=c"

— “real’
We define the error set B” to be Bg))“ U B(ggess- The set Bi:))" was defined above and its probability was shown to

be negligible in Lemma 2, with a bound that is independent of r. The set Bglfess is the set of runs of C”) where &
“guesses” the r-th key, i.e., where at some point during the run & wants to use the r-th key as a corrupted symmetric
key, & wants to store the r-th key, or € decrypts a ciphertext with a known symmetric key or a corrupted public key and

3 Pr[S(17,a) ~» 1] denotes the probability that S outputs 1 (on the decision tape) upon external input a and security parameter 7.
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where the decryption contains the r-th key. If the probability for B(g'{}ess were non-negligible, one could easily construct

a successful adversary against the encryption and pseudo-random function games in question: The adversary would
simulate the system C using his oracles to perform operations with the r-th key and guesses the position (among
polynomially many possible positions) where & guesses the r-th key. This simulation corresponds to the actual system
C" because the r-th key is only encrypted ideally and if it is a derived key, it was derived ideally, and hence, its
distribution corresponds to the one in the game. Thus, if the guesses of the adversary and the emulated & are correct,
the adversary can easily win the game. It follows that the probability for B(gru)ess must be negligible. To obtain a bound
which is independent of r, one can consider an adversary that first guesses r and then proceeds as above. Altogether,
we obtain a negligible function, which is independent of r, and bounds the probability for B".

Now, the mapping is defined in the obvious way as follows: Let p be a run of C”? which is not in B"”. We now

define S, to be the set of runs of a;)al where the key in Oracle (in é(ré)aﬁ is defined to be the r-th key in p and where
we use a freshly generated key as the r-th key in ?’:C(r’y)pm (in éTr;)aQ' Every such freshly generated key induces one run
in §,. By construction, the probabilities of p and S, are equal. Now, with the observations made above (the r-th key
is ideally encrypted and uniformly distributed) and the fact that collisions and guessing does not occur, one can easily
show, by induction on the length of runs, that the view of & in p is the same as the view of & in every run p” in S, and
hence, the overall output is the same.

Since the probability of B" is bounded by a negligible function independently of r, we obtain that there exists a

negligible function fies such that C” = C%) forall r € N. i

real
Finally, using the lemmas above, we complete the proof of Theorem 3. Let & be the system that upon initial input a

first chooses r € {0, .. ., pg(n7+]al)—1} uniformly at random and then behaves exactly like & | Simnerypio | F | ?C(:;pm(l”, a).

Clearly, & is an environment for Oracle and, hence, by Lemma 1 we find a negligible function fo such that
&' | Oracle(real) =¢, & | Oracle(ideal) . (6)
By definition, for all 7 € N, a € {0, 1}*, r < pg(n + |al), and b € {real, ideal} it holds that

Pr[C (17, a) ~ 1]
= Pr[(&'| Oracle(h))(1",a) ~ 1|&' chooses r] (7)
= ps(n + lal) - Pr[(E" | Oracle(b))(17,a) ~» 1 and & chooses r] .

In the following, we abbreviate Pr[@] = Pr[Q(1", a) ~» 1] for all systems Q, pg = pg(n + |a]), and f; = f,(1", a) for all
x. Now, for all n € N and a € {0, 1}* it holds that:

[PHE| F* | Pleypio] = PHE | Simerypio | F | Ferypro]|

oI IPr[CO] - Pr [C)]| + 2, = 'Z Pr[C"] - Pr [C<r+1)]| +2fo

r<pe

@5 . ,
< | PrICLL )~ Pr(Ch ]| + 2o + pelfiear + figoa)
r<pg
D Pe - Z Pr[&’| Oracle(real) and & chooses ]
r<pg

—Pr[&'| Oracle(ideal) and & chooses r]| + 2fo + pe(freal + fideal)
= pe - |Pr[&'| Oracle(real)] — Pr[&' | Oracle(ideal)]| + 2y + pe(freal + fideal)

(6)
< 2fo + ps(freal + fideal + fo) -

Since 2fy + ps(freal + fideal + fo) is negligible, ¥* |7>g]ypm < F* | Ferypto- This concludes the proof. |
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