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Abstract. Motivated by the lattice basis delegation technique due to
[8], we propose an adaptively secure identity-based broadcast encryp-
tion(IBBE) scheme based on the hard worst-case lattice problems. Our
construction can be generalized to a hierarchical IBBE (HIBBE) eas-
ily. Using the method in [1], we also modify our basic construction to
obtain an IBBE in the standard model. To the best of the authors’
knowledge, our construction and its variants constitute the first adap-
tively secure IBBE schemes from lattices, which are believed secure in
the post-quantum environment.
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1 Introduction

Broadcast Encryption. Broadcast encryption (BE) schemes are cryptosys-
tems that enable a sender encrypts messages and transmits them to a group
of users over a broadcast channel such that only the chosen users can use their
private keys to decrypt messages. Broadcast encryption are useful in pay-TV sys-
tems, distribution of copyrighted material, and CD/DVD content protection,etc.
Since Fiat and Naor proposed the first broadcast encryption scheme[13], many
BE schemes have been proposed [6,11,12,16,25]. A notable work is proposed by
Boneh, Gentry and Waters [6] that achieves a desirable feature as fully collusion
resistance (even if all users outside of S collude, they can obtain no informa-
tion about the broadcast message). A lot of BE schemes make use of the Key
Encapsulation Mechanism (KEM) encryption paradigm where the broadcast ci-
phertext only encrypts a symmetric key used to encrypt the broadcast contents.
We will adopt the KEM method in the following.

Identity-Based Broadcast Encryption. In this paper we consider a situa-
tion where identity-based cryptography (IBC) is incorporated to the broadcast
setting [12,26]. The concept of identity-based cryptography was introduced by
Shamir [24] to simplify the certificate management process. As in identity-based
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cryptographic constructions [4,5,9,10,14], a user’s public key is allowed to be
derived from his/her identity information, such as an email address, while the
corresponding private key is calculated by a trusted authority called Key Gen-
erator Center (KGC). In 2007, Delerablee [12] proposed the first identity-based
broadcast encryption scheme (IBBE) using the bilinear mapping, which can be
seen as the generalization of identity-based encryption systems.

Motivations. Up to date, most of proposed broadcast encryption and identity-
based broadcast encryption schemes rely on hard number theory problems such
as integer factorization, discrete logarithm and bilinear pairings with the diffie-
hellman problem. However, above underlying number theory problems will be
solvable if practical quantum computers become reality, so it implies a potential
security threat to these schemes. Thus, a natural question one can ask is how
to design broadcast encryption systems that are secure in the quantum environ-
ment. In recent years, lattices have emerged as a possible alternative to number
theories. Lattice-based cryptography began with the seminal work of Ajtai[1],
who showed that it is possible to construct families of cryptographic functions in
which average-case security is provably related to the worst-case complexity of
hard lattice problems. Lattice-based constructions also enjoy relatively efficient
implementations, as well as great simplicity. In addition, lattice-based cryptog-
raphy is believed to be secure against quantum computers.

Our Contribution. Following the above discussion, in this paper, we focus on
constructing a new type of identity-based broadcast encryption schemes from
lattices. The idea behind our construction is based on the lattice delegation
technique due to [8]. Our basic approach is as follows. In our IBBE scheme,
the master public/secret key pair of the KGC is simply a matrix A0 ∈ Zn×m

q

and a corresponding short basis B0 for lattice Λ⊥(A0). As explored in prior
works[3,15], a short basis can be treated as a trapdoor for the corresponding
lattice. Knowledge of such a trapdoor makes it easy to solve some seemingly
hard problems relative to the lattice. Each user identity IDi is associated with
a matrix AIDi

∈ Zn×m
q by taking AIDi

= H1(IDi). Using the master secret
key B0, the KGC can extract a private key (short basis) for the identity IDi by
setting QIDi

= [A0‖AIDi
] ∈ Zn×2m

q and running the basis delegation algorithm
to generate a short basis for the lattice Λ⊥(QIDi

). In the broadcast approach,
for the receiver set S of size k, the broadcaster constructs a public lattice related
to the receiver set as AS = [A0‖AID1‖...‖AIDk

](for IDi ∈ S, 1 ≤ i ≤ k). Using
the basis delegation technique, each member in S should be able to deduce a
new decryption key (short basis) for Λ⊥(AS) from its private information. The
encryption and decryption algorithms can work as in the LWE-based Dual-PKE
[15]. Since the short basis for the lattice essentially functions like cryptographic
trapdoors, only the users in S can decrypt the broadcast message. Our broadcast
construction is provably fully collusion resistant under adaptive attacks. More-
over, our construction can be generalized to obtain a hierarchical identity-based
broadcast encryption scheme easily. Finally we extend our work to achieve an
IBBE with O(λ

√
|S|) size ciphertexts. In this approach we essentially perform
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√
|S| encryptions to

√
|S| of the recipients, but share the same system parame-

ters all these encryptions.

Related Work. Our cryptographic construction is based on the hardness as-
sumption of the learning with error problem (LWE)[23]. For reasonable choices
of parameters, LWE is as hard as the shortest vector problem (SVP) in lat-
tices. The first version of the LWE-based cryptosystem together with a security
proof were presented by Regev [23]. Gentry, Peikert and Vaikuntanathan [15]
constructed a kind of trapdoor primitives called pre-image sampling functions
that, given a basis of a q-ary modular lattice, samples lattice points from a Dis-
crete Gaussian probability distribution whose standard deviation is essentially
the length of the longest Gram-Schmidt vector of the basis. As the application
of above trapdoors, Gentry et al.[15] constructed an identity-based encryption
scheme based on LWE. Another notable recent work is due to Cash et al.[8] who
constructed a basis delegation technique that allows one to derive a short basis
of a given lattice using a short basis of a related lattice. The mainly idea of [8],
denoted as generalized preimage sampling, is that, given a trapdoor which allows
preimage-sampling in [15], one can use this trapdoor to preimage samples under
many different, but related, public keys. Using this basis delegation technique,
Cash et al.[8] also constructed a hierarchical identity-based encryption (HIBE)
as well as a stateless signature of lattice-based constructions. In other indepen-
dent works, Peikert[22] proposed the notion of a bonsai tree on lattices which
is technically equivalent to the basis delegation technique in [8]. Agrawal and
Boyen [4] also obtained an identity-based encryption scheme without random
oracles using the similar technique.

2 Preliminaries

2.1 Notation

For a positive integer d, [d] denotes the set {1, ..., d}. For an n ×m matrix A,
let A = [a1, ...,am], where ai denotes the i-th column vector of A. We define
‖a‖ for the Euclidean norm of a, and ‖A‖ = maxi∈[m]‖ai‖. We write ω(f(n)) to
denote the set of functions (or a particular function in that set) growing faster
than cf(n) for any c > 0.

2.2 Lattices

Lattices. Let B = {b1, ...,bn} ∈ Rn consist of n linearly independent vectors.
A n-dimensional lattice Λ generated by B is defined as

Λ = L(B) = {Bc : c ∈ Zn}

Here B is called a basis of the lattice Λ = L(B). For a basis B = {b1, ...,bn}, let
B̃ denote its Gram-Schmidt orthogonalization, defined iteratively as follows: b̃1 =
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b1, and for i = 2, ..., n, b̃i is the component of bi orthogonal to span(b1, ..., bn).

Modular Lattices. In this paper our cryptographic construction will build on
a special form of integer lattices denoted as Modular Lattice, which is invariant
under shifts by a primitive integer modulus q in each of the coordinates. We
will work with two kinds of m-dimensional modular lattices defined by Ajtai [3].
Given a matrix A ∈ Zn×m

q for some integers q, m, n, the first lattice contains
of all integer vectors that are orthogonal (modulo q) to the rows of A and is
defined as:

Λ⊥(A) = {e ∈ Zm : Ae = 0 mod q}
The second lattice is generated by the rows of A:

Λ(A) = {y ∈ Zm : y = AT w mod q, for somew ∈ Zn}
Discrete Gaussians on Lattices. Here we review Gaussian functions used in
lattice based cryptographic constructions. For any r > 0 the Gaussian function
on Rn centered at c with deviation parameter r is defined as

∀x ∈ Rn, ρr,c(x) = exp(−π‖x− c‖2/r2)

For any c ∈ Rn, r > 0 and n-dimensional lattice Λ, the discrete gaussian distri-
bution over Λ is defined as

∀x ∈ Λ,DΛr,c(x) =
ρr,c(x)
ρr,c(Λ)

For a fixed vector y ∈ Zn
q in the span of a matrix A ∈ Zn×m

q , define the coset
of Λ⊥(A) as Λ⊥y (A) = {e ∈ Zm : Ae = y mod q} = t + Λ⊥(A)mod q; where t
is an arbitrary solution (over Z) of the equation At = y mod q. The Gaussian
on Λ⊥y (A), which is the conditional distribution of DZm,r on Ae = y mod q, is
given by

∀x ∈ Λ,DΛ⊥y (A),r(x) =
ρr,c(x)

ρr,c(t + Λ⊥(A))

Micciancio and Regev[19] proposed a lattice quantity called the smoothing pa-
rameter :

Definition 1. For any n-dimensional lattice Λ and positive real ε> 0, the smooth-
ing parameter ηε(Λ) is the smallest real r > 0 such that

∑
0 6=x∈Λ∗ ρ1/r,0(x) ≤ ε.

2.3 Hard Problems for Modular Lattice

We recall the small integer solution (SIS) and learning with errors (LWE) prob-
lems, which may be seen as average-case problems related to the family of mod-
ular lattices.
Small Integer Solution Problem The most well known computational prob-
lem on lattices is the shortest vector problem (SVP), in which given a basis of
a lattice Λ and the goal is to find the shortest vector v ∈ Λ\{0}. There is a
special version of the SVP for the modular lattices, named small integer solution
problem (SIS).
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Definition 2. The small integer solution problem SIS (in the Euclidean l2 norm)
is as follows: given an integer q, a matrix A ∈ Zn×m

q , and a real β, find a nonzero
integer vector e ∈ Zm such that Ae = 0 mod q and ‖e‖2 ≤ β

For functions q(n), m(n), and β(n), SISq,m,β is the ensemble over instances
(q(n),A, β(n)), where A ∈ Zn×m

q is uniformly random. For β ≥ √
m and

m ≥ 2n lg q, with overwhelming probability over the choice of A, there exists an
e ∈ {0, 1}m such that Ae = y mod q for any y ∈ Zn

q [15].

Learning With Errors Problem To describe the learning with error (LWE)
hardness assumption, the following probability distribution is needed. For any
α > 0, the continuous Gaussian distribution Dα has density function exp(−πx2/α2)
for all x ∈ R. For a positive integer q, define Ψα to be the distribution on Zq

obtained by taking a sample from Dq·α, rounding to the nearest integer, and
reducing modulo q. For a dimension parameter n ∈ Z, an integer q = q(n) > 2,
a Gaussian error distributions χ and a vector s ∈ Zn

q ; the distribution of the
variable (a,aT s+x) over Zn

q ×Zq is denoted as As,χ, where the vector a ∈ Zn
q is

uniform and the scalar x ∈ Zq is sampled from χ [19]. The learning with errors
problems is defined as follows [23]:

Definition 3. For an integer q = q(n) and a Gaussian error distributions χ
on Zq, the goal of the (average-case) learning with error problem LWEq,χ is
to distinguish (with non-negligible probability) between the distribution As,χ for
some random secret s ∈ Zn

q and the uniform distribution on Zn
q × Zq(via oracle

access to the given distribution)

We write Advsis
q,β,A(k) and Advlwe

q,χ,A(k) to denote the success probability and
distinguishing advantage of an algorithm A for the SIS and LWE problems, re-
spectively. Using Gaussian techniques, Micciancio and Regev[19] showed that for
any poly-bounded m, β = poly(n) and for any prime q ≥ β · ω(

√
n log n), the

average-case problem SISq,m,β is as hard as approximating the SIVP problem (a
variant of SVP) in the worst case to within a factor Õ(β ·√n). Regev[23] showed
that, for any prime q ≥ (1/α) · (ω(

√
n log n)) and a Gaussian Error Distributions

χ = Ψα, the decisional LWEq,χ problem is as hard as approximating the SIVP
and GapSVP (a variant of SVP) problems in the worst case to within Õ(n/α)
factors using a quantum algorithm.

2.4 Trapdoor and Basis Delegation Functions for Modular Lattices

It was shown in [15] that if SISq,m,2r
√

m is hard, A ∈ Zn×m
q defines a one-way

function fA : Dn → Zn
q with fA(e) = Ae mod q, where Dn = {e ∈ Zm : ‖e‖ ≤

r
√

m}. The input distribution is DZm,r. A short basis for Λ⊥(A) can be used
as a trapdoor to sample from f−1

A (y). Knowledge of such a trapdoor makes it
easy to solve some hard problems relative to the lattice, such as LWE and SIS
problems. Here we briefly introduce such a set of one-way pre-image sampleble
functions (defined in [15]), denoted as TrapGen, SampleDom, SamplePre , which
will be used as building blocks in our cryptographic construction. The following
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functions take the Gaussian smoothing parameter r ≥ ‖B̃‖ · ω(
√

lg m) as a
parameter:

− Generating a function with trapdoor : Let n, q, m be integers with q ≥ 2,
m ≥ 2nlgq, TrapGen(1n) outputs a pair (A,T) such that A ∈ Zn×m

q is
statistically close to uniform on Zn×m

q and B is a good basis of Λ⊥(A) such
that ‖B̃‖ ≤ m · ω(

√
log m) with all but nω(1) probability.

− Domain sampling with uniform output : SampleDom(1n) samples x from dis-
tribution DZm,r.

− Preimage sampling with a trapdoor : SamplePre(A,B,y, r) on input of A ∈
Zn×m

q , a good basis B for Λ⊥(A) as the trapdoor, a vector y ∈ Zn
q and r;

the conditional distribution of the output e is within negligible statistical
distance of DΛ⊥y (A),r.

We now recall the method proposed in [8] which uses a good basis of a lattice Λ
to generate another good basis for a higher-dimensional lattice Λ′ which contains
a sublattice isomorphic to Λ . Let A ∈ Zn×km

q and write A = [A1, ...,Ak], where
each Ai ∈ Zn×m

q . For S′ ⊆ [k], S′ = {i1, ..., ij}, let A′
S= [Ai1 , ...,Aij ], i.e., the

components of A are selected according to S′, when A′ is viewed as a vector
over Zn×m

q . The mainly result of [8] is the theorem as follows.

Theorem 1. Let n, q, m, k be positive integers with q ≥ 2 and m ≥ 2n lg q.
There exists a PPT algorithm SampleBasis, that on input of A ∈ Zn×km

q , a set
S′ ⊆ [k], a basis BS′ for Λ⊥(AS′), and an integer L ≥ ‖B̃S′‖ ·

√
km ·ω(

√
log km)

outputs B ← SampleBasis(A,BS′ , S
′, L) such that, for an overwhelming fraction

of A ∈ Zn×km
q , B is a basis of Λ⊥(A) with ‖B̃‖ ≤ L (with overwhelming

probability). Furthermore, up to a statistical distance the distribution of the
basis B only depends on A and L.

To prove the above theorem, a sampling algorithm GenSamplePre is proposed
which allows to preimage sampling of the function fA(e) = Ae mod q given a
short basis BS′ for Λ⊥(AS′) , and the output is within negligible statical distance
of DΛ⊥y (A),r, where r ≥ ‖B̃R‖ · ω(

√
log km). Assume without loss of generality

that S = [k] for some s ∈ [l]. Let Sc = [k]/S,
The algorithm SampleBasis(A,BS′ , S

′, L) works as follows. It draws O((km)2)
samples by running GenSamplePre(A,BS′ , S

′, y = 0; s = L/
√

km) times. These
samples contain km linearly-independent vectors and have length at most r ·√

km = L. The algorithm then applies the deterministic algorithm PT from [21]
to process the samples into a basis of Λ⊥(A) without increasing the length of
their Gram-Schmidt vectors.

2.5 Identity-Based Broadcast Encryption

An identity-based broadcast encryption scheme IBBE with security parameter
λ and maximal size l of the target set, is made up of four algorithms:
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− Setup(λ, l): Takes as input the security parameter λ and the maximal size
l of the receivers set, and outputs a list of system parameters PK and the
master key MSK for the KGC.

− Extract(MSK, ID): Takes as input a user’s identity string IDi ∈ {0, 1}∗ (1 ≤
i ≤ l) and the master key of the KGC. It outputs a user private key skIDi

.
− Enc(S, PK): Takes as input system parameters, a set of receiver identities

S = {ID1, ..., IDk} with k ≤ l, and outputs a pair (Hdr,K), where Hdr is
called the header and K ∈ K. Here K is a set of keys for the symmetric
encryption algorithm.
Let M ∈ {0, 1}∗ be a message to be broadcast to users in S .Choose a sym-
metric encryption scheme Esym with key-space K and algorithms SymEnc
and SymDec. The broadcaster generates (Hdr,K) ← Enc(S, PK), and com-
putes the encryption of M as CM ← SymEnc(K, M). The broadcast message
to users in S consists of (Hdr, S, CM ).

− Dec (S, ID, skIDi
,Hdr,PK): Takes as input system parameters, a receiver

subset S = {ID1, ..., IDk} with k ≤ l, an identity IDi and the correspond-
ing private key skIDi , a header Hdr, and the public key PK. If IDi ∈ S,
the algorithm outputs the message encryption key K which is then used to
decrypt CM and obtain M .

For consistency purposes, we of course require that for all S ⊆ {ID1, ..., IDl}
and all IDi ∈ S, if <PK,MSK>

R←− Setup(λ, l), skIDi

R←− KeyGen(IDi,MSK),
and <Hdr,K>

R←− Enc(S, PK), then Dec(S, IDi, skIDi
,Hdr, PK) = K.

There are two types of security requirements for identity-based broadcast
encryption schemes: security against outsiders who only have public informa-
tion (denoted as Collision-Resistance) and security against insiders who hold
legitimate secret keys but are malicious to broadcasters. Considering the former
type as collusion resistance of the scheme, Gentry and Waters[15] define adap-
tive security for IBBE systems under a chosen identity attack. In this model the
adversary is allowed to adaptively chose the identity it wishes to attack. More
precisely, adaptive security model is defined using the following game between
an adversary A1 and a challenger. Both A1 and the challenger are given l, the
maximal size of a set of receivers S as input.

Setup: The challenger runs Setup(λ, l) to obtain a public key PK, which is then
given to A1.

Key Query Phase : The adversary A1 adaptively issues extraction queries on
IDi (1 ≤ i ≤ l). The challenger responds by running algorithm Extract to
generate the private key corresponding to IDi and returns the resulting key
to A1.

Challenge: Once the adversary A1 decides that the key query phase is over,
A1 specifies a challenge set S∗ = {ID∗

1 , ..., ID∗
k} (with k ≤ l) such that

for all private keys IDi queried we have that IDi /∈ S∗. The challenger
sets (Hdr∗,K0) = Enc(S∗, PK) and K1 to be a random value in K. The
challenger picks a random b ← {0, 1} and returns (Hdr∗,Kb) to A1.
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Guess: The adversary A1 outputs a guess b′ ∈ {0, 1} and wins the game if b′ = b

We denote by qE the total number of extraction queries. Viewing qE , l as attack
parameters, we denote by Advibbe

l,qE
(A1) = |2× Pr[b′ = b]− 1|

Definition 4. Let AdvIBBE(l, qE) =maxA1Advibbe
l,qE

(A1) where the maximum is
taken over all probabilistic algorithms A1 running in time poly(λ), an identity-
based broadcast encryption scheme IBBE is said to be (l, qE) adaptively secure
if AdvIBBE(l, qE) = negl(λ)

The above game models an attack where all users outside of the set S collude
to try and expose a broadcast message intended for authorized users in S. In
the second type of attacks,the game could be described as follows: the attacker
A2 holds legitimate secret keys for some authorized users in S and targets on
another user IDi∗ ∈ S in order to find its private key.Here we define a strong
adversary that A2 may collude with all k − 1 users in S and get their secret
keys except for the target user IDi∗ . If for all poly-time algorithms A2 the
probability that A2 successfully forge a secret key for IDi∗ is negligible, we say
the scheme is secure against insider attack.

3 Identity-Based Broadcast Encryption Scheme from
Lattices

In this section, we describe our identity-based broadcast encryption system us-
ing the lattice basis delegation technique. We start with a slight variant of the
generalized sampling algorithm GenSamplePre(in [8]), which differs only in the
structure of the extended lattice. The original algorithm enables the growth of
extended matrices in a tree form. In our approach, we will handle with another
extension policy better suited for our IBBE scheme given later.

3.1 Generalized Preimage Sampling Algorithm

Assume without loss of generality that S = [k], for some k ∈ [l]. Let k1, k2, k3, k4

be positive integers and k = k1+k2+k3+k4. We write AS = [AS1‖AS2‖AS3‖AS4 ] ∈
Zn×km

q , where AS1 ∈ Zn×k1m
q , AS2 ∈ Zn×k2m

q , AS3 ∈ Zn×k3m
q , AS4 ∈ Zn×k4m

q .

Let AR = [AS1‖AS3 ] ∈ Zn×(k1+k3)m
q . Given a short basis BR for Λ⊥(AR) and an

integer r ≥ ‖B̃R‖ · ω(
√

log km), the algorithm GenSamplePre allows to sample a
preimage of the function fAS

(e) = ASe mod q. GenSamplePre(AS ,AR,BR,y, r)
proceeds as follows:

1 Sample eS2 ∈ Zk2m from the distribution DZk2m,r and sample eS4 ∈ Zk4m

from the distribution DZk4m,r. Parse eS2= [ek1+1, ..., ek1+k2 ] ∈ (Zm)k2 and
eS4= [ek−k4+1, ..., ek] ∈ (Zm)k4 .

2 Let z = y −AS2eS2 −AS4eS4 . Run eR ← SamplePre(AR,BR, z, r) to sam-
ple a vector eR ∈ Z(k1+k3)m from the distribution DΛ⊥y (AS),r. Parse eR

= [e1, ..., ek1 , ek1+k2+1, ..., ek−k4 ] ∈ (Zm)k1+k3 and let eS1 = [e1, ..., ek1 ] ∈
(Zm)k1 , eS3 = [ek1+k2+1, ..., ek−k4 ] ∈ (Zm)k3
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3 Output e ∈ Zkm, as e = [e1, ..., ek]

Note that by construction, we have AS1eS1 +AS3eS3 = AReR = z mod q. Thus
ASe =

∑4
i=1 ASi

eSi
= y mod q, and the output vector e of GenSamplePre

is contained in Λ⊥y (AS). For the analyze of output distribution, we have the
following algorithm.

Theorem 2. Let n, q, m, k be positive integers with q ≥ 2 and m ≥ 2n lg q.
There exists a PPT algorithm GenSamplePre, that on input of AS ∈ Zn×km

q ,
a set R ⊆ [k], a basis BR for Λ⊥(AR), a vector y ∈ Zn

q and an integer r ≥
‖B̃R‖ ·ω(

√
log km) outputs e ← GenSamplePre(AS ,AR,BR,y, r) such that, for

an overwhelming fraction of AS ∈ Zn×km
q , is within negligible statical distance

of DΛ⊥y (AS),r

Proof: The algorithm differs from the original one only in the structure of the
extension matrix, so the proof can be deduced directly from [8] and therefore it
is omitted.

3.2 Our Construction

Let k, l, m, n, q, t be positive integers with q ≥ 2 and m ≥ 2nlogq. Let k ≤ l,
where l is the maximum number of the receivers. The IBBE scheme shares
parameter functions L(k), r(k), α(k) defined in [8] as follows:

− L ≥ m · ω(
√

log n);L(k) ≥ L · mk/2 · ω(logk/2 m): The size of user’s secret
basis.

− r(k) ≥ L(k − 1) · ω(
√

log m): Gaussian parameter for generating the short
basis.

− α(k) ≤ 1/(r(k) · √km + 1 ·ω(
√

log n)): Gaussian parameter for adding noise
to the ciphertext.

Setup: Choose a hash function H1 : {0, 1}∗ → Zn×m
q . The security analysis

will view H1 as a random oracle. Choose v ∈ Zn×t
q uniformly at random,

where t is the length of the message encryption key. Then run the trapdoor
generation algorithm TrapGen (described in section 2.4) to generate A0 ∈
Zn×m

q with a short basis B0 ∈ Zm×m (‖B0‖ ≤ L) for Λ⊥(A0). Output
PK =< A0,H1,v > and the master key MSK = B0.

Extract(MSK, IDi): For an arbitrary identity IDi ∈ {0, 1}∗, define the associated
matrix QIDi as

QIDi = [A0‖AIDi ] ∈ Zn×2m
q

where AIDi
= H1(IDi) ∈ Zn×m

q . To construct user’s secret key, run the basis
delegation algorithm SampleBasis (described in section 2.4) and generate
BIDi

← SampleBasis(QIDi
,B0, S0 = {1}, L(1)), which is a short basis for

Λ⊥(QIDi). Note that by Theorem 1 we have ‖B̃IDi‖ ≤ L(1). The secret key
for IDi is BIDi .
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Enc(S, PK): Assume for notational simplicity that S = {ID1, ..., IDk} with
k ≤ l. The broadcaster does the following:
• Let AS = [A0‖AID1‖...‖AIDk

] ∈ Zn×(k+1)m
q where AIDi

= H1(IDi) ∈
Zn×m

q (1 ≤ i ≤ k). Define a label labS that contains information about
how AS is associated with the sequence of the receivers {ID1, ..., IDk}.

• Choose a vector u ∈ Zn
q uniformly at random, and compute p = AT

Su+

x1 ∈ Z(k+1)m
q , where x1 ← χ(k+1)m and χ = Ψα(k+1).

• Choose a message encryption key K ∈ {0, 1}t. For 1 ≤ j ≤ t, let bj =
bitj(K) be the j-th bit of K. Compute c = vT u + x2 + K · bq/2c ∈ Zt

q

where x2 ← χt.
• Output Hdr =< p, c, labS >.

Dec(Hdr,BIDi): In order to retrieve the message key, an authorized receiver with
identity IDi ∈ S and the private key BIDi

does the following:

• By the information in labS , set AS = [A0‖AID1‖...‖AIDk
] ∈ Zn×(k+1)m

q

where AIDi
= H1(IDi) ∈ Zn×m

q ( 1 ≤ i ≤ k).
• Parse v = [v1, ...,vt] ∈ (Zn

q )t. For 1 ≤ j ≤ t, run the generalized preim-
age sampling algorithm GenSamplePre and generate ej ← GenSamplePre(AS ,AIDi

,
BIDi ,vj , r(k + 1)) ∈ Z(k+1)m. Note that ej is distributed according to
DΛ⊥vj

AS ,r(k+1).

• Parse c as [c1, ..., ct] ∈ Zq. For 1 ≤ j ≤ t, compute b′j = cj − eT
j p ∈ Zq,

let bj = 0 if b′j is closer to 0 than to bq/2c ∈ Zq; otherwise bj = 1.
• Output K = [b1, ..., bt].

3.3 Correctness

The scheme’s correctness is inherited by LWE-PKE [23] and the properties of
the trapdoor functions [15]. In the encryption process, authorized users in S
construct a one-way function fAS

: DS → Zn
q as fAS

(e) = ASe mod q, where
DS = {e ∈ Z(k+1)m : ‖e‖ ≤ r(k + 1)} with the following properties:

Correct Distributions: By Lemma 5.1 in [15], the distribution of the syn-
drome vj = ASej mod q is within statistical distance 2ε of uniform over Zn

q . By
the Theorem 2, algorithm GenSamplePre(AS ,AIDi

,BIDi
, vj , r(k + 1)) samples

an element ej ∈ DS from distribution within negligible statistical distance of
DΛ⊥vj

(AS),r(k+1).
One-Wayness Without Trapdoors: By Theorem 5.9 in [15], inverting a ran-
dom function fAS

on a uniform output is equivalent to solving the inhomogeneous
small integer solution problem ISIS(a variant of SIS) as ISISq,(k+1)m,r(k+1) .
In the broadcast approach, the size of the trapdoor basis L(k) and the Gaus-
sian parameter r(k) of the decryption key increase geometrically with k, the the
number of the receivers in S. To ensure correct decryption, the inverse noise pa-
rameter 1/α(k) in the associated LWE problem also must grow with the receiver
number in S.
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3.4 Security

As mentioned earlier, an IBBE scheme should be secure against two types of at-
tacks: attacks by an outsider (adversary A1) and attacks by authorized receivers
(adversary A2).
In the former type, an IBBE scheme is said to be fully collusion resistant when,
even if all users that are not in S collude, they can by no means infer information
about the broadcast message. In the following theorem we will show that our
scheme is adaptively secure for any collusion of non-authorized users.

Theorem 3. Let q ≥ 5r(l)(m+1) and m ≥ 2n lg q. If H1 is modeled as random
oracles, the IBBE system above is adaptively secure against collusion of outsiders
assuming that LWEq,χ is hard, where χ = Ψα(l+1)

Proof. To simplify the analysis, we consider the situation of encrypting a sin-
gle bit of the symmetric message key in the scheme. Assume that there ex-
ists an adaptive adversary A1 breaking our scheme with distinguish advantage
Advibbe

l,qE
(A1). We now construct an adversary B that has advantage Advlwe

q,χ (B) in
attacking the LWE problem where

Advlwe
q,χ(B) ≥ Advibbe

l,qE
(A1)

lql−1
H1

− negl

Both the adversary and the challenger are given as input l, the maximal size of
a broadcast recipient group, qE and qH1 , the total number of extraction queries
and random oracle queries on H1, that can be issued by the adversary A1. B
interacts with A1 as follows:

Setup : B first uniformly picks k∗ ∈ [l]. (k∗ is a guess for the size of the challenge
receiver set). B then obtains (k∗+1)m+1 samples (aj , bj) ∈ Zn

q ×Zq(1 ≤ j ≤
(k∗+1)m+1) from the LWE oracle where all aj ∈ Zn

q are random, and either
all bj ∈ Zq are also random or all are equal to aT

j s + xj for a uniform secret
s ∈ Zn

q and independent Gaussian noises xj drawn from χ. Next B parses
these LWE samples (aj , bj) ∈ Zn

q × Zq (1 ≤ j ≤ (k∗ + 1)m) as (A∗
i , p

∗
i ) ∈

(Zn×m
q × Zm

q ) (0 ≤ i ≤ k∗) and (y∗, c∗) = (a(k∗+1)m+1, b(k∗+1)m+1) ∈ Zn
q ×

Zq. B chooses v ∈ Zn
q uniformly at random. It sets the master public key

as mpk = A0 = A∗
0, the master secret key (a short basis for Λ⊥(A0))

is unknown to B. The system parameters are given to A1. To respond to
A1’s hash queries in the random oracle, B will maintain a list H1, which
is initialized to be empty and will store tuples of values. A1 also chooses a
random vector t∗ = {t∗1, ..., t∗k∗} ∈ {1, ..., QH1}k∗ .

Query Phase: A1 issues following queries as it wants:

1. Queries to H1. On A1’s j-th query IDi to H1, if j = t∗i , B returns A∗
i to

A1. Otherwise, B runs the algorithm TrapGen to generate Ai ∈ Zn×m
q with

the corresponding trapdoor Bi ∈ Zm×m. B returns Ai to A1 and stores the
tuple 〈IDi,Ai,Bi〉 in list H1. Note that according to [3], Ai is statically
close to uniform over Zn×m

q .
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2. Queries to Ext. When A1 asks for a user’s secret key for IDi, we assume that
A1 has made a H1 query on IDi. If 〈IDi,Ai,Bi〉 is contained in list H1, B can
compute a properly distributed basis BIDi corresponding to IDi’s public key
AIDi = [A0‖Ai] by running BIDi ←SampleBasis(AIDi ,Bi, S0 = {1}, L(1)).
If the generation is successful, then B returns BIDi

. Otherwise B aborts.

Challenge : A1 specifies a target receiver set S∗ = {ID∗
1 , ..., ID∗

k′} with k′ ≤ l.
Assume thatA1 has already made all relevant queries to H1 that defines AS∗ .
If k′ 6= k∗, B aborts and returns a random bit. Otherwise, if one of ID∗

i ∈ S∗

is contained in list H1, B aborts and returns a random bit. Otherwise we
have AS∗ = [A∗

0‖A∗
1‖...‖A∗

k∗ ]. B sets a challenge C∗ = (p∗, c) for a random
bit b∗ ∈ {0, 1} as p∗ = (p∗0, ..., p

∗
k) and c = c∗ + b∗b q

2c .

Guess: Finally, the adversary A1 outputs a guess b′ ∈ {0, 1}, B returns genuine
if b′ = b∗, or random if b′ 6= b∗ as its answer for the LWE instances.

In the view of A1, the behavior of B is statistically close to the one provided
by the real adaptive security experiment. In particular, AS∗ is created using the
LWE instances and has a uniform distribution whether the LWE instances are
genuine or not. It is easy to see that the probability of an abort during the chal-
lenge query is 1 − 1

lqk∗−1
H1

. Implementing a straightforward additional artificial

abort step, this probability of an abort can be raised to 1− 1

lql−1
H1

. If B does not

abort in the query phase, then the distribution of its answers is statistically close
to the one from the real adaptive security environment. For the challenge cipher-
text, if the LWE instances are genuine, the components of C∗ will have the same
distribution as in the LWE game: whereas, if the LWE instances are random,
so will be the components of C∗. If A1 exhibit a different success probability in
either case, B will have successfully distinguished between (k∗+1)m+1 genuine
and random instances of the LWE problem. The proof can be easily generalized
to the multi-bit encryption, because each syndrome c∗ is independent and sta-
tistically close to uniform.

In the second type of attacks, for coalition of authorized users, the security
can be referred to the following insider attack problem. Assume, for contradic-
tion, that there is an adversary A2 colluding with all k−1 users in S and getting
their secret keys except for the challenge user IDi∗ . The target of A2 is trying
to find the private key of the challenge user IDi∗ ∈ S. By Theorem 5.9 of [15],
each authorized user IDi in S constructs a one-way function fIDi : D2m → Zn

q

as fIDi
(e) = QIDi

e mod q, where D2m = {e ∈ Zm : ‖e‖ ≤ r(2)} and the short
basis Bi for Λ⊥(QIDi

) is its trapdoor. The above insider attack problem can
be reduced to breaking the collision-resistant one-way function fIDi∗ defined by
the challenge user IDi∗ .

Theorem 4. The IBBE system above is secure against coalition of authorized
users under chosen message attack assuming that SISq,m,σ

√
m is hard.

Proof : Let A2 be an adversary that breaks the unforgeability on the insider
attack of the IBBE scheme with probability ε = ε(n). We construct a poly-time
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adversary B2 that solves SISq,m,σ
√

m with probability negligibly close to ε.
In the Init phase the adversary A2 chooses a target set S∗ and a challenge
IDi∗ ∈ S∗. B obtains the system parameters and gives them to A1. In the
attack game A2 issues private key queries on IDi ∈ S/{IDi∗} and preimage
quires yi ∈ Zn

q on QIDi∗ = A0‖Ai∗ . As mentioned in [15], the answer for the
preimage query yi can be treated as the signature for yi under fIDi∗ . So it can
be reduced to the chosen message attack on fIDi∗ . B2 answers the key queries
in a similar way as in Theorem 3 and the preimage queries as in the proof of
Theorem 6.1 in [15]. The full proof can be deduced from the combination of the
techniques that are used in Theorems 3 and Theorem 6.1 in [15], and therefore,
it is omitted.

3.5 Efficiency

Our construction achieves O(1)-size public keys, O(k)-size ciphertexts and con-
stant size private keys. Note that the ciphertext is linear in the size of S, we
remark that the resulting IBBE scheme is not very practical. However, it does
serve as a lattice-based IBBE scheme secure in the post-quantum environment.
The comparison with some other pairing based IBBE schemes with fully collu-
sion resistance is shown in Table 1.

Table 1. Comparison of some IBBE schemes

Hdr size public-key sizeprivate key size security

De-IBBE[12] O(1) O(l) O(1) IND-sID-CPA in ROM
GW-IBBE-1[16] O(|S|) O(l) O(1) Adaptively Secure Non-ROM

GW-IBBE-2[16]O(λ
√
|S|) O(1) O(1) Adaptively Secure Non-ROM

Our Work O(|S|) O(1) O(1) Adaptively Secure in ROM

Our Work in 4.3O(λ
√
|S|) O(1) O(1) Adaptively Secure in ROM

4 Variants and Extensions

4.1 Hierarchical IBBE Scheme

The concept of hierarchical IBBE scheme (HIBBE) was proposed by Boneh and
Hamburg in [7]. In a hierarchical IBBE scheme there is a tree-like hierarchy
of identities and private keys as in HIBE [17]. A broadcaster picks a set S
of nodes in the hierarchy and encrypts a message to this set if the number of
distinct path prefixes in S is less than the maximal size of a receiver set. Building
upon the lattice basis delegation structure, Cash et. al’s proposed a hierarchical
identity-based encryption scheme (HIBE)[8]. Note that we could easily obtain
a hierarchical IBBE scheme by representing user’s identity and corresponding
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matrices in a tree structure. The four algorithms of HIBBE: Setup, Extract, Enc,
Dec have similar functions to that of an IBBE scheme except for the following
characteristics:

− For a d-depth identity: IDi|d = (IDi1, ..., IDid) ∈ {0, 1}∗, let AIDi|d =
[A0‖AIDi1‖...‖AIDid

] ∈ Zn×(d+1)m
q where AIDij = H1(IDij) ∈ Zn×m

q , 1 ≤
j ≤ d.

− The Extract algorithm in HIBBE will generate the private key for a given
identity of a lower level user. For a user IDi|d − 1 = (IDi1, ..., IDid−1)
of depth d − 1, it uses its private key BIDi|d−1 to generate the private key
for a user IDi|d = (IDi1, ..., IDid) ∈ {0, 1}∗ (where the first d−1 elements of
IDi|d are those in IDi|d−1) by running BIDi|d ← SampleBasis(AIDi|d,BIDi|d−1,

S0 = {1, ..., d}, L(d)). Note that BIDi|d is a short basis for Λ⊥(AIDi|d) and
by Theorem 1 we have ‖B̃IDi|d‖ ≤ L(d).

− For the receiver set S, the matrix AS is constructed as following: for 1 ≤ i ≤
k(k = |S|), let j (0 ≤ j ≤ d) be the minimal number such that AIDij

is not
contained in AS , set Ai = [Ai−1‖AIDij

‖...‖AIDid
]. Finally let AS = Ak.

Note that in the decryption approach, the receiver can set AS from the
information in labS .

4.2 The IBBE Scheme in the Standard Model

Agrawal et al. [1] recently showed how to construct efficient IBE in the standard
model based on LWE assumption. The construction involved two distinct trap-
doors in the security proof. Using the similar technique, we can modify our basic
IBBE construction to obtain an IBBE scheme in the standard model as follows:

− Each identity idi is presented as elements in Zn
q and then mapped to matrices

in Zn×n
q using an encoding function H2 : Zn

q → Zn×n
q (defined in [1]).

− In the algorithm setup, the KGC selects two uniformly random matrices
E0, E1 ∈ Zn×m

q . For an arbitrary identity IDi ∈ Zn
q , define QIDi = [A0‖E0+

H2(IDi)E1] ∈ Zn×2m
q . As in the basic IBBE in section 3, a trapdoor for A0

is used as the master secret and enables one to generate private keys for
QIDi

. In the broadcast approach, let AS = [A0‖E0 + H2(ID1)E1‖...‖E0 +
H2(IDk)E1]. The encryption and security proof is similar as in [1] and will
be shown in the full version of the paper.

4.3 IBBE Scheme with Sublinear-Size Ciphertexts

Below,we modify the initial IBBE system to obtain sub-linear size ciphertexts.
The idea behind our construction is based on the parallel method proposed in
[6], which also has been used in the IBBE scheme in [16]. We essentially divide
l(= l1 · l2) users into l1 subsets in which each set has at most l2 users. This
approach allows one to encrypt to a set S with |S| = |k1 ·k2|, (k1 ≤ l1, k2 ≤ l2, ).
It is easy to observe that in the case where |S| is expressed as a product k1 · k2

with k1, k2 = O(
√
|S|), the overall size of the ciphertext is O(λ ·

√
|S|). One

can prove the security of this encryption by a method similar to the proof of
Theorem 3.
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5 Conclusion

In this paper, we have presented a new type of identity-based broadcast encryp-
tion schemes from modular lattices. The idea behind our construction is based
on the lattice delegation method due to [8]. Our construction and its variants
constitute the first adaptively secure IBBE schemes from lattices, which are
believed secure in the post-quantum environment.
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