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Abstract. In this paper we will first study two closely related problems:
1. The problem of distinguishing f(x‖0) ⊕ f(x‖1) where f is a random
permutation on n bits. This problem was first studied by Bellare and
Implagliazzo in [3].
2. The so-called “Theorem Pi⊕Pj” of Patarin (cf [24]). Then, we will see
many variants and generalizations of this “Theorem Pi ⊕ Pj” useful in
Cryptography. In fact all these results can be seen as part of the theory
that analyzes the number of solutions of systems of linear equalities and
linear non equalities in finite groups. We have nicknamed these analysis
“Mirror Theory” due to the multiples induction properties that we have
in it.
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1 Introduction

Solving systems of linear equations in many variables are maybe the main tasks
done by computers today. We have to do this for meteorology previsions, neu-
tronics, many other physic simulations, last steps of factoring algorithms, light
simulations, etc. This is generally done by Gaussian reductions algorithms, or
improved versions of it, and the evaluation of the number of solutions on finite
groups is based on the analysis of the number of independent linear equations
that we have. The algorithms are polynomial. With degree two (or larger de-
grees), instead of degree one, the situation is very different, and much more
complex, since, for example, the multivariate quadratic problem (MQ) is known
to be NP complete on any finite field. In this paper, we will keep the degree to
be one. However, we will not only consider linear equalities, but also linear non
equalities in the variables (for example: P1 ⊕ P2 = λ1, P2 ⊕ P3 = λ2, P1 6= P3).
Our motivation comes from cryptographic security proofs, since many proofs of
security “beyond the birthday proof” are linked to these problems, as we will see.



Since speaking about the theory that deals about “the number of solutions of lin-
ear systems of equalities and linear non equalities in finite groups” is a bit long,
we will use a nickname: Mirror theory. This nickname comes from the multiple
induction properties that we will have. The paper is organized as follows. First
we will consider the cryptographic problem of distinguishing f(x‖0) ⊕ f(x‖1),
where f is a random permutation, from a random function from n bits to n
bits. This problem was already studied by Bellare and Implagliazzo [3] with a
proof of security in O( q

2n ) where q is the number of queries. However no precise

O function was given in [3]. In this paper we will prove that if q ≤ 2n

67 then
the advantage for any distinguisher for this problem satisfies: Adv ≤ q

2n . This
result looks simple, but the proof of it is not. To obtain this result, we will prove
a theorem, called “Theorem Pi ⊕ Pj with ξmax = 2 that is part of the Mirror
theory. Then, we will show that many generalizations if this “Theorem Pi⊕Pj”
exist.

2 Notation and f(x‖0)⊕ f(x‖1) when f ∈R Bn

In all this paper, if n is an integer, we will denote In = {0, 1}n. Fn will be the
set of all applications from In to In, and Bn will be the set of all permutations
from In to In. Therefore, |In| = 2n, |Fn| = 2n·2

n

, and |Bn| = (2n)!. x ∈R A
means that s is randomly chosen in A with a uniform distribution. Our first aim
in this paper will be to prove Theorem 1 below.

Theorem 1 For all CPA-2 (Adaptive chosen plaintext attack) φ on a function
G of Fn with q chosen plaintexts, we have: AdvPRFφ ≤ O( q

2n ) where AdvPRFφ

denotes the the advantage to distinguish f(x‖0) ⊕ f(x‖1) with f ∈R Bn from
g ∈R Fn. Moreover instead of AdvPRFφ ≤ O( q

2n ) we will prove in this paper the

precise bound: if q ≤ 2n

67 then AdvPRF ≤ q
2n .

‖ denotes the concatenation function, and by “advantage” we mean here, as
usual, for a distinguisher, the absolute value of the difference of the two proba-
bilities to output 1. Here x has n− 1 bits. Theorem 1 says that there is no way
(even with infinite computing power) with an adaptive chosen plaintext attack
to distinguish with a good probability f(x‖0)⊕ f(x‖1) from g ∈R Fn when the
number q of queries satisfies q � 2n. Since we know (for example from [3])
that there is an attack in O(2n), because ⊕x∈In−1f(x‖0)⊕ f(x‖1) = 0, and also
because ∀x ∈ In−1, f(x‖0) ⊕ f(x‖1) 6= 0, Theorem 1 says that O(2n) is the
exact security for this problem. In fact, this problem for f(x‖0) ⊕ f(x‖1) was
already considered in [3] but no explicit O function was given for the security.
To prove Theorem 1, we will use this general Theorem:

Theorem 2 Let α and β be real numbers, α > 0, and β > 0. Let E be a subset
of Iqn such that |E| ≥ (1− β)2nq.
If
1. For all sequences ai, 1 ≤ i ≤ q, of pairwise distinct elements of In and for all

sequences bi, (not necessary distinct), 1 ≤ i ≤ q, of E we have H ≥ |Bn|2nq (1−α).



Then
2. For every CPA-2 with q chosen plaintexts we have: p ≤ α + β where p =
AdvPRFφ denotes the advantage to distinguish f(x‖0) ⊕ f(x‖1) when f ∈R Bn
from a random function g ∈R Fn.

Proof of Theorem 2. It is not difficult to prove Theorem 2 with classical counting
arguments. A complete proof of Theorem 2 can also be found in [28].
How to get Theorem 1 from theorem 2
In order to get Theorem 1 from Theorem 2, a sufficient condition is to prove
that for “most” (since we need β small) sequences of values bi, 1 ≤ i ≤ q,
bi ∈ In, we have: the number H of f ∈ Bn such that ∀i, 1 ≤ i ≤ q, f(ai‖0) ⊕
f(ai‖1) = bi satisfies H ≥ |Bn|2nq (1 − α) for a small value α (more precisely with
α � O( q

2n )).This is what we will do in the next sections. We can assume that
in E all the bi values are 6= 0 because (2n − 1)q = 2nq(1 − 1

2n )q ≥ 2nq(1 − q
2n )

and the coefficient q
2n can be included in β.

3 Theorem “Pi ⊕ Pj” when ξmax = 2

Change of variables
Let N be the number of sequences Pi, 1 ≤ i ≤ 2q, Pi ∈ In such that:
1. The Pi are pairwise distinct, 1 ≤ i ≤ 2q.
2. ∀i, 1 ≤ i ≤ q, P2i−1 ⊕ P2i = bi.

We see that H = N · |Bn|
2n(2n−1)...(2n−2q+1) , since when the Pi are fixed, then

f is fixed on exactly 2q pairwise distinct points by ∀i, 1 ≤ i ≤ q, f(ai‖0) =
P2i−1 and f(ai‖1) = P2i. Therefore we see that to prove Theorem 1, we want to
prove this property:
For “most” sequences of values bi, 1 ≤ i ≤ q, bi ∈ In, bi 6= 0, we have: the number
N of sequences Pi, 1 ≤ i ≤ 2q; Pi ∈ In such that the Pi are pairwise distinct and

∀i, 1 ≤ i ≤ q, P2i−1 ⊕ P2i = bi satisfies: N ≥ 2n(2n−1)...(2n−2q+1)
2nq (1 − α) for a

small value α (∗). The smallest α will be, the better our security bound will be.
In fact, in this paper, we will prove a much stronger property that (∗): we will
prove that (∗) holds not only for “most” bi values, bi 6= 0, but for all bi values,
bi 6= 0, and moreover with α = 0. This stronger property was called “Theorem
Pi ⊕ Pj with ξmax = 2” in [24]. We will improve the results of [24] by giving
explicit security bounds.

Theorem 3 (“Theorem Pi ⊕ Pj with ξmax = 2”)
Let (A) be a set of equations: P1 ⊕ P2 = λ0, P3 ⊕ P4 = λ1, . . . , Pα−1 ⊕ Pα =
λα/2−1, where all the λi values are 6= 0. Then if α � 2n (and more precisely

this condition can be written with the explicit bound α ≤ 2n

67 ), the number hα of
(P1, . . . , Pα) solution of (A) such that all the Pi variables are pairwise distinct

variables of In, 1 ≤ i ≤ α, satisfies: hα ≥ 2n(2n−1)...(2n−α+1)
2na where a = α/2 is

the number of equations of (A).

Here ξmax = 2 means that when we fix one variable Pi, then at most one other
variable Pj is fixed from the equations (A). Later in this paper we will study



more general (A) equations where ξmax will not necessary be 2. We will denote
by Jα = 2n(2n − 1) . . . (2n − α+ 1). Therefore Theorem 3 means that hα ≥ Jα

2na

if α� 2n. In this paper we want to find explicit bounds for α, not just α� 2n.
Jα
2na is the average number of solutions on all the 2na values λ0, λ1, . . . , λα/2−1
(including values λi = 0 where hα = 0). Jα

(2n−1)a is the average number of

solutions on all the (2n − 1)a non zero values λ0, λ1, . . . , λα/2−1. Theorem 3
means that when α � 2n, then the number of solutions when the λi values
are compatible by linearity with the Pi pairwise distinct (i.e. λi 6= 0) is always
greater that the average. It is like if, in a classroom all the students have either
the grade 0, or a grade larger than the average grade. When hα 6= 0, and α� 2n,
then hαis always larger than the average and sometimes is much larger than the
average.

6

-

Number hα of solutions

0

Jα
2na

Jα
(2n−1)a

variables (λi) that

generates by linearity

an equation Pi = Pj , i 6= j

variables (λi) that

do not generate by linearity

an equation Pi = Pj , i 6= j

Fig. 1.

4 First results in the “Theorem Pi ⊕ Pj” with ξmax=2

Definition
We will denote Hα = 2nahα. Therefore Hα+2 = 2n(a+1)hα+2.
In this section, we will illustrate the general proof strategy that we will follow
in order to prove the “Theorem Pi ⊕ Pj”. We will prove that if α2 � 2n, then
Hα ≥ Jα, and if α3 � 22n then Hα ≥ Jα(1 − ε) where ε is very small, with
explicit bounds. These bounds will then be improved later. (Remark: we follow
here Patarin proof strategy given in [24], but we will present here an explicit

bound instead of Hα ≥ Jα(1−O( α
3

22n ))). We have Jα = 2n(2n−1) . . . (2n−α+1).
Therefore, Jα+2 = (2n−α)(2n−α−1)Jα = (22n−2n(2α+1)+α(α+1))Jα (1).

Lemma 1 We have: (2n − 2α)hα ≤ hα+2 ≤ (2n − α)hα

Proof. When P1, . . . , Pα are fixed pairwise distinct, we look for solutions Pα+1, Pα+2

such that Pα+1⊕Pα+2 = λα/2 and such that P1, . . . , Pα, Pα+1, Pα+2 are pairwise



distinct. So Pα+2 is fixed when Pα+1 is fixed and we want Pα+1 /∈ {P1, . . . , Pα, λα/2⊕
P1, . . . , λα/2 ⊕ Pα}. Therefore for (Pα+1, Pα+2) we have between 2n − 2α and
2n−α solutions when P1, . . . , Pα are fixed, i.e. (2n−2α)hα ≤ hα+2 ≤ (2n−α)hα
as claimed.
Since Hα = 2nahα and Hα+2 = 2n(a+1)hα+2, we can write Lemma 1 like this:

2n(2n − 2α)Hα ≤ Hα+2 ≤ 2n(2n − α)Hα (2)

Now from (1) and (2) we have:

Hα+2

Jα+2
≥ 22n − 2α · 2n

22n − 2n(2α+ 1) + α(α+ 1)

Hα

Jα

Hα+2

Jα+2
≥
(
1 +

2n − α(α+ 1)

22n − 2n(2α+ 1) + α(α+ 1)

)Hα

Jα
(3)

We also have H2 > J2 since H2 = 22n > J2 = 2n(2n − 1). Therefore, if α2 ≤ 2n,
we have Hα ≥ Jα as claimed, by induction on α. Moreover, from (3):

Hα+2

Jα+2
≥
(
1 +

−α(α+ 1)

22n − 2n(2α+ 1)

)Hα

Jα

Therefore we have:

Hα+2

Jα+2
≥
(
1 +

−α(α+ 1)

22n − 2n(2α+ 1)

)α/2H2

J2

Hα+2

Jα+2
≥ 1− α2(α+ 1)

2(22n − 2n(2α+ 1))

This gives:

Hα ≥ Jα
(
1− α3

2 · 22n − 4α2n
)

(4)

Therefore, if α3 � 22n, Hα ≥ Jα(1 − ε) where ε is very small, as claimed.
(Moreover, from (4) we have an explicit bound).

5 General properties when ξmax = 2

Here, since ξmax = 2, our set of equations is:

(A)


P2 = P1 ⊕ λ0
P4 = P3 ⊕ λ1
...
Pα = Pα−1 ⊕ λα/2−1

hα is by definition the number of P1, · · · , Pα pairwise distinct, elements of In,
and solution of (A). We want to evaluate hα by induction on α, i.e. we want to
evaluate hα+2 from hα. We will say that (P1, · · · , Pα) are solution of hα, when



they are solution of (A). We will denote β = α/2− 1.
We will denote by λ(i) the coefficient λ in the equation (A) that involves Pi.
For example: λ(1) = λ(2) = λ0. λ(α) = λ(α−1) = λα/2−1. We will say that
two indices i and j “are in the same block”, or “are in the same (A)-block” if
Pi ⊕ Pj = λ(i) is one of the equations (A). For hα+2 we have (A) and one more
equation: Pα+1 ⊕ Pα+2 = λβ+1 (see figure 2)

hα+2

α+ 2

α+ 1

1

2

3

4

α− 1

α

λβ+1

λ0

λ1

λβ

•
•

•
•

•
•

...

•
•

hα

1

2

3

4

α− 1

α

λ0

λ1

λβ

•
•

•
•

...

•
•

Fig. 2. We want to evaluate hα+2 from hα.

Remark: We will evaluate here hα for all the values λi, even the worse ones.
However, in cryptographic applications we generally need hα for most values of
λi instead of all values λi.

We start from a solution P1, · · · , Pα of hα and we want to complete it to get
the solutions of hα+2. For this we have to choose x = Pα+1⊕P1 such that x will
not create a collision Pj = Pα+1 or Pj = Pα+2, 1 ≤ j ≤ α. This means x /∈ V
with V = V1∪V2, with V1 = {P1⊕Pj , 1 ≤ j ≤ α} and V2 = {λβ+1⊕P1⊕Pj , 1 ≤
j ≤ α}. We have |V | = |V1 ∪ V2| = |V1|+ |V2| − |V1 ∩ V2|, and we have |V1| = α
and |V2| = α (since the Pj values, 1 ≤ j ≤ α, are pairwise distinct). So

hα+2 =
∑

(P1,···,Pα) solution of hα

(2n − |V |)

hα+2 =
∑

(P1,···,Pα) solution of hα

(2n − 2α+ |V1 ∩ V2|)

hα+2 = (2n − 2α)hα +
∑

(P1,···,Pα) solution of hα

|V1 ∩ V2| (1)



Approximation in O( α2n ).
Since |V1| = |V2| = α we obtain another proof for Lemma 1, that we will call
here Theorem 4.

Theorem 4
(2n − 2α)hα ≤ hα+2 ≤ (2n − α)hα

More Precise Approximation
The elements of V1 are α pairwise distinct elements, and the elements of V2 are
α pairwise distinct elements, so from (1) we obtain:

hα+2 = (2n − 2α)hα+∑
(P1,···,Pα) solution of hα

∑
1≤i≤α

∑
1≤j≤α

[ Number of Equations Pi ⊕ Pj = λβ+1]

Therefore, by inverting the
∑

:

hα+2 = (2n − 2α)hα+∑
1≤i≤α

∑
1≤j≤α

[ Number of P1, · · · , Pα solution of hα plus Pi ⊕ Pj = λβ+1]

Now when we add the equality λβ+1 = Pi⊕Pj to the system of equation (A) of
hα, 3 cases can occur:
Case 1.
λβ+1 = Pi⊕Pj is a consequence of (A). Here this means that λβ+1 = Pi⊕Pj was
already an equation of (A), and therefore λβ+1 = λ(i) for a value i, 1 ≤ i ≤ α.
Remark: λβ+1 = λ(i) creates 2 collisions in |V1 ∩V2|: it creates λβ+1⊕P1⊕Pi =
P1 ⊕ Pj and λβ+1 ⊕ P1 ⊕ Pj = P1 ⊕ Pi.
Case 2.
λβ+1 = Pi⊕Pj is in contradiction with the equations of (A). If i and j are in the
same block the contradiction comes from i = j or from i 6= j and λβ+1 6= λ(i).
If i and j are not in the same block, the contradiction comes from the fact that
λβ+1 = Pi ⊕ Pj creates a collision; i.e. we have λβ+1 = λ(i), or λβ+1 = λ(j), or
λβ+1 = λ(i) ⊕ λ(j) (cf Figure 3).

i

j

λ(i)

λβ+1

λ(j)

•
•

•
•

Fig. 3. Here λβ+1 = λ(i), λβ+1 = λ(j) and λβ+1 = λ(i) ⊕ λ(j) are impossible if the Pj
are pairwise distinct.

Case 3.
The equation λβ+1 = Pi ⊕ Pj is not in contradiction with the equations of (A),



and is not a consequence of the equations of (A). We will say that this case is
the “generic” case.

From (1) and from the 3 cases above, we get immediately:

Theorem 5

hα+2

2n
= hα

[
1− 2α

2n
+

2 Number of equations λβ+1 = λi
2n

]
+

1

2n

∑
(i,j)∈M

( Number of P1, · · · , Pα solution of hα plus Pi ⊕ Pj = λβ+1)

where

M = {(i, j), , 1 ≤ i ≤ α, 1 ≤ j ≤ α, such that i and j are not in the same block,

and such that λβ+1 6= λ(i), λβ+1 6= λ(j), and λβ+1 6= λ(i) ⊕ λ(j)}

Now, in the Appendices B, C, E we explain how Theorem 3 (i.e. Theorem Pi⊕Pj
with ξmax = 2) can be proved from Theorem 5 with the explicit bound α ≤ 2n

67 ,
as claimed.

6 Theorem “Pi ⊕ Pj” for any ξmax

We will now present some generalizations of the Theorem “Pi⊕Pj” that we have
seen for ξmax = 2. This generalization that we will see in Theorem 6 below was
first introduced in [24]. In this paper we will obtain for it an explicit security
bound. introduced

Definition 1 Let (A) be a set of equations Pi ⊕ Pj = λk, with Pi, Pj ∈ In. If
by linearity from (A) we cannot generate an equation in only the λk, we will
say that (A) has no “circle in P”, or that the equations of (A) are “linearly
independent in P”.

Let a be the number of equations in (A), and α be the number of variables Pi
in (A). Therefore, we have parameters λ1, λ2, . . . , λa and a+ 1 ≤ α ≤ 2a

Definition 2 We will say that two indices i and j are “in the same block” if
by linearity from the equation of (A) we can obtain Pi ⊕ Pj = an expression in
λ1, λ2, . . . , λa.

Definition 3 We will denote by ξmax the maximum number of indices that are
in the same block.

Example. If A = {P1 ⊕ P2 = λ1, P1 ⊕ P3 = λ2, P4 ⊕ P5 = λ3}, here we have
two blocks of indices {1, 2, 3} and {4, 5} and ξmax = 3.



Definition 4 For such a system (A), when λ1, λ2, . . . , λa are fixed, we will de-
note by hα(A) the number of P1, P2, . . . , Pα solutions of (A) such that: ∀i, j i 6=
j ⇒ Pi 6= Pj. We will also denote Hα(A) = 2nahα(A). We will generally denote
Hα(A) simply by Hα and hα(A) simply by hα. Hα and hα are simple concise
notations, but for a given value α, Hα and hα can have different values for
different systems (A).

As above, we will denote by Jα the number of P1, P2, . . . , Pα such that ∀i, j i 6=
j ⇒ Pi 6= Pj . Therefore, Jα = 2n(2n − 1) . . . (2n − α+ 1).

Theorem 6 (“Theorem Pi ⊕ Pj” for any ξmax)
let (A) be a set of a equation Pi ⊕ Pj = λk with α variables such that:
1. We have no circle in P in the equations (A).
2. We have no more than ξmax indices in the same block.
3. By linearity from (A) we cannot generate an equation Pi = Pj with i 6=
j. (This means that if i and j are in the same block, then the expression in
λ1, λ2, . . . , λa for Pi ⊕ Pj is 6= 0.
Then: if ξ2maxα � 2n, we have Hα ≥ Jα. More precisely the fuzzy condition
ξ2maxα� 2n can be written with the explicit bound: (ξmax − 1)2α ≤ 2n

67 .

Proof. The proof of Theorem 6 is given in the Appendices.
Remark of 2017. A more complete and improved proof is available in [14]
chapter 17 since 2017.
Remark. For cryptographic use, weaker version of this theorem will be enough.
For example, instead of Hα ≥ Jα, Hα ≥ Jα(1 − f( ξmax2n )) where f is a function
such that f(x)→ 0 when x→ 0 is enough.
Various generalizations of Theorem Pi ⊕ Pj
For balanced Feistel schemes Ψd, Theorem 6 will be enough. For unbalanced
Feistel schemes, we will need a variant of it: Theorem 7

Theorem 7 (“Theorem Pi ⊕ Pj” for Gd3 schemes)
Let β > 0. Let (A) be a set of equations with α variables Pi ⊕ Pj = λk, with
λk 6= 0. Let (B) be a set of non equalities of the form Pi 6= Pj, or of the form
[Pi, Pj ] 6= [Pk, Pl] such that for all variable i, the number of j such that Pi 6= Pj
is in (B) is ≤ β, and for all variables (i, j), the number of (k, l) such that
[Pi, Pj ] 6= [Pk, Pl] is in (B) is ≤ β2n.
‘ If
1. We have no circle in P in the equations (A).
2. We have no more than ξmax indices in the same block.
3. By linearity from (A) we cannot generate an equation in contradiction with
(B).
4. ξ2maxβ ≤ 2n

67 .

Then hα ≥ Weight(B+)
2na where Weight(B+) denotes the number of P1, . . . ;Pα of

Iαn that satisfy the non equalities (B) plus for all equation Pi ⊕ Pj = λk of (A),
λk 6= 0, the non equalities: Pi 6= Pj.

Proof. Proof of Theorem 7 can be done exactly as for Theorem 6, i.e. we proceed
by induction on α, and the coefficient 1

2n that comes from Pα 6= Pj for each



equation in (A), i.e. in (B+) when we deal with the index α, will be dominant
for all the other terms. Notice that in Theorem 7 α can be much larger than 2n

(for Gd3 schemes we will have α � 22n or α � 21.5n and therefore α ≥ 2n in
general): a product of terms ≥ 1 is always ≥ 1 whatever the number of terms.
Other generalizations
We will not need them in this paper, but many other generalizations of the
“Theorem Pi ⊕ Pj” exist. Here are some examples.
Generalization 1. The theorem is still true an any group G (instead of In).
This is relatively easy to see since only the number of variables related with
linear equalities are used in the proofs and never the specific nature of the group
In. When G is not commutative, a special analysis might needed, however.
Generalization 2. The theorem Pi ⊕Pj is still true if we change the condition
ξmaxα� 2n by ξaverage � 2n.
Generalization 3. In Theorem 7 we can have more general non equalities in
(B), such [Pi1 , Pj1 , Pk1 ] 6= [Pi2 , Pj2 , Pk2 ] or more complex conditional non equal-
ities.
Generalization 4. We can have equations Pi ⊕ Pj ⊕ Pk = λijk instead of
Pi ⊕ Pj = λij . More generally we can have equations Pi1 ⊕ Pi2 ⊕ . . .⊕ Pik = λl
with any number k of variables in each linear equation.
Generalization 5. We can also consider partial linear non equalities, for exam-
ple on the first m bits, m ≤ n, i.e. dPie 6= dPJe instead of Pi 6= Pj , where dPie
denotes the first m bits of Pi.
We do not claim to have proved all these 4 generalizations and we will not need
them in this paper, but we believe that they will be relatively easy variants of
the main Theorem 6 and Theorem 7

7 Conclusion

The starting point of this paper was Theorem 2, with a proof that if q ≤ 2n

67 ,
then AdvPRF ≤ q

2n for the problem of distinguishing f(x‖0) ⊕ f(x‖1) (with
f ∈R Bn) from a random function. This result has its own interest, but, as we
have seen the proof technique involved in this paper is very general and based on
the evaluation of systems of linear equalities and linear non equalities on finite
groups, i.e. Mirror Theory. We have proved in this paper many results on Mirror
Theory with the group (In,⊕) and presented many possible generalizations. We
believe that this paper can be seen as an introduction to Mirror Theory, and that
many future results will come, with many cryptographic applications for proof
of security “above the birthday bound” of various systems. At present at least 3
directions are under investigation: the security of unbalanced Feistel schemes, the
generalizations of the “Theorem Pi ⊕ Pj” presented in this paper and “Patarin
Conjecture on the Xor of two random permutations”. This conjecture says that
for all functions f on n bits, if ⊕x∈Inf(x) = 0, then the number H of couples

of permutations (g, h) ∈ B2
n such that f = g ⊕ h always satisfies: H ≥ |Bn|2

22n
.

This is a rather extreme Mirror property since here we do not have q � 2n but



q = 2n − 1 where q is the number of x involved. We do not need this conjecture
in Cryptography, where proofs with q � 2n with precise bounds are generally
enough, but it is a very challenging problem for Mirror Theory and it shows the
diversity of the problems involved in this Mirror Theory.
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anced Feistel Schemes with Contracting Functions. In Xuejia Lai and Kefei Chen,
editors, Advances in Cryptology – ASIACRYPT 2006, volume 4284 of Lecture Notes
in Computer Science, pages 396–411. Springer-Verlag, 2006.

30. F. Salzborn and G. Szekeres. A Problem in Combinatorial Group Theory. Ars
Combinatoria, 7:3–5, 1979.

31. Bruce Schneier and John Kelsey. Unbalanced Feistel Networks and Block Cipher
Design. In Dieter Gollmann, editor, Fast Software Encrytion – FSE ’96, volume
1039 of Lecture Notes in Computer Science, pages 121–144. Springer-Verlag, 1996.

32. S. Vaudenay. Provable security for block ciphers by decorrelation. In STACS ’98,
volume 1373 of Lecture Notes in Computer Science, pages 249–275. Springer-
Verlag, 1998.

33. Aaram Yun, Je Hong Park, and Jooyoung Lee. Lai-Massey Scheme and Quasi-
Feistel Networks. Cryptology ePrint archive: 2007/347: Listing for 2007.



A Examples of hα, h
′
α and h′′

α values for small α and
ξmax = 2

We present here quickly some examples of hα, h
′
α and h′′α values for α ≤ 6 and

ξmax=2. These values hα have been defined in section 2. h′α values are similar
to hα values but with one more linearly independent equation Pi ⊕ Pj = λij ,
and h′′α values are similar to hα values but with two more linearly independent
equations Pi ⊕ Pj = λij . These small examples illustrate the general results on
the hα values obtained in this paper.

A.1 Values with α = 2

Here h2 is the number of P1, P2 ∈ In, P1 6= P2 such that P1 ⊕ P2 = λ0 with
λ0 6= 0. Therefore h2 = 2n. (only one value for h2).

A.2 Value with α = 4

h4 is the number of pairwise distinct P1, P2, P3, P4 such that: P1 ⊕ P2 = λ0 and
P3 ⊕ P4 = λ1, with λ0 6= 0 and λ1 6= 0.
Case 1. λ0 6= λ1. Then h4 = 2n(2n − 4).
Case 2. λ0 = λ1. Then h4 = 2n(2n − 2).
For h′4 we have only one possible value: h′4 = 2n for all the cases.

A.3 Examples with α = 6

h6 values.
h6 is the number of pairwise distinct P1, P2, P3, P4, P5, P6 such that P1⊕P2 = λ0,
P3 ⊕ P4 = λ1, P5 ⊕ P6 = λ2, with with λ0 6= 0, λ1 6= 0 and λ2 6= 0. These values
h6 can be computed from the formulas that give the hα values by induction, or
directly and then we can check the formulas with these values.
Case 1. λ0, λ1, λ2 are pairwise distinct and λ0 ⊕ λ1 ⊕ λ2 6= 0. Then h6 =
2n(22n − 12 · 2n + 40).
Case 2. λ2 = λ0 6= λ1, or λ2 = λ1 6= λ0, or λ1 = λ0 6= λ2. Then h6 =
2n(2n − 4)(2n − 6) = 2n(22n − 10 · 2n + 24).
Case 3. λ0 ⊕ λ1 ⊕ λ2 = 0. Then h6 = 2n(22n − 12 · 2n + 32).
Case 4. λ0 = λ1 = λ2. Then h6 = 2n(2n − 2)(2n − 4).
Remark. If n = 3, then we are working in the group I3 with 8 elements, and if
λ0 ⊕ λ1 ⊕ λ2 = 0 then h6 = h8 = 0. This shows that when α is very near 2n we
can have hα = 0. It also shows that the equations hα can be linearly independent
but not compatible when α is very near 2n.
h′6 values.

Let P2 ⊕ P3 = λ be the new equality in h′6 that we did not have in h6. We
have λ /∈ {0, λ0, λ1, λ0⊕λ1} since this new equation must be linearly compatible
with h6. Then it is possible to prove that

h′6 = 2n(2n−|{0, λ0, λ⊕λ0, λ1⊕λ⊕λ0, λ2, λ2⊕λ0, λ2⊕λ⊕λ0, λ2⊕λ1⊕λ⊕λ0}|)



We will now present some examples for the values h′6 − h6

2n .
Example 1. If λ2 /∈ {λ0, λ⊕λ0, λ1⊕λ⊕λ0, λ, λ1⊕λ, λ1} then h′6 = 2n(2n−8).
Moreover, if λ0, λ1, λ2 are pairwise distinct and λ0 ⊕ λ1 ⊕ λ2 6= 0, and λ /∈
{λ0 ⊕ λ2, λ0 ⊕ λ1 ⊕ λ2, λ2, λ1 ⊕ λ2}, then h′6 − h6

2n = 4 · 2n − 40

Example 2. If λ0⊕λ1⊕λ2 = 0, then h′6 = 2n(2n−8). Here h′6− h6

2n = 4 ·2n−32
Example 3. If λ = λ2 and λ0, λ1, λ2 are pairwise distinct and λ0⊕λ1⊕λ2 6= 0,
then h′6 = 2n(2n − 6). Here h′6 − h6

2n = 6 · 2n − 40
Example 4. If λ = λ2, λ0 = λ1 and λ0 6= λ2, then h′6 = 2n(2n − 4). Here
h′6 − h6

2n = 6 · 2n − 24

Example 5. If λ0 = λ1 = λ2, then h′6 = 2n(2n − 4). Here h′6 − h6

2n = 2 · 2n − 8
Example 6. If λ0 = λ1 is the only exceptional equation, then h′6 = 2n(2n − 8).
Here h′6 − h6

2n = 2 · 2n − 24
Example 7. If λ0 = λ2 is the only exceptional equation, then h′6 = 2n(2n − 6).
Here h′6 − h6

2n = 4 · 2n − 24
h′′α values.

In all cases h′′6 = 2n

B Evaluation of |M | = and introducing the h′
α values

B.1 Definitions

We will use the following notation.
• Let δ = the number of indices i, 0 ≤ i ≤ β, such that λβ+1 = λi.
• Let ∆ = sup0≤i≤β+1[ Number of j, 0 ≤ j ≤ β + 1, j 6= i, such that λj = λi].
Then
2δ = Number of i, 1 ≤ i ≤ α, such that λβ+1 = λi.
Similarly 2∆ = sup0≤i≤β+1[ Number of j, 1 ≤ j ≤ α+ 2, i and j are not in the
same block, such that λi = λ(j)].

Lemma 2 The number of indices j, 1 ≤ j ≤ α+2 such that λ(j) = a fixed value
is ≤ 2∆+ 2.

Proof. If j0 is a solution, then j′0 such that j0 and j′0 are in the same block is
also a solution. Now if j is another solution, j and j0 not in the same block, we
have λ(j) = λ(j0) and therefore at most 2∆ solutions for j, and 2∆+ 2 solutions
in total, including j0 and j′0.
∆ is the maximum possible value for δ when we change the ordering of the
indices. Moreover, we can always choose the ordering of the indices such that
δ = ∆. For this we just choose α+ 1 with a value λα+1 that gives the larger δ.
• Let (F ) be a system of linear equations in the Pi variables. Let E be a linear
equation in the Pi variables. We will say that E is “locally independent from
(F )”, or is “linearly independent from (F )” if we cannot generate from (F ) by
linearity this equation E, and if from the equations (F ) and the equation E we
cannot generate by linearity an equation Pi = Pj with i 6= j.



Remark. E can be linearly independent from (F ), but A may have some
solutions pairwise distinct, and E + F may have no solutions pairwise distinct.
(For example h6 on {0, 1}3: cf Appendix A)
• We will denote by h′α the number of pairwise distinct variables solutions of
the system (A′) where (A′) denotes the system (A) seen in section 5 plus one
linear equation of the type Pk ⊕ Pl = λ such that this new equation is linearly
independent from (A). Since the set M seen in section 5 is precisely the number
of (k, l) such that λβ+1 = Pk ⊕ Pl is linearly independent from (A), we can use
these notations to write Theorem 4 like this:

Theorem 8

hα+2

2n
= hα

(
1− 2α

2n
+

2δ

2n
) +

1

2n

∑
(k,l)∈M

h′α(k, l)

Here h′α(k, l) means that we have added the equation λβ+1 = Pk ⊕ Pl. We will
often write h′α instead of h′α(k, l) but we will have to remember that the values
h′α are generally different. In fact, to evaluate these values h′α will be one of our
aim.

Example. In Appendix A we give some examples of hα and h′α values where
Theorem 8 can be illustrated.

B.2 Evaluation of |M |

Theorem 9 The exact value of |M | is:

|M | = α(α− 2)− 4δ(α− δ − 1)− [Number of i, j, 1 ≤ i ≤ α, 1 ≤ j ≤ α,

λβ+1 = λ(i) ⊕ λ(j)]

This is also:

|M | = α(α− 2)− 4δ(α− δ − 1)− 8[Number of i, j, 0 ≤ i < j ≤ β,

λβ+1 = λi ⊕ λj ]

Proof. If i and j are in the same (A)-block then Pi ⊕ Pj = λβ+1 cannot be
linearly independent from (A). More precisely from Section 5, we have: |M | =
α(α− 2)− [ Number of (i, j), 1 ≤ i ≤ α,
1 ≤ j ≤ α such that i and j are not in the same block, and such that λβ+1 =
λ(i), or λβ+1 = λ(j), or λβ+1 = λ(i) ⊕ λ(j)]. We have seen that 2δ = Number of
i, 1 ≤ i ≤ α, such that λβ+1 = λ(i). Let D be the number of (i, j), 1 ≤ i ≤ α,
1 ≤ j ≤ α, such that i and j are not in the same block, and such that (λβ+1 =
λ(i) or λβ+1 = λ(j)). We have D = (2δ)(α − 2δ) + (α − 2δ)(2δ) + 4δ(δ − 1)
because we have 2δ(α − 2δ) possibilities with λβ+1 = λ(i) and λβ+1 6= λ(j), we
have (α − 2δ)(2δ) possibilities with λβ+1 6= λ(i) and λβ+1 = λ(j), and we have
4δ(δ − 1) possibilities with λβ+1 = λ(i) = λ(j). Then D = 4δ(α − 2δ + δ − 1) =



4δ(α − δ − 1), and |M | = α(α − 2) − 4δ(α − δ − 1) − [Number of i, j, 1 ≤
i ≤ α, 1 ≤ j ≤ α, λβ+1 = λ(i) ⊕ λ(j)] as claimed. Let denote by i and i′

two indices in the block of i and by j and j′ two indices in the block of j.
So λ(i) = λ(i′) and λ(j) = λ(j′). If i and j are not in the same block and
if λβ+1 = λ(i) ⊕ λ(j), then (i, j), (i, j′), (i′, j), (i′, j′), (j, i), (j′, i), (j, i′), (j′, i′)
will also satisfy the equation. Therefore, we also have:
|M | = α(α−2)−4δ(α−δ−1)−8[ Number of i, j, 0 ≤ i < j ≤ β, λβ+1 = λi⊕λj ],
as claimed.

Theorem 10

α2 − 4α− 2∆α− 4δα ≤ |M | ≤ α(α− 2)

Proof. Let D′ denote the number of i, j, 1 ≤ i ≤ α, 1 ≤ j ≤ α such that
λβ+1 = λ(i) ⊕ λ(j). We have D′ ≤ α(2∆ + 2) because for i we have at most
α solutions, and when i is fixed then λ(j) is fixed, so we have at most 2∆ + 2
solutions for j. Therefore, from Theorem 9, we get

|M | ≥ α(α− 2)− 4δα− α(2∆+ 2)

|M | ≥ α2 − 4α− 2∆α− 4δα

Moreover |M | ≤ α(α − 2) is obvious since if (i, j) ∈ M , then i and j are not in
the same block.

B.3 The “h′
α property”

As we will see now, in order to obtain our security results when α � 2n and
ξmax = 2, a sufficient condition is to prove the property below.
h′α property
We will say that the “h′α property” is satisfied if we have found three fixed
integers A, B and C such that for all α� 2n:∑

(k,l)∈M

h′α(k, l) ≥ hα
2n
|M |(1− A

2n
− Bα

22n
− C∆α

22n
)

Of course, a sufficient condition to have this h′α property is to have: h′α(k, l) ≥
hα
2n (1− A

2n −
Bα
22n −

C∆α
22n ).

Proof of Hα ≥ Jα from the h′α property.
If we have the h′α property, then from Theorem 5 and Theorem 10 we obtain:

hα+2

2n
≥ hα

(
1− 2α

2n
+

2δ

2n
+
α2 − 4α− 2∆α− 4δα

22n
(1− A

2n
− Bα

22n
− C∆α

22n
)
)

(])

Now since Jα+2 = (22n− 2n(2α+ 1) +α(α+ 1))Jα and Hα+2

Hα
= 2n hα+2

hα
, we have

Hα+2

Jα+2
=

2n hα+2

hα

(22n − 2n(2α+ 1) + α(α+ 1))

Hα

Jα
(]])



Therefore from (])

Hα+2

Jα+2
≥

1− 2α
2n + 2δ

2n + α2−4α−2∆α−4δα
22n (1− A

2n −
Bα
22n −

C∆α
22n )

1− 2α+1
2n + α(α+1)

22n

Hα

Jα

Hα+2

Jα+2
≥
(
1 +

1
2n −

5α
22n + 2δ

2n + −2∆α−4δα
22n − α2

22n ( A2n + Bα
22n + C∆α

22n )

1− 2α+1
2n + α2+α

22n

)Hα

Jα
(]]])

Now, as we have already said, we can choose the order of the indices such

that δ = ∆. Then, a sufficient condition for 2δ
2n ≥

2∆α+4δα
22n + C∆α3

24n when δ = ∆

is to have α ≤ 2·2n
6+C (or δ = 0) since α ≤ 2n. We can assume that α ≤ 2·2n

6+C since
our aim is to obtain proofs for α� 2n. Then we see from (]]]) that

Hα+2

Jα+2
≥ Hα

Jα
⇔ 1

2n
≥ 5α

22n
+

α2

2 2n
(
A

2n
+
Bα

22n
) ([)

Since α ≤ 2n, a sufficient condition for Hα+2

Jα+2
≥ Hα

Jα
is therefore α ≤ 2n

5+A+B .

Again, we can assume that α ≤ 2n

5+A+B . So we see why our aim (for ξmax = 2)
will be to prove the “h′α property” above. This is what we have done in Appendix
E with a proof that we can take A = 0, B = 62 and C = 52. For this we will
have to evaluate the values h′α.

Remark. The technical details must not hide the reason why we will have
Hα ≥ Jα. Fundamentally,Hα ≥ Jα comes from the fact that in ([), the coefficient
1
2n is dominant from all other terms. This coefficient 1

2n comes from hα+2

2n =

hα(1− 2α
2n )+ other terms and while Jα+2

2n = Jα(1− 2α+1
2n )+ other terms. In Jα+2

we had to impose Pα+1 /∈ {P1, . . . , Pα} and Pα+2 /∈ {P1, . . . , Pα+1} including
the condition Pα+1 6= Pα+2, i.e. 2α+ 2 non equalities. For Hα+2 however we do
not have to consider the condition Pα+1 6= Pα+2 because Pα+2 ⊕ Pα+1 = λβ+1

with λβ+1 6= 0, so Pα+1 6= Pα+2 is automatically imposed. This is why in Hα+2

compared with Hα we have only 2α non equalities to consider (and not 2α+ 1).
On the long term, this small deviation in 1

2n due to Pα+1 6= Pα+2 automatic for
Hα+2 becomes dominant (as we will show in the proofs with all the technical
details) and this is the deep reason that explains why Hα+2 ≥ Jα+2.

C Relations between h′
α+2 and hα when ξmax = 2

Our aim is to prove that h′α ≥ hα
2n (1 + eα), with |eα| as small as possible. For

example, as we will see, |eα| ≤ O( α2n ) will give security in O( α
4

23n ), and more

generally, |eα| ≤ O(( α2n )k) + O( 1
2n ) will give security in O( αk+2

2(k+2)n ). We have
various h′α values from the same hα, however since we will compare all these
h′α values from the same hα, we can change the ordering of the indices without
loosing generality. (In this paper we will never directly compose two values h′α
but compare them indirectly from the same hα). Moreover, to illustrate more
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•
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Fig. 4. We want to compare h′α+2 and hα+2. This figure illustrates that we will do this
by evaluating h′α+2 from hα.

easily the similarities between this section and the section where we have found
the relations between hα+2 and hα, we will evaluate here h′α+2 from hα+2 instead
of h′α from hα. We will denote here by λ and µ the values Pα+1⊕Pα+2 = µ and
Pα+1⊕P1 = λ (cf Figure 4), i.e. Pα+1⊕P1 = λ is here the new equation in h′α+2

that we did not have in hα+2. We have:

h′α+2 =
∑

(P1,···,Pα) solution of hα

[ Number of Pα+2, Pα+1 values such that

Pα+1 ⊕ Pα+2 = µ, Pα+1 ⊕ P1 = λ and these two equations

do not create a collision Pα+1 = Pi, or Pα+2 = Pi, 1 ≤ i ≤ α]

We have Pα+1 = P1⊕λ, Pα+2 = P1⊕λ⊕µ, and we want no collision P1 = Pi⊕λ,
or P1⊕λ⊕µ = Pi, 1 ≤ i ≤ α. Here instead of 1 ≤ i ≤ α, we can write 3 ≤ i ≤ α,
since by hypothesis Pα+1 ⊕ P1 = λ is linearly compatible with hα, i.e. λ 6= 0,
λ 6= λ0, λ 6= µ and λ 6= λ0 ⊕ µ. Therefore:

h′α+2 =
∑

(P1,···,Pα) solution of hα

(1− δ(P1, . . . , Pα))

with δ(P1, . . . , Pα) = 0⇔ ∀i, 3 ≤ i ≤ α, P1 6= Pi ⊕ λ, and P1 6= Pi ⊕ λ⊕ µ.
δ(P1, . . . , Pα) = 1⇔ δ(P1, . . . , Pα) 6= 0
δ(P1, . . . , Pα) = 1⇔ ∃i, 3 ≤ i ≤ α, P1 = Pi ⊕ λ, and P1 = Pi ⊕ λ⊕ µ.
h′α+2 = hα −

∑
(P1,···,Pα) solution of hα

δ(P1, . . . , Pα).
Now when P1, . . . , Pα is a fixed solution of hα we can have exactly 0 or 1 index
i such that P1 = Pi ⊕ λ, and we can have exactly 0 or 1 index j such that
P1 = Pj⊕λ⊕µ (since the Pi values are pairwise distinct, 1 ≤ i ≤ α). Therefore,

h′α+2 = hα−
∑

(P1,···,Pα) solution of hα

(
[ Number of i, 3 ≤ i ≤ α, such thatP1 = Pi⊕λ]



+[ Number of j, 3 ≤ j ≤ α, such thatP1 = Pj ⊕ λ⊕ µ]

−[ Number of i, j, 3 ≤ i ≤ α, 3 ≤ j ≤ α, such thatP1 = Pi ⊕ λ = Pj ⊕ λ⊕ µ]
)

h′α+2 = hα −
∑

(P1,···,Pα) solution of hα

(
[

α∑
i=3

Number of equations P1 = Pi ⊕ λ]

+[

α∑
i=3

Number of equations P1 = Pi ⊕ λ⊕ µ]

−[

α∑
i=3

α∑
j=3

Number of equations P1 = Pi ⊕ λ = Pj ⊕ λ⊕ µ]
)

Thus by inverting the
∑

:

h′α+2 = hα −
α∑
i=3

[ Number of (P1, . . . Pα) that satisfy hα plus P1 = Pi ⊕ λ]

−
α∑
i=3

[ Number of (P1, . . . Pα) that satisfy hα plus P1 = Pi ⊕ λ⊕ µ]

+

α∑
i=3

α∑
j=3

[ Number of (P1, . . . Pα) that satisfy hα plus P1 = Pi⊕λ = Pj⊕λ⊕µ] (])

Evaluation in O( α2n )
From (]), we get immediately this evaluation in O( α2n ):

Theorem 11 hα − 2(α− 2)h′α ≤ h′α+2 ≤ hα.

Theorem 12 (Approximation in O( α2n ) for
h′α
hα

)

(1− 2α

2n − 2α
)
hα+2

2n
≤ h′α+2 ≤

hα+2

2n − 2α

Therefore, we also have:

(1− 2α

2n − 2α
)
hα
2n
≤ h′α ≤

hα
2n − 2α

Proof. From theorem 11, hα − 2(α − 2)h′α ≤ h′α+2 ≤ hα (1). From theorem

5, (2n − 2α)hα ≤ hα+2 ≤ 2nhα (2). From (1) and (2): h′α ≤ hα−2 ≤ hα
2n−2α .

Therefore, from (1) and (2) again: (1− 2α
2n−2α ) hα+2

2n−2α ≤ h
′
α+2 ≤

hα+2

2n−2α as claimed.
We will now obtain a more precise evaluation of h′α+2. The number of (P1, . . . , Pα)
that satisfy hα plus P1 = Pi ⊕ λ is a value h′α except if P1 = Pi ⊕ λ is not com-
patible with Pi ⊕ Pi′ = λ(i), i.e. except if λ(i) = λ, or λ(i) = λ ⊕ λ0. Therefore
we can write:

α∑
i=3

[ Number of (P1, . . . Pα) that satisfy hα plus P1 = Pi ⊕ λ]



= (α− 2− [ Number of i, 3 ≤ i ≤ α, such that λ(i) = λ]

−[ Number of i, 3 ≤ i ≤ α, such that λ(i) = λ⊕ λ0])h′α

We recall that this is a simple notation to denote a sum of such h′α values, but
these values h′α can be different. Similarly,

α∑
i=3

[ Number of (P1, . . . Pα) that satisfy hα plus P1 = Pi ⊕ λ⊕ µ]

= (α− 2− [ Number of i, 3 ≤ i ≤ α, such that λ(i) = λ⊕ µ]

−[ Number of i, 3 ≤ i ≤ α, such that λ(i) = λ⊕ λ0 ⊕ µ])h′α

Now we have to evaluate
α∑
i=3

α∑
j=3

[ Number of (P1, . . . Pα) that satisfy hα plus P1 = Pi⊕λ = Pj⊕λ⊕µ] (]])

Case 1. i and j are in the same block
Then Pi ⊕ Pj = λ(i), P1 = Pi ⊕ λ, and Pi = Pj ⊕ λβ+1. This is possible if and
only if λ(i) = λβ+1, and then λ 6= λ(i) and λ 6= λ0 ⊕ λ(i), since by hypothesis
λ 6= µ and λ⊕ λ0 ⊕ µ 6= 0. Here when i is fixed then j is fixed since i 6= j and i
and j are in the same block. The contribution of these terms in (]]) is therefore
exactly: [ Number of i, 3 ≤ i ≤ α, such that λ(i) = µ] · h′α.
Case 2. i and j are not in the same block.
Then the equations hα, P1 = Pi⊕λ = Pj⊕λ⊕µ create a block of 6 indices, with
values ≤ α, linked with equalities. We denote by S the set of these indices, and
by 1,2, i, i′, j, j′, these indices. Since they create a connection between Pi and
Pj , the 2 equations P1 = Pi ⊕ λ and P1 = Pj ⊕ λ⊕ µ cannot be a consequence
by linearity of the equation (A), and P1 = Pi ⊕ λ cannot be a consequence by
linearity of (A) plus P1 = Pj ⊕ λ ⊕ µ. Therefore, the system will be linearly
compatible, and we will be able to denote the number of solutions by a value
h′′α, if and only if for these 6 indices of S, we did not create a collision.

The creation of a collision on the variables (P1, P2, Pi, Pi′ , Pj , Pj′) means
here one of these 7 equalities, since the other collisions are impossible due to the
choice of λ 6= λ0, λ 6= µ, λ 6= λ0 ⊕ µ. and all the λi values 6= 0. (cf Figure 5).
1. λ(i) = λ (Pi′ = P1).
2. λ(i) = λ⊕ λ0 (Pi′ = P2).
3. λ(i) = µ (Pi′ = Pj).
4. λ(j) = µ⊕ λ (Pj′ = P1).
5. λ(j) = µ⊕ λ⊕ λ0 (Pj′ = P2).
6. λ(j) = µ (Pj′ = Pi).
7. λ(i) ⊕ λ(j) = µ (Pi′ = Pj′).
We denote by S the set of these 7 equalities. Let

M ′ =
{

(i, j), 3 ≤ i ≤ α, 3 ≤ j ≤ α, i and j not in the same block,

such that none of the 7 equalities of S are satisfied
}

Then, from all the cases above we can write:
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?λ

α+ 2

α+ 1

1

2

i

i’

j

j’

µ

λ0

λ(i)

λ(j)

•
•

6

?
λ•

•

•
•

•
•

6

?
µ

Fig. 5. The relations in S.

Theorem 13

h′α+2 = hα + [−2α+ 4 + ( Number of i, 3 ≤ i ≤ α such that λ(i) = λ)

+( Number of i, 3 ≤ i ≤ α such that λ(i) = λ⊕ λ0)

+( Number of i, 3 ≤ i ≤ α such that λ(i) = λ⊕ µ)

+( Number of i, 3 ≤ i ≤ α such that λ(i) = λ⊕ µ⊕ λ0)

+( Number of i, 3 ≤ i ≤ α such that λ(i) = µ)]h′α +
∑

(i,j)∈M ′
h′′α

Examples
We can verify with this theorem some of the h′6 values give, in Appendix A. For
example 3 of Appendix A (with λ = λ2) we have h′6 = 2n(2n−6), h4 = 2n(2n−4),
no h′′4 values exist, and Theorem 13 gives here: h′6 = h4 + (−8 + 4 + 2) · 2n as
expected. All the other examples of Appendix A can be verified similarly.
Evaluation of |M ′|

|M ′| = (α− 2)(α− 4)− Number of (i, j), 3 ≤ i ≤ α, 3 ≤ j ≤ α, i and j

not in the same block, such that at least one of the 7 equalities of S

is satisfied

Now if λ(i) is fixed from one of the equation of S, for i we have at most 2∆+ 2
possibilities, and for j when i is fixed at most (α − 4) possibilities. (Similarly
when λ(j)) is fixed. So |M ′| ≥ (α− 2)(α− 4)− 7(2∆+ 2)(α− 4), and therefore:

Theorem 14 |M ′| ≥ α2 − 14∆α− 20α.



D Security when ξmax = 2 and α4 � 23n

We have see that

Hα+2

Jα+2
=

2n hα+2

hα

(22n − 2n(2α+ 1) + α(α+ 1))

Hα

Jα
(1)

(cf Property (]]) of Appendix B.). From Theorem 8:

hα+2

2n
= hα(1− 2α

2n
+

2δ

2n
) +

1

2n

∑
(k,l)∈M

h′α(k, l) (2)

From Theorem 10:

|M | ≥ α2 − 4α− 2∆α− 4δα (3)

From Theorem 13:
h′α
hα
− 1

2n
≥ −2α

2n(2n − 2α)

So if α ≤ 2n

4 , we can write
h′α
hα
− 1

2n ≥
−4α
22n (4). Therefore from (1), (2), (3), (4)

we obtain:

Hα+2

Jα+2
≥

1− 2α
2n + 2δ

2n + α2−4α−2∆α−4δα
22n (1− 4α

2n )

1− 2α+1
2n + α2+α

22n

Hα

Jα

Now, as we have already mentioned, we can always choose the ordering of the
indices such that δ = ∆. For this we just choose α+ 1 with a value λ(α+1) that

gives the larger δ. Then, when δ = ∆, 2δ
2n ≥

2∆α+4δα
22n ⇔ α ≤ 2n

3 (or δ = 0), and

we can assume α ≤ 2n

3 . Then

Hα+2

Jα+2
≥
(1− 2α

2n + α2−4α
22n − 4α3

23n

1 + −2α−1
2n + α2+α

22n

)Hα

Jα

Hα+2

Jα+2
≥
(
1 +

1
2n −

5α
22n −

4α3

23n

1 + −2α−1
2n + α2+α

22n

)Hα

Jα

Therefore by induction on α we have:

Hα+2

Jα+2
≥
(
1− 4α3

23n(1− 2α
2n )
− o( α

3

23n
)
)α/2 H2

J − 2

This shows that Hα+2

Jα+2
≥ Hα

Jα
if α3 � 22n and it shows that Hα is always very

near Jα if α4 � 23n, i.e. it gives security when α4 � 23n.



E Relation between h′
α and hα when ξmax = 2

Theorem 15 h′α+2 = hα + (−2α+ T )h′α +
∑

(i,j)∈M ′ ≤ h′′α
with 0 ≤ T ≤ 10∆+ 14 and α2 − 20α− 14∆α ≤ |M ′|(α− 2)(α− 4).

Proof. This comes immediately from Theorem 13, since
( Number of i, 3 ≤ i ≤ α, λ(i) = λ) ≤ 2∆+ 2
( Number of i, 3 ≤ i ≤ α, λ(i) = λ⊕ λ0) ≤ 2∆+ 2
( Number of i, 3 ≤ i ≤ α, λ(i) = λ⊕ µ) ≤ 2∆+ 2
( Number of i, 3 ≤ i ≤ α, λ(i) = λ⊕ µ⊕ λ0) ≤ 2∆+ 2
and ( Number of i, 3 ≤ i ≤ α, λ(i) = µ) ≤ 2∆+ 2

Theorem 16 (“Central Theorem”)
If α ≤ 2n

8 , then

∣∣h′α+2 −
hα+2

2n
∣∣ ≤ 2α|h′α −

hα
2n
|+ α2|h′′α −

h′α
2n
|+ hα+2(

26∆+ 30

22n
)

Remark. We call this theorem the “Central Theorem” because from it, as we

will see, we will be able to obtain evaluations of |h′α− hα
2n | in O( α

2

22n )hα2n , O( α
3

23n )hα2n

etc. O( α
k

2kn
)hα2n for any integer k and it is the decisive step to obtain explicit

security bounds in O( α2n ) for the Theorem Pi ⊕ Pj .
Proof of Theorem 16 From Theorem 8 and Theorem 10 we have:

hα+2

2n
= hα(1− 2α

2n
+

2δ

2n
) +

1

2n

∑
(k,l)∈M

h′α

with α2 − 4α − 6∆α ≤ |M | ≤ α(α − 2). Moreover, M ′ ⊂ M since we have
µ = λβ+1 and the 7 conditions S contain the 3 conditions: λ(i) = µ, λ(j) = µ
and λ(i) ⊕ λ(j) = µ.

M \M ′ ⊂
{

(i, j), 3 ≤ i ≤ α, 3 ≤ j ≤ α,

i and j not in the same block such that

λ(i) = λ, or λ(i) = λ⊕ λ0, or λ(j) = µ⊕ λ, or λ(j) = µ⊕ λ⊕ λ0
}

Therefore, |M\M ′| ≤ (8∆+8)(α−2). From the Theorem 15 and these properties,
we can write:

h′α+2 −
hα+2

2n
= −2α(h′α −

hα
2n

) + Th′α −
2δ

2n
hα

+
∑

(i,j)∈M ′
(h′′α −

h′α
2n

) +
∑

(k,l)∈M\M ′

h′α
2n

Therefore

|h′α+2 −
hα+2

2n
| ≤ 2α|h′α −

hα
2n
|+ α2|h′′α −

h′α
2n
|



+(10∆+ 14)h′α +
2∆

2n
hα + (8∆α+ 8α)

h′α
2n

Moreover, from Theorem 4: hα ≤ hα+2

2n−2α and from Theorem 11: h′α ≤
hα+2

(2n−2α)2 .

Now if α ≤ 2n

8 , 1
(2n−2α)2 ≤

2
22n , and we obtain Theorem 16.

Theorem 17 (Approximation in O( α
2

22n ))

If α ≤ 2n

8 , then:

|h′α −
hα
2n
| ≤

( 5α2

(2n − 2α)3
+

26∆+ 30

22n
)
hα

Remark. Here the approximation is said to be in O( α
2

22n ), and not in O( α
2

23n ),

because hα
2n is one of the term, and if we put hα

2n in factor we will have coefficients

in O(hα2n ).
Proof of Theorem 17. From Theorem 11 we have already found an approximation

for |h′α − hα
2n | but only in O( α2n ): |h′α − hα

2n | ≤
2α

2n−2α ·
hα
2n . For |h′′α −

h′α
2n | we

also have the approximation in O( α2n ): |h′′α −
h′α
2n | ≤

2α
2n−2α ·

h′α
2n . Here an even

less precise approximation will be enough: |h′′α −
h′α
2n | ≤ sup(h′′α,

h′α
2n ). Now with

hα ≤ hα+2

2n−2α (cf Theorem 4), h′α ≤ hα
2n−2α ≤

hα+2

(2n−2α)2 (cf Theorem 12) and

similarly h′′α ≤
hα+2

(2n−2α)3 . We obtain from Theorem 16 (i.e. “Central Theorem”):

|h′α+2 −
hα+2

2n
| ≤ 2α

( 2α

(2n − 2α)2
)hα+2

2n
+

α2hα+2

(2n − 2α)3
+ hα+2

(26∆+ 30

22n
)

Therefore by changing α+ 2 by α, we obtain Theorem 17.
Application. From an evaluation in O( α2n ) for h′α/hα, we have seen how to
obtain Hα ≥ Jα for α3 � 22n, and security for α4 � 23n (cf Appendix D).

Similarly, from Theorem 17, i.e. an evaluation in O( α
2

22n ) for h′α/hα, we obtain
Hα ≥ Jα for α4 � 23n, and security for α5 � 24n

More precise evaluation
We can continue this process to get security in α6 � 25n, α7 � 26n etc. From our

approximation in O( α
2

22n ) for h′α/hα given by Theorem 17 and the approximation
in O( α2n ) for h′′α/h

′
α given by

|h′′α −
h′α
2n
| ≤ 2α

2n − 2α

h′α
2n

the central Theorem 16 will give us an approximation in O( α
3

23n ) for h′α/hα. More
generally

|h[µ]α+2 −
h
[µ−1]
α+2

2n
| ≤ 2α|h[µ]α −

h
[µ−1]
α

2n
|+ α2|h[µ+1]

α − h
[µ]
α

2n
|+ hα+2

(26∆+ 30

22n
)

(])

is valid for all µ as long as it remains some blocks with only 2 variables, i.e. as

long as µ < α
2 . We can generate like this approximations in O( α

k

2kn
) for h′α/hα



with larger and larger k. Moreover, we need only to achieve a formula for k = n

since αk+1

2kn
≤ α

2n for k = n if α ≤ 2n

2 . Therefore, the condition µ < α
2 is not

a problem since α ≥
√

2n and we only need µ ≤ n. More precisely, from the
central Theorem 16 and its variants (]) we obtain (from the geometric series in
α
2n and α2

22n ):

Theorem 18 ∀k, 1 ≤ k ≤ α
2 − 1, if α ≤ 2n

8 :

|h′α −
hα
2n
| ≤ hα

( 22kαk

(2n − 2α)k+1(1− 2α
2n −

α2

22n )
+

26∆+ 30

22n(1− 2α
2n −

α2

22n )

)
Therefore, if α ≤ 2n

32 and k ≥ n

|h′α −
hα
2n
| ≤ hα

2n
( 2α

22n
+

52∆+ 60

2n
)

Moreover, if we remember that T ≥ 0, the terms in ∆ can only be negative at
the second stage, with terms in α

2n , and we have:

h′α ≥
hα
2n

(1− 2α

22n
− 52∆α+ 60α

22n
)

h′α ≥
hα
2n

(1− 62α

22n
− 52∆α

22n
)

Applications.
At last, we can now use the analysis done in Appendix B with the “ h′α property”.
We have obtained this h′α property with A = 0, B = 62, and C = 52 (cf
Theorem 16). Therefore, from section 6, we know that Hα ≥ Jα if α ≤ 2·2n

6+C

and α ≤ 2n

5+A+B . This gives here: α ≤ 2n

67 . We have finally proved Theorem 3

of Section 3 (i.e. Theorem Pi ⊕ Pj with ξmax = 2) for α ≤ 2n

67 . This is just the
precise bound we were looking for, instead of just α� 2n.
Now for our initial problem for f(x‖0)⊕ f(x‖1) with f ∈R Bn, we have proved
Theorem 1 with AvdPRFφ ≤ q

2n if q ≤ 2n

67 . (Because if q ≤ 2n

67 , and all the bi

values are 6= 0, then H ≥ |Bn|
2nq and we can apply Theorem 2 of section 2 with

α = 0 and β = q
2n .)

F General properties for any ξmax

hα is by definition the number of P1, · · · , Pα pairwise distinct, elements of In,
and solution of (A), where (a) is a system of equations Pi⊕Pj = λk. We say that
Pi and Pj are “in the same block” if when Pi is fixed, then Pj is fixed from the
equations of (A). We denote by ξmax the maximum number of Pi in the same
block. The idea is to evaluate hα by induction on the number of blocks, i.e. to
evaluate hα+ξ from hα, where hα+ξ is the number of P1, · · · , Pα, Pα+1, · · · , Pα+ξ
pairwise distinct, elements of In, solution of (A) and solution of this block of



(ξ − 1) equations Pα+1, · · · , Pα+ξ:
Pα+2 = Pα+1 ⊕ λ′2,
Pα+3 = Pα+1 ⊕ λ′3,
. . .
Pα+ξ = Pα+1 ⊕ λ′ξ
(ξ ≤ ξmax).
We will say that P1, · · · , Pα are solution of hα when they are solution of (A).
We start from a solution P1, · · · , Pα of (A) and we want to complete it to get
the solution of hα+ξ. For this we have to choose x = Pα+1 ⊕ P1 such that x will
not create a collision Pj = Pα+1 or Pj = Pα+2, · · ·, Pj = Pα+ξ, 1 ≤ j ≤ α. This
means: x ⊕ P1 6= Pj , x ⊕ λ′2 ⊕ P1 6= Pj , · · ·, x ⊕ λ′ξ ⊕ P1 6= Pj , 1 ≤ j ≤ α. So

this means x /∈ V with V =
⋃ξ
i=1 Vi, with Vi = {P1 ⊕ λ′i ⊕ Pj , 1 ≤ j ≤ α} (by

convention we define λ′1 = 0). We have ∀i, 1 ≤ i ≤ ξ, |Vi| = α (since the Pj
values, 1 ≤ j ≤ α, are pairwise distinct).

|V | = |
⋃ξ
i=1 Vi| =

∑ξ
i=1 |Vi| −

∑ξ
i<j |Vi ∩ Vj | +

∑ξ
i<j<k |Vi ∩ Vj ∩ Vk| + · · · +

(−1)ξ+1|V1 ∩ · · · ∩ Vξ|
So

hα+ξ =
∑

(P1,···,Pα) solution of hα

(2n − |V |)

So we have:
Theorem 19

hα+ξ =
∑

(P1,···,Pα) solution of hα

(2n − ξα+

ξ∑
i1<i2

|Vi1 ∩ Vi2 |

−
ξ∑

i1<i2<i3

|Vi1 ∩ Vi2 ∩ Vi3 |+ · · ·+ (−1)ξ|V1 ∩ · · · ∩ Vξ|)

When i1 and i2 are fixed,

|Vi1 ∩ Vi2 | =
∑

1≤j≤α,1≤j′≤α

Number of P1, · · · , Pα solution of hα

plus equation Pj ⊕ Pj′ = λ′i1 ⊕ λ
′
i2

Now when we add to (A) the equality Pj ⊕ Pj′ = λ′i1 ⊕ λ
′
i2

, 3 cases can occur:

Case 1 λ′i1⊕λ
′
i2

= Pi⊕Pj was already an equation of (A). Here this means λ′i1⊕λ
′
i2

=
λi for all value i, 1 ≤ i ≤ α. Remark: λ′i1 ⊕ λ

′
i2

= λi creates 2 collisions in
Vi1∩Vi2 : it creates λ′i1⊕P1⊕Pi = λ′i2⊕P1⊕Pj and λ′i1⊕P1⊕Pj = λ′i2⊕P1⊕Pi.

Case 2 λ′i1 ⊕ λ
′
i2

= Pi ⊕ Pj is in contradiction with the equations of (A). This can
come from the fact that Pi ⊕ Pj = λk is in (A) and λk 6= λ′i1 ⊕ λ′i2 . Or
this can come from the fact that Pi ⊕ Pi′ = λi′′ is in (A), Pj ⊕ Pj′ = λj′′

is in (A), so from Pi ⊕ Pj = λ′i1 ⊕ λ
′
i2

we get Pj′ = λj′′ ⊕ λ′i1 ⊕ λ
′
i2
⊕ Pi,

Pi′ = λi′′ ⊕ λ′i1 ⊕ λ
′
i2
⊕ Pj , and Pi′ ⊕ Pj′ = λi′′ ⊕ λj′′ ⊕ λ′i1 ⊕ λ

′
i2

. This is
impossible if λ′i1 ⊕ λ

′
i2

= λj′′ , λ
′
i1
⊕ λ′i2 = λi′′ or λ′i1 ⊕ λ

′
i2

= λi′′ ⊕ λj′′ , since
the Pk values are pairwise distinct.



Case 3 The equation λ′i1⊕λ
′
i2

= Pi⊕Pj is not in contradiction with the equations of
(A), and is not a consequence of the equations of (A). We will say that this
case is the “generic” case, and we will denote by h′α the number of P1, · · · , Pα
solution of (A) and λ′i1 ⊕ λ

′
i2

= Pi ⊕ Pj when we are in such “generic” case.

The value of h′α is dependent on the λi values. We see from Theorem 19 that we
can proceed for any ξmax exactly as we did for ξmax = 2, i.e. we can compute
hα+ξ from hα and the h′α values. The main difference, however, is that now all
the blocks, except one: the block with the extra equations of h′α, can have up
to ξmax variables instead of 2 variables. This is why in Theorem 6 the condition
(ξmax − 1)α ≤ 2n

67 will occur, instead of α ≤ 2n

67 for Theorem 3.

G Two examples for h′
α −

hα
2n

Example 1
In this paper we proved thatHα ≥ Jα if ξmaxα� 2n. However, even for ξmax = 2
we do not claim that h′α ≥ hα

2n is always true. When ∆ is very large and when
the extra equation in h′α has an exceptional λ (with δ = 0 for this λ) then maybe
h′α <

hα
2n when α ≥ O(

√
2n). For example, this is the case in Figure 6.

h′α

g′

g

λg

λg

λ2 = λ⊕ λg ⊕ λ1

•
•

•
•

•
•

•
•
λ1

•
•
λ2

•
•
λ1

...

λ S

hα

g′

g

λg

λg

λ2

•
•

•
•

•
•

•
•
λ1

•
•
λ2

•
•
λ1

...

Fig. 6. An example where h′α <
hα
2n

may be possible.

In this example, λ is not present in hα, and is present only once in λ′α, with
about 50% λ1, about 50% λ2, and only two λg. Here λ1, λ2, λg do not satisfy
any special relation but λ is chosen such that λ = λ2 ⊕ λg ⊕ λ1. If we use the



central theorem for ξmax = 2 (cf Appendix D), with Pα+2 ⊕ Pα+1 = λ1, then in
this example δ ' β

2 '
α
2 and |M \M ′| is in O(α). In fact, no connection in λ1 can

be made from the block S of h′α so for α ≥
√

2n we may have h′α <
hα
2n . If this is

true, it would in a way explain why the analysis of systems of linear equalities
and linear non equalities is so complex: a simple property such as h′α ≥ hα

2n would
be true on most, but not all cases.

Example 2
Let compute example 1 in the case of only 8 variables. (This will give us an
example of what we did in the main body of this paper).

h′8

λ1

λg

λg

•
•

•
•

•
•

•
•
λ2

λ = λ1 ⊕ λ2 ⊕ λg

h8

λ1

λg

λg

•
•

•
•

•
•

•
•
λ2

Computation of h8 from Pα+1 ⊕ Pα+2 = λg
Here α = 6, δ = 1, |M | = 8. h8

2n = h6(1− 12
2n + 2

2n ) + 8
2nh
′
6. With h6 = 2n(2− 6)

and h′6 = 2n(22n − 12 · 2n + 40) it gives: h8

2n = 23n − 22 · 22n + 168 · 2n − 448.
Computation of h8 from Pα+1 ⊕ Pα+2 = λ1

Here α = 6, δ = 0, |M | = 24. h8

2n = h6(1 − 12
2n ) + 8

2nh
′a
6 + 16

2nh
′b
6 . With h6 =

2n(2n − 4)(2n − 6), h
′a
6 = 2n(2n − 8) and h

′b
6 = 2n(2n − 6). Therefore : h8

2n =
23n − 22 · 22n + 168 · 2n − 448. We obtain the same value as above as expected.

Computation of h′8
Here α = 6, δ = 0, δ′ = 0, ∆ = 1, |M ′| = 0. Therefore |M \M ′| = 24. h8

2n =
h6(1 − 12

2n ) + 0. Here “ + 0′′ since it is not possible to connect two blocks in λ1
(it would create a collision). h′6 = 2n(2n − 8) since in λ2 we have no specific
relation. h′8 = 23n − 20 · 22n + 96 · 2n. Therefore, in this example 2 we have:

h′8 −
h8
2n

= 2 · 22n − 72 · 2n + 448



and we here h′6 − h6

2n = 2 · 2n + 24 (since h6 = 2n(2n − 4)(2n − 6)). We see that

h′8 −
h8
2n

= 2n(h′6 −
h6
2n

)(1− 24

2n
− 64

22n
+O(

1

23n
))

We can notice some interesting facts on this small example.
• The main term has kept the same coefficient (here 2) in h′8− h8

2n and in h′6− h6

2n .
This is conform with the central theorem for ξmax = 2 since δ = 0 and δ′ = 0.
• For the second term we had a modification of −242n . This coefficient −24 comes
from −12− 12 where the first −12 comes from −2α

2n (fixed), and the second −12
comes from |M \M ′| = 24 and here we divide this value 24 by 2 due to the
fact that the first term of h′6 − h6

2n is a 2 as we have seen. For example 1, if this

process continues, we may have −2α2n regularly and therefore when α ≥ O(
√

2n)

we may have h′α <
hα
2n as we have said.

In the proof of our main theores in this paper we have avoided this problem
by noticing that here ∆ is large and the dominant term in δ has a good effect on
Hα+2

Hα
. Another possibility would have been to notice that in these examples 1

and 2, the value λ is used only once, while in our proofs the first connections in
λβ+1 are done for a λβ+1 that has the maximum δ value. This property may be
used to avoid the exceptional cases such as example 1 and example 2. (If δ′ 6= 0,

then δ′

2n dominates |M\M
′|

22n ≤ 8(α−2)
22n .

Still another possibility would have been to notice that in our analysis of
hα+2 we start from hα and need only to compare hα+2 with

∑
(i,j)∈M h′α for h′α

with an extra equation Pα+1⊕Pα+2 = λβ+1, where λβ+1 was a λ value of hα+2.
In examples 1 and 2, if we start from hα we will never get a λ′α−2 value with the
exceptional value λ because λ was not in hα.

H Some general properties of the Jα values

By definition, Jα = 2n(2n− 1)(2n− 2) . . . (2n−α+ 1). In this Appendix we will
see some properties of these Jα values. We will not need these properties in our
cryptographic proofs but however they are interesting and they illustrate some
of the complexities that we have to face.

Theorem 20

Jα = 2αn − 2(α−1)n(

α−1∑
i=1

i) + 2(α−2)n(
∑

1≤i<j<α

ij)

−2(α−3)n(
∑

1≤i<j<k<α

ijk) + . . .+ (−1)α−12n(α− 1)!

We can also write this like that:

Jα =

α−1∑
k=0

(−1)k2(α−k)njk with jk =
∑

1≤i1<i2<...<ik<iα

i1i2 . . . ik



Proof. This comes immediately by developing Jα in powers of 2n.

Theorem 21

j1 =
α(α− 1)

2
=
α2

2
− α

2

j2 =
α(α− 1)(α− 2)(3α− 1)

24
=
α4

8
− 5α3

12
+

3α2

8
− α

12

j3 =
α2(α− 1)2(α− 2)(α− 3)

48
=
α6

48
− 7α5

48
+

17α4

48
− 17α3

48
+
α2

8

Proof. Jα is the number of (P1, . . . , Pα) ∈ Iαn such that none of the α(α−1)
2

equalities Pi = Pj , i < j is satisfied. Let E1, E2, . . . , Eα(α−1)
2

be these equalities.

Let µ = α(α−1)
2 . ∀i, 1 ≤ i ≤ µ, Ai = {(P1, . . . , Pα) ∈ Iαn , that satisfies Ei}. We

have: Jα = 2αn − | ∪µi=1 Ai|. Moreover

| ∪µi=1 Ai| =
µ∑
i=1

|Ai| −
∑
i<j

|Ai ∩Aj |+
∑
i<j<k

|Ai ∩Aj ∩Ak|

+ . . .+ (−1)µ+1|A1 ∩ . . . ∩Aµ|

Terms in 2n(α−1)

∀i, 1 ≤ i ≤ µ, |Ai| = 2n(α−1) (because we fix one variable). Therefore,
∑µ
i=1 |Ai| =

2n(α−1)µ and j1 = µ = α(α−1)
2 .

Terms in 2n(α−2)

Here we are looking for terms that gives exactly 2 independent equalities Ei. It

could be equalities

{
Pa = Pb
Pk = Pl

with a, b, k, l pairwise distinct, or Pa = Pb = Pk

with a, b, k pairwise distinct. We have µ(µ−1)
2 terms that come from

∑
i<j |Ai ∩

Aj |. Moreover we have to subtract to these values the systems of 3 equalities Ei
with only 2 independent equalities, such as P1 = P2, P2 = P3, P1 = P3. We have
α(α−1)(α−2)

6 possibilities for these 3 equalities. Therefore j2 =
α(α−1)

2 ·(α(α−1)
2 −1)

2 −
α(α−1)(α−2)

6 . j2 = α(α−1)(α−2)(3α−1)
24 as claimed. For j3 we can proceed the same

way, or use the well-known formulas for symmetrical expressions. We see that
when α ≥

√
2n we have:

Theorem 22 When α ≥
√

2n, the first terms in Theorem 20, 2(α−k)njk are

growing in O(22k)
2kn

· 2αn, i.e. all these first terms are much larger that Jα (in
absolute value). This illustrated by Figure 7 below.

Theorem 23

Jα ∼α→+∞ 2nαe−
α3

2·22n



-

6

0

Jα

Fig. 7. The summation gives Jα but many terms are much larger than Jα

Proof. Let X = 1 · (1− 1
2n )(1− 2

2n ) . . . (1− α−1
2n ). Therefore, Jα = 2nαX.

lnX =
∑α
i=0 ln(1− i

2n ). Let a = 1− 1
2n , b = 1, f(x) = ln(x).

1

α
lnX =

1

α

α∑
i=0

f(a+ i(
b− a
α

))

1

α
lnX ∼α→+∞

∫ 1

1− α
2n

ln(t) dt

(t ln(t)− t)′ = ln t+ 1− 1 = ln t. Therefore

1

α
lnX =

[
t ln t− t

]1
1− α

2n

1

α
lnX = −[(1− α

2n
) ln(1− α

2n
) +

α

2n
]

Moreover, ln(1 + ε) = ε− ε2

2 + o(ε3).

− 1

α
lnX ' (1− α

2n
)(− α

2n
− α2

2 · 2n
+ . . .) +

α

2n

' α2

2 · 22n

Therefore, lnX ' − α3

2·22n , X ' e
− α3

2·22n and

Jα ∼α→+∞ 2nαe−
α3

2·22n

as claimed.


