On second-order nonlinearities of some D, type bent functions
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Abstract. In this paper we study the lower bounds of second-order nonlinearities of bent functions
constructed by modifying certain cubic Maiorana-McFarland type bent functions.

1 Introduction

The set of all Boolean functions of n variables of degree at most r is said to be the Reed-Muller
code, RM (r,n), of length 2™ and order 7.

Definition 1. Suppose f € B,. For every integer r, 0 < r < n, the minimum of the Hamming
distances of f from all the functions belonging to RM (r,n) is said to be the rth-order nonlinearity
of the Boolean function f. The sequence of values nl.(f), for r ranging from 1 to n — 1, is said to
be the nonlinearity profile of f.

The first-order nonlinearity (i.e., nonlinearity) of a Boolean function f, denoted nl(f), is related to
the immunity of f against “best affine approximation attacks” and “fast correlation attacks”, when
f is used as a combiner function or a filter function in a stream cipher. Attacks based on higher
order approximations of Boolean functions are found in Goli¢ [6], Courtois [5]. For a complete
literature survey we refer to Carlet [4]. Unlike first-order nonlinearity there is no efficient algorithm
to compute second-order nonlinearities for n > 11. Most efficient algorithm due to Fourquet and
Tavernier [7] works for n < 11 and, up to n < 13 for some special functions. Thus, identifying
classes containing Boolean functions with “good” nonlinearity profile is an important problem. In
this paper we use Proposition 2 to obtain second-order nonlinearities of bent functions in the class
Dy derived from the cubic MMF type bent functions described in [8].

2 Preliminaries

2.1 Basic definitions

A function from F%, or Fan to Fg is said to be a Boolean function on n-variables. Let B,, denote
the set of all Boolean functions on n variables. The algebraic normal form (ANF) of f € B,
is f(x1,22,...,2y) = Za:(al,“.,an)ng pa(ITiy zi%), where g € Fo. The algebraic degree of f,
deg(f) := max{wt(a) : g # 0,a € Fan}. For any two functions f,g € By, d(f,g9) = {z : f(x) #
g(x),x € Fon}| is said to be the Hamming distance between f and g. The trace function ¢} : Fon —
[y is defined by

2

tri(z) =z + 22 +x 44+ 2¥ forall 2 € Fon.
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The inner product of z,y € Fy is denoted by z - y. If we identify Fy with Fon then x -y = trf (zy).
Let A, be the set of all affine functions on n variables. Nonlinearity of f € B, is defined as
nl(f) = minge 4, {d(f,1)}. The Walsh Transform of f € B,, at A € F% is defined as

Wi(\) = Z (=1)/ @+t )

z€Fy

The multiset [W;(X) : A € F3] is said to be the Walsh spectrum of f. Following is the relationship
between nonlinearity and Walsh spectrum of f € B,

1
ni(f) = 2" = 5 max Wy (M),
2

By Parseval’s identity

D WA =2

AEFY
it can be shown that [Wp(\)| > 22 which implies that nl(f) <271 — 2271

Definition 2. Suppose n is an even integer. A function f € B, is said to be a bent function if and
only if nl(f) =21 —2271 (ie., We(A) € {2%, —2%} for all A € Fy).

For odd n > 9, the tight upper bound of nonlinearities of Boolean functions in B,, is not known.

Definition 3. The derivative of f, f € B, with respect to a, a € F3, is the function D,f € By,
defined as Do f : x — f(x)+ f(x +a). The vector a € F§ is called a linear structure of f if Dy f is
constant.

The higher order derivatives are defined as follows.

Definition 4. Let V be an r-dimensional subspace of Fy generated by ay, ..., ar, i.e., V = (a1,...,ap).
The r-th order derivative of f, f € B, with respect to V, is the function Dy f € B, defined by

Dyf:x— Dy, ...D,, f(x).

It is to be noted that the rth-order derivative of f depends only on the choice of the r-dimensional
subspace V and independent of the choice of the basis of V. Following result on Linearized poly-
nomials is used in this paper.

Lemma 1. [1] Let p(z) = Y], c;a®" be a linearized polynomial over Fon, where ged(n, k) = 1.
Then the equation p(x) =0 has at most 2¥ solutions in Fon.

2.2 Quadratic Boolean functions

Suppose f € B, is a quadratic function. The bilinear form associated with f is defined by B(z,y) =
f(0)+ f(x) + f(y) + f(z +y). The kernel [2,9] of B(z,y) is the subspace of F§ defined by

Er={x e Fy: B(x,y) =0 for all y € Fy}.

Any element ¢ € & is said to be a linear structure of f.



Lemma 2 ([2], Proposition 1). Let V be a vector space over a field Fy of characteristic 2 and
Q :V — F, be a quadratic form. Then the dimension of V and the dimension of the kernel of Q
have the same parity.

Lemma 3 ([2], Lemma 1). Let f be any quadratic Boolean function. The kernel, E, is the
subspace of Yy consisting of those a such that the derivative D, f is constant. That is,

Er={aeFy:Dy,f = constant }.

The Walsh spectrum of any quadratic function f € B, is given below.

Lemma 4 ([2,9]). If f : F§ — Fy is a quadratic Boolean function and B(x,y) is the quadratic
form associated with it, then the Walsh spectrum of f depends only on the dimension, k, of the
kernel, £, of B(x,y) . The weight distribution of the Walsh spectrum of f is:

Wy(a)  number of o

0 om — gn—k
9(n+k)/2  gn—k—1 + (_1)f(0)2(n—k—2)/2
—9o(n+k)/2 on—k—1 _ (_1)f(0)2(n7k72)/2

Thus the Walsh spectrum of a quadratic Boolean function [2] is completely characterized by the
dimension of the kernel of the bilinear form associated with it.

2.3 Recursive lower bounds of higher-order nonlinearities

Carlet [4] for the first time has put the computation of lower bounds on nonlinearity profiles of
Boolean functions in a recursive framework. Following are some results proved by Carlet [4].

Proposition 1 ([4], Proposition 2). Let f € B,, and r be a positive integer (r < n), then we
have

nlo(f) = 3 maxnl—1(Daf)

aclFy

in terms of higher order derivatives,

nl.-(f) > max  nly—i(Da,Day - .- Da, f)

1
2t a1,a2,...,a; €Fy

for every non-negative integer i < r. In particular, for r =2,

nla(f) > %maxnl(Daf).

ackFy

Proposition 2 ([4], Proposition 3). Let f € B,, and r be a positive integer (r < n), then we
have

acly

nl.(f) > 2" — ;\/2% —2> " nl_1(Daf).



Corollary 1 ([4], Corollary 2). Let f € B,, and r be a positive integer (r < n). Assume that,
for some nonnegative integers M and m, we have nl._1(Dqf) > 271 — M2™ for every nonzero
a € F5. Then

nl.(f) > 27t — 1\/2n— M2m+1+2”
~2TL1 \/72

Carlet remarked that in general, the lower bound given by the Proposition 2 is potentially stronger
than that given in Proposition 1 [4].

3 Second-order nonlinearity of D, type functions

In this section n = 2p. A Boolean function on n variables h : Fop X Fop — [y is said to be a Dy
type bent if h(z,y) = z-m(y) + [1}_; (z; +1) where 7 is a permutation on For and z = (1, ..., zp).
This class is constructed by Carlet [3] and shown to be distinct from the complete class of MMF
type bent functions.

3.1 Functions obtained by modifying trf(zy?’ +1)
Suppose 7(y) = y* 1 where i is an integer such that, ged(2° 4+ 1,27 — 1) = 1 and ged(i,p) = e.
First we prove the following.

Lemma 5. Let h,(x) = Trf(uxzi“), p,x € Fop, i # 0, i is integer such that 1 < i < p, ged(2! +
1,2 — 1) =1, and ged(i,p) = e, then the dimension of the kernel associated with the bilinear form
of h, ise.

Proof. h,(x) = Tr’f(ux2i+1). Let a € Fap, a # 0 be arbitrary.

pla+a)* )+ Trf (ua® )
u(a;Zia +za® +a¥ )
apx? + pa’ x) + Tl (a* +1)

(a)* " + pa®)z) + Tri(a* )

—_~ o~ o~ o~

Dgyh,, is constant if and only if ‘ ‘
(ap)®" + pa® =0.

i.e., ap + (,uazi)y =0.

e., ap+ u2ia22i =0.

Assuming p # 0 , .,

i.e., ,u21_1a2 o

i.e., (pa

=1 and gecd(i, p) = e, therefore

2i+1)22'71 -1

since (pa? T1)2'—1

pa® e T3



ie., a® e (p)"Fi.

Thus, the total number of ways in which a can be chosen so that D,h,, is constant is 2¢ (including
the case u = 0). Hence by Lemma 3 we have the dimension of the kernel associated with b, ise. O

Remark 1. From Lemma 4 and Lemma 5 it is clear that the weight distribution of the Walsh
spectrum of h, is:

Wi, (a) number of a

0 gn _ gn—e
9(n+e)/2  gn—e—1 + 9(n—e—2)/2
_2(n+e)/2 gn—e—1 _ 2(n—e—2)/2

Lemma 6. Let h(z,y) = f(z,y) + g(z), where n = 2p, x,y € Fy, f(z,y) = = - 7(y), 9(z) =
[T5_,(z; + 1) and 7 is a permutation on FY then

— The Walsh transform of D ph at (u,n) € Fy x F is
Wi (1) = Wi (o) — 20— 105 4 (—1)PWon),  and
— | Wpyyn (1) [<I Wy 1 (1sm) | +4 | War(n) | -
Proof. Let h(z,y) = f(z,y) + g9(z), g(z) = [[}_;(zi + 1) and (a,b) € F§ x F5 be arbitrary. Clearly

o(2) = {1, if (z,y) € {0} x F3,

0, otherwise.

For a # 0 then

1, if (x,y) € {a} x Fg?
0, otherwise.

g(w+a)={

Thus

1, if (z,y) € {0} x FSJ{a} x FE,

0, otherwise.

o(o) + ol + o) = {



The Walsh transform of D, yyh at (i, 1) € Fy x Fy is

WD( b)h(% 77) = Z (_1)f(ac+a,y+b)+f(x7y)+g($+a)+g(x)+u.$+n.y
| (z,y)€FY xFY
- > (= 1) @yt f @) tatny
(z,y) €FG xFO\ ({0} xFy U {a} xF%)
- > (1)@ Fay+b) - fea) ety
(z,y)€{0} xFE | {a} xFL
- Z (_1)f(x+a’y+b)+f(””’y)+M'x+n-y
(z,y)EFE xFE
—2 Y (—f e ety
(z,y)€{0,a} xF5
=Wprln) =2 Y (~1)feresttf@ytuatny
(z,y)€{0,a} xF}
= WD(a,b)f(My n) - 2[ Z (—1)f(07y+b)+f(a,y)+p,a+ny

y€eFy
+ Z (—=1)f (@v+0)+/Oy)+ny |
y€eFh
= Wy s (ym) = 2[(=1)F Y7 (=1)* WY 4 (1)1 N 7 (1) )]

S y€eF}
= WD(a,b)f(M? 7)) - 2[ (_1)u'aWa~7r(77) + (_1)n.bWa-7r(77)]
= Wp, £ (1:11) = 2[ (= 1) + (=1)" [Wor ()

Thus
’ WD(a,b)h(:U*v n) <] WD(a,b)f(Mﬂ?) | +4 | War(n) | .

O

Theorem 1. Let h(z,y) = Trlf(y:yzi*l) + [0 (@i + 1), where n = 2p, z,y € FY, i is integer such
that 1 <i < p, ged(2 +1,2P — 1) = 1, and ged(i,p) = e, then nonlinearity of D pyh is

22p—1 _ gpte—1 ifa=0 andb#0,

nl(Digph) > { 22p-1 —ortel _9™5= 1 irq 20 and b0,
2m—1 3pte—2 pte+2 .

2Pt —272 =22 ifa#0andb=0.

Proof. h(z,y) = Trf(zy® 1) + [T_y (zi + 1). Let f(z,y) = Trf(xy® 1) and g(z) = [T, (zi + 1),
then by Lemma 6 the Walsh Hadamard transform of D, p)h at any point (u,7) € Fy x F} is

| WDy h (105 1) [<I Wy 7 (15 1) | +4 | War(n) | (1)



It is given by Gangopadhyay, Sarkar and Telang [8] that the dimension of kernel k(a, b) of bilinear
form associated with D) f is

_Je+p, iftb=0,
k(“’b){%, if b 0.

The above equation can be written as

e+p, ifa#0,b=0,
k(a,b) =< 2, ifa=0,b+#0. (2)
2e, ifa#0,b#0.

Case 1. Consider the case a = 0. From (1) and (2) we have

WD(O,b)h(H’ 77) = WD(o,b)f(:uv 77)
— gpte

Therefore for b # 0 nonlinearity of D(gy)h is

_ 1
nl(D(O,b)h) = 22p T imax(u,n)ngng | WD(O’b)f()uv 77) |
_ 22p—1 _ 2p+e—1 (3)
Case 2. Consider the case a # 0. Here a - 7(y) = Trf(ay2i+1), Using (1) & Remark 1 we have

ptetd

| WD(a,b)h(ﬂun) I<| WD@@f(Nﬂ?) | +27 2.

From (2) we have

e ifa +£0,b40,
WD(aﬂb)f(/’“n) = { 3pte

2% ifa#0,b=0.

Therefore,
opte L 9P if £ 0,b 40,

3pte pte+4
272 +

57, ifa#£0,b=0.

W, yyntsm) < {

Therefore nonlinearity of D4 )h is

92p—1 _gpte=l _ 9P e L0 b £ 0
(D ph) > e 42 ' ’ 4
nl( (a,b) ) > {22p_1_23p+2 2 _2p+2+27 ifa£0b=0. (4)

Combining (3) and (4) we have

22p—1 _ gpte—1 ifa=0andb#0,
nl(Digpyh) > { 221 —orte=l 9™ if g 0 and b £ 0, (5)
3pte—2 pte+2

22r=1 275~ — 272 | ifa#0andb=0.



Theorem 2. Let h(z,y) = Tr"f(xy?“) + [12_ (@i + 1), where n = 2p, z,y € FY, i is integer such
that 1 <i<p, ged(2 +1,2P — 1) =1, and ged(i, p) = e, then

Spte 3pte

nlg(h) > 2271 — %\/2317% +22P(1 —2¢) 45272 —272 ).

Proof. h(z,y) = TrP(ay® 1) + T2, (zi + 1) Let f(z,y) = TrP(zy®* ™) and g(z) = [T, (z; + 1)
Using (5) and Proposition 1 we have

nly(h) > 2272 — opte=2, (6)
Using (5) we have
> nl(Dgyh)
(a,b)EFQp ><]F2p
=nl(Dogh)+ Y. nl(Doph)+ Y. nl(Dgeh) + > (D pyh)
beFyp ,b£0 a€F9p ,a#0 (a,b)EF9p xFop,a#0,b#£0

> (2P — 1)(22P—1 — gpte=ly 4 (2P — 1) (221 — 9= 2%”2)

(2P — 1)(20 — 1)(22~1 — ptesl _ 9P

(21) _ ){22p 4 23p71 22p+efl 22p71 _ 23p+2e+2 - 23p+2ef2}

( 1){22p 1 + 23p 1 22p+e 1 23p+e+2 23p+e 2
— 24p 1 22p 1 23p+e 1 + 22p+e 1 + 23p+e+2 + 23p+e 2 25p+e+2 - 25p+e—2

2 2

— 9dp—1 _ 93pte-1 _ 92p— 1( —2¢) — 5<25P+e 2 23P+E 2)

Using Proposition 2 we have

1 _
nly(h) > 22P~1 — 5\/2410 — 2{24—1 — 23pte—1 _ 92p—1(] — 2¢) — 5(2 —-272 )}

5p+e 3pte

—92r—1 _ \/23p+e +22P(1 —2¢) + 5(2 —-22) (7)

If f(z,y) = tr}(zy?*1), where i is an integer such that 1 <i < p, ged(2? 4+ 1,2P — 1) = 1, then
from ([8], Theorem 2) we obtain

nlo(f) = 21— 13205+ _ 2D an(a(i+5) _ge 1 1),
Thus, nla(h) and nla(f) are asymptotically equal. Below we provide comparisons among the lower
bounds obtained from Theorem 2 and ([8], Theorem 2) and maximum known Hamming distances
as computed in [7].

n=2p 61 10 |12

5 1,2[1,2,3,4[ 2,4

e = ged(i, p) 1 1 2
Lower bounds in Theorem 2|10 | 351 |1466
Lower bounds in [§] 15| 378 |1524
Hamming distances in [7] |18 | 400 [1760




The inequality in Proposition 2 involves nonlinearities of D, f, the first derivative of f, at each
a € Fy. If f is a cubic function then D,f is at most quadric. The nonlinearities of quadratic
and affine functions are well known ([9], Chap. 15). Therefore Proposition 2 is readily applicable
to cubic Boolean functions. This is exploited in [4,8,11] to compute lower bounds of second-order
nonlinearities for particular functions. In this paper we show that it is possible to use this knowledge
in some cases to obtain information related to second-order nonlinearities of functions in the class
Dy, which are bent functions with maximum possible algebraic degree, p, for any given n = 2p.

. . . . m+
3.2 Functions obtained by modifying Tr¥ (z(y? 1 y3 + 1))

Theorem 3. Let h(x,y) = Tr{’(ac(meHH + 33 +y) + [Py (zi + 1), where n =2p, z,y € F5, m
1s integer such that p = 2m + 1, then

p+3 3p+3

1
nlg(h)222P—1—§\/23p+2—3.22p+5-( —27%).

Proof. h{w,y) = Tri(w(y”™" "+ +4° + ) + 1y (7 + 1) Let 6, y) = Tri(a(y?" " + P +y)
and ¢, (y) = p - 7(y) = Tr} (u(y*" T LB y), 04 € FY. Then by Lemma 6 Walsh transform
of Digpyh at (u,m) € Fy ]Fp is

| W uh (1) <[ Wi 46 () | +4 | War (1) | - (8)

The first order derivative of ¢, w. r. t. a, a € Fop is

Dopu(x) = Tri(u((z +a)*™ "+ 4 (@ + a)® + (2 + a) + Tr¥ (u(@® 1 + 2% + 2))
x a+a® "z +ar®+ a’z))

2m+1

2" ap) + Trf (apa®) + Tri((a*p + o®" )

om 22m 92

=TrP((a®" 12" +a* " " +a

(
(
(z m+1au + a2m+1,ux + apx? + a’px)
(
( 2m+1

p+ a’p)x)

D,¢,, is constant if and only if

an'u2m + a22mM22m + a,2m+1'u + G/QM _ 0
i, (@22 + a2 +a? i+ a2p)?" =0

247n 24m 23m 23771

te., a° u +a p +a2m,u

22m 22m

+u” a=0 . (9)

Thus, for any nonzero a € Fop, a2 ,u24m + a2 ,u23m +a?" uQQm + u22ma is a linearized polynomial,
then by Lemma 1, (9) have at most 2% solutions in Fo». Hence by Lemma 3 we have the dimension
of the kernel k associated with ¢, is at most 4 i.e., k < 4. Since p is odd integer so that k£ < 3.
Thus the walsh transform of ¢, at any point a € Fop is

p

We, (@) = Wyn(a) < 2% (10)



It is given by Sarkar and Gangopadhyay [10] that the dimension of kernel k(a,b) of bilinear form
associated with D, )¢ is

_fi+p0<i<d, if b=0,

Since the kernel of the bilinear form associated with D(, )¢ is the subspace of Fy2,. therefore the
kernel is k(a,b) even. Thus,
p+3, if b=0,
<
k(a’b)—{4, if b 0.

The above equation can be written as

p+3,ifa#0,b=0,
k(a,b) < < 4, ifa=0,b#0.
4, ifa#0,b#0.

Thus we have

2P+2 if g £ 0,b #£ 0,
2072 if a =0,b# 0, (11)

3p+3

272, ifa#0,b=0.

W, el n) <

Using (8), (10) and (11) we have

o742 4 2"5 ifa £ 0,b #0,

Wk (1) < 4 2942, ifa=0,b+#0,
’ 3ptd pt7

272 +272,ifa#0,b=0.

Therefore nonlinearity of D(,p)h is

92-1 _ o+l _ 9"3%  if ¢ £0,b 40,
nl(Dgpyh) > q 2271 — 2Pt if a=0,b#0,

3p+1 p+5

22r=1 _ 975~ — 272 | ifa#0,b=0.

> nl(Dgyh)

(a,b)€Fop xFop

=nl(Dooyh) + Y. nl(Doyh)+ Y. nl(Doh) + > (D p)h)
bEFop ,b£0 a€Fqp,a£0 (a,b)EF9p xFap ,a£0,b£0
3p+1 p+5
> (2P — 1)(22~1 —2p+ly (20 — )22l — 27 — 2"
+(2P — 1)(2P — 1)(2%~1 — v+l _ 2%)

3p+1

= (2P —1){2%~1 4 22p~1 _5.275 —22pFl}

—otp—1 _93ptl 59" 9%y L 3 921

Using Proposition 2 we have

nly(h) > 22771 — %\/2417 — {241 — 93+l _ 5275 — 2757 4 3. 221}
1 5p+3 3p+3
=221 /232 _3.9% 1 5.(272 —272 ).
2\/ + (272 p) )
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