
On the Round Complexity of Covert Computation

Vipul Goyal
Microsoft Research, India

vipul@microsoft.com

Abhishek Jain
UCLA

abhishek@cs.ucla.edu

Abstract

In STOC’05, von Ahn, Hopper and Langford introduced the notion of covert computation. In covert
computation, a party runs a secure computation protocol over a covert (or steganographic) channel without
knowing if the other parties are participating as well or not. At the end of the protocol, if all parties
participated in the protocol and if the function output is “favorable” to all parties, then the output is
revealed (along with the fact that everyone participated). All covert computation protocols known so
far require a large polynomial number of rounds. In this work, we first study the question of the round
complexity of covert computation and obtain the following results:

• There does not exist a constant round covert computation protocol with respect to black box sim-
ulation even for the case of two parties. (In comparison, such protocols are known even for the
multi-party case if there is no covertness requirement.)

• By relying on the two slot non-black-box simulation technique of Pass (STOC’04) and techniques
from cryptography in NC0 (Applebaum et al, FOCS’04), we obtain a construction of a constant
round covert multi-party computation protocol.

Put together, the above adds one more example to the growing list of tasks for which non-black-box
simulation techniques (introduced in the work of Barak in FOCS’01) are necessary.

Finally, we study the problem of covert multi-party computation in the setting where the parties only
have point to point (covert) communication channels. We observe that our covert computation protocol
for the broadcast channel inherits, from the protocol of Pass, the property of secure composition in the
bounded concurrent setting. Then, as an application of this protocol, somewhat surprisingly we show the
existence of covert multi-party computation with point to point channels (assuming that the number of
parties is a constant).

0

1 Introduction

A conventional steganographic framework allows for encoding hidden messages within larger, seemingly in-
nocent messages. This allows a group of parties to realize a “covert channel” on which they can meaningfully
communicate without leaking even the existence of such a communication to “undesirable entities”. The no-
tion of covert computation was introduced by von Ahn et al [vAHL05] as a generalization of this framework.
Covert computation allows a group of parties to securely perform arbitrary computation without leaking
the existence of this computation to undesirable entities (some of whom may even be potential participants
of this computation).

To understand the notion of covert computation, consider the example of secret handshake: a problem
well studied in the security community (see [ABK07, BDS+03] and the references therein). Consider the
scenario where two CIA agents, both of whom possess some signed credentials, wish to converse with each
other. However, none of them wishes to reveal the fact that he is a CIA agent unless the other one is a CIA
agent as well. It seems that in such a setting, one can run a well known “ordinary” secure computation
protocol [GMW87, Yao82] which would output 1 if both of them are CIA agents and 0 otherwise. However,
for this to work, one of the parties needs to come forward and ask the question: “shall we run a protocol to
see if both of us are CIA agents?”. This already reveals the information that this party is probably a CIA
agent! Is it possible for the agents to run a secure computation protocol such that even the existence of the
protocol execution is not known until and unless the credentials of both agents are verified and valid (and
they both participated in the protocol)?

von Ahn et al [vAHL05] gave a construction for covert two-party computation satisfying a game based
definition. Subsequent to this work, Chandran et al [CGOS07] proposed a cleaner simulation based defini-
tion of covert computation by strengthening the “standard” secure computation ideal world requirements.
Chandran et al [CGOS07] also proposed a construction of covert multi-party computation satisfying this
definition assuming the existence of a (covert) communication channel shared among all participants (that
is, a broadcast channel).

Very informally, the scenario of covert computation is as follows. There are various parties who carry
out normal “innocent” conversations with each other. There might be parties which are interested in
carrying out a protocol for a particular task. Such participating parties compute outgoing messages as
per the protocol specifications and encode these messages in the innocent looking messages of the channel
(using steganographic techniques). We refer to this as a “covert communication channel”. Upon receipt
of a message, a participating party runs the decoding procedure to get the next incoming message of the
protocol. At the end of the protocol, if every party was participating and the output of the computation
was “favorable”1, the parties may learn the output and the fact that everyone participated. A covert
computation protocol should satisfy the following security properties (in addition to those already satisfied
by standard secure computation protocols): (1) No outsider can tell if the parties are running a protocol or
just communicating normally, (2) Even if one party does not take part in the protocol, or the output of the
computation is unfavorable, then the transcript of the conversation looks indistinguishable from “innocent
looking” conversations even to a party participating in the protocol. It is the second property which makes
the construction of covert computation protocols interesting and highly non-trivial.

It was shown in [vAHL05] that using standard steganographic techniques, the task of designing a covert
computation protocol can be reduced to the task of designing an ordinary secure computation protocol
where a message sent by a party looks indistinguishable from random to all other parties (and the outside
world) until and unless the output is favorable to all parties (and all parties participated as opposed to simply
sending messages drawn from the uniform distribution). von Ahn et al [vAHL05] discuss several applications
of covert computation such as dating (where the existence of computation is revealed only if both parties
are interested in each other) or bit agreement in general (to see if all the parties are like-minded), cheating
in Internet games and so on.

The notion of covert computation is theoretically intriguing (independent of its applications). Covert
computation can be seen to have the same relationship with ordinary secure computation as steganographic

1In the secret handshake example above, this would amount to the credentials of both parties being valid.

1

communication has with encrypted communication. Covert computation is an example of a protocol problem
that is formulated by a strengthening of the ideal world security requirements (as opposed to specifications
of a new real-world setting in which protocols providing ordinary ideal world security are desired). Covert
computation comes with various fundamental technical challenges unrelated to the kind encountered before
in the literature of secure computation. Standard techniques like zero knowledge proofs inherently
break down in the setting of covert computation. This is because if a party is able to “verify” a proof
given by another party, the fact that the other party is participating is immediately revealed.

There are a few natural questions that arise while considering the notion of covert computation. These
issues were discussed in [vAHL05], and we briefly recall them here:
Synchronization. One question we may ask is “don’t parties have to tell each other that they are interested
in running a covert computation protocol for function f anyway?”. This is not the case as discussed in
[vAHL05]: As part of protocol specification, we could have information about how and when to initiate
a particular protocol. This could be in the form of “If we wish to compute function f , then the protocol
begins with the first message exchanged after 2 p.m.”. If a party is interested in computing function f , then
he starts hiding the protocol messages in the “ordinary looking” messages starting from 2 p.m. Of course,
it could be the case that other parties are not interested, in which case some parties would be executing
the protocol, while others would just be carrying on “normal” conversations. The protocol execution does
not take place in this case, and knowledge about which parties intended to take part in the protocol is not
revealed to anyone. (Instead, other parties will just observe ordinary-seeming conversations.)
MPC + Steganography = Covert MPC? Is it the case that by combining multi-party computation
and steganography, we can obtain covert computation protocols? Again, as argued by [vAHL05], this is not
the case: Recall that steganographically encoding all messages of a standard secure multi-party computation
protocol would yield a protocol for which no outside observer can determine if the protocol for computing
the function is being run or not. This however provides no guarantee whatsoever to the participants of
the protocol itself. Covert computation must guarantee that the protocol execution remains hidden from
participating parties.

We assume that all parties know a common circuit for the function f and further, they know the roles
they will play in the protocol. We call a party a non-participating party if it does not play the required role
during protocol execution. The parties also possess information about the synchronization of the protocol.
Adversarial parties also know all such details.

1.1 Round Complexity of Covert Computation

Round complexity is a parameter of special importance in the setting of covert computation. In this setting,
the issues of round complexity may relate to questions about feasibility of secure computation as opposed
to just efficiency. This is because, a party may not be able to exchange hundreds of messages back and
forth with another party without raising the suspicion that a computation is going on. In general, the covert
communication channel might restrict the number of messages which the parties are allowed to send.

The protocols constructed in [vAHL05, CGOS07] require a large polynomial number of rounds in the
security parameter as well as the number of parties. In order to obtain more realistic protocols for covert
computation, it is important to ask whether this is inherent.

1.2 Our Contributions

We first study the question of the round complexity of covert computation and obtain the following results:

1. There does not exist a constant round covert computation protocol with respect to black box simulation
even for the case of two parties. (In comparison, such protocols are known even for the multi-party
case if there is no covertness requirement.)

2. Next, we build upon on the two slot non-black-box simulation technique of Pass [Pas04], and the
techniques from Applebaum et al [AIK04] to construct (based on standard assumptions) a “covert”

2

encryption scheme with a constant depth circuit for the encryption function. Using these techniques,
we obtain a construction of a constant round covert multiparty computation protocol.

Put together, the above adds one more example to the growing list of tasks for which non-black-box simu-
lation techniques (introduced in the work of Barak [Bar01]) are necessary.

Finally, we initiate the study of covert multiparty computation in the setting where the parties only have
point to point covert communication channels. This setting is fundamentally different from the one where a
covert broadcast channel is available. This is because now a party may not have an innocent reason to send
the same message to multiple other parties. Doing such might immediately reveal that the party is trying to
carry out a protocol. Thus, the known techniques of implementing broadcast using point-to-point channels
inherently fail. At any stage in the protocol, a non-trivial agreement between more than two parties on the
same message implies the loss of covertness.

Towards that end, we observe that our covert computation protocol for the broadcast channel inherits,
from the protocol of Pass [Pas04], the property of composition in the bounded concurrent setting. Then,
as an application of this protocol, we provide the first construction of covert multiparty computation with
point to point channels assuming that the number of parties is a constant.

1.3 Our Techniques

We now give a high-level overview of the techniques used in each of our results.

Impossibility of Constant-Round Covert Computation with Black Box Simulation. One of the
key requirements for successful simulation in the setting of secure two-party computation is the following.
The simulator must be able to extract the input of the adversary (and send it to the trusted party in the
ideal world). Black-box simulators are restricted to do that by means of rewinding (i.e., by making extra
oracle calls to the adversary). In particular, a black-box simulator may run multiple “threads of execution”
with the adversary and finally output a single thread, called the “main-thread”. Any other thread is
referred to as a “look-ahead” thread. A black-box simulator “will fail” if: (a) the main thread is honestly
executed (e.g., the adversary does not abort at any point during the main thread), but (b) the simulator
obtains no “useful information” in any look-ahead thread. In order to prove our impossibility result, we
will construct an adversary for which any black-box simulator “fails” (in the aforementioned sense) with
noticeable probability.

Recall that in the setting of covert two-party computation, a party p1 may either send a meaningful
message (i.e., a message that encodes a protocol message) or a “non-participating” message (i.e., a message
drawn uniformly from the broadcast channel). The covertness property requires that these two events must
be indistinguishable to the other party p2. In particular, for any secure covert computation protocol, the
covertness property must hold even if p1 and p2 (as described above) are in fact the adversary and the
simulator algorithms respectively. Then, the central idea to our impossibility result is the inability of any
black-box simulator (say) S of a covert computation protocol to determine whether an adversarial party is
participating in the main thread or not (at least until additional information can be extracted via rewinding).
First, consider a simple adversarial party A who does not participate in the covert computation at all (i.e.,
sends messages drawn randomly from the communication channel). However, if A does not participate at
all, at some point (after rewinding A a number of times), S must give up in trying to extract its input (and
conclude that A is not participating).

Now, consider the case when A participates in each round of the covert computation protocol with some
sufficiently low probability. In this case, the following could happen with non-negligible probability (if the
protocol is constant round). A might participate honestly throughout in the “main thread”; however, S
will not have any evidence of this fact (in keeping with the covertness property of the protocol). Further,
when S rewinds A to create a number of “look-ahead” threads, A might not participate in any of them with
noticeable probability. Thus, S might give up as in the first case and conclude that A is not participating
at all (as opposed to running till it is able to extract the input).

We note that our proof only works for the constant round case. This is because if the number of the
rounds in the protocol are non-constant, very roughly speaking, the simulator may have a large number of

3

rewinding opportunities. As a result, the probability that the adversary doesn’t participate in any of the
look aheads (but participates in the entire main thread) may become negligible.

To summarize, since the simulator is unable to determine whether the adversary participated in the
main thread or not (at least until one look-ahead thread is successful), it runs the risk of creating “too few”
look ahead threads (such that the adversary does not participate in any of them) and then giving up in
extraction. Roughly speaking, if the simulator is still successful, then it must be essentially “straight-line”.
Then, by using standard techniques, we can derive a contradiction based on this fact.

Constant-Round Covert Computation with Non Black Box Simulation. In many works, constant
round multi-party computation protocols have been designed using techniques from Beaver et al [BMR90].
The design of the protocol can be viewed as having two high level steps:
Semi-honest protocol. The first step is to design a constant round protocol secure only against semi-
honest adversaries. The basic idea is to have the parties run a secure computation protocol whose round
complexity is linear in the depth of the circuit it evaluates (e.g., the semi-honest GMW protocol). Such
a secure computation protocol is run to jointly generate a garbled circuit [Yao82] for the desired (final)
functionality. The parties can then evaluate this garbled circuit offline on their own later on. Note that the
gate tables for all the gates in the garbled circuit are generated in parallel ; then, if the circuit to generate
any gate table has constant depth, the secure computation protocol will only have a constant number of
rounds.

This is indeed the case in [BMR90] since they simply use the XOR function as the encryption scheme
to generate the gate tables. However, note that fresh keys must be used for each XOR operation. Then, to
avoid blowing up the size of the keys exponentially, the parties now need to run a local preprocessing phase in
which they expand their keys by application of a pseudorandom generator (PRG). However, the basic BMR
technique breaks down in the covert setting. The high level reason can be understood as follows. The PRG
evaluations in local preprocessing phase (in which the parties expand their keys) have to be later repeated
at the time of garbled circuit evaluation. Then, the fact that the computation done in the preprocessing
phase “conforms” to the computation done while evaluating the received garbled circuit leaks the fact that
all parties are participating in the protocol (even if the output is not favorable). In summary, the XOR
function coupled with the PRG evaluations does not preserve covertness of the parties.

To solve this problem, we construct a new covert encryption scheme2 in NC0 using techniques from
Applebaum et al [AIK04]. We then use this encryption scheme (instead of the XOR function as in [BMR90])
to compute the gate tables. This allows us to remove the BMR local processing phase entirely.

Forgetting our goal of obtaining a covert computation protocol, consider the protocol in which we use
such an encryption scheme in gate tables and use standard GMW for gate table generation. We believe
this protocol is of independent interest since it also gives an arguably cleaner alternative to the Beaver
et al [BMR90] protocol (which in turn has been used widely in the study of round complexity of secure
computation).
Compiling with Zero-Knowledge Proofs. Next, we “compile” the above semi-honest secure protocol
with constant round simulation-sound3 zero knowledge proofs.

In order to adopt such an approach to our setting, we first note that zero knowledge proofs break down in
the setting of covert computation since they are “verifiable”. To this end, [CGOS07] introduced the notion
of zero knowledge proofs to garbled circuits. Roughly speaking, a zero knowledge proof to garbled circuit is
a protocol between two parties—a sender and a receiver—who share common input (x, L) while the sender
additionally has a private input v. If the receiver can prove that x ∈ L to a garbled circuit prepared by the

2Intuitively, the encryption keys and the ciphertexts produced by a covert encryption scheme are indistinguishable from the
uniform distribution.

3In order to ensure that the resultant protocol is constant-round (in the multi-party case), not only must the zero-knowledge
proofs be constant-round, but they must also be executed in parallel. We note that in such a scenario, we run the risk of mauling
attacks (for instance, an adversary who acts as the verifier in a “left” execution may be able to use this interaction in order
to prove a statement in a “right” execution). The notion of simulation-soundness, introduced by Sahai [Sah99], guarantees
robustness against such attacks; therefore using simulation-sound zero knowledge proofs (instead of standard zero-knowledge)
is crucial in the constant-round setting.

4

sender, then it will receive a private value v, else it will receive a random value. Intuitively, this protocol can
be seen as covert conditional oblivious transfer, where a value is sent from a sender to a receiver conditioned
upon the fact that a given NP statement (for e.g., an assertion that a party behaved honestly “so far” in
the protocol) is true. In this protocol, the sender does not learn whether or not the receiver was able to
prove the statement correctly to the garbled circuit (hence preserving the covertness of the zero-knowledge
prover).

Our impossibility result implies that non black-box techniques are necessary to construct such a gadget
(henceforth referred to as ZKSend) in the constant-round setting. To this end, we use the non black-box
simulation technique of Pass [Pas04] (which in turn builds on the work of Barak [Bar01]). We note that the
protocol of Pass is a simulation-sound zero knowledge argument system.

We stress that a naive attempt to adopt the techniques of [Pas04] in the construction of ZKSend of
[CGOS07] does not work. The main difficulty is in proving the (stand-alone) soundness of the new construc-
tion. Complications arise in our setting because the construction of ZKSend in [CGOS07] crucially uses a
proof system, while the protocol in [Pas04] is an argument system. We refer the reader to section 5.1 for
more details.

Finally, we note that zero-knowledge proofs to garbled circuits cannot be applied to achieve secure
covert multi-party computation as “easily” as ordinary zero-knowledge proofs can be applied to achieve
secure (ordinary) multi-party computation. This problem was also faced by Chandran et al [CGOS07] who
introduced what one can call a “delayed verification” technique (where the usage of zero-knowledge protocols
is deferred to the end of the protocol). Here we are able to adopt the techniques from [CGOS07] to our
setting without major difficulties.

Covert Computation over Point-to-Point Channels. There exists a rich body of literature on designing
secure computation protocols over point to point channels (see [KK07],[KKK08] and references therein).
However, to our knowledge, a common theme in all these works is a party sending the same message
to multiple (or all) other parties over the pairwise private channels. Unfortunately, such techniques are
inherently bound to fail in our scenario. The key challenge in our setting is to design a protocol where the
messages exchanged between a pair of parties look indistinguishable from random even given the messages
exchanged between all other pairs of parties (till the point when it is clear that all the parties are participating
and that the output is favorable).

The basic idea of our construction is as follows. As part of the protocol specifications, the n parties
are grouped into n/2 pairs. Each pair of parties run a covert two-party computation protocol (say) Σ to
emulate a virtual party. This leads to a total of n/2 virtual parties. These virtual parties are further grouped
into n/4 pairs and each pair of virtual parties run Σ to emulate another virtual party. By applying this
idea recursively, there would eventually be a single virtual party which has all the required inputs and thus
computes the output. Very informally, even if a single (real) party behaves honestly in the protocol, the
final single virtual party would be “honest” as well.

We model a virtual party in the form of a reactive functionality. In particular, we define a hierarchy of
reactive functionalities where the functionality at level 0 has all the required inputs and can compute the
output while each functionality at level log(n) defines the algorithm of a real party. Further, we show how
a pair of virtual parties at some level can communicate with each other through parties at the level just
“below”. We now briefly outline some of the key challenges in realizing this construction.

Note that in the above construction, there would be multiple uncoordinated executions of the covert
two-party computation protocol Σ. To this end, we will require Σ to be secure in the bounded concurrent
setting. Fortunately, our constant-round covert computation protocol (over the broadcast channel) inherits,
from the protocol of Pass [Pas04], the property of composition in the bounded concurrent setting. Then, by
making some necessary changes to this protocol, we can obtain a covert two-party computation protocol Σ
for reactive functionalities in the bounded-concurrent setting. Further, note that the communication channel
of the virtual parties (as described above) can, in general, be controlled by a man in the middle. We employ
techniques from the work of Barak et al [BCL+05] to solve this problem.

We note, however, that our construction only works for a constant number of parties. This is because the

5

computational overhead of our protocol is O(klog(n)) · |C| where k is the security parameter, n is the number
of parties (and hence log(n) is the depth of the tree) and |C| is the size of the circuit of the functionality.
One approach to extend our construction to work for any polynomial number of parties would be to obtain
a covert two-party computation protocol with constant computational overhead [IKOS08].

1.4 Organization

We start by describing our model of covert computation in section 2. In section 3, we present our impossibility
result. Next, in section 4, we introduce some of the basic building blocks used in our positive result. We then
present our positive result for the broadcast channel in section 5. Finally, we present our positive result for
point-to-point channels in section 6. Additionally, in appendix D, we provide a (relatively) short description
of all our results. This is recommended for a reader who only wishes to understand the key ideas in our
results without all the details.

2 Preliminaries and Model

In this section, we describe our model for covert computation. Specifically, we consider the simulation based
definition for covert computation introduced by Chandran et al [CGOS07]. The text in this section is taken
verbatim from [CGOS07].

2.1 Network Model

We consider a system of n parties who interact with each other. Each of the parties could either be trying to
compute some function jointly with other parties (hoping that other parties are interested in computing this
function too), or could just be carrying out normal day to day conversation. As in [vAHL05, CGOS07], we
envision that the protocol messages are hidden by the parties in “ordinary” or “innocent-looking” messages
(using stenographic techniques). Ordinary communication patterns and messages are formally defined in a
manner similar to the channels used by [HLvA02] and [vAH04]. Similar to [CGOS07], we use a broadcast
channel shared by all n participants in the protocol. For a more detailed description, see Appendix A.

Similar to [vAHL05], we note that it is enough to construct covert computation protocols only for the
uniform channel. This is due to the following lemma:

Lemma 1 If Π covertly realizes the functionality f for the uniform channel, then there exists a protocol ΣΠ

that covertly realizes f for the broadcast channel B.

The intuition behind why this lemma is true is that once we construct a protocol where the messages of the
parties look indistinguishable from random, we can use steganographic techniques to embed such messages
into innocent conversations of any other channel. Upon decoding a given conversation for the channel,
a party would only see a random looking message regardless of whether a message was embedded in the
conversation or not. We refer the reader to [vAHL05] for a description of ΣΠ and a proof of the statement.

Here onwards, we shall concentrate only on constructing covert computation protocols for which it can
be shown that all messages in the protocol are indistinguishable from messages drawn at random from the
uniform distribution. By using the above compiler, we can then obtain a covert computation protocol for
any broadcast channel B.

2.2 Covert Computation

We consider a system of n parties (say, P = {P1, . . . , Pn}), of which some may be trying to run the covert
computation protocol while others could just be carrying out regular conversation. This gives rise to so
called participating parties and non-participating parties. If any of the parties is non-participating, we
would like the covert computation protocol to just output ⊥ to all parties (hiding which party participated
and which did not). Each participating party Pi holds an input xi. Our (possibly randomized) function

6

f to be computed by the n parties is denoted by f : ({0, 1}∗)n → {0, 1}∗, that is, for a vector of inputs
~x = (x1, . . . , xn), the output is f(~x) (the case where different parties should get different outputs can be
easily handled using standard techniques). Note that we may also view f as a deterministic function when
the randomness is explicitly supplied as input. Additionally, we have a function g : ({0, 1}∗)n → {0, 1} which
determines whether the output is favorable to all the parties or not. In particular, if g(~x) = 0, the output
f(~x) is said to be non-favorable. In that case, the covert computation protocol should just produce ⊥. No
one can tell whether any party participated at all or not even after the protocol is over. However, if every
party is a participating party and g(~x) = 1, we would like the output of the protocol to be f(~x) (and thus
the fact that everyone participated becomes public).

To formalize the above requirement, we extend the standard paradigm for defining secure multi-party
computation. We define an ideal model of computation and a real model of computation, and require that
any adversary in the real model can be emulated (in the specific sense described below) by an adversary in
the ideal model.

In a given execution of the protocol we assume that all inputs have length κ, the security parameter. We
consider a static adversary who corrupts up to n−1 of the players before execution of the protocol. We also
assume a synchronous network with rushing. Finally, we consider computational security only and therefore
restrict our attention to adversaries running in probabilistic polynomial time.

Ideal model. In the ideal model there is a trusted party which computes the desired functionality based on
the inputs and the participation data handed to it by the players. An execution in the ideal model proceeds
as follows:

Inputs Each participating party Pi has input xi. We represent the vector of inputs by ~x.

Send inputs to trusted party Honest participating parties always send their inputs to the trusted party.
Honest non-participating parties are assumed to send ⊥ to the trusted party (looking ahead, this
corresponds to sending regular uniformly selected messages according to the broadcast channel in
the real world). Corrupted parties, on the other hand, may decide to send modified values or ⊥
to the trusted party. We do not differentiate between malicious participating parties and malicious
non-participating parties (and assume that malicious parties are free to behave whichever way they
want).

Trusted party computes the result If any of the parties sent a ⊥ as input, the trusted party sets the
result to be ⊥. Otherwise, let ~x denote the vector of inputs received by the trusted party. Now, the
trusted party checks if g(~x) = 0 and sets the result to be ⊥ if the check succeeds. Otherwise, the
trusted party sets the result to be f(~x). It generates and uses uniform random coin if required for the
computation of g(~x) or f(~x).

Trusted party sends results to adversary The trusted party sends the result (either f(~x) or ⊥) to the
adversary.

Trusted party sends results to honest players The adversary, depending on its view up to this point,
prepares a (possibly empty) list of honest parties which should get the output. The trusted party
sends the result to the parties in that list and sends ⊥ to others.

Outputs An honest participating party Pi always outputs the response it received from the trusted party.
Non-participating parties and corrupted parties output ⊥, by convention. The adversary outputs an
arbitrary function of its entire view (which includes the view of all malicious parties) throughout the
execution of the protocol.

Observe that the main difference between our ideal model (for covert computation) and the ideal model
for standard secure multi-party computation (MPC) is with respect to participation data. In standard MPC,
it is implicitly assumed that every player is taking part in the protocol and that this information is public.
In covert computation, if the result from the trusted party is ⊥, the adversary cannot tell whether this is

7

because some party did not participate (or if any honest party participated at all) or because the output
was not favorable. If all the parties participate and the output is favorable, only then the adversary learns
the output and the fact that everyone did participate. We do not consider fairness (of getting output or
learning about participation) in the above model. As pointed out above, we do not differentiate between
malicious participating parties and malicious non-participating parties (and assume that malicious parties
are free to behave whichever way they want). However, differentiation between honest non-participating
parties and malicious parties is obviously necessary since the adversary should not know which parties are
non-participating and which are participating among the honest party set (while the adversary fully controls
and knows everything about malicious parties).

For a given adversary A, the execution of (f, g) in the ideal model on participation data ~PD (which
contains the information about which of the parties are participating) and input ~x (assuming ⊥ as the input
of non-participating parties) is defined as the output of the parties along with the output of the adversary
resulting from the process above. It is denoted by idealf,g,A(~PD, ~x).

Real model. Honest participating parties follow all instructions of the prescribed protocol, while malicious
parties are coordinated by a single adversary and may behave arbitrarily. Non-participating parties are as-
sumed to draw messages uniformly from the broadcast channel. At the conclusion of the protocol, honest
participating parties compute their output as prescribed by the protocol, while the non-participating parties
and malicious parties output ⊥. Without loss of generality, we assume the adversary outputs exactly its
entire view of the execution of the protocol. For a given adversary B and protocol Π for covertly computing
f , the execution of Π in the real model on participation data ~PD and input ~x (denoted realΠ,B(~PD, ~x))
is defined as the output of the parties along with the output of the adversary resulting from the above process.

Having defined these models, we now define what is meant by a secure protocol. By probabilistic poly-
nomial time (ppt), we mean a probabilistic Turing machine with non-uniform advice whose running time
is bounded by a polynomial in the security parameter κ. By expected probabilistic polynomial time (eppt),
we mean a Turing machine whose expected running time is bounded by some polynomial, for all inputs.

Definition 1 Let f, g and Π be as above. Protocol Π is a t-secure protocol for computing (f, g) if for every
ppt adversary A corrupting at most t players in the real model, there exists an eppt adversary S corrupting
at most t players in the ideal model, such that:{

idealf,g,S(~PD, ~x)
}

~PD∈({0,1})n,~x∈({0,1}∗)n

c≡
{
realΠ,A(~PD, ~x)

}
~PD∈({0,1})n,~x∈({0,1}∗)n

.

3 Impossibility of constant-round covert computation with a black-box
simulator

In this section, we show the existence of probabilistic polynomial-time (PPT) computable covert two-party
functionality for which there does not exist any constant-round covert two-party computation protocol,
with a black-box simulator. We stress that our impossibility result rules out any expected polynomial time
simulator which uses the adversarial algorithm as an oracle.

Before proceeding to the formal proof, we first give some intuition behind our impossibility result. The
central idea to our proof is the inability of any black-box simulator (say) S of a covert computation protocol
to determine whether an adversarial party is participating in the “main thread” or not. First, consider a
simple adversarial party A who does not participate in the (covert) computation at all. Then, black-box
simulators for two-party computation protocols have to first extract the adversary’s input; however, if A
does not participate at all, at some point, S must give up in trying to extract its input (and conclude that
A is not participating).

Now, consider the case when A participates in the (covert) computation with some sufficiently low
probability. In this case, the following could happen with non-negligible probability (if the protocol is
constant round). A might participate honestly throughout in the “main thread”; however, S will not have

8

any evidence of this fact (in keeping with the covertness property of the protocol). Further, when S rewinds
A to create a number of “look-ahead” threads, A might not participate in any of them with noticeable
probability. Thus, S might give up as in the first case and conclude that A is not participating at all (as
opposed to running till it is able to extract the input). In fact, as we show later on, this happens even
if the simulator chooses the main thread adaptively. Informally speaking, this means that the simulator
fails to get any useful information from any look-ahead thread with noticeable probability. However, a
simulator for any two-party computation protocol must have some additional power over a real adversary,
and the only additional power awarded to a black-box simulator is essentially the ability to rewind the
adversary. We therefore conclude that black-box simulators (even expected polynomial-time) cannot exist
for constant-round covert two-party computation protocol, as stated in theorem 1 below.

We note that our proof only works for the constant round case. This is because if the number of the
rounds in the protocol are non-constant, very roughly speaking, the simulator may have a large number of
rewinding opportunities. As a result, the probability that the adversary doesn’t participate in any of the
look aheads (but participates in the entire main thread) may become negligible. We now formally state our
claim.

Theorem 1 There exist PPT computable two-party functionalities for which there do not exist any constant-
round covert two-party computation protocol as per Definition 1 with respect to black-box simulators (un-
conditionally).

We prove the above theorem in the next subsection. We refer the reader to appendix D.1 for a concise
proof sketch.

3.1 Proof of Theorem 1

We will organize our proof into two main parts.

1. First, consider any covert two-party functionality F . Let Π be any constant-round covert two-party
computation protocol that securely realizes F with respect to a black-box simulator. Then, we first
construct an adversary for Π and derive a lower bound on the probability pfail with which every
black-box simulator for Π gets full participation from the adversary in the “main thread”, but fails to
get any “useful” information from the rewindings. Proving this lower bound is in fact the crux of our
proof.

2. Next, we consider a specific covert two-party functionality F̂ (described later). Let Π̂ be any constant-
round covert two party computation protocol that securely realizes F̂ . Let S be any black-box simulator
for Π̂. We first show that for the case of functionality F̂ , probability pfail (as defined above) is in
fact noticeable (polynomially related to the security parameter κ). We then show how to construct a
cheating party that internally uses S in an execution of Π̂ such that the output distributions of the
real world and the ideal world executions are distinguishable with non-negligible probability. This
contradicts the assumption that Π̂ securely realizes F̂ .

Combining the two parts, we conclude that for the covert two-party functionality F̂ (as described later),
there do not exist any constant-round covert two-party computation protocol that securely realizes F̂ as per
Definition 1 with respect to black-box simulators. We note that this is sufficient to prove theorem 1. We
now give more details on both parts of our proof.

PART 1. Analyzing the probability of simulator failing in all rewindings
Let F be any covert functionality for two parties (P1, P2). Let Π be any constant-round covert two party
computation protocol that securely realizes F with respect to a black-box simulator. We will first construct
a cheating P ∗1 that is of the following form: P ∗1 behaves exactly as the honest party P1, except that it replies
honestly in each round of Π only with some probability p < 1. With probability 1 − p, P ∗1 simply sends
a message as if it were not participating in the protocol. We will set the probability p such that P ∗1 still

9

participates honestly in Π with some non-negligible probability. We will then derive an expression for the
lower bound on the probability pfail with which any black-box simulator S for Π gets full participation from
the adversary in the “main thread”, but fails to get any “useful” information from the rewindings.

We now give more details. We first introduce some notations and conventions for the remainder of the
proof. We will borrow some of our notations and conventions from [BL04].

Without loss of generality, we assume that P2 is the protocol initiator in Π. Let c be the number of rounds
in Π, where one round consists of a message from P2 followed by a reply from P1. Let {Tk}k be a family of
q-wise independent predicates, where t ∈ Tk maps {0, 1}≤poly(κ) to {0, 1} such that on any randomly chosen
valid input β, t outputs 1 with probability 1/q2. Here q is parameter polynomial in the security parameter
(to be determined later). We give an explicit construction for Tk based on q-wise independent hash functions.
Let h : {0, 1}≤poly(κ) → {0, 1}n be chosen from a family of q-wise independent hash functions Hk. Then, on
any input β, t(β) = 1 iff the first 2 log(q) bits of h(β) are equal to 0.

Now, recall that a black-box simulator S for any two-party computation protocol has ‘oracle access’ to
the real world adversary A. Formally, we consider A as a non-interactive algorithm that gets as input the
history of the interaction, and outputs the next message that A would send in an execution of Π in which it
sees this history. Further, S can query A with any sequence of messages of the form (β1, . . . , βi), i ≤ c (i.e.,
the query contains the history of the interaction), and it will receive back the next message that A would
send in any execution of Π in which it received this sequence of messages. For the sake of simplicity, we will
assume without loss of generality, that the simulator S always follows the following two conventions:

1. It never asks the same query twice.

2. If S queries A with β, then it must have queried A with all the proper prefixes of β prior to this query.

3. S outputs a view v = (γS1 , γ
A
1 , . . . , γ

S
c , γ

A
c). Then, v represents the “main thread” of the interaction

between S and A.

We note that it is easy to modify any black-box simulator such that it follows the above conventions, without
affecting its output distribution.

P ∗1 strategy. We assume that P ∗1 has the required input and random tape as would an honest party. We
describe P ∗1 as a non-interactive algorithm that gets as an input query the next message and the history of
messages sent by P2, and outputs the next message that P ∗1 would send in a real execution of Π in which it
sees this message history. Let x be the initial input and r be the random tape of P ∗1 . Then, on receiving as
input a series of messages β = (β1, . . . , βi), P ∗1 performs the following steps:

1. Compute t(β′) for every prefix β′ = (β1, . . . , βj) of β, where j ∈ [1, i].

2. Send a message drawn from the uniform distribution unless for every j, t(β1, . . . , βj) = 1. Note
that this is a sanity check to ensure that P ∗1 replies honestly to β only if it would not have stopped
participating on receiving any query sent prior to β.

3. If the decision is to not send a message drawn from the uniform distribution, but instead to send an
honest response, then run the code for the honest party P1 on initial input x and random tape r, on
input messages (β1, . . . , βi), and output its response.

Since the number of rounds in Π is a constant c, it follows that P ∗1 participates in Π with noticeable
probability (= (1/q2)c). Let S be any black-box simulator for protocol Π. Now we use a hybrid argument
to derive a lower bound on the probability pfail defined as follows. Let v = (γS1 , γ

A
1 , . . . , γ

S
c , γ

A
c) be the view

output by S at the end of its interaction with A. Then, pfail is the probability that t(γ) = 1 for every
γ = (γS1 , . . . , γ

S
i), i ∈ [1, c], and t(γ′) = 0 for all other queries γ′ made by S. We construct a series of hybrids

Hi, i ∈ [0, 3], where each hybrid represents the interaction between an adversarial P1 (referred to as A) with
a strategy we define and the simulator S. The adversary A in H3 is identical to P ∗1 . In each hybrid, we
define and analyze the winning probability of A such that pfail is the probability with which A wins in H3.

Let rA be the random tape of A. We now describe the hybrid experiments.

10

Hybrid H0. In this experiment, A simply sends a message drawn from the uniform distribution on every
query from S. Let q be the median of the number of queries that S makes. That is, with probability 1/2
(where probability is taken over all the coins of S and A), S makes at most q queries. Note that q = poly(κ).

We now define a set Ψ as follows. Consider the tuple (rS , r1
A), where rS is the random tape of S and r1

A
is the random tape that A uses to draw messages from the uniform distribution. Note that any such tuple
defines an interaction between A and S in H0. Then, Ψ is the set of all such tuples µ = (rS , r1

A) such that
S makes at most q queries in the interaction defined by µ.

In addition to r1
A, A has a random tape r2

A that is used to solely decide the winner of the experiment.
More specifically, A uses the random tape r2

A to choose a predicate t (as defined earlier). Then, we define
a winning criterion for A in this experiment, as follows. Let {γS1 , γA1 , . . . , γSc , γAc } be the view output by
S at the end of the experiment, where γSi and γAi are the messages in the ith round of Π from S and A
respectively. Then, we say that A wins if t(γ) = 1 for every query γ = (γS1 , . . . , γ

S
i), i ∈ [1, c], and t(γ′) = 0

for all other queries γ′ made by S. In all other cases, we say that S wins.
We now analyze the winning probability of A over the choices of r2

A, i.e., for a fixed tuple (rS , r1
A). Let E1

be the event that t(β) = 1 for every query β = (β1, . . . , βi) from S, where i ∈ [1, c] and {β1, γ1, . . . , βc, γc} is
the view output by S at the end of the experiment. Further, let E2 be the event that t(β′) = 0 for all other
queries β′ made by S. We observe that E1 and E2 are independent events conditioned on (rS , r1

A) ∈ Ψ since
in this case t essentially behaves as a random function (recall that t is constructed from a q-wise independent
hash function) and the queries made by S (and its view in general) are independent of the choice of t . Then,
we have:

Pr[A wins] ≥ Pr[A wins|(rS , r1
A) ∈ Ψ] · Pr[(rS , r1

A) ∈ Ψ]
≥ Pr[E1|(rS , r1

A) ∈ Ψ] · Pr[E2|(rS , r1
A) ∈ Ψ] · Pr[(rS , r1

A) ∈ Ψ]

≥ (
1
q2

)c · (1− 1
q2
· q) · 1

2

=
1

2q2c
· (1− 1

q
),

where Pr[E2|(rS , r1
A) ∈ Ψ] < Pr[t(β) = 0 ∀β|(rS , r1

A) ∈ Ψ] = 1 − (1
q2

) · q (β is any query from S during
its interaction with A). Note that Pr[A wins] is noticeable in κ. Further, this probability is same even for
random choices of (rS , r1

A, r
2
A) (such that (rS , r1

A) ∈ Ψ).

Hybrid H1. Same as H0 except the following. On receiving any query (β1, . . . , βi−1, βi), A first checks
whether t(β) = 1, for every β = (β1, . . . , βj), j ∈ [1, i]. If that is the case, then A further checks if it had
earlier received another query β′ = (β1, . . . , βi−1, β

′
i), where β′i 6= βi and i ≥ 1, such that t(β′) = 1. If all the

above checks (in the sequel, we will refer to these combined checks as the stopping condition) succeed, then
A stops the experiment and we say that S wins.

Otherwise, if any check fails, then A simply sends a message drawn from the uniform distribution (as
in H0). In this case, let {γS1 , γA1 , . . . , γSc , γAc } be the view output by S at the end of the experiment, where
γSi and γAi are the messages in the ith round of Π from S and A respectively. Then, we say that A wins if
t(γ) = 1 for every query γ = (γS1 , . . . , γ

S
i), i ∈ [1, c], and t(γ′) = 0 for all other queries γ′ made by S. In all

other cases, we say that S wins.
We now analyze the winning probability of A in this experiment. We first observe that the set of random

tuples (rS , r1
A, r

2
A) for which A wins are identical in H0 and H1. This is because the only difference between

H0 and H1 is that for some random tuples (rS , r1
A, r

2
A), A might stop the experiment in H1 (and hence lose);

however, note that for all these tuples, A would have lost in H0 as well. Therefore, we conclude that the
winning probability of A is identical in H0 and H1.

Hybrid H2. Same as H1, except that on receiving any query (β1, . . . , βi) from S, if t(β) = 1 for every
prefix β = (β1, . . . , βj), j ∈ [1, i], but the stopping condition is false, then A sends an honest reply (as it
would if it were honestly participating in Π). In order to do so, A internally runs P1 on its initial input and

11

randomness, and the simulator’s query β, and sends its output to S. However, if the stopping condition is
true, it continues to stop the experiment as in H1.

Let {γS1 , γA1 , . . . , γSc , γAc } be the view output by S at the end of the experiment, where γSi and γAi are
the messages in the ith round of Π from S and A respectively. Then, we say that A wins if t(γ) = 1 for
every query γ = (γS1 , . . . , γ

S
i), i ∈ [1, c], and t(γ′) = 0 for all other queries γ′ made by S. In all other cases,

we say that S wins.
We now try to bound from below A’s winning probability in H2 by considering the following experiment.

Consider a machine M that interacts with S by using an external party P1 in the following manner. We
assume that P1 has some initial input while M does not. M begins the experiment by choosing a predicate t .
Then, on receiving any query (β1, . . . , βi) from S, if t(β) = 1 for every prefix β = (β1, . . . , βj), j ∈ [1, i] but
the stopping condition is false, then M forwards this query to P1. When P1 sends a response, M forwards
it to S. Otherwise, M simply sends a message drawn from the uniform distribution to S. Note that the
external party P1 interacts in just execution of Π with M .

Further observe that M forwards at most c queries (γ1, . . . , γc) to P1 where each γi = (β1, . . . , βi) (i.e.,
γi contains γi−1 as a prefix). Hence M either simply sends a message drawn from the uniform distribution
or gets an answer from P1 in response to any query from S.

Now consider the following two cases:

1. All the replies of P1 are drawn from the uniform distribution. In this case, the combination of P1 and
M is equivalent to A in H1.

2. P1 sent an honest reply to each query. In this case, the combination of P1 and M is equivalent to A
in H2.

Let D be a polynomial-time machine that can distinguish between the above two cases with some probability
ε. Then, the winning probability of A in H2 must be at least 1

2q2c
· (1 − 1

q) − ε (recall that the winning
probability of A in H1 is at least 1

2q2c
· (1− 1

q)). Note that this probability is non-negligible if ε is negligible
in the security parameter.

Hybrid H3. Same as H2, except that if the stopping condition is true, then A sends an honest reply (as
it would if it were participating honestly), instead of stopping the experiment. Further, A continues to
use the same (modified) strategy to answer further queries from S. More specifically, A uses the following
strategy in this experiment. On receiving any query β = (β1, . . . , βi) from S, A computes t(β′) for every
prefix β′ = (β1, . . . , βj) of β, where j ∈ [1, i]. Then, if t(β′) = 1 for all j ∈ [1, i], A sends a message to S
as if it were participating honestly in the protocol. Otherwise, it sends a message drawn from the uniform
distribution. We observe that by definition, A in this experiment is identical to P ∗1 .

Let {γS1 , γA1 , . . . , γSc , γAc } be the view output by S at the end of the experiment, where γSi and γAi are the
messages in the ith round of Π from S and A respectively. Then, we say that A wins if t(γ) = 1 for every
query γ = (γS1 , . . . , γ

S
i), i ∈ [1, c], and t(γ′) = 0 for all other queries γ′ made by S. In all other cases, we

say that S wins. We observe that the by definition, pfail is identical to the winning probability of A (= P ∗1)
in H3.

We now analyze the winning probability of A in this experiment. We first observe that the set of random
tuples (rS , rA) (where rA = r1

A, r
2
A, r

3
A) for which A wins are identical in H2 and H3. This is because the

only difference between H2 and H3 is that for some random tuples (rS , rA), A might stop the experiment in
H2 (and hence lose); however, note that for all these tuples, A will lose in H3 as well. Therefore, we conclude
that the winning probability of A is identical in H2 and H3. Hence, we have that pfail ≥ 1

2q2c
· (1− 1

q)− ε.
Further, we observe that with probability at least pfail, the output of P ∗1 in this experiment is the same

as the output (say) z from the trusted party on inputs x and y, where x is the input of P ∗1 and y is the
input of P2 in the ideal world. This is because (by the security of covert computation) P ∗1 must obtain the
same output z (as in the ideal world) if it participates honestly (with input x) in a real world execution of
Π with P2 (having intput y).

12

PART 2. Non-existence of a constant-round covert computation protocol that securely realizes
F̂ with respect to black-box simulators
Let us consider a covert two-party functionality F̂ = (f, g), where f and g are defined as follows.

g(x, y) =

{
1 if x = y

0 otherwise

f(x, y) = (1, 1)

Consider two parties P1,P2 with inputs x and y respectively. Then, on an input pair (x, y), the functionality
F̂ outputs f(x, y) if g(x, y) = 1, otherwise ⊥.

Let Π̂ be a constant-round covert two-party computation protocol that securely realizes F̂ . Let S be
any black-box simulator for Π̂. Recall the lower bound s from the previous part for such a simulator S. We
first show that for the case of functionality F̂ , s is in fact non-negligible. Intuitively, this means that S is
essentially straight-line with non-negligible probability s. To see this, recall the definition of probability ε
from experiment H2. Now consider an interaction between an honest P1 (with input x) and an adversarial
P2 in protocol Π̂. Then, ε is the probability with which P2 can distinguish whether or not P1 is participating
in the real world protocol. However, note that in the ideal world, P2 (that does not have the correct input
y = x) can only distinguish with negligible probability whether or not P1 is participating. Therefore, we
conclude that ε is negligible (in the security parameter). It now follows that pfail is noticeable.

We will now construct an adversary P ∗2 that internally uses the simulator S to interact with honest
P1 (with input x) in an execution of Π̂. We show that with non-negligible probability at least pfail, P ∗2
obtains a y such that x = y. However, observe that any cheating P ∗2 cannot obtain such a y in an ideal
world execution; therefore, the output distributions of the real world and ideal world executions must be
distinguishable with probability at least pfail.

P ∗2 strategy. We are now ready to construct the adversary P ∗2 . Loosely speaking, with noticeable proba-
bility, P ∗2 will be able to obtain a y, such that x = y, from its interaction with an honest P1 (with input x).
P ∗2 will internally run the simulator S and forward some of its queries to P1. As we will show later, with
noticeable probability, S will work in exactly the same way as when it is given oracle access to P ∗1 (where
P ∗1 is an adversary for Π̂ that follows the same strategy as described earlier in part 1). We now give a formal
description of P ∗2 .

P ∗2 chooses a predicate t (as defined earlier) and runs S. At any point of time, P ∗2 keeps the history of
messages that it has sent to P1 so far in the execution. Now, when S makes a query β = (β1, . . . , βi), P ∗2
performs the following steps:

1. Follow the same strategy as P ∗1 in order to decide whether or not to send an honest answer (i.e., send
a message drawn from the uniform distribution unless for every j ∈ [1, i], t(β1, . . . , βj) = 1).

2. If the above decision was to send an honest reply, then check whether the history of messages sent so
far to P1 consists exactly of (β1, . . . , βi−1). If this is the case, then send βi to P1 and forward P1’s
response to S. Otherwise, there must have been a previous query that is not a prefix of β but was
answered with a message drawn from the uniform distribution; abort in this case.

Finally, if S sends a query x′ to the trusted party in the ideal world, then P ∗2 receives x′ (since P ∗2 plays the
role of the trusted party to S) and outputs this value. All we need to show now is that with probability at
least pfail, x′ = x, where x is the input of P1.

We first observe that with probability at least pfail, the interaction between P ∗2 (using P1) and S is
identical to that between P ∗1 and S. Then, with probability at least pfail, S outputs a view such that all
the simulator queries in the view were answered by P1. Now observe that the input of P ∗1 emulated by P ∗2
(using P1) is in fact the input of P1, i.e., x. Further, with probability at least pfail, the view generated by S
contains full participation from P ∗1 with input x. Then, as explained earlier in H3, with probability at least
pfail, the output of the emulated P ∗1 must be the same as the output of the trusted party on inputs x and

13

y, where x is the input of P ∗1 and y is the input of P2 in the ideal world. In other words, the output of P ∗1
must be 1 (since y = x for honest parties P ∗1 and P2). Then it follows that with probability at least pfail,
the query from S to the trusted party must be x′ = x.

4 Covert Computation primitives

In this section, we briefly describe the main primitives that we use in our construction. The text in this
section is taken almost verbatim from [CGOS07] (except the part about a covert encryption scheme in NC0;
see below). We refer the reader to appendix B for a detailed description of each primitive.

Covert Commitments [GL89] : In a covert commitment scheme, the messages of a party in the commit-
ment phase look indistinguishable from random to the other party. The commitment scheme based on
the Goldreich-Levin hard-core predicate is a covert bit commitment scheme that is perfectly binding.
Let x = x[1], . . . , x[k] be any string. Com(x) denotes a covert commitment to the bits x[1], . . . , x[k].
Further, Open(Com(x)) denotes the decommitment to Com(x) (which includes x along with the ran-
domness used in computing Com(x)).

Covert 1-out-of-2 and 1-out-of-4 Oblivious Transfer [vAHL05, CGOS07, NP01] : In covert 1-out-
of-2 and 1-out-of-4 oblivious transfer (OT) protocols, we require that messages of a party throughout
the protocol look indistinguishable from random to the other party. Covert 1-out-of-2 OT is presented
in [vAHL05], while a covert 1-out-of-4 OT is given in [CGOS07].

Covert Yao’s Garbled Circuit [vAHL05, Yao82] : This is a version of garbled circuit [Yao82] in which
the garbled circuit program (which is simply a series of encrypted gate tables [Yao82, BMR90]) can be
evaluated in a “non-verifiable” manner.

Covert GMW protocol [CGOS07, GMW87] : This is the same as the standard (semi-honest) GMW
protocol [GMW87], except that (a) covert 1-out-of-4 OT is used, and (b) the final output share
broadcast phase is excluded. That is, in covert GMW protocol, the parties initially finally hold the
shares of the output (rather than the output itself). Note that zero-knowledge proofs are not used
in this protocol (and thus the protocol by itself does not provide any guarantees against malicious
adversaries).

Covert Encryption scheme in NC0 [AIK04] : In a covert encryption scheme, we require that the ci-
phertext be indistinguishable from random. Given a covert encryption scheme in NC1 (which can be
constructed using standard techniques), we use techniques from Applebaum et al [AIK04] to construct
a covert encryption scheme whose encryption function is in NC0.

5 Constant Round Covert Multiparty Computation

At a high level, our constant-round covert computation protocol can be seen as the result of a two step
process: (a) First, construct a constant-round semi-honest covert computation protocol adopting techniques
from the work of Beaver et al [BMR90]. (b) Next, the semi-honest protocol is “compiled” with a gadget
known as zero knowledge proofs to garbled circuits in order to guarantee security against malicious adver-
saries. Here we adopt some techniques from Chandran et al [CGOS07] to our setting. In the subsection
below, we first discuss the notion of zero-knowledge proof to garbled circuit as introduced by Chandran
et al [CGOS07], and then give a constant-round construction for the same with some additional security
properties (that are necessary when using this gadget in the constant-round setting). Later, we will use
our construction of constant-round zero knowledge proof to garbled circuit in presenting our constant-round
covert computation protocol.

14

5.1 Zero Knowledge Proofs to Garbled Circuits

Zero Knowledge proofs have been established as a basic building block for constructing multi-party com-
putation protocols secure against active adversaries. However, in the setting of covert computation, this
technique does not work because if one party “verifies” that another party is executing the protocol hon-
estly, then covertness is immediately compromised. To this end, Chandran et al [CGOS07] introduced the
notion of zero knowledge proofs to garbled circuits, where a party gives a proof of its honest behavior to
a garbled circuit prepared by another party. More specifically, consider two parties (sender, receiver) who
share a common input (x, L). The sender wishes to give the receiver a private value v, only if x ∈ L and the
receiver has a valid witness (for x ∈ L). Chandran et al [CGOS07] gave a protocol for this setting based on
Blum’s 3-round (public-coin) ZK proof for Graph Hamiltonicity. In their protocol, the parties first exchange
the first two messages of Blum’s protocol. Then the sender (verifier) prepares and sends a garbled circuit
to the receiver (prover); this garbled circuit takes as input the last prover message and outputs v if the
verification is successful, else it outputs a random value. Since Blum’s protocol is a zero knowledge proof
with soundness 1/2, if the theorem is false, there does not exist (with probability 1/2) a “correct” last prover
message. [CGOS07] also show how to improve the soundness of this basic protocol.

As implied by the results in the previous section, non black-box techniques are necessary to construct
such a gadget (henceforth referred to as ZKSend) in the constant-round setting. To this end, we use the
non black-box simulation technique of Pass [Pas04] (which in turn builds on the work of Barak [Bar01]).
Fortunately, in the zero knowledge protocol of Pass [Pas04], except for the last message, the prover only
sends commitments and the verifier only sends random strings. Then, using the same idea as above, we can
modify Pass’ protocol such that the receiver (prover) sends the last message to a garbled circuit prepared
by the sender (verifier), and receives an output value depending upon whether or not the verification was
successful.

However, this naive attempt fails since Pass’ protocol is an argument system. In particular, even if the
receiver (prover) was dishonest, a satisfying last message might exist which, very informally speaking, allows
the dishonest receiver (prover) to get the sender’s input value out of the garbled circuit (even though the
receiver does not have such a message explicitly). Then, to be able to reduce the security of ZKSend in such
a case to the soundness of Pass’ protocol, it seems that the garbled circuit evaluation sub-protocol would
need to be able to support extraction of the inputs. However, as implied by the impossibility result in the
previous section, very informally speaking, such a sub-protocol cannot work in a constant number of rounds
(using a black-box extractor).

To solve the above problem, we observe that such an extraction of the input will not be required by the
simulator of our final covert computation protocol constructed using ZKSend as a building block. Instead,
such an extraction would only be required to prove a separate lemma that reduces the following security
property of ZKSend to the soundness of Pass’ protocol: assuming that the statement is false, the view of a
cheating receiver (prover) must be indistinguishable across the two cases where an honest sender (verifier)
uses a fixed input value in the ZKSend execution in the first case and a random value as its input in the
ZKSend execution in the second case. (Looking ahead, such a lemma would be used in the hybrid experiments
to prove the indistinguishability of the simulated view from the view in the real protocol execution.) Hence,
the extraction procedure is only required to work with a noticeable probability (as opposed to overwhelming
probability). This is because of the following. Say we can extract the input to the garbled circuit (which is
the last prover message in Pass’ protocol) with a noticeable probability. Then we can use that message to
violate the soundness of the protocol of Pass with a noticeable probability.

Using these ideas, we now describe our protocol. We first introduce some notation.

Notation. Let cZK denote the zero knowledge argument of Pass instantiated with the covert commitment
scheme Com (i.e., Com is the commitment scheme used throughout the protocol in cZK). A sub-protocol of
cZK is the 5-round witness indistinguishable universal argument (WI-UARG) of Barak and Goldreich [BG02]
instantiated with the commitment scheme Com. We will denote it with cWI-UARG. Let V denote the
honest verifier algorithm for cZK. In the following text, we borrow some notations from [Pas04].

15

We first recall Barak’s NTIME(T (κ)) relation RSim [Bar01]. Let T : N → N be a “nice” function
that satisfies T (κ) = κω(1). Let T ′ : N → N be a function such that T ′(κ) = T (κ)ω(1). Suppose that there
exist a T ′(κ)-collision resistant hash functions ensemble {Hκ}h∈{0,1}κ where h maps {0, 1}∗ to {0, 1}κ. Let
the triple 〈h, c, r〉 be the input to RSim. Further, consider a witness that consists of a program Π, a string
y ∈ {0, 1}(|r|−κ), and string s. Then RSim(〈h, c, r〉, 〈Π, s, y〉) = 1 if and only if:

1. c = Com(h(Π); s).

2. Π(c, y) = r within T (k) steps.

Here Com is the covert commitment scheme (see appendix B).
Now let Pi and Pj be two parties that share as common input a statement xj of a language Lj . Addi-

tionally, Pi has a private input v. Let `(κ) be a length parameter (we discuss how to fix it later). We now
describe our protocol ZKSendij , where Pi and Pj play the roles of the sender and receiver respectively (we
will follow this convention throughout the text). If Pj has a witness for xj ∈ Lj , then it will obtain Pi’s
private input v at the end of the protocol.

5.1.1 The Protocol.

The protocol ZKSendij proceeds in the following steps.

Phase I.

Stage 1 (Setup) : Pi sends h R← Hκ to Pj .

Stage 2 (Slot 1) :

1. Pj creates a covert commitment c1 = Com(0κ) and sends it to Pi.

2. Pi responds by sending the first challenge r1
R← {0, 1}j`(κ).

Stage 3 (Slot 2) :

1. Pj creates a covert commitment c2 = Com(0κ) and sends it to Pi.

2. Pi responds by sending the second challenge r2
R← {0, 1}(n+1−j)`(κ).

Stage 4 (Main Proof Body) :

1. Pi and Pj exchange (only) the first 4 messages of a 5-round cWI-UARG where Pj proves the
OR of the two statements:

• There exists w ∈ {0, 1}poly(|x|) such that RLj (xj , w) = 1.
• There exists a triple 〈Π, s, b〉 such that RSim(h, cb, rb, 〈Π, s〉) = 1.

Let mfinal denote the final message of this cWI-UARG.

2. Let k = ω(log(κ)). Pj chooses random strings {α0
i }ki=1, {α1

i }ki=1 such that α0
i ⊕ α1

i = mfinal for
all i. Using the covert commitment scheme Com, Pj creates commitments to all these random
shares of mfinal and sends them to Pi. Let {A0

i }ki=1, {A1
i }ki=1 denote these commitments.

Stage 5 (Challenge-Response) : Now, Pi and Pj engage in a 2-round challenge-response protocol:

1. Pi → Pj : Send challenge bits z1, . . . , zk.

2. Pj → Pi: Send αz11 , . . . , α
zk
k . /* Pj does not send openings to the commitments, but simply the

shares selected by Pi */

Phase II.

16

Stage 6 (Garbled Circuit) : Finally, Pi sends a covert garbled circuit, Gar[i → j], with the following
description:

1. Gar[i→ j] has (built in) the transcript T of stage 4(b) and stage 5 in phase I.

2. It takes as input, decommitments to {A0
i }ki=1, {A1

i }ki . Let {α̂0
i }ki=1, {α̂1

i }ki=1 denote the decom-
mitted values. This input is provided by Pj .

3. Gar[i→ j] performs the following steps:

• Check whether the decommitments are correct and that the decommitted values are consistent
(i.e., α̂0

i ⊕ α̂1
i is identical for all i ∈ [1, k]). Let m̂final = α̂0

i ⊕ α̂1
i .

• Check whether α̂zii = αzii for all i ∈ [1, k], where {αzii }ki=1 are the values sent by Pj in stage
5(b) in transcript T .
• If either of the above checks fail, then simply output a uniformly chosen random number.

Otherwise, run the final step of the honest verifier algorithm for cZK and if it outputs accept
on m̂final, then output v, else output a uniformly chosen random number.

4. Pj executes covert 1-out-of-2 OT with Pi as necessary in order to evaluate the garbled circuit
Gar[i→ j] and obtain an output.

Excluding the challenges r1 and r2, we note that the length of the sender messages (including the garbled
circuit) and the receiver messages in ZKSendij can be bounded by 2κ3 if we use the specific WI-UARG of
Barak and Goldreich [BG02]. Let Σ denote our covert multi-party computation protocol (see section 5) and
let γ denote the total number of executions of ZKSendij inside Σ (looking ahead, we note that γ = 2n(n−1)
where n is the number of parties in the protocol). Then, the total length of messages sent by a party, not
including the challenges r1,r2, is bounded by (γ · 2κ3 + length(Σ)). Here length(Σ) is the total length of
the messages in Σ excluding the messages of all ZKSend executions. We now set the length parameter
`(κ) = (γ · 4κ3 + length(Σ)). Then, as in [Pas04], it follows that if the simulator can give a description of the
various challenges r1, r2 (each being of length at least `(κ)) that is shorter than k3, it will always succeed
in the simulation of all executions of ZKSendij even if simultaneously acting as the sender in some of these
protocols. As in [Pas04], this is done by letting the simulator use a pseudorandom generator in order to
generate the sender’s messages in ZKSendij (in particular, the challenge strings r1 and r2).

5.1.2 Security Properties of ZKSend

We prove the following four security properties of our ZKSend construct. The formal claims and their
respective proofs are given in appendix C.1.

1. Consider a ZKSend execution between a sender (verifier) and a receiver (prover) who share a common
input (x, L). The sender’s input in the protocol is either a fixed value v or a random value. Then, we
show that unless the receiver (prover) “knows a witness for x ∈ L”, it cannot distinguish between the
two cases where the sender (verifier) is using v in the first case and a random value as its input in the
second case. As noted earlier, we prove this security property by reducing it to the soundness of Pass’
protocol.

2. Next, we show that an adversarial sender (verifier) who is running a polynomially-bounded number of
concurrent executions of ZKSend cannot distinguish whether it is “interacting” with honest receivers
(provers) or the simulator. Our simulator relies on the simulator of Pass’ protocol to “simulate”
the ZKSend executions; as such, we prove this security property by reducing it to the zero knowledge
property of Pass’ protocol. Looking ahead, we stress that even though our covert computation protocol
(given in next subsection) consists of only parallel executions of ZKSend, we consider the more general
setting of bounded-concurrency as it proves to be useful in the construction of a covert computation
protocol over point-to-point channels (see section 6).

17

3. Now consider a polynomially-bounded number of concurrent executions of ZKSend between an adver-
sary and the simulator, where the adversary is acting as the sender (verifier) in some “left” executions
(which are being “simulated” by the simulator) and as the receiver (prover) in a “right” execution
with a false theorem as the common input. Then, we show that any such adversary cannot distinguish
whether the simulator uses a fixed input value v or a random value as its input in the “right” execution.
We stress that we cannot reduce this security property into the simulation soundness of Pass’ protocol
for the following reasons. Such a proof would require us to construct an adversary who proves a false
theorem in Pass’ protocol, which in turn, requires rewinding our adversary in the “right” execution
(to extract the last message of Pass’ protocol). However in this case, very informally speaking, the
simulator who is “simulating” the “left” executions, may also get rewound and hence no longer work.
Solving this problem requires going into the details of the simulation soundness proof technique of Pass
to prove this security property directly. In particular, we show that the two slot simulation technique
of Pass is powerful enough to handle this scenario as well.

4. Finally, we show that our ZKSend protocol preserves the covertness of both the sender and the receiver.
In particular, we show that messages of a sender (resp. receiver) are indistinguishable from random to
a receiver (resp. sender).

5.2 Our Protocol

Let P1, . . . , Pn be n parties that hold inputs x1, . . . , xn respectively. Let F = (f, g) be a covert functionality
that they wish to compute. F outputs f(x1, . . . , xn) if the function output is favorable to all parties,
else it outputs ⊥. Here g(·) is the function that determines whether the function output is favorable
(g(x1, . . . , xn) = 1) or not (g(x1, . . . , xn) = 0). We now give the construction of a constant-round covert
multi-party computation protocol Π that securely realizes F .

Overview. At a high level, our protocol Π consists of three main phases: (a) Input Commitment phase: In
this phase, all parties commit to their inputs and randomness (note that we do not require coin flipping
in our protocol) and run an “extract enable” phase with each other. Intuitively, the purpose of this phase
is to enable the simulator to extract the input and randomness of malicious parties during the simulation.
(b) Garbled Circuit Generation phase: In this phase, the parties run the covert version of the GMW protocol
to jointly construct a covert garbled circuit that evaluates the appropriate function (that the parties wish to
compute). Each party only obtains an individual share of the garbled circuit as the output of covert-GMW
protocol. (c) Output Exchange phase: In this phase, parties exchange their garbled circuit shares with each
other if and only if all the parties behaved honestly till the end of the previous phase. By incorporating some
validity checks in this phase, we are able to ensure output correctness (without compromising covertness).

Intuitively, the garbled circuit generation phase can be viewed as a semi-honest covert computation
protocol. Here we adopt techniques from [BMR90] to ensure that the protocol is constant-round. Then,
by adding the other two phases (adopting techniques from Chandran et al [CGOS07]) , we essentially
“compile” the semi-honest protocol (with zero-knowledge proofs to garbled circuits, as will be evident from
the description of each phase) to obtain security against active adversaries. In each phase, the key challenge
is to ensure that the number of rounds are only a constant.

We now give the detailed description of our protocol Π. Throughout the protocol description, the
intuition and key ideas in each phase in the protocol are enclosed within the symbols /* and */. We refer
the reader to appendix D.2 for a succinct description of the protocol with an emphasis on only the key ideas.

5.2.1 Input Commitment phase

1. InputRandomCommit : Let Xi = (xi, ri,Ki), where xi is the input of party Pi and ri is a random tape
that Pi will contribute to the garbled circuit (which may require randomness to compute its output in
case the functionality is randomized) that is jointly constructed by the parties later in the protocol.
Ki is a random secret key chosen by Pi. This key will be used by Pi to check the correctness of the

18

function output in the later stages. Pi additionally generates random tapes si, ti and ui. Here si is the
randomness that Pi will use in subprotocol ExtractEnable, ti is the randomness that Pi will use in the
Garbled Circuit Generation phase, and ui is the randomness that Pi will use in the Output Exchange
phase.

Pi now commits to Xi, si, ti and ui using the commitment scheme Com.

2. ExtractEnable : In this stage, each pair of parties engage in an execution of the ZKSend protocol.
Intuitively, the purpose of this stage is to enable the simulator to obtain (Xj , tj) for each malicious
party Pj during the simulation.

Consider a party Pi. To execute this stage, Pi uses the random tape si wherever required. Let
IRi = (Open(Com(Xi)), Open(Com(ti))). Then Pi executes the following sub-protocol with each
party Pj , in parallel.

(a) Pi picks a random string r and computes y = fowp(r), where fowp is a one-way permutation. It
sends y to Pj .

(b) Pj and Pi now engage in an execution of ZKSendij , where Pi is the sender with input IRi and Pj
is the receiver, on the following NP statement as the common input: “∃r such that y = fowp(r)”
(for a specific witness relation such that any witness for this NP statement contains such an r).
Note that an honest Pj will not have a witness for this NP statement, therefore it simply sends
random messages during the execution of ZKSendij .

We stress that all the executions of the above sub-protocol are carried out in parallel.

/* As noted earlier, the ExtractEnable protocol will help the simulator S to obtain the input Xi

and randomness ui for each malicious party Pi during the protocol simulation. Let z be the NP
statement that there exists an r such that y = fowp(r), where y is the random string that Pi sent to
an honest party Pj in the first step. Then S will simulate the zero knowledge argument of knowledge
for the NP statement z inside ZKSendij in order to obtain IRi (and therefore, Xi and ti as well).
However, note that S succeeds in extracting the inputs and randomness of the malicious parties if
none of them deviate from the protocol. Of course, the malicious parties could deviate from the
protocol specification and either give incorrect commitments or incorrect openings. In such a case
(i.e., whenever the simulator fails to extract), later stages of our protocol will ensure that malicious
parties do not learn any information (in a computational sense). Jumping ahead, the later stages will
force the output of all the parties to be ⊥ in this case.

We remark that Chandran et al [CGOS07] used a challenge-response phase of linear round-complexity
to enable black-box extraction. However, our impossibility result from the previous section rules out
such an approach in the constant-round setting. To this end, we use our construction of zero-knowledge
proof to garbled circuit (as described in the last subsection) to enable extraction, as described above.*/

5.2.2 Garbled Circuit Generation phase

Consider the following function F (·) that takes as input {X1, . . . , Xn} where Xi = (xi, ri,Ki)).

F (X1, . . . , Xn) =


f(x1, . . . , xn),K1,K2,,Kn if g(x1, . . . , xn) = 1

R otherwise

Here R is a random string of appropriate length. If necessary, the randomness used by this function is⊕n
i=1 ri. Let C denote the circuit for the function F .
In this phase, the parties jointly construct a covert garbled circuit GC for the circuit C. As a sub-

protocol in this phase, the parties execute the covert-GMW protocol (see Section 4) in order to build the
gate tables for the garbled circuit GC. The randomness used by Pi in this phase comes from ti. At the end

19

of this phase, each party Pi will hold a share GCi of the garbled circuit GC (such that
⊕n

i=1GCi = GC)
and other necessary information required to evaluate GC (but not GC itself).

/* We note that here we use essentially the same approach as Beaver et al [BMR90] to ensure that our
protocol is constant round. There are however some important differences in our approach from that of
Beaver et al [BMR90], described as follows. We first note that in order to keep the protocol constant round,
the encryption scheme used in [BMR90] to generate the gate tables of the garbled circuit is the simple XOR
function. Further, to avoid blowing up the size of the wire keys exponentially, the parties run a preprocessing
phase locally in which (among other things) they expand their wire keys using a pseudorandom generator
(PRG). Unfortunately, such a preprocessing phase fails in the setting of covert computation. This is because
the PRG evaluations done locally by a party during garbled circuit generation will have to be performed
again (locally) while evaluating the resulting garbled circuit. Thus, the fact that the computation done in
the preprocessing phase “conforms” to the computation done while evaluating the received garbled circuit
leaks the fact that all parties are participating in the protocol (even if the output is not favorable).

To solve this problem, we eliminate the preprocessing phase and move the required cryptographic opera-
tions (involved in generating the gate tables) into the circuit of the underlying secure computation protocol.
However this presents the following problem. If we use covert-GMW as the underlying secure computation
protocol, the number of rounds required will be linear in the depth of the circuit (which generates a gate
table) being evaluated. Thus, any cryptographic operations done by this circuit should be in NC0 for our
protocol to be constant rounds.

Towards that end, to still keep the secure computation protocol constant round, we construct an encryp-
tion scheme in NC0 using techniques from Applebaum et al [AIK04]. We would require that the encryption
keys and the ciphertexts produced by such an encryption scheme are indistinguishable from the uniform
distribution. We construct such an encryption scheme based on standard assumptions.45 Forgetting our
goal of obtaining a covert computation protocol, consider the protocol in which we use such an encryption
scheme in gate tables and use standard GMW for gate table generation. We believe this protocol is of
independent interest since it also gives a arguably cleaner alternative to the Beaver et al [BMR90] protocol
(which in turn has been used widely in the study of round complexity of secure computation).*/

We now describe this phase in detail. First recall that in a garbled circuit GC, each wire w has two wire
keys (denoted by kw,0 and kw,1): one corresponding to the bit on wire w being 0 and the other to bit being
1 (during the actual evaluation of the garbled circuit, a party would only be able to find one of these keys
for every wire). Further, there is wire mask λw associated with each wire w. The wire mask determines the
correspondence between the two wire keys and the bit value associated with them. For example, the key
kw,b corresponds to the bit b⊕ λw.

Now note that every player Pi is responsible for a subset Ji of the input wires in the circuit C. In
particular, Pi holds an input bit xw for each w ∈ Ji. Then the Garbled Circuit Generation phase consists of
the following steps.

1. Each party Pi generates a wire mask share λwi ∈ {0, 1} for every wire w of the circuit C. Note that
λw =

⊕n
i=1 λ

w
i is the wire mask for wire w. Further, for every wire w of the circuit, Pi generates

two random key shares kw,0i and kw,1i . The actual wire keys kw,0 and kw,1 for wire w are defined as:
kw,0 =

⊕n
i=1 k

w,0
i and kw,1 =

⊕n
i=1 k

w,1
i .

2. Pi broadcasts the wire mask shares λwi for all wires w, where w is either an output wire in C, or w is
an input wire that belongs to any party other than itself (i.e., for w /∈ Ji).

4Applebaum et al [AIK04] show that there do not exist any encryption schemes such that the decryption function is in NC0.
However, fortunately, for our purpose, we only require the encryption function to be in NC0.

5The option of simply moving the pre-processing phase of [BMR90] to the secure computation protocol circuit would require
that circuit to evaluate a PRG. We however, note that a PRG with appropriate stretch exists in NC0 based only on non-standard
assumptions [AIK08].

20

3. For each input wire w ∈ Ji, Pi computes λw =
⊕n

i=1 λ
w
i (note that Pi would have received the wire

mask shares for w ∈ Ji by now). Then, for every w ∈ Ji, Pi broadcasts the bit bw = λw ⊕ xw and the
key share kw,b

w

i . Once all the key shares are broadcast, Pi computes the key kw,b
w

=
⊕n

i=1 k
w,bw

i for
each input wire w.

At this point, all the parties hold the appropriate wire keys for all the input wires and the wire masks
for all the output wires in the circuit.

4. Consider a gate g in the circuit C. In order to construct a gate table for g, the wire keys of the
outgoing wire are encrypted with the wire keys of the incoming wires. Now, if all the parties use their
wire mask shares and key shares as inputs in a covert GMW protocol execution, then they can jointly
construct all the gate tables. We will use a covert encryption scheme in NC0 to generate the gate
tables. Note that we would require that the encryption keys and the ciphertexts produced by such an
encryption scheme are indistinguishable from random. We construct such an encryption scheme based
on standard assumptions using techniques from Applebaum et al [AIK04]. See appendix B.5 for the
construction details. Let (G,E,D) be such an encryption scheme.

The players now engage in an execution of the covert-GMW protocol to evaluate a simple circuit that
generates the gate tables for circuit C. More details are given as follows.

For any gate g in the circuit C, let a, b be the two input wires and c be the output wire for the gate
g, and denote the operation performed by the gate g by ⊗ (e.g. AND, OR, NAND, etc). Before the
protocol starts, Pi holds the following inputs: key shares ka,`i , kb,`i , kc,`i where ` ∈ {0, 1}, along with
the wire mask shares λai , λ

b
i , λ

c
i . Let Ek(m) denote the encryption of a message m with key k using

the covert encryption scheme (G,E,D). Then Pi runs the covert GMW protocol along with the other
parties to compute a gate table of the following form (for each gate g in C):

Ag =

{
Eka,0(Ekb,0(kc,0, 0)) if λa ⊗ λb = λc

Eka,0(Ekb,0(kc,1, 1)) otherwise

Bg =

{
Eka,0(Ekb,1(kc,0, 0)) if λa ⊗ λ̄b = λc

Eka,0(Ekb,1(kc,1, 1)) otherwise

Cg =

{
Eka,1(Ekb,0(kc,0, 0)) if λ̄a ⊗ λb = λc

Eka,1(Ekb,0(kc,1, 1)) otherwise

Dg =

{
Eka,1(Ekb,1(kc,0, 0)) if λ̄a ⊗ λ̄b = λc

Eka,1(Ekb,1(kc,1, 1)) otherwise

Note that since all the gate tables can be computed in parallel, the covert GMW protocol execution
only takes a constant number of rounds.

When the covert-GMW protocol terminates, each party Pi obtains a share of each gate table as
generated above. We define GCi to be Pi’s share of the garbled circuit GC, where GCi is simply the
concatenation of all the gate table shares of Pi.

5. Now, each party Pi broadcasts a covert commitment to its garbled circuit share GCi. Let Com(GCi)
denote the commitment value sent by Pi.

At the end of the Garbled Circuit Generation phase, each party Pi holds a share GCi of the garbled circuit
GC, along with the wire masks λw for each output wire w and the appropriate wire keys kw,b

w
and bit bw

(where bw = λw ⊕ xw) for each input wire. In addition, Pi also holds a covert commitment to the garbled
circuit share GCj of each party j.

21

/* In this phase, we use the covert-GMW protocol of [CGOS07]. The covert-GMW protocol is similar
to the semi-honest GMW protocol, except that it uses a specific covert secure 1-out-of-4 OT rather than
a semi-honest 1-out-of-4 OT, and does not consist of the output broadcast phase. The natural question
is, what guarantees could it possibly provide when the parties might deviate from the protocol executions
arbitrarily?

Intuitively, the malicious parties (even if they deviate from the protocol arbitrary) do not learn any
information (in a computational sense) in covert GMW protocol because of the following. The covert-GMW
protocol consists of only two kinds of message: one where parties broadcast (n− 1) random shares of their
input to other parties, and the second where parties engage in a covert 1-out-of-4 OT protocol with others.
The first type of message is simply a random string, therefore it does not reveal any information about GC.
In the second type of messages, a party gives away only one of the 4 bits (when acting as a sender in a covert
1-out-of-4 OT protocol). However, all the four bits are individually indistinguishable from random. This is
because while preparing these four bits, a single bit of randomness is used [GMW87] (making the four bits
individually random). */

5.2.3 Output Exchange phase

In the previous two stages, no information about the output (or participation) was revealed to any party
(even if they deviate arbitrarily from the protocol). In other words, the messages exchanged between the
parties in the previous stages were “not valuable” for deducing any potentially unknown information. In
this phase, the parties actually exchange valuable messages having information so as to be able to get the
function output at the end.

Informally, in this phase, the parties exchange their shares (held at the end of Garbled Circuit Generation
phase) of garbled circuit conditioned upon the fact that every party was honest till the end of the Garbled
Circuit Generation phase. This phase heavily relies on the various properties of our zero-knowledge to
garbled circuit construction.

The randomness that a party Pi uses in this phase comes from ui. This phase proceeds in the following
steps.

1. Every party Pi breaks his share of GC (namely GCi) further into n shares: {GCji , . . . , GCni }. Pi then
engages in an execution of ZKSendij with every party Pj in parallel. Here, the input of Pi is GCji
while Pj proves the truthfulness of an NP statement z which asserts that the party Pj was honest
in the protocol up to the end of the Garbled Circuit Generation phase. More specifically, z is the
following statement: There exists Xj = (xj , rj ,Kj), sj and tj such that,

• There exist strings for the commitments Com(Xj), Com(sj) and Com(tj) (broadcast in the Input
Commitment phase) that open the commitments to Xj , sj and tj respectively.

• Given all the incoming messages to Pj (over the broadcast channel), the outgoing messages of Pj
were honestly computed as per the protocol specifications in (a) ExtractEnable subprotocol using
randomness sj , (b) Garbled Circuit Generation phase using randomness tj .

Upon obtaining {GCi1, . . . , GCin} after executing ZKSend with other parties to get (n−1) shares (the
share GCii is already held by Pi), the party Pi broadcasts GCi =

⊕n
j=1GC

i
j . Upon receiving GCi for

all i, all parties compute GC =
⊕n

i=1GC
i.

We now give some intuition on the rationale behind this sub-protocol. Recall that a party Pi holds
a share of the garbled circuit at the end of the Garbled Circuit Generation phase. Pi would like to
give its share out only if the other n − 1 parties were honest. However, if any party deviated from
the prescribed protocol during the Input commitment or Garbled Circuit Generation phase, it could
be potentially dangerous for Pi to give out its garbled circuit share (since then garbled circuit is not
guaranteed to be correctly constructed). Hence, Pi breaks its share further into n subshares and
transfers these subshares in parallel to other parties Pj using ZKSendij . If any of the n − 1 parties
was dishonest previously, it is guaranteed that at least one of those n subshares will be lost (since

22

ZKSend will output a randomly selected value instead of the right subshare to a dishonest party).
Thus, in case cheating occurred in previous stages, the garbled circuit for evaluating the functionality
is essentially “lost”.

We stress that all the ZKSend executions in this step are done in parallel. Therefore, this step con-
tributes only a constant number of rounds to our protocol.

2. Each party Pi now evaluates the garbled circuit GC on its own (recall that Pi has the appropriate wire
keys for all the input wires as well as the wire masks for all the output wires) to obtain the output
F (X1, . . . , Xn). Pi further checks if Ki is contained in F (X1, . . . , Xn). Now, one of the following two
cases occur:

(a) If the check succeeds (i.e., Ki is contained in F (X1, . . . , Xn)), then Pi broadcasts the opening
to the commitment Com(GCi) that it had broadcast earlier in the Garbled Circuit Generation
phase. Then, having received the openings for each commitment Com(GCj), j 6= i, Pi first verifies
their correctness. If all the openings are correct, then Pi computes the garbled circuit from the
decommitted values (as well as its own share GCi). Let ĜC denote this garbled circuit. Then, if
ĜC = GC, Pi returns the output of GC as its own output, else it outputs ⊥.

(b) Otherwise, Pi broadcasts a random string. In this case, the output of Pi is ⊥.

/* As argued earlier, if any party was dishonest in the Input Commitment phase or the Garbled Circuit
Generation phase, then the garbled circuit is “lost”, which in turn implies that the keys Ki are “lost” as
well. Therefore, each party will output ⊥ in this case since the check on the correctness of Ki in step (2)
will fail. Now consider the case that all the parties in the protocol were honest in the Input Commitment
phase as well as the Garbled Circuit Generation phase. Now consider the following two cases:

1. First consider the case when the output is not favorable. Note that at the end of the Garbled Circuit
Generation phase, the parties will hold shares of a garbled circuit that outputs a random value. Then,
the secret key Ki is indistinguishable from random even if an adversary is given all the shares of this
garbled circuit. Therefore, it follows from the security property of garbled circuits that this garbled
circuit (or any other garbled circuit derived from it) cannot output Ki. Therefore, in this case the
check on the correctness of Ki in step (2) will fail.

2. Now consider the case when the output is favorable. Note that in this case, it is acceptable for each
party to send out the opening to the commitment of its garbled circuit share (since if the output is
favorable, it follows that each party participated in the protocol, and therefore compromising covertness
by sending out the opening to the commitment is ok). We stress that step 2(a) is crucial in ensuring
the correctness of the final output in this case. This is because an adversary who behaved honestly
in the Input Commitment phase as well as the Garbled Circuit Generation phase may still be able
to force a modified garbled circuit (by cheating in the ZKSend executions) on the other parties that
produces an incorrect, yet favorable output. The checks performed in step 2(a) rule out this possibility
since any attempt on the part of the adversary to modify the resultant garbled circuit in step (1) will
be detected. */

This completes the description of our covert multi-party computation protocol Π. The fact that Π is
constant round follows simply by construction. In the next subsection, we formally prove its security.

5.3 Proof of Security

Theorem 2 The proposed protocol Π is a secure (constant-round) covert multi-party computation protocol
as per definition 1.

We prove theorem 2 via the following three step process. We first give the construction of a simulator
S that is able to simulate the view of any adversary A in an execution of Π. We then prove some specific

23

security properties of our ZKSend construct (described in section 5.1). Finally, (by relying on the security
properties of ZKSend and other primitives used in the construction of Π) we will argue that the output
distributions of the real and ideal world executions are computationally indistinguishable.

In this section, we only give the construction of the simulator S. The remaining parts of our proof are
given in appendix C.

5.3.1 Description of the Simulator

Simulator S receives a list of honest parties H. The set of malicious parties is M . We describe the strategy
of S in each of the three phases of the protocol:

Input Commitment phase.

1. InputRandomCommit

(a) For every i ∈ H, S picks Xi, si, ti and ui at random and broadcasts Com(Xi), Com(si), Com(ti)
and Com(ui). Note that Xi = (xi, ri,Ki), where xi, ri and Ki are random.

(b) Let IRi = (Open(Com(Xi)), Open(Com(ti))).

2. ExtractEnable We first describe the strategy of S in all executions of ZKSendij depending upon
whether it is acting as a sender or a receiver. Consider any execution of ZKSendij where Pi is the
sender and Pj is the receiver.

(a) When i ∈ H, S uses the honest sender strategy with input IRi (as defined above), except that
in stage 2 and 3 of phase I, S uses a pseudo-random generator to generate the challenge strings
r1, r2. This is to ensure that S has a short description of length at most κ3 for each challenge
string (this will be necessary when S is simulating the executions of ZKSendij on behalf of honest
receivers; see below).

(b) Now consider the case when i ∈ M and j ∈ H. Let us first recall the structure of ZKSendij .
Note that an execution of ZKSendij is identical to cZK except that instead of simply sending
the last message mfinal of cWI-UARG, Pj sends covert commitments to random shares of
mfinal, followed by a challenge-response phase and a garbled circuit evaluation. That is, prior to
sending the covert commitments to the shares of mfinal, the communication between Pj and Pi
in ZKSendij is identical to that between P and V in cZK. Let ScZK be the simulator for the
cZK protocol.
In this case, S internally runs the algorithm for ScZK to compute outgoing messages for Pj . More
specifically, on receiving any message from Pi, S uses ScZK to prepare Pj ’s response. Note that
ScZK will require the code of the adversary (controlling Pi) along with short descriptions of all
the messages of S contained6 in slot 1 or slot 2 (this includes the messages sent by S in other
executions of ZKSend, in particular the long challenge strings r1, r2) in order to compute the
outgoing messages. We observe that S already has all the necessary information for ScZK. In
this manner, S is able to compute all the outgoing messages for Pj until stage 4(a). Now, when
ScZK prepares the final message mfinal of cWI-UARG, then instead of passing it directly to
Pi, S computes its random shares and sends covert commitments to these shares to Pi. S now
executes the rest of ZKSendij honestly with Pi by using mfinal. In particular, S first executes
a challenge-response protocol with Pi and reveals the shares to mfinal honestly as chosen by Pi.
Then, S evaluates the garbled circuit (also executes OT protocols with Pi) and obtains an output.

In the ExtractEnable phase, S uses the following strategy. For every pair (Pi, Pj),

6Messages that are exchanged between the commitment cb and the challenge string rb are said to be ‘contained’ in slot b.

24

• When i ∈ H, S first chooses a random r and sends y = fowp(r) (where fowp is a one-way
permutation). It then engages in an execution of ZKSendij with Pj on the following NP statement
as the common input: “∃r such that y = fowp(r)”. S uses input IRi and follows the sender
strategy described above.

• Now consider the case when i ∈M and j ∈ H. On receiving a value y from Pi, S will attempt to
extract IRi from Pi by simulating ZKSendij (for the NP statement: “∃r such that y = fowp(r)”)
using the simulation strategy described above. Note that if Pi behaved honestly, then except with
negligible probability, S would obtain IRi as the output. Otherwise, S might fail to extract the
input and randomness of Pi.

Garbled Circuit Generation phase. Let C denote the circuit for the functionality F . Then, for every
honest party i ∈ H, S picks random wire mask shares λwi and key shares kw,`i (` ∈ {0, 1}) for all wires w in
the circuit C. Now, S honestly executes the Garbled Circuit Generation phase (except the last step where
the parties broadcast covert commitments to their garbled circuit shares) on behalf of all the honest parties
using the wire masks and key shares generated as above (as well as the random inputs chosen in the input
commitment phase). We now consider two cases:

1. Case 1:

First consider the case where the following two conditions hold:

(a) S was successful in extracting IRi for all i ∈M .

(b) All the parties were honest in the Garbled Circuit Generation phase. S checks this as follows. Note
that if (a) is true, then S has the input Xi and the randomness ui for all i (since it successfully
extracted IRi for all i ∈ M). Since these values deterministically define each message of the
Garbled Circuit Generation phase, S can simply check if all the parties behaved honestly.

In this case, S queries the Ideal functionality with the inputs (xi extracted from Pi, for all i ∈ M) of
all i ∈ M . The Ideal functionality returns either f(x1, . . . , xn) or ⊥. Now S constructs a simulated
garbled circuit (as in the protocol of Beaver et al [BMR90], see also [LP04]). If the Ideal functionality
returned f(x1, . . . , xn), then the output of this garbled circuit is the value f(x1, . . . , xn),K1, . . . ,Kn

(where K1, . . . ,Kn) are the keys chosen by all parties in the input commitment phase). For all i ∈M ,
S uses Ki from IRi. Otherwise, if the ideal functionality returned ⊥, then the output of this garbled
circuit is a random string R. Let GC be the simulated garbled circuit. S then changes the values of
garbled circuit shares GCi of honest parties in such a way that (

⊕
i∈H GCi) ⊕ (

⊕
i∈M GCi) = GC.

Note that, since S knows the garbled circuit shares GCi of malicious parties, it picks shares at random
for honest parties such that the above conditions hold.

2. Case 2:

If S failed to extract inputs and randomness of all malicious parties, or if some party was dishonest in
the Garbled Circuit Generation phase, then S changes the garbled circuit share of each honest party
to a random value.

Finally, S broadcasts a covert commitment Com(GCi) for each honest party i ∈ H. Here GCi is the
garbled circuit share of Pi determined by S depending upon whether case 1 or 2 was true.

Output Exchange phase. First recall the strategy of S to simulate ZKSendij (on behalf of the receiver),
as explained in the Input Commitment phase. We now explain the strategy of S in the Output Exchange
phase for each honest party i ∈ H.

1. S first breaks GCi into n random shares GC1
i , . . . , GC

n
i .

25

2. In all executions of ZKSend where i is the sender, S honestly executes ZKSendij with every party
j 6= i on the input GCji . On the other hand, in all executions of ZKSend where i is the receiver, S
simulates ZKSendij to extract GCij from Pj .

We stress that S simulates all the ZKSend executions in parallel.

3. Upon receiving {GCi1, . . . , GCii−1, GC
i
i+1...., GC

i
n} (note that Pi has GCii already), S broadcasts GCi =⊕n

j=1GC
i
j on behalf of Pi. Upon receiving all the broadcast values, S computes the garbled circuit

ĜC =
⊕
GCi.

4. S now evaluates ĜC (recall that Pi must have the appropriate keys for input wires as well as the wire
masks for the output wires from the Garbled Circuit Generation phase) and checks if Ki is present in
the output. Now one of the following two cases occur:

(a) If Ki is present in the output, then S broadcasts the opening of Com(GCi). Upon receiving all
the broadcast values, for every j ∈ M , S verifies the opening to the commitment sent by Pj at
the end of the Garbled Circuit Generation phase. If all the openings are correct, then S computes
the garbled circuit from the decommitted values (as well as its own share GCi). Let GC denote
this garbled circuit. S now checks whether GC = GC ′. If the check succeeds, then S instructs
the trusted party to return the correct output to the honest parties. Otherwise, S instructs the
trusted party to return ⊥.

(b) Otherwise S broadcasts a random string on behalf of each honest party. Finally, S instructs the
trusted party to return ⊥.

This completes the description of the simulator strategy S. The remaining parts of our proof are given
in appendix C.

6 Covert Multi-Party Computation over Point-to-Point Channels

In this section, we consider the network model where no broadcast channel is available, instead each pair
of parties only share a private communication channel. We describe a constant-round covert computation
protocol for a constant number of parties in this network model.

6.1 A Bounded-Concurrent Covert Computation Crotocol for Reactive Functionalities

As an essential ingredient to the construction of our new protocol, we require a bounded-concurrent covert
two-party computation protocol for reactive functionalities. To this end, we first discuss the design of a
bounded-concurrent covert multi-party computation protocol Σ for reactive functionalities over a broadcast
channel (later in our construction, we will use Σ for the two-party case only). Here, a (covert) reactive
functionality (say) F is a (covert) ideal functionality that can be invoked a fixed number (say t) of times.
In each of the first t− 1 queries, if the output is not favorable or if some party is not participating, then F
outputs a random value instead of ⊥. We note that this is necessary to preserve covertness of the parties
in the first t− 1 invocations. On the last query, however, F returns ⊥ if either the output is not favorable
or some party is not participating. We note that this is necessary to guarantee the correctness of the final
output.

Now consider a covert reactive functionality F that can be queried t times. Then Σ (that realizes F
in the bounded-concurrent case) consists of t sub-protocols Π1, . . . ,Πt (described below), where each sub-
protocol corresponds to one query to F in the ideal world. Now note that in the ideal world, F would carry
a “state” from one query to another. Then, in order to emulate F correctly, each sub-protocol in Σ will
output the state of F which is then carried over to the next sub-protocol. To this end, the parties jointly
compute a secret key prior to the first sub-protocol execution in Σ. In particular, each party Pi commits
to a random key share Ki using the covert commitment scheme Com. Let K =

⊕n
i=1Ki. Then, K is

26

used to encrypt and authenticate7 the state of F when it is transferred from one sub-protocol to another.
Note that any pseudo-random function can be used as a covert MAC for authentication (since its output is
indistinguishable from random).

We now describe the sub-protocols Π1, . . . ,Πt. We first observe that using standard techniques (see [Pas04]),
the covert computation protocol in section 5 can be modified such that the resultant protocol can securely re-
alize a (covert) non-reactive ideal functionality in the bounded-concurrent setting. Let Π denote the modified
protocol. We now outline the main steps to modify Π into Πi, i ∈ [1, t].

1. In the Garbled Circuit Generation phase, the parties jointly construct a garbled circuit GC that is the
same as the one described in section 5, except the following:

(a) It has (built-in) covert commitments Com(Ki), i ∈ [1, n].

(b) It addition to the inputs of the parties, it takes as input the openings to the commitments to the
key shares as well as the (encrypted and authenticated) state of F after the ith query.

(c) It returns the correct output only if the openings are correct and the input state is authenticated
(else it outputs a random string). The output of GC consists of the output of F after the ith

query as well as its (encrypted and authenticated) state along with the index i.

2. No output correctness checks are performed in the Output Exchange phase, except in the final sub-
protocol Π′t. For each of the first t− 1 sub-protocols, we summarize the necessary changes as follows:

(a) The parties no longer keep a random secret key for checking the output correctness. Consequently,
the key validation check in the Output Exchange phase is now void.

(b) The parties neither broadcast the commitment to their garbled circuit shares (at the end of
the Garbled Circuit Generation phase), nor their openings (in the Output Exchange Phase).
Consequently, the garbled circuit verification step in the Output Exchange phase is now void.

We now describe our covert multi-party computation protocol over point-to-point channels. Let F be
the covert functionality that we wish to realize. In our construction, we will be using Σ as a black-box only.

6.2 The New Protocol

Consider parties (Pi, . . . , Pn) with inputs (x1, . . . , xn). Without loss of generality, assume that n = 2δ for
some constant δ. As a part of the protocol specification, the n parties are grouped into n/2 pairs, each
consisting of 2 parties. Then, informally speaking, the protocol execution is defined by a tree that consists
of log(n)+1 levels where each level i ∈ [0, log(n)] consists of 2i reactive functionalities. The n functionalities
at log(n)-level are emulated by the protocol parties. A pair of protocol parties (as specified by the protocol)
at level log(n) together run the protocol Σ to realize a functionality at level 1. Similarly, a pair of reactive
functionalities (virtual parties) at level i together run Σ to realize a functionality at level (i− 1). Then, the
output of the protocol is simply the output of the functionality at level 0. We now describe the functionalities
at each level, starting from the root at level 0.

0-Level Functionality: This functionality takes as input two vectors ~X1 = (x1, . . . , xn/2) and ~X2 = (x(n/2)+1, . . . , xn).
The output of this functionality is F (x1, . . . , xn) (where F is the ideal functionality that the protocol realizes).

1-Level Functionality: There are two functionalities at the first level “interacting” with each other. In other
words, the output of one functionality is routed (via other functionalities, see below) to the other other
functionality as its input. Then the output of the other functionality is routed back to the first functionality
as its input. The 1-level functionalities are described by the (virtual) parties running the two-party protocol
Σ to realize the 0-level functionality. We will refer to them as the partner functionalities. Looking ahead,

7Let K = (K1, K2). Then K1 is used for encryption and K2 is used for authentication.

27

one of the (virtual) parties (that describe the 1-level functionalities in the real world) will play the role of
a designated (virtual) party that routes messages between two higher level partner functionalities. Note
that since there is only functionality at 0-level, there is no difference between the designated party and the
non-designated party at 1-level (this is not the case for i-level functionalities, i > 1; see below). The final
output of the 1-level functionalities is the output they receive from the 0-level functionality.

i-Level Functionality: Consider an (i− 1)-level functionality f(i−1). There exist two i-level partner function-
alities f0

i , f1
i for every such f(i−1). The reactive functionalities f0

i , f1
i are defined by the (virtual) parties

that run the protocol Σ to realize f(i−1) (where both of them have the necessary inputs). Since f(i−1) is
reactive functionality, it may give out several intermediate outputs before giving a final output. Only one
of the i-level functionalities f0

i , f1
i receives the intermediate outputs. We will refer to it as the designated

party (say) fdi . Further, we say that the designated functionality fdi hosts the (i − 1) level functionality
f(i−1). The final output of f0

i , f1
i is the output they receive from f(i−1).

Note that the (i−1)-level functionality f(i−1) is essentially a (virtual) party that interacts with a partner
functionality at level (i − 1) in an execution of Σ. Then the intermediate outputs of f(i−1) are simply the
protocol messages to be forwarded to its partner functionality. To this end, the designated functionality fdi
forwards (using a private channel) each intermediate output from f(i−1) to another i-level designated party
hosting the partner functionality of f(i−1). Further, fdi waits to receive a message (in reply) before invoking
f(i−1) again. This invocation would require an execution of Σ with the partner functionality f1−d

i .

log(n)-Level: As mentioned earlier, the functionalities at log(n) level are emulated by the real parties in
the protocol. The input of a log(n)-level functionality is the same as the input of the real party emulating
it. Each pair of partner functionalities at log(n) level engage in an execution of Σ to realize a (log(n) − 1)
level functionality. Further these functionalities can directly send messages to each other using their private
channel. The final output of these functionalities (i.e. the final output of the protocol) is the output they
receive from the (log(n)−1)-level functionality that they realize. Then it follows from our construction that
this is simply the output of the 0-level functionality.

Now recall that two (i−1)-level partner functionalities communicate with each other by routing messages
through the i-level designated parties hosting them. However, one or both of these designated parties may be
dishonest, and may therefore modify the messages in transit. Such a situation was considered in [BCL+05].
In order to solve this problem, we will make use of a covert one-time signature (OTS) scheme. During the
setup phase of the protocol, each party Pi creates n−1 key pairs of a covert OTS scheme, one for each party
j 6= i. For each j 6= i, Pi sends one public key to Pj over their private channel. Then, the new input of Pi
consists of n − 1 signatures over its original input (one with each private key generated earlier), and n − 1
one-time public keys received from the parties j 6= i. Now, the 0-level functionality takes all these input
values and returns the correct output only if the input public keys are consistent and all the signatures are
valid. We remark that the OTS scheme of Lamport [Lam79] can be modified into a covert OTS scheme if
we use one-way permutations instead of one-way functions.

Further, since there are 2i−1 pairs of partner functionalities at each level i, at most 2i−1 executions of
Σ may occur concurrently at each level. Summing up,

∑log(n)
i=1 2i−1 = n− 1 concurrent executions of Σ are

possible in an execution of our protocol. Note that any of these executions (say) s can be controlled by a
designated party acting as a man-in-the-middle, who can instead run separate executions of s with each of
the partner parties running s. Following techniques from Barak et al [BCL+05], this problem can be solved
if Σ is 2(n− 1)-bounded concurrent secure. This completes the description of our protocol.

6.3 Protocol Analysis

Efficiency. We first compute the round complexity for our protocol by induction. Recall that Σ consists of
t sub-protocols {Πi}ti=1 if the functionality F to be realized can be queried t times. Let r be the (constant)
number of rounds in Πi. Now first consider the (virtual) parties at level 1 that run Σ to realize the 0-level

28

functionality. Note that this instance of Σ only consists of r rounds since it only consists of a single sub-
protocol Π1 (that corresponds to the single allowed query to the 0-level functionality). Now consider a pair
of (virtual) parties (that describe a pair of partner functionalities f0

i , f1
i) at level i ≥ 1 that run Σ (to

realize an (i−1)-level functionality). Assume that this instance of Σ consists of ri rounds. This implies that
each functionality f ji (j ∈ {0, 1}) must be queried ri times. Now consider the execution of Σ between two
(virtual) parties at level (i + 1) that realizes f ji . Then, this instance of Σ must consist of ri sub-protocols
{Πk}r

i

k=1, where each sub-protocol has a round complexity of r. This in turn implies that this instance of
Σ consists of ri+1 rounds. Then by induction, the round complexity of our protocol for any pair of partner
(real) parties is rlog(n) = nlog(r), which is a polynomial (in the security parameter) if n is a polynomial.

We now compute the computational complexity for our new protocol by induction. We first observe a
property of the covert computation protocol Π described in section 5 (also see appendix ??). Let C be a
circuit for the ideal functionality that Π realizes. Then there exists at least one round in Π that requires
computation poly(κ)|C| (where κ is the security parameter). Now, let C be the circuit corresponding to the
0-level functionality in our new protocol. Consider the execution of protocol Σ between the (virtual) parties
at level 1 to realize the 0-level functionality. Then it follows from the aforementioned property of our covert
computation protocol Π in section 5 (since Σ consists of sub-protocols Πj that are derived from Π) that
there exists a round in this execution of Σ that requires computation poly(κ)|C|. Now consider an execution
of Σ between two partner functionalities at level i. Assume that there exists a round in this execution that
requires computation poly(κ)i|C|. Then the circuit size for any of these partner i-level functionality (say)
fi must be poly(κ)i|C|. It follows then that there exists a round in the execution of Σ between the (i+ 1)-
level partner functionalities realizing fi that requires computation poly(κ)i+1|C|. Then by induction, the
computational overhead of our protocol is poly(κ)log(n)|C|. When n is a constant, this reduces to poly(κ)|C|.
Note that in this case, the round complexity of our protocol is constant.

In a recent work, Ishai et al [IKOS08] designed a multi-party computation protocol for the semi-honest
case with a constant computational overhead (i.e., |C|+ poly(κ), where C is the circuit to be evaluated). It
remains an open problem to extend their work to the case of malicious parties and covert functionalities.

Proof of Security. We now give a sketch of the main arguments to prove that privacy of the inputs and
covertness of the parties is maintained in our protocol.

Consider an honest party at log(n)-level. Note that even if its partner functionality is cheating, the
functionality emulated by them must be honest (i.e., correctly emulated). This implies that at least one
functionality at (log(n) − 1) level is correctly emulated. Now we consider our protocol in the (log(n) − 1)-
level hybrid model. There are n/2 virtual parties at (log(n) − 1) level of which at least one is honest. By
induction, we note that there are two virtual parties at level 1, of which at least one is honest. Hence, we
conclude that the 0 level functionality must be honest (i.e., correctly emulated)

Further note that there are two kinds of messages exchanged by the parties in our protocol. The first
kind consists of the messages of the protocol Σ exchanged by the partner functionalities. From the security of
our protocol in section 5, we conclude that these messages are indistinguishable from random, and therefore
do not compromise the covertness of the parties. The second kind consists of the messages routed by a pair
of designated functionalities between the higher level functionalities that they host. Note that these are the
messages of protocol Σ run by the higher level functionalities, and are indistinguishable from random to all
the parties including the designated parties.

7 Acknowledgements

We thank Yuval Ishai for useful discussions. We also thank Chris Peikert for his extremely useful comments
that helped us in improving the presentation of our results.

29

References

[ABK07] Giuseppe Ateniese, Marina Blanton, and Jonathan Kirsch. Secret handshakes with dynamic and
fuzzy matchin. In NDSS, 2007.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in nc0. In FOCS, 2004.

[AIK08] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. On pseudorandom generators with linear
stretch in nc0. Computational Complexity, 2008.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, 2001.

[BCL+05] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure computation
without authentication. In CRYPTO, 2005.

[BDS+03] Dirk Balfanz, Glenn Durfee, Narendar Shankar, Diana K. Smetters, Jessica Staddon, and Hao-Chi
Wong. Secret handshakes from pairing-based key agreements. In IEEE Symposium on Security
and Privacy, 2003.

[BG02] Boaz Barak and Oded Goldreich. Universal arguments and their applications. In CCC, 2002.

[BL04] Boaz Barak and Yehuda Lindell. Strict polynomial-time in simulation and extraction. SIAM J.
Comput., 2004.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols
(extended abstract). In STOC, 1990.

[CGOS07] Nishanth Chandran, Vipul Goyal, Rafail Ostrovsky, and Amit Sahai. Covert multi-party com-
putation. In FOCS, 2007.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In STOC,
1989.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC, 1987.

[HLvA02] Nicholas J. Hopper, John Langford, and Luis von Ahn. Provably secure steganography. In
CRYPTO, 2002.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with constant
computational overhead. In STOC, 2008.

[KK07] Jonathan Katz and Chiu-Yuen Koo. Round-efficient secure computation in point-to-point net-
works. In EUROCRYPT, 2007.

[KKK08] Jonathan Katz, Chiu-Yuen Koo, and Ranjit Kumaresan. Improving the round complexity of vss
in point-to-point networks. In ICALP (2), 2008.

[Lam79] Leslie Lamport. Constructing digital signatures from a one-way function. Technical report, SRI,
1979.

[LP04] Yehuda Lindell and Benny Pinkas. A proof of yao’s protocol for secure two-party computation.
ECCC, 2004.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In SODA, 2001.

[Pas04] Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. In
STOC, 2004.

30

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext secu-
rity. In FOCS, 1999.

[vAH04] Luis von Ahn and Nicholas J. Hopper. Public-key steganography. In EUROCRYPT, 2004.

[vAHL05] Luis von Ahn, Nicholas Hopper, and John Langford. Covert two-party computation. In STOC,
2005.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations. In FOCS, 1982.

A Covert Communication Channel

In this section, we briefly describe the covert broadcast and point-to-point channels. Most of the text here
is taken almost verbatim from [CGOS07].

Broadcast Channels. Messages are drawn from a set of documents denoted as D. We assume that time
proceeds in discrete timesteps. Each party P ∈ {P1, P2,, Pn} maintains a history hP , which represents a
list of all documents sent and received by P ordered by timestep. Let the set of well-formed histories be H.
We associate to each party P , a family of probability distributions BP = {BP

h }h∈H on D. Communication
over broadcast channel B = (D,H,BP1 , BP2 ,, BPn) proceeds as follows: At each timestep, every party P
receives messages broadcast over the channel in the previous timestep by all parties, updates hP accordingly
and draws a document d ← BP

hP
(Note that this may result in ⊥). d is broadcast and hP is updated. We

further assume that all messages sent at a given timestep are received in the next one. Let BP
hP
6= ⊥, be the

distribution BP
hP

conditioned on not drawing ⊥. We will consider families of broadcast channels {Bk}k≥0

(where k is polynomially related to κ) such that the following conditions hold:

• The length of elements in Dk is polynomially-bounded in k

• For each h ∈ Hk and for every party P , either Pr[BP
h = ⊥] = 1 or Pr[BP

h = ⊥] ≤ 1 − δ for some
constant δ.

• There exists a function l(k) = ω(log k) such that for each h ∈ Hk, H∞((BP
h)k 6= ⊥) ≥ l(k) (that is,

there is some variability in the communications).

Party P can draw from BP
h for any history h and the adversary can draw from BP

h for every party P
and history h. Parties running the protocol try to communicate according to using sequence of documents
that appear to come from B.

Point-to-Point Channels. Each pair of parties Pi, Pj share a private channel to communicate with each
other. A private channel for two parties is modeled as a broadcast channel (as defined above) for the two-
party case. A message sent by Pi over its private channel with Pj is only received by Pj . We assume that
a message sent at a given timestep is received in the next one. Each party P maintains a “global” history,
which represents a list of all documents sent and received by P ordered by timestamp. On receiving a
message over a private channel, a party updates its history accordingly.

B Covert Computation Primitives

In this section, we describe the covert computation primitives that are used in our positive results. The
text in this section is taken almost verbatim from [CGOS07] (except the description of a covert encryption
scheme in NC0; see below).

31

B.1 Covert Commitments

We will need a perfectly binding non-interactive bitwise commitment scheme with commitments that are
indistinguishable from random bits. An example of such a scheme [vAHL05] is the scheme that commits to
the bit b by com(b; (r, x)) = r||π(x)||(x · r) ⊕ b where π is a one-way permutation on the domain {0, 1}k,
x · y denotes the inner-product of x and y over GF (2), and x, r ← Uk. Now we have the follow lemma from
[vAHL05]:

Lemma 2 (Covert Commitment [vAHL05]) The non-interactive bit commitment scheme based on
hard-core predicates [GL89] is indistinguishable from a message drawn at random from the uniform dis-
tribution.

B.2 Covert 1-out-of-4 Oblivious Transfer

We present below a covert 1-out-of-4 Oblivious Transfer protocol (which is a modification of the Covert
1-out-of-2 Oblivious Transfer protocol presented in [vAHL05, NP01]). It is based on the Decisional Diffie-
Hellman assumption.

Decisional Diffie-Hellman Assumption: Let p and q be two primes such that q|p − 1. Let Z∗p be
the multiplicative group of integers modulo p, and let g ∈ Z∗p have order q. Denote the advantage of an
adversary A as AdvA(g, p, q) = |Pra,b,r[Ar(ga, gb, gab, g, p, q) = 1]− Pra,b,c,r[Ar(ga, gb, gc, g, p, q) = 1]|, where
Ar denotes the adversary A running with random tape r, a, b, c chosen uniformly at random from Zq, with
all multiplications being over Z∗p. The Decisional Diffie-Hellman Assumption states that for every PPT A,
for every sequence {(gk, pkqk)}k satisfying |pk| = k and |qk| = θ(k), AdvA(gk, pk, qk) is negligible in k (k is
polynomially related to security parameter κ).
Setup for Oblivious Transfer: Let p = rq+1, where q is a large prime, 2k < p < 2k+1 and gcd(r, q) = 1.
Let g be a generator of Z∗p and let γ = gr be a generator of the unique multiplicative subgroup of or-
der q. Let r̂ be the least integer such that rr̂ = 1 mod q. Assume |m0| = |m1| = |m2| = |m3| < k/2.
H : {0, 1}2k × Zp → {0, 1}k/2 is a pairwise-independent family of hash functions. Define the randomized
mapping φ :< γ >→ Z∗p by φ(h) = hr̂gβq, for a uniformly chosen β ∈ Zr.

Protocol Description (COT 4
1):

1. On input σ ∈ {0, 1}2, chooser C chooses uniform a, b ∈ Zq and sets cσ = ab mod q setting uniformly
ci ∈ Zq, ∀ i 6= σ. C then sets x = γa, y = γb, zi = γci ∀ i and then sets x′ = φ(x), y′ = φ(y), z′i =
φ(zi) ∀ i. If the most significant bits of all of x′, y′, z′0, z

′
1, z
′
2, z
′
3 are 0, then C sends the least significant

k bits of each to S; otherwise C starts all over again.

2. The sender S recovers x, y, z0, z1, z2, z3 by raising all received values to the power r, picks f0, f1, f2

and f3 ∈ H and then does the following ∀ i: S repeatedly chooses uniform ri, si ∈ Zq and sets
wi = xsiγri , w′i = φ(wi) until he finds a pair with w′i ≤ 2k. He then sets Ki = zsii y

ri .

3. S sends w′i||fi||fi(Ki)⊕mi, ∀ i to C.

4. C recovers Kσ = (w′σ)rb and computes mσ.

The proof of the following four lemmas follow from the security of the OT [NP01] and from the covertness
property of 1-out-of-2 OT proved in [vAHL05].

Lemma 3 (OT Receiver [NP01, vAHL05]) For any σ, τ ∈ {0, 1}2, and for any PPT adversary S ′ that
executes the sender’s part, the views of S ′ in the case when the receiver tries to obtain Mσ and in the case
when the receiver tries to obtain Mτ are computationally indistinguishable (given {M0,M1,M2,M3}).

32

Lemma 4 (OT Sender [NP01, vAHL05]) For any deterministic adversary C′ that executes the receiver’s
part (C′ is not necessarily poly-time), for any auxiliary input z that is polynomial in the security parameter κ,
and for any M0,M1,M2,M3 ∈ {0, 1}l(κ), there exists γ ∈ {0, 1}2 such that for every W1,W2,W3 ∈ {0, 1}l(κ),
the view of C′(z) when interacting with honest sender S(1κ,Mγ ,W1,W2,W3), and the view of C′(z) when
interacting with honest S(1κ,M0,M1,M2,M3) are statistically indistinguishable.

Lemma 5 (Covert OT Receiver [NP01, vAHL05]) For any honest R that executes the receiver’s part
in the OT protocol, and for any PPT adversary S ′ that executes the sender’s part, the views of S ′ in the
case when R sends messages according to the protocol and the case when R sends message drawn at random
from Uκ (where Uκ denotes the uniform distribution) are indistinguishable.

Lemma 6 (Covert OT Sender [NP01, vAHL05]) For any honest S executing the sender’s part in the
OT protocol, and for any PPT adversary C′ that executes the receiver’s part, the views of R′ in the case
when S sends messages according to the protocol and the case when S sends message drawn at random from
Uκ (where Uκ denotes the uniform distribution) are indistinguishable.

B.3 Covert Yao’s Garbled Circuit

Alice (holding input x) and Bob (holding input y) wish to compute a function f(x, y) covertly in such a
way that only Bob gets the output at the end, with no guarantee if the output is correct or not. This can
be done using a covert version of Yao’s garbled circuits called covert garbled circuits due to [vAHL05]. A
covert garbled circuit construction [vAHL05] was obtained by a few modifications to the standard garbled
circuit construction due to Yao [Yao82]. A covert garbled circuit can then be used in conjunction with covert
1-out-of-2 OT to compute f(x, y). The following lemma follows from [vAHL05, LP04, Yao82]:

Lemma 7 (Garbled Circuit Security) Consider two functions f : D → R and f ′ : D → R, such that
for all x ∈ D, f(x) = f ′(x). Let GC represent a garbled circuit that computes f and GC ′ be a garbled
circuit that computes f ′. If |GC| = |GC ′| (where |GC| represents the size of garbled circuit GC), then the
distribution of GC and the distribution of GC ′ (over the random coins needed to prepare the garbled circuits)
are indistinguishable.

B.4 Covert GMW Multi-party computation

We consider the GMW ([GMW87]) protocol for multi-party computation (in the honest-but-curious model)
and replace the semi-honest oblivious transfer protocol with a covert 1-out-of-4 oblivious transfer protocol.
We also omit the output share broadcast phase from the GMW protocol. We call the resulting protocol
Covert-GMW and describe it below in more detail:

Parties {P1, P2,, Pn} having inputs {x1, x2,, xn} wish to compute f(x1, x2,, xn) covertly. They
prepare a description of the circuit that outputs f(x1, x2,, xn) if f(x1, x2,, xn) is favorable, and other-
wise, outputs a random value from the uniform distribution. Note that this circuit can be built using just
NOT(¬) and AND(∧) gates. In order to evaluate the circuit, the parties run the following protocol:

• Pi shares each of his input bits with all other parties in a way that exactly n parties are needed in
order to gain information about the input bit. In particular, set xi =

⊕n
k=1 x

k
i and give Pj bit xji .

• In order to compute a ¬ gate, one of the parties, say P1, adds the constant 1 to his share and the other
parties leave their shares as it is.

• In order to compute a ∧ gate, we proceed as follows:

– Let the two input wires be c and d that are distributed in shares {c1, c2, ..., cn} and {d1, d2, ..., dn}.
We wish to have a protocol at the end of which Pi holds bi such that

⊕n
k=1 bk = b = c · d.

33

– Define bi,j so that for every i, bi,i = cidi and for every i 6= j, bi,j + bj,i = cidj + cjdi, and let
bi =

∑n
j=1 bi,j .

– Note that c · d =
∑n

i=1 bi = b.

– Pi can compute bi,i on his own.

– In order to compute bi,j and bj,i, Pi and Pj run a covert 1-out-of-4 oblivious transfer protocol with
the following values. Pj picks bj,i at random and will transfer to Pi one of the following values:
bj,i, bj,i + dj , bj,i + cj or bj,i + cj + dj . Pi will choose to receive the first value, if ci = 0; di = 0, the
second value if ci = 0; di = 1 and so on.

• Therefore, at the end of this protocol, all parties have a share of the output.

B.5 A Covert Encryption Scheme in NC0

A covert encryption scheme is an encryption scheme with the additional property that, very informally, the
distribution of a tuple consisting of an encryption key and an encryption of a random number with that key
looks indistinguishable from the uniform distribution. The construction of our covert computation protocol
relies on the existence of a covert encryption scheme in NC0. Such an encryption scheme can be constructed
using techniques from Applebaum et al [AIK04]. Given a function f(x), Applebaum et al [AIK04] define
and construct a randomized encoding function f̂(x, r). We rely on the following two key properties of their
randomized encoding function. Firstly, the output distribution of f̂(x, r) depends only on f(x) and does
not further depend on x. In other words, there exists a simulator which on input f(x) produces an output
distribution which is indistinguishable from the distribution of f̂(x, r). Secondly, the construction in [AIK04]
(see the Locality Construction in section 4.3) satisfies the property that if f(x) is indistinguishable from the
uniform distribution (where the input x is drawn from the specified input distribution), so is f̂(x, r). Given an
encryption scheme (G,E,D) in NC1, Applebaum et al [AIK04] show how to modify the decryption function
such that the corresponding encryption function is the randomized encoding Ê(., r) which is computable by
NC0 circuits.

We start with a covert encryption scheme in NC1 (such schemes can be readily constructed based on
a variety of cryptographic assumptions) and similarly compile it to obtain a modified encryption scheme
where the encryption function is in NC0. It is easy to show that the modified encryption scheme would still
be a covert encryption scheme through a standard hybrid argument. Assume an adversary A which can
distinguish the distribution of a tuple consisting of an encryption key and an encryption of a random number
from that key in the modified scheme from the uniform distribution with a non-negligible advantage. Then
we can construct a new adversary B which takes as input a tuple (a, b) (which is either such a key, ciphertext
pair for the original encryption scheme or a random number). The adversary B now computes the tuple
(a, S(b)) where S is the simulator (guaranteed by the first property discussed above). The tuple (a, S(b))
is either a key, ciphertext pair for the modified encryption scheme or a random number. The adversary
B can distinguish between these two cases by giving the tuple (a, S(b)) as input to the adversary A. This
contradicts the covertness of the original encryption scheme.

C Completing the Security Proof for Protocol Π

Recall that the description of the simulator algorithm S was given in section 5.3. In order to complete the
security proof for our protocol Π, we first prove some specific security properties of our ZKSend construct
and then prove that the output distributions of the real and ideal world executions are computationally
indistinguishable.

C.1 Security Properties of ZKSend

In this section, we prove some security properties of the ZKSend protocol that are essential to proving the
security of our constant-round covert multi-party computation protocol given in Section 5. We note that our

34

covert computation protocol consists of only parallel executions of ZKSend. However, some of the lemmas in
this section are proven for the case of bounded-concurrency (which implies security for parallel executions).
We remark that this will be useful when considering covert computation over point-to-point channels (see
Section 6).

Lemma 8 (ZKSend Stand-Alone Weak Extractability) Consider the following two security games:
In the first game, honest party Pi executes ZKSendij with Pj, where the input of Pi is a fixed value v. In
the second game, honest party Pi executes ZKSendij with Pj, where the input of Pi is a random string
R (drawn from the uniform distribution). In both the games, the common input is an NP statement z.
Consider a PPT adversary Pj who can distinguish between the distributions of the views in the two games
with noticeable advantage ε. Then there exists an extractor E that extracts and outputs a witness for the
statement z with probability polynomially related to ε.

Proof. We first introduce some terminology to be used in the proof. Recall the description of ZKSendij
from section 5.1. Now consider an execution of ZKSendij . We define a stage 5 prefix to be the sequence
of all the messages exchanged between Pi and Pj until the completion of stage 5 in phase I. Let {γ} denote
the set of all the decommitments to the shares of mfinal (i.e., the last message of cWI-UARG). Then, we
will say that a transcript of phase I is favorable if there exists {γ} such that the garbled circuit Gar[i→ j]
on being input {γ}, outputs v.

Now let Pj be an adversary that can distinguish between the distributions of the views in the two games
(as described above) with non-negligible advantage ε. Then we consider the following two cases:

Case I. For at least ε/2 fraction of stage 5 prefixes, the transcript of phase I is favorable with probability at
least ε/2. We will call such stage 5 prefixes to be good. In this case, we show how to construct an extractor
E that extracts and outputs a witness for the statement z with non-negligible probability.

Consider an execution of the cZK protocol where P proves an NP statement z to V . Let ε denote the
probability with which V accepts. We note that there exists an extractor EcZK for the cZK protocol (this
follows from the existence of an extractor for WI-UARG of Barak and Goldreich [BL04]) that extracts and
outputs a witness for z with probability polynomially related to ε. Then, informally speaking, our extractor
E for ZKSendij will work by running the extractor EcZK and emulating a prover P to EcZK that proves
the same statement z that Pj proves to E in the execution of ZKSendij . E will simply output the same
witness that EcZK outputs.

As a first step, we will construct a prover P ∗ that interacts with an honest V in an execution of cZK
such that V accepts the proof of the statement z with non-negligible probability. Informally speaking, P ∗

will work by emulating Pi to Pj by using the queries of V . It then uses the responses of Pj to answer the
queries of V . More formally, P ∗ uses the following strategy.

1. On receiving any message from V , forward it to Pj .

2. For all but the last message from V , forward the response from Pj to V .

3. In order to answer the last message from V , rewind Pj in the stage 5 (challenge-response) of ZKSendij
to extract mfinal. If the extraction is successful (explained below), then send mfinal to V , else abort.

Recall that the correct response to the last message from V is the last message mfinal of cWI-UARG. In
ZKSendij , however, Pj never sends mfinal in open; instead, Pj commits to random shares {α0

i }κi=1, {α1
i }κi

of mfinal, where α0
i ⊕ α1

i = β5 for all i. Further in ZKSendij , Pj and Pi execute a challenge-response
phase where Pj reveals the values αz11 , . . . , α

zκ
κ on receiving the challenge bits z1, . . . , zκ. Now since the

commitments to the shares are set at the completion of phase 3, Then P ∗ (emulating Pi) can rewind Pj in
the challenge-response phase to obtain both α0

i and α1
i for some i with high probability.

We say that the extraction is successful if P ∗ receives correct values (i.e., the random shares that were
committed to in stage 3) in both iterations of the challenge-response phase. Let Egood be the event that
the stage 5 prefix (say) τ in the interaction of P ∗ with Pj is good. Let Efav be the event that P ∗ obtains a

35

favorable transcript of phase I in two independent executions of the challenge-response phase with prefix τ .
Then observe that V accepts the proof with the same probability that the extraction is successful (assuming
that the completeness for cZK is 1). Then we have,

Pr[V accepts] = Pr[Egood].Pr[Efav]

≥ ε

2
(
ε

2
)2

≥ ε3

8

which is non-negligible in κ.
Now our extractor E will simply run the extractor EcZK on the prover P ∗. EcZK will output a witness

for z with some probability polynomial in ε3

8 . E simply outputs the same witness and stops.

Case II. Otherwise, for less than ε/2 fraction of the stage 5 prefixes, the transcript of phase I is favorable
with probability at least ε/2. As earlier, we will call such stage 5 prefixes to be good.

Now fix any execution of ZKSendij . Let Egood denote the event that a stage 5 prefix is good. Let
Efav denote the event the a phase I transcript is favorable. We first derive an upper bound on Efav over all
possible executions of ZKSendij .

Pr[Efav] = Pr[Egood] · Pr[Efav|Egood] + Pr[Ēgood] · Pr[Efav|Ēgood]

≤ ε

2
· 1 + (1− ε

2
) · ε

2

≤ ε− ε2

4

Now, let E1 denote the event the distinguisher Pj outputs 1 on the distribution of view in ZKSendij .
Similarly, let E2 be the event that Pj outputs 1 on the distribution of the view in ZKSendij . Then, by
definition, we have:

ε = Pr[E1]− Pr[E2]
= Pr[Efav] · Pr[E1|Efav] + Pr[Ēfav] · Pr[E1|Ēfav]− Pr[Efav] · Pr[E2|Efav]− Pr[Ēfav] · Pr[E2|Ēfav]
= Pr[Efav] · (Pr[E1|Efav]− Pr[E2|Efav]) + Pr[Ēfav] · (Pr[E1|Ēfav]− Pr[E2|Ēfav])

= (ε− ε2

4
) · (Pr[E1|Efav]− Pr[E2|Efav]) + Pr[Ēfav] · ξ

≤ (ε− ε2

4
) + ξ

Note that if ξ were negligible, then we arrive at a contradiction. We now show that ξ is negligible.
Let GC,GC ′ denote the garbled circuits that Pi sends to Pj in an execution of ZKSendij and ZKSendij

respectively. Let f : D → R be the function that GC computes and let f ′ : D → R be the function that GC ′

computes. We note that if no favorable transcript for phase 1 exists, then f(x) = f ′(x) for all x ∈ D. Then,
by lemma 7, we conclude that the distribution of GC and the distribution of GC ′ are indistinguishable. �

Lemma 9 (ZKSend Bounded-Concurrent Simulatability) Consider the following two security games:
In the first game, an adversary A acts as the sender in a polynomially-bounded number of concurrent real
executions of ZKSend with honest receivers. In the second game, adversary A acts as the sender in a
polynomially-bounded number of simulated concurrent executions of ZKSend with a simulator. Then no such
PPT adversary A can distinguish between the views in the two games with advantage greater than ε, where
ε is negligible in the security parameter.

Proof. Let us first recall the structure of ZKSend. Note that an execution of ZKSend is identical to cZK
except that instead of simply sending the last message mfinal of cWI-UARG, the receiver (prover) sends

36

covert commitments to random shares of mfinal, followed by a challenge-response phase and a garbled circuit
evaluation. That is, prior to sending the covert commitments to the shares of mfinal, the communication
between Pj and Pi in ZKSendij is identical to that between P and V in cZK.

Now consider the following scenario. Consider a polynomially bounded number (say k) of concurrent
executions of ZKSend where an adversary A is acting as the sender in all the executions, while the simulator
S is acting as the receiver. At the same time, messages of an outer protocol (more specifically, our covert
multi-party computation protocol) may be being exchanged between A and S, including messages of other
executions of ZKSend. S is internally running the prover algorithm of cZK in order to generate the
receiver messages in each of the k ZKSend executions. Note that in case the prover algorithm is using the
simulator strategy for cZK, it will require the code of the adversary (controlling the sender) along with
short descriptions of all the messages of S contained in slot 1 or slot 2 (this includes the messages sent by
S in other executions of ZKSend, in particular the long challenge strings r1, r2) in order to compute the
outgoing messages. We observe that S already has all this information to input to the prover algorithm. In
this manner, S is able to generate the receiver messages until stage 4(a) in all the k executions. In order to
generate the receiver messages from stage 4(b) onwards in any execution, S first prepares the last message
mfinal of cWI-UARG in cZK using the prover algorithm for that execution. S now executes the rest of
ZKSend honestly with A by using mfinal. In particular, S first computes random shares of mfinal and sends
covert commitments to these shares to A. S then executes a challenge-response protocol with A and reveals
the shares to mfinal honestly as chosen by A. Finally, S evaluates the garbled circuit (also executes OT
protocols with A) and obtains some output.

Now consider the following two cases. In the first case, the prover algorithm of cZK uses the correct
witness to generate the outgoing messages in each of the k executions. Note that this experiment is the
same as the first game (see lemma statement). In the second case, the prover algorithm uses the simulator
strategy for cZK in order to generate the outgoing messages. Note that this experiment is the same as the
second game. Now, if A can distinguish between the views in the two games with non-negligible advantage
ε, then S can distinguish with the same advantage ε between the views of the two cases where the prover
algorithm of cZK uses the correct witnesses, and when it uses the simulator strategy for cZK. From the
zero-knowledge property of cZK, it follows that this is a contradiction. �

Lemma 10 (ZKSend Bounded-Concurrent Simulation Soundness) Consider a polynomially-bounded
number of concurrent executions of ZKSend where the simulator S might be simulating any number of these
executions when acting as the receiver. Let s be the identifier of one of these ZKSend executions where S
is acting as the sender. Further, in this execution, the NP statement that A is supposed to prove is false.
Now consider the following two games: In the first game, S uses some fixed input value v in the execution s.
In the second game, S uses a random value R (drawn from the uniform distribution) in execution s. Then
no PPT adversary A can distinguish between the distributions of the views in the two games, except with
negligible advantage.

Proof. Informally speaking, we will prove this lemma in the same way as the proof of simulation soundness
for cZK in [Pas04]. Assuming that the lemma statement is false, we will rely on the ZKSend Stand-Alone
Weak Extractability lemma (Lemma 8) to derive a contradiction. We only give a sketch of the main ideas
in the proof.

Let ZKSendij be the session s where A is controlling the receiver Pj and S is acting as the sender Pi.
The NP statement that Pj is supposed to prove is false. Now, suppose that A can distinguish between the
distributions of the views in the two games with noticeable advantage. Then we show how to construct a
cheating receiver P ∗j for a single instance of ZKSendij (in the stand-alone setting) such that P ∗j is able to
distinguish with noticeable advantage between the distributions of the views when the honest sender uses a
fixed input value v and when he uses a random value R (even when the NP statement that P ∗j is supposed
to prove is false). This will contradict the ZKSend Stand-Alone Weak Extractability lemma (Lemma 8).

Consider the following experiment. P ∗j works in the same way as S except that in session s, P ∗j will
forward the messages of A to an external honest sender E. The replies of E are then forwarded by P ∗j back

37

to A on behalf of S. Let us assume that P ∗j is able to simulate all the ZKSend executions (where S is acting
as the receiver) correctly even when talking to the external sender E. Now, if E used a fixed input v, then
this experiment is the same as the first game (see lemma statement). Otherwise, if E used a random value
R as its input, then this experiment is the same as the second game. Now if A can distinguish between
the views of the two games with noticeable advantage, then P ∗j can distinguish with the same noticeable
advantage between the views of two stand-alone executions of ZKSend, such that the receiver E uses a fixed
input input v and a random value R in the first and second executions respectively. It follows from the
ZKSend Weak Extractability lemma (Lemma 8) that this is a contradiction. Now all that remains to show
is that P ∗j (i.e., the simulator S) can correctly simulate all the instances of ZKSend where it is acting as the
receiver.

As in [Pas04], we initially run into a problem with the simulation because the code of the external
sender E is not available to the simulator. This means that the straightforward simulation of the concurrent
ZKSend sessions (where S is acting as the receiver) cannot be done as it is since it explicitly requires a
‘short description’ of the sender messages sent by the simulator (that would include the messages from the
external sender E). This problem is resolved by the two-slot simulation technique of Pass. For the sake of
completeness, we recall the argument from [Pas04] below.

Let rE1 , rE2 denote the (long) challenges sent by E in session s. Note that except these challenges, the
simulator does have a description of all the messages sent to A that is shorter than `(κ) (recall that S uses
a pseudo-random generator to produce the long challenges in all sessions other than s where it is acting as
the sender). Then, all we need to show is that it is sufficient to have a short description of the messages
sent in one of the slots of s. Consider any session s′ 6= s where S is acting as the receiver. Now two cases
are possible:

• In the first case, both rE1 and rE2 are contained in the same slot of s′. In this case, the other slot is
free, and can therefore be used to perform the simulation.

• Otherwise, rE1 and rE2 are contained in different slots of s′. However, by construction, it follows that
either the first or the second challenge in s′ is at least `(κ) bits longer than the corresponding challenge
(sent by E) in s. Thus there exists a slot in s′ such that even if we include rEi in the description,
we still have enough bits left to describe the other messages of the simulator, which implies that the
simulation can be performed.

Lemma 11 (ZKSend Covertness) In protocol ZKSendij, when v is random, no PPT machine Pj can
distinguish between the messages sent by an honest sender Pi and messages drawn at random from the
uniform distribution, with probability > ε, where ε is negligible in the security parameter κ. Similarly, no
PPT machine Pi can can distinguish between the messages sent by an honest receiver Pj and messages drawn
at random from the non-participating distribution, with probability > ε, where ε is negligible in the security
parameter κ. In other words, covertness of Pi and Pj are both preserved.

Proof. Let us consider the two cases when Pi and Pj are malicious respectively.
Pi is malicious. Let us first analyze the messages sent by Pj in an execution of ZKSendij . In phase I, Pj
only sends covert commitments and additionally reveals some shares to the last message of cWI-UARG.
Further, in Phase II, Pj sends some bits to select values in the covert OT protocol. We will show that Pj ’s
covertness is preserved with the help of a hybrid argument.

In the first hybrid, Pj simply sends a message drawn at random from the uniform distribution for all
of his messages in ZKSendij . In the second hybrid, Pj sends covert commitments (using the commitment
scheme Com) to random strings in phase I and executes the OT protocol of the garbled circuit (in phase
II) on random input values. Note that by the covertness property of the commitment scheme Com (from
Lemma 2), and the covertness preserving property of the OT scheme with respect to the receiver (from
Lemma 5), the view of Pi in the second hybrid is indistinguishable from the view in the first hybrid. In the
third hybrid, Pj sends covert commitments to the correct values until stage 4(a) of ZKSendij and follows
the rest of the protocol as in the second hybrid. Since the commitment scheme Com is computationally

38

hiding, the view of Pi in the third hybrid is indistinguishable from the view in the second hybrid. In the
fourth hybrid, Pj runs a mental experiment, where he computes random shares for mfinal (the last message
of cWI-UARG). It follows the protocol exactly as in the third hybrid except that in stage 5(b), he reveals
the correct shares of mfinal as selected by Pi. Since hybrids three and four are identical, the views of Pi are
identical in both hybrids. In hybrid five, Pj sends covert commitments to the random shares of mfinal in
stage 4(b) and follows the rest of the protocol as in the fourth hybrid. Since the commitment scheme Com
is computationally hiding, the view of Pi in the fifth hybrid is indistinguishable from the view in the fourth
hybrid. Finally, in hybrid six, Pj executes the OT protocol on correct input values (and follows the rest of
the protocol as in the previous hybrid). By the security property of the OT protocol with respect to the
receiver (from Lemma 3), the views of Pi in hybrid five and six are indistinguishable.

Overall, from the indistinguishability of the views of Pi in the first and the last hybrid, we conclude that
the view of any PPT adversary Pi remains indistinguishable when it interacts with a Pj who is following
the protocol as compared to the case when Pj sends messages drawn at random from the non-participating
distribution. Hence, covertness of Pj is preserved.
Pj is malicious. Let us first analyze the messages sent by Pi in an execution of ZKSendij . In phase I, Pi
sends the description of a hash function (which is essentially a random string) followed by random strings
in stage 2,3,4 and randomly chosen query bits in stage 5. Further, in phase II, Pi sends a garbled circuit
that checks the final message of cWI-UARG from Pj . We will show that Pj ’s covertness is preserved with
the help of a hybrid argument. Since Pi only sends random strings in phase I of the protocol, we will only
focus on the messages in phase II.

In the first hybrid, Pi simply sends a message drawn at random from the uniform distribution instead
of a garbled circuit (including the OT protocol). In the second hybrid, Pi sends a random garbled circuit
with random commitments but runs the OT protocol on correct values. Since the garbled circuit used in
cZK preserves covertness, and from the covertness preserving property of the OT scheme with respect to
the sender (from Lemma 6), it follows that the view of Pj in the second hybrid is indistinguishable from the
view in the first hybrid. Finally, in the third hybrid, Pi sends the right garbled circuit and follows the rest
of the protocol as in hybrid two. By the security property of garbled circuits (Lemma 7), the view of Pj in
the third hybrid is indistinguishable from the view in the second hybrid.

Overall, from the indistinguishability of the views of Pj in the first and the last hybrid, we conclude that
the view of any PPT adversary Pj remains indistinguishable when it interacts with a Pi who is following
the protocol as compared to the case when Pi sends messages drawn at random from the non-participating
distribution. Hence, covertness of Pi is preserved.

Combing the results from the two cases of either Pi or Pj being malicious, we conclude that the ZKSendij
protocol preserves covertness of both Pi and Pj when v is random and hence the claim. Note that if a
simulated execution of ZKSendij is run, covertness is still preserved. �

C.2 Indistinguishability of the Outputs

We now use a hybrid argument to prove the indistinguishability of the output of a real execution of our
covert multi-party computation protocol Π from the output of an ideal world execution with the simulator
S. We construct a series of hybrids H0, . . . ,H10, where H0 represents the real world execution and H10

represents the ideal world execution. We now explain the hybrids in detail.

Hybrid H0:

Description. This experiment is exactly the same as the protocol execution in the real world. All in-
puts and party participation data are available to S. All participating parties take part in the protocol,
while non-participating parties output random messages throughout the protocol.

Hybrid H1:

39

Description. This experiment is the same as H0, except that in each execution of ZKSendij in the Output
Exchange phase where the receiver is an honest party j ∈ H, S simulates ZKSendij .

Proof of output indistinguishability from H0. It follows from the ZKSend Bounded-Concurrent Simulatability
lemma (Lemma 9) that the views of the adversary and the output distributions of the honest parties in H0

and H1 are indistinguishable. We remark that in this proof, we only require lemma 9 to hold for the case
where the ZKSend executions are performed in parallel.

Hybrid H2:

Description. This experiment is the same as H1, except that in each execution of ZKSendij in the In-
put Commitment phase where the sender is an honest party i ∈ H, S uses a random value as its input
instead of IRi (the decommitments to Com(Xi) and Com(ti), where Xi is the input of Pi and ti is the
randomness that Pi uses in the Garbled Circuit Generation phase).

Proof of output indistinguishability from H1. It follows from the ZKSend Stand-Alone Weak Extractability
lemma (Lemma 8) that the views of the adversary and the output distributions of the honest parties in
H1 and H2 are indistinguishable, otherwise we can create an inverter for the one-way permutation scheme
fOWP used in our construction.

Hybrid H3:

Description. This experiment is the same as H2, except that in each execution of ZKSendij in the In-
put Commitment phase where the receiver is an honest party j ∈ H, S simulates ZKSendij .

Note that if a party i ∈M behaves honestly during the simulation of the ZKSend executions in the Input
Commitment phase, then except with negligible probability, S is able to extract IRi (the decommitments
to Com(Xi) and Com(ti)). That is, S obtains the input and randomness (to be used in the Garbled Circuit
Generation phase) of i ∈M .

Proof of output indistinguishability from H2. It follows from the ZKSend Bounded-Concurrent Simulatability
lemma (Lemma 9) that the views of the adversary and the output distributions of the honest parties in H2

and H3 are indistinguishable.

Hybrid H4:

Description. This experiment is the same as H3, except that all commitments made by the honest par-
ticipating parties in the Input Commitment phase are changed to commitments to random values.

Proof of output indistinguishability from H3. Note that decommitments to the commitments made in the
Input Commitment phase are no longer used anywhere else in the protocol (since all executions of ZKSend
where an honest party is the receiver are being simulated by S). From the computational hiding property of
the commitment scheme Com used in our protocol, it follows that the views of the adversary in H3 and H4

are indistinguishable. Also, the output distributions of the honest parties inH3 andH4 are indistinguishable.

Hybrid H5:

Description. This experiment is the same as H4, except the following. Consider the executions of the
ZKSend protocol in the Output Exchange phase. Then, for each pair of parties i, j, where i ∈ H is the
sender with value GCji , S instead executes ZKSendij with random value r, if either of the following condi-
tions is true:

40

1. S failed to extract IRi (i.e., the opening of the commitments to the input and randomness) of some
malicious party i ∈M during the simulation of the ExtractEnable protocol.

2. Some party i ∈M cheated in the Garbled Circuit Generation phase.

If neither of these conditions is true, then this experiment is identical to H5.

Proof of output indistinguishability from H4. Note that if either of the above mentioned conditions is true,
then except with negligible probability, there exists at least one party j ∈M that was dishonest in the pro-
tocol execution prior to the Output Exchange phase. In this case, the NP statement that asserts Pj ’s honest
behavior in an execution of ZKSendij will be false. Then, it follows from the ZKSend Bounded-Concurrent
Simulation Soundess lemma (Lemma 10) that the views of the adversary and the output distributions of
the honest parties in H4 and H5 are indistinguishable.

Hybrid H6:

Description. This hybrid is exactly the same as H5 except that if the extraction of IRi of all malicious
parties was successful during the simulation of ExtractEnable, and if all parties were honest in the Garbled
Circuit Generation phase, then S sends the extracted inputs of all the malicious parties to the trusted party
in the ideal world. Let x1, . . . , xn denote all the inputs received by the trusted party (including the inputs
of the honest parties in the ideal world). Then the Ideal functionality returns the value f(x1, . . . , xn) if
g(x1, . . . , xn) = 1, otherwise it returns ⊥.

Now S constructs a simulated garbled circuit (as explained earlier in the description of the simula-
tor). If the Ideal functionality returned f(x1, . . . , xn), then the output of this garbled circuit is the value
f(x1, . . . , xn),K1, . . . ,Kn (where K1, . . . ,Kn) are the keys chosen by all parties in the input commitment
phase). For all i ∈M , S uses Ki from IRi. Otherwise, if the ideal functionality returned ⊥, then the output
of this garbled circuit is a random string R. Let GC be the simulated garbled circuit. S then changes the
values of garbled circuit shares GCi of honest parties in such a way that (

⊕
i∈H GCi)⊕ (

⊕
i∈M GCi) = GC.

Note that, since S knows the garbled circuit shares GCi of malicious parties, it picks shares at random for
honest parties such that the above conditions hold.

Proof of output indistinguishability from H5. It follows from the Garbled Circuit Security lemma (Lemma
7) that the views of the adversary and the outputs of the honest parties in H5 and H6 are indistinguishable.

Hybrid H7:

Description. This hybrid is exactly the same as H6 except the following. Consider the execution of the
covert-GMW protocol in the Garbled Circuit Generation phase. Then, in all executions of the covert 1-out-
of-4 OT protocol where an honest party i ∈ H is the sender, Pi runs the OT protocol on random input
values (instead of the correct values as per the covert-GMW protocol). On the other hand, in all executions
of covert 1-out-of-4 protocol where an honest party i ∈ H is the receiver, Pi chooses to receive one of the
four values uniformly at random.

Proof of output indistinguishability from H6. Let us first consider an execution of the covert 1-out-of-4
OT protocol where an honest party i ∈ H is the receiver. In this case, Pi chooses to receive one of the four
values uniformly at random. Note that this randomness is used no where else in the protocol (neither before
this OT protocol, nor afterwards). Then, it follows from the OT Receiver lemma (Lemma 3) that the view
of any PPT adversary in this case is indistinguishable from its view when Pi chooses one of the four values
as per the covert-GMW protocol.

Now consider the case where an honest party i ∈ H is the sender in an execution of the covert 1-out-of-4
OT protocol. More specifically, consider an execution of the OT protocol between an honest party Pi and
some Pj for an AND gate of the GMW protocol. Pi, Pj hold shares ci, cj (respectively) of the first input bit

41

and shares di, dj (respectively) of the second input bit to the AND gate. At the end of the OT protocol,
the receiver Pj must hold bj,i such that bi,j + bj,i = cidj + cjdi (where bi,j is selected at random by sender
Pi). The randomness used by the sender to select bi,j , is never used anywhere else in the protocol (neither
before this OT protocol, nor afterwards). Although this single bit determines the four values from which
the receiver must choose one, each of the four values are individually random. Also, as mentioned earlier,
Pi chooses these four values uniformly at random (instead of the correct values as per the covert-GMW
protocol). Then, it follows from the OT Sender lemma (Lemma 4) that the view of even an infinitely
powerful adversary is indistinguishable from its view when Pi selects the four values as per the covert-GMW
protocol.

Note that the above arguments hold for all OT protocol executions in the covert-GMW protocol. Then,
by a standard hybrid argument, it follows that the views of the adversary in H6 and H7 are indistinguishable.
Also, the output distributions of honest parties in H6 and in H7 are indistinguishable.

Note that at this point, S no longer makes use of inputs of honest participating parties in the protocol,
but still makes use of party participation data. We shall show in the following hybrids, how to remove the
dependence on party participation data.

Hybrid H8:

Description. This hybrid is exactly the same as H7 except that non-participating parties send commit-
ments to random values in the Input Commitment phase and take part in OT protocol executions in the
covert-GMW protocol (in the Garbled Circuit Generation phase) with random values (instead of simply
sending random values throughout the protoocol).

Proof of indistinguishability from H7. First, let us only consider the case where the non-participating
parties send covert commitments in the Input Commitment phase. Then, by a standard hybrid argument,
it follows from the Covert Commit lemma (Lemma 2) that the view of any PPT adversary in this case
must be indistinguishable from its view when the non-participating parties simply send random strings in
the Input Commitment Phase. Now, consider the case where the non-participating parties participate as a
sender in the OT protocol executions with random input values. Then, by a standard hybrid argument, it
follows from the Covert OT Sender lemma (Lemma 6) that the view of any PPT adversarial receiver in this
case must be indistinguishable from its view when the non-participating parties simply send random strings
during the OT protocol. Now consider the opposite case where the non-participating parties participate as
a receiver in the OT protocol executions and select values uniformly at random. Then, by a standard hybrid
argument, it follows from the Covert OT Receiver lemma (Lemma 5) that the view of any PPT adversarial
sender in this case must be indistinguishable from its view when the non-participating parties simply send
random strings during the OT protocol executions.

Combining all the above arguments, it follows that the view of the adversary in H7 is indistinguishable
from its view in H8. Also, the outputs of all the honest parties are identical in H7 and H8.

Hybrid H9:

Description. This hybrid is exactly the same as H8 except that non-participating parties participate in
executions of ZKSend in the Input Commitment phase as well as the Output Exchange phase. When a
non-participating party Pi is a sender in an execution of ZKSendij , it uses a random value as its input. On
the other hand, when a non-participating party Pj is a receiver in an execution of ZKSendij , it uses ScZK

to simulate ZKSendij (by using the same strategy as explained earlier in the description of S).

Proof of indistinguishability from H8. The indistinguishability of the adversary’s view and the outputs
of the honest parties in H8 and H9 follows immediately from the ZKSend Covertness lemma (Lemma 11)
(which holds even for simulated executions of ZKSendij).

42

Hybrid H10:

Description. This hybrid is exactly the same as H9 except that if the output received from the trusted
party was ⊥, then S sets the garbled circuit shares of each non-participating party to be a random value and
broadcasts a covert commitment to this random value (instead of a random string) at the end of the Garbled
Circuit Generation phase. The non-participating parties further participate in the Output Exchange phase
with this random value as their garbled circuit share. Note that H10 is in fact identical to the ideal world
execution with S.

Proof of indistinguishability from H9. First note that if the output received from the trusted party was
f(x1, x2,, xn), then all parties participated in the protocol and hence there are no non-participating par-
ties. In this case, H10 is identical to H7. On the other hand, if the output received from the trusted party
was ⊥, then possibly some parties did not participate in the protocol execution. In this case, the garbled
circuit shares of all non-participating parties are set to random values and S broadcasts covert commitments
to these random values at the end of the Garbled Circuit Generation phase. The non-participating parties
then participate in the Output Exchange phase using these random values as their garbled circuit shares.
Note that this is similar to hybrid H6, where all shares of participating parties are set to random values
when the output received from the trusted party is ⊥. Therefore, it follows that the views of the adversary
and the output distributions of the honest parties in H9 and H10 are indistinguishable. �

D Short Description of Our Results

In this section, we give a (relatively) short and largely informal description of all our results. This mainly
contains text from the proceedings version of the paper. This is intended for a reader who only wishes to
focus on the key ideas in our results.

D.1 Impossibility of Constant Round Covert Computation with Black Box Simulation

In this section, we show the existence of a PPT computable covert two-party functionality for which there
does not exist any constant-round covert computation protocol with respect to a black-box simulator. Our
impossibility result rules out any expected polynomial time simulator which uses the adversarial algorithm
as an oracle.

Let us first consider any two-party covert functionality F and assume that there exists a constant-round
covert computation protocol Π that securely realizes F with respect to a black-box simulator. We first
construct a real world adversary for Π and derive a lower bound on the probability pfail with which every
black-box simulator for Π gets full participation from the adversary in the “main thread” (where main thread
is defined as the execution thread output by the simulator in its view), but fails to get any participation in
all other threads of execution. In other words pfail is the probability with which the simulator is essentially
“straight-line”. As we will show later in the proof, pfail is noticeable (in the security parameter) if the
functionality F is such that an adversary in a real world execution of Π can distinguish whether or not an
honest party is participating in the protocol only with negligible probability. This is indeed true for several
covert functionalities. In the second part of the proof, we give an example of such a functionality and finally
derive a contradiction based on the fact (established in the first part) that the black-box simulator for any
constant-round protocol for this functionality is “straight-line” with noticeable probability.

Here we only give a sketch of the main ideas used to derive the lower bound on the probability pfail (as
described above). We refer the reader to section 3 for complete details.

Let F be any covert functionality for two parties (P1, P2). Let Π be any constant-round covert compu-
tation protocol that securely realizes F with respect to a black-box simulator. Without loss of generality,
we assume that P2 sends the first message in Π. Let {Tk}k be a family of q-wise independent predicates,
where t ∈ Tk maps {0, 1}≤poly(κ) to {0, 1} such that on any randomly chosen valid input β, t outputs 1 with

43

probability 1/q2.8 Here q is a parameter polynomial in the security parameter (to be determined later).
Suppose that the adversary chooses a predicate t from the q-wise independent family Tk. Now consider an
execution between an adversary and the other party (which may be emulated by the simulator). We will
say that a query β made by the other party (resp. simulator) to the adversary is favorable if t outputs 1 on
β as well as on every prior query in that execution (resp. execution thread).

Adversary P ∗1 . We first describe our adversary P ∗1 . We assume that P ∗1 has the required input and random
tape as would an honest party. Then P ∗1 works as follows. P ∗1 first chooses a predicate t from the q-wise
independent family Tk. Now consider any round in the execution of Π. If the query from P2 is favorable,
then P ∗1 sends an honest reply (as it would if it were participating honestly in the protocol); otherwise it
sends a message drawn from the uniform distribution9.

Since the number of rounds in Π is a constant (say) c, it follows that P ∗1 participates in Π with a noticeable
probability (= (1/q2)c). Let S be a black-box simulator for protocol Π. We now use a hybrid argument to
derive a lower bound on the probability pfail, defined as follows. Consider the view output by S at the end
of its interaction with P ∗1 . As mentioned earlier, we will refer to the thread of execution in this view as the
“main thread”. Then, informally speaking, pfail is the probability that S finds full participation from P ∗1
in the main thread (i.e., the predicate t chosen by P ∗1 returns 1 on every query from S in the main thread),
but fails to find any participation from P ∗1 in any other execution thread (i.e., the predicate t chosen by P ∗1
returns 0 on every query from S in any thread other than the main thread).

We now construct a series of hybrids Hi, i ∈ [0, 3], where each hybrid represents the interaction between
an adversarial P1 (referred to as A) with a strategy we define and the simulator S. The adversary A in H3

is identical to P ∗1 . In each hybrid, we define and analyze the winning probability of A such that pfail is the
probability with which A wins in H3.

Hybrid H0. In this experiment, A simply sends a message drawn from the uniform distribution on receiving
any query from S. Let q be the median of the number of queries that S makes. That is, with probability 1/2
(where probability is taken over all the coins of S and A), S makes at most q queries. Note that q = poly(κ).
We say that A wins in this experiment if every query from S in the main thread (defined by the view output
by S) is favorable, but every other query is not favorable. Looking ahead, if A were to reply honestly on
each favorable query (as it does in H3), then the winning probability of A would be identical to pfail.

We analyze the winning probability of A over the choices of t for a fixed execution defined by a random
tape of S and a random tape that A uses to draw messages from the uniform distribution. Consider the
event that every query from S in the main thread is favorable (i.e., t outputs 1 on every simulator query in
the main thread). Now consider the event that every query from S that is not in the main thread is not
favorable (i.e., t outputs 0 on any query not in the main thread). We observe that these two events are
independent conditioned on S making at most q queries (since in this case t essentially behaves as a random
function and the queries made by S and its view in general are independent of the choice of t). Then, by
a simple probability analysis, we show that Pr[A wins] ≥ 1

2q2c
· (1 − 1

q), which is noticeable in the security
parameter.

Hybrid H1. Same as H0 except the following. On receiving any favorable query β from S, A checks if it
had earlier received a favorable query β′ 6= β in a “different” thread (in the sequel, we will refer to this check
as the stopping condition). If the check succeeds, then A stops the experiment and we say that S wins.
Otherwise, the winning criterion for A in this experiment is defined exactly as in H0.

Intuitively, the only difference between H0 and H1 is that in H1, whenever S is successful in making a
favorable query in more than one execution thread, A stops the experiment and declares S to be the winner.
However, in this case, S would have won in H0 as well. Then, it can be shown that the winning probability
of A in H1 is identical to that in H0.

Hybrid H2. Same as H1, except that on receiving any favorable query from S, if the stopping condition
is false, A sends an honest reply (as it would if it were participating honestly) to S (instead of sending a

8Such a family can be easily constructed from a family of q-wise independent hash functions.
9Note that the check for a query being favorable implicitly ensures that P ∗

1 sends an honest reply only if it had not already
stopped participating in the protocol in an earlier round.

44

message drawn from the uniform distribution). However, if the stopping condition is true, it continues to
stop the experiment as in H1. The winning criterion for A in this experiment is defined exactly as in H1.

The key property of the interaction between A and S in this experiment is that A participates honestly
only in at most a single thread of execution (since A stops experiment just before this property stops being
true). Now, in order to bound the winning probability of A from below, we consider an experiment where A
“exposes” such a thread of its interaction (if it exists) to an external party P1. More specifically, A forwards
each favorable query in this thread to P1 and then forwards back its response to S. Now, note that if all
the replies of P1 were drawn from the uniform distribution, then this experiment is identical H1, otherwise
if P1 replied honestly to each query, then it is identical to H2. Let ε be the probability with which a PPT
machine can distinguish between these two cases. Then, the winning probability of A in H2 must be at least

1
2q2c
· (1− 1

q)− ε.
Looking ahead, the probability ε would be negligible for several functionalities in keeping with the

covertness property of the protocol Π. Hence, the winning probability of A in this experiment would still
be noticeable.

Hybrid H3. Same as H2 except that on receiving any favorable query from S, A sends an honest reply (as
it would if it were participating honestly) even if the stopping condition is true (as opposed to stopping the
experiment). We observe that by definition, A in this experiment is identical to P ∗1 . The winning criterion
for A in this experiment is defined exactly as in H2.

Then, the winning probability of A in H3 is identical to that in H2; intuitively, this is because the only
difference between H2 and H3 is that for some choices of the random tapes of S and A, A might stop the
experiment in H2 (and hence lose); however, note that for all these random tapes, A will lose in H3 as well.
Hence, we have that pfail = Pr[A wins] ≥ 1

2q2c
· (1− 1

q)− ε.

Completing the proof. In the second part of the proof, we give an example of a functionality for which
the probability ε is negligible. Hence the probability with which the simulator is “essentially” straight line
(that is, pfail) is noticeable. Finally we show that for our functionality, this contradicts the security of the
protocol Π.

D.2 Constant-Round Covert Multi-party Computation

At a high level, our constant-round covert computation protocol can be seen as the result of a two step
process: (a) First, construct a constant-round semi-honest covert computation protocol adopting techniques
from the work of Beaver et al [BMR90]. (b) Next, the semi-honest protocol is “compiled” with a gadget
known as zero knowledge proofs to garbled circuits in order to guarantee security against malicious adver-
saries. Here we adopt some techniques from Chandran et al [CGOS07] to our setting. In the subsection
below, we first discuss the notion of zero-knowledge proof to garbled circuit as introduced by Chandran
et al [CGOS07], and then give a constant-round construction for the same with some additional security
properties (that are necessary when using this gadget in the constant-round setting). Later, we will use
our construction of constant-round zero knowledge proof to garbled circuit in presenting our constant-round
covert computation protocol.

D.2.1 Zero Knowledge Proofs to Garbled Circuits

Zero Knowledge proofs have been established as a basic building block for constructing multi-party com-
putation protocols secure against active adversaries. However, in the setting of covert computation, this
technique does not work because if one party “verifies” that another party is executing the protocol hon-
estly, then covertness is immediately compromised. To this end, Chandran et al [CGOS07] introduced the
notion of zero knowledge proofs to garbled circuits, where a party gives a proof of its honest behavior to
a garbled circuit prepared by another party. More specifically, consider two parties (sender, receiver) who
share a common input (x, L). The sender wishes to give the receiver a private value v, only if x ∈ L and the
receiver has a valid witness (for x ∈ L). Chandran et al [CGOS07] gave a protocol for this setting based on
Blum’s 3-round (public-coin) ZK proof for Graph Hamiltonicity. In their protocol, the parties first exchange

45

the first two messages of Blum’s protocol. Then the sender (verifier) prepares and sends a garbled circuit
to the receiver (prover); this garbled circuit takes as input the last prover message and outputs v if the
verification is successful, else it outputs a random value. Since Blum’s protocol is a zero knowledge proof
with soundness 1/2, if the theorem is false, there does not exist (with probability 1/2) a “correct” last prover
message. [CGOS07] also show how to improve the soundness of this basic protocol.

As implied by the results in the previous section, non black-box techniques are necessary to construct
such a gadget (henceforth referred to as ZKSend) in the constant-round setting. To this end, we use the
non black-box simulation technique of Pass [Pas04] (which in turn builds on the work of Barak [Bar01]).
Fortunately, in the zero knowledge protocol of Pass [Pas04], except for the last message, the prover only
sends commitments and the verifier only sends random strings. Then, using the same idea as above, we can
modify Pass’ protocol such that the receiver (prover) sends the last message to a garbled circuit prepared
by the sender (verifier), and receives an output value depending upon whether or not the verification was
successful.

However, this naive attempt fails since Pass’ protocol is an argument system. In particular, even if the
receiver (prover) was dishonest, a satisfying last message might exist which, very informally speaking, allows
the dishonest receiver (prover) to get the sender’s input value out of the garbled circuit (even though the
receiver does not have such a message explicitly). Then, to be able to reduce the security of ZKSend in such
a case to the soundness of Pass’ protocol, it seems that the garbled circuit evaluation sub-protocol would
need to be able to support extraction of the inputs. However, as implied by the impossibility result in the
previous section, very informally speaking, such a sub-protocol cannot work in a constant number of rounds
(using a black-box extractor).

To solve the above problem, we observe that such an extraction of the input will not be required by the
simulator of our final covert computation protocol constructed using ZKSend as a building block. Instead,
such an extraction would only be required to prove a separate lemma that reduces the following security
property of ZKSend to the soundness of Pass’ protocol: assuming that the statement is false, the view of a
cheating receiver (prover) must be indistinguishable across the two cases where an honest sender (verifier)
uses a fixed input value in the ZKSend execution in the first case and a random value as its input in the
ZKSend execution in the second case. (Looking ahead, such a lemma would be used in the hybrid experiments
to prove the indistinguishability of the simulated view from the view in the real protocol execution.) Hence,
the extraction procedure is only required to work with a noticeable probability (as opposed to overwhelming
probability). This is because of the following. Say we can extract the input to the garbled circuit (which is
the last prover message in Pass’ protocol) with a noticeable probability. Then we can use that message to
violate the soundness of the protocol of Pass with a noticeable probability.

Using these ideas, we now describe our protocol ZKSendij , where Pi is the sender (verifier) and Pj is
the receiver (prover). Pi and Pj share a common input (xj , Lj). Pi additionally has a private input v. Let
`(κ) be the length parameter and Hκ be a family of collision resistant hash functions. Let cWI-UARG
be the 5-round witness indistinguishable universal argument (WI-UARG) of Barak and Goldreich [BG02]
instantiated with the commitment scheme Com. The protocol ZKSendij proceeds in the following steps.

Stage 1 (Setup): Pi sends h R← Hκ to Pj .
Stage 2 (Slot 1): Pj sends a covert commitment c1 = Com(0κ) to Pi, who responds by sending the first

challenge r1
R← {0, 1}j`(κ).

Stage 3 (Slot 2): Pj sends a covert commitment c2 = Com(0κ) to Pi, who responds by sending the second

challenge r2
R← {0, 1}(n+1−j)`(κ).

Stage 4 (Main Proof Body):
1. Pi and Pj exchange (only) the first 4 messages of a 5-round cWI-UARG where Pj proves the following
statement: either xj ∈ Lj or there exists a decommitment to c1 (resp. c2) to a program Π such that Π takes
as input c1 (resp. c2) and a string y of length j`(κ) − κ (resp. (n + 1 − j)`(κ) − κ), and outputs r1 (resp.
r2). Let mfinal denote the final message of this cWI-UARG.

46

2. Let k = ω(log(κ)). Pj chooses k pairs of random shares of mfinal and sends covert commitments to these
shares to Pi.
Stage 5 (Challenge-Response): Now, Pi and Pj engage in a 2-round challenge-response protocol, where
Pi randomly selects one share from each pair of random shares of mfinal and Pj reveals the shares selected
by Pi. Note that Pj does not send openings to the commitments, but simply the shares selected by Pi.
Stage 6 (Garbled Circuit): Finally, Pi sends a covert garbled circuit, Gar[i → j], with the following
description:
1. It takes as input, decommitments to the the random shares of mfinal. This input is provided by Pj . It
then checks whether the decommitments to the shares are correct, each pair of shares are shares of the same
string, and that correct shares were revealed in stage 5.
2. If either of the above checks fail, then it simply outputs a uniformly chosen random number. Otherwise,
it runs the final step of the honest verifier algorithm V for cZK on mfinal. If the output is accept, then it
outputs v, else it outputs a uniformly chosen random number.
3. Pj executes covert 1-out-of-2 OT with Pi as necessary in order to evaluate the garbled circuit Gar[i→ j]
and obtain an output.

We prove the following four security properties of our ZKSend construct.

1. Consider a ZKSend execution between a sender (verifier) and a receiver (prover) who share a common
input (x, L). The sender’s input in the protocol is either a fixed value v or a random value. Then, we show
that unless the receiver (prover) “knows a witness for x ∈ L”, it cannot distinguish between the two cases
where the sender (verifier) is using v in the first case and a random value as its input in the second case. As
noted earlier, we prove this security property by reducing it to the soundness of Pass’ protocol.
2. Next, we show that an adversarial sender (verifier) who is running a polynomially-bounded number
of concurrent executions of ZKSend cannot distinguish whether it is “interacting” with honest receivers
(provers) or the simulator. Our simulator relies on the simulator of Pass’ protocol to “simulate” the ZKSend
executions; as such, we prove this security property by reducing it to the zero knowledge property of Pass’
protocol. We stress that even though our covert computation protocol (see Section 5) consists of only parallel
executions of ZKSend, we consider the more general setting of bounded-concurrency as it proves to be useful
in the construction of a covert computation protocol over point-to-point channels.
3. Now consider a polynomially-bounded number of concurrent executions of ZKSend between an adversary
and the simulator, where the adversary is acting as the sender (verifier) in some “left” executions (which are
being “simulated” by the simulator) and as the receiver (prover) in a “right” execution with a false theorem
as the common input. Then, we show that any such adversary cannot distinguish whether the simulator
uses a fixed input value v or a random value as its input in the “right” execution. We stress that we cannot
reduce this security property into the simulation soundess of Pass’ protocol for the following reasons. Such a
proof would require us to construct an adversary who proves a false theorem in Pass’ protocol, which in turn,
requires rewinding our adversary in the “right” execution (to extract the last message of Pass’ protocol).
However in this case, very informally speaking, the simulator who is “simulating” the “left” executions,
may also get rewound and hence no longer work. Solving this problem requires going into the details of the
simulation soundness proof technique of Pass to prove this security property directly. In particular, we show
that the two slot simulation technique of Pass is powerful enough to handle this scenario as well.
4. Finally, we show that our ZKSend protocol preserves the covertness of both the sender and the receiver.
In particular, we show that messages of a sender (resp. receiver) are indistinguishable from random to a
receiver (resp. sender).

D.2.2 Our Protocol

Let P1, . . . , Pn be n parties that hold inputs x1, . . . , xn respectively. Let F = (f, g) be a covert functionality
that they wish to compute. F outputs f(x1, . . . , xn) if the function output is favorable to all parties,
else it outputs ⊥. Here g(·) is the function that determines whether the function output is favorable

47

(g(x1, . . . , xn) = 1) or not (g(x1, . . . , xn) = 0). We now give the construction of a constant-round covert
multi-party computation protocol that securely realizes F .

Overview. At a high level, our protocol consists of three main phases: (a) Input Commitment phase: In
this phase, all parties commit to their inputs and randomness (note that we do not require coin flipping
in our protocol) and run an “extract enable” phase with each other. Intuitively, the purpose of this phase
is to enable the simulator to extract the input and randomness of malicious parties during the simulation.
(b) Garbled Circuit Generation phase: In this phase, the parties run the covert version of the GMW protocol
to jointly construct a covert garbled circuit that evaluates the appropriate function (that the parties wish to
compute). Each party only obtains an individual share of the garbled circuit as the output of covert-GMW
protocol. (c) Output Exchange phase: In this phase, parties exchange their garbled circuit shares with each
other if and only if all the parties behaved honestly till the end of the previous phase. By incorporating some
validity checks in this phase, we are able to ensure output correctness (without compromising covertness).

Intuitively, the garbled circuit generation phase can be viewed as a semi-honest covert computation pro-
tocol. Here we adopt techniques from [BMR90] to ensure that the protocol is constant-round. Then, by
adding the other two phases (adopting techniques from Chandran et al [CGOS07]), we essentially “compile”
the semi-honest protocol (with zero-knowledge proofs to garbled circuits, as will be evident from the de-
scription of each phase) to obtain security against active adversaries. In each phase, the key challenge is to
ensure that the number of rounds are only a constant. For lack of space, below we only highlight the main
ideas in our protocol.

Input Commitment phase. In the Input Commitment phase, all parties commit to their inputs and
randomness and run an “extract enable” sub-phase. Intuitively, the purpose of the ExtractEnable sub-phase
is to allow the simulator to extract the input and randomness (for the garbled circuit generation phase) of the
malicious parties. We note that Chandran et al [CGOS07] used a challenge-response phase of linear round-
complexity to enable black-box extraction. However, our impossibility result from the previous section rules
out such an approach in the constant-round setting. To this end, we use our construction of zero-knowledge
proof to garbled circuit (as described in the last subsection) to enable extraction, as described below.

The main idea of the ExtractEnable sub-phase is as follows. Let the value we would like to enable the
simulator to extract be Vi for party Pi. Each party Pi executes the following sub-protocol with each party
Pj , in parallel.
1) Pi picks a random string r and computes y = fowp(r), where fowp is a one-way permutation. It sends y
to Pj .
2) Pj and Pi now engage in an execution of ZKSendij , where Pi is the sender with input Vi and Pj is the
receiver, on the following NP statement as the common input: “∃r such that y = fowp(r)” (for a specific
witness relation such that any witness for this NP statement contains such an r). Note that an honest Pj
will not have a witness for this NP statement and is instructed to simply send random strings during the
execution of ZKSendij .

Note that the malicious parties may deviate from the protocol specification (for example, by sending
an incorrect garbled circuit inside ZKSend), which may result in the simulator failing to extract. Looking
ahead, the later stages will force the output of all the parties to be ⊥ in this case.

Garbled Circuit Generation phase. In this phase, the parties run an instance of the covert-GMW
protocol (see section 4) to jointly construct a covert garbled circuit that evaluates the appropriate function,
such that each party only obtains a single share of this garbled circuit. The key challenge in this phase is to
use only a constant number of rounds.

In many works, constant round multi-party computation protocols have been designed using techniques
from Beaver et al [BMR90]. The basic idea is to have the parties run a secure computation protocol (like
GMW) to jointly generate a garbled circuit (which they can evaluate on their own later on). To keep
the protocol constant round, the encryption scheme used in [BMR90] to generate the gate tables is the
simple XOR function. Further, to avoid blowing up the size of the wire keys exponentially, the parties run a
preprocessing phase locally in which (among other things) they expand their wire keys using a pseudorandom

48

generator (PRG). Unfortunately, such a preprocessing phase fails in the setting of covert computation. This
is because the PRG evaluations done locally by a party during garbled circuit generation will have to be
performed again (locally) while evaluating the resulting garbled circuit. Thus, the fact that the computation
done in the preprocessing phase “conforms” to the computation done while evaluating the received garbled
circuit leaks the fact that all parties are participating in the protocol (even if the output is not favorable).

To solve this problem, we eliminate the preprocessing phase and move the required cryptographic opera-
tions (involved in generating the gate tables) into the circuit of the underlying secure computation protocol.
However this presents the following problem. If we use GMW (or a similar protocol like covert-GMW) as
the underlying secure computation protocol, the number of rounds required will be linear in the depth of
the circuit (which generates a gate table) being evaluated. Thus, any cryptographic operations done by this
circuit should be in NC0 for our protocol to be constant rounds.

Towards that end, to still keep the secure computation protocol constant round, we construct an encryp-
tion scheme in NC0 using techniques from Applebaum et al [AIK04]. We would require that the encryption
keys and the ciphertexts produced by such an encryption scheme are indistinguishable from the uniform
distribution. We construct such an encryption scheme based on standard assumptions.1011 Forgetting our
goal of obtaining a covert computation protocol, consider the protocol in which we use such an encryption
scheme in gate tables and use standard GMW for gate table generation. We believe this protocol is of
independent interest since it also gives a arguably cleaner alternative to the Beaver et al [BMR90] protocol
(which in turn has been used widely in the study of round complexity of secure computation).

Then, in this phase, the parties engage in an execution of the covert-GMW protocol that takes as input
the shares of the wire keys (and other relevant information). The encryption scheme used in the construction
of gate tables is the covert encryption scheme in NC0. At the end of protocol, each party Pi will hold only a
share GCi of the garbled circuit GC and other necessary information required to evaluate GC (but not GC
itself).

Discussion about Covert-GMW. The covert-GMW protocol [CGOS07] is similar to the semi-honest GMW
protocol, except that it uses a specific covert secure 1-out-of-4 OT rather than a semi-honest 1-out-of-4
OT, and does not consist of the output broadcast phase. The natural question is, what guarantees could it
possibly provide when the parties might deviate from the protocol executions arbitrarily?

Intuitively, the malicious parties (even if they deviate from the protocol arbitrary) do not learn any
information (in a computational sense) in covert GMW protocol because of the following. The covert-GMW
protocol consists of only two kinds of message: one where parties broadcast (n− 1) random shares of their
input to other parties, and the second where parties engage in a covert 1-out-of-4 OT protocol with others.
The first type of message is simply a random string, therefore it does not reveal any information about GC.
In the second type of messages, a party gives away only one of the 4 bits (when acting as a sender in a covert
1-out-of-4 OT protocol). However, all the four bits are individually indistinguishable from random. This is
because while preparing these four bits, a single bit of randomness is used [GMW87] (making the four bits
individually random).

Output Exchange phase. In the previous two stages, no information about the output (or participation)
was revealed to any party (even if they deviate arbitrarily from the protocol). In other words, the messages
exchanged between the parties in the previous stages were “not valuable” for deducing any potentially
unknown information. In this phase, the parties actually exchange valuable messages having information so
as to be able to get the function output at the end. Specifically, the parties exchange their garbled circuit
shares conditioned upon the fact that every party was honest till the end of the Garbled Circuit Generation
phase. This is done using our ZKSend construct as described below.

If any party deviated from the protocol during the Input commitment or Garbled Circuit Generation
10Applebaum et al [AIK04] show that there do not exist any encryption schemes such that the decryption function is in NC0.

However, fortunately, for our purpose, we only require the encryption function to be in NC0.
11The option of simply moving the pre-processing phase of [BMR90] to the secure computation protocol circuit would require

that circuit to evaluate a PRG. We however, note that a PRG with appropriate stretch exists in NC0 based only on non-standard
assumptions [AIK08].

49

phase, it could be potentially dangerous for Pi to give out its garbled circuit share (since then the garbled
circuit is not guaranteed to be correctly constructed). Hence, Pi breaks its share GCi further into n sub-
shares {GCji }nj=1 and transfers these sub-shares in parallel to other parties Pj using ZKSendij . In particular,
in an execution of ZKSendij , the input of Pi is GCji while Pj is supposed to prove an NP statement which
asserts that Pj was “honest” in the protocol up to the end of the Garbled Circuit Generation phase.

If any of the n − 1 parties was dishonest previously, it is guaranteed that at least one of those n sub-
shares will be “lost” (since ZKSend will output a randomly selected value instead of the right sub-share to
a dishonest party); in this case, GC is “lost” as well.

After all the executions of ZKSend are completed, Pi obtains {GCi1, . . . , GCin}. It then broadcasts
GCi =

⊕n
j=1GC

i
j . Upon receiving GCi for all i, all parties compute GC =

⊕n
i=1GC

i.
This completes the description of the main ideas in our protocol. We note that apart from the above,

our construction uses other (new and old) ideas to ensure correctness of the output, simulatability of the
protocol etc. We refer the reader to section 5 for more details on the protocol.

D.3 Covert Computation over Point-to-Point Channels

The protocol in the previous section required the parties to have a common communication channel (for
example, when the parties are exchanging e-mails over a mailing list). In this section, we consider the setting
where the parties only have point to point communication channels (for example, when the parties only have
private e-mail conversations with each other). This setting is quite different from the previous one since, in
general, the parties may not have any innocent reason to send the same message to multiple other parties.
See appendix A for more details on this setting.

There exists a rich body of literature on designing secure computation protocols over point to point
channels (see [KK07],[KKK08] and references therein). However, to our knowledge, a common theme in
all these works is a party sending the same message to multiple (or all) other parties over the pairwise
private channels. Unfortunately, such techniques are inherently bound to fail in our scenario. The key
challenge in our setting is to design a protocol where the messages exchanged between a pair of parties look
indistinguishable from random even given the messages exchanged between all other pairs of parties (till the
point when it is clear that all the parties are participating and that the output is favorable).

The basic idea of our construction is as follows. As part of the protocol specifications, the n parties
are grouped into n/2 pairs. Each pair of parties run a covert two-party computation protocol to emulate
a virtual party. This leads to a total of n/2 virtual parties. These virtual parties are further grouped into
n/4 pairs and each pair of virtual parties run a covert two-party computation protocol to emulate another
virtual party. By applying this idea recursively, there would eventually be a single virtual party which has
all the required inputs and thus computes the output. Very informally, even if a single (real) party behaves
honestly in the protocol, the final single virtual party would be “honest” as well.

In order to realize the above ideas, we first outline the necessary changes to our protocol in the previ-
ous section in order to construct a covert computation protocol for reactive functionalities in the bounded
concurrent setting. Security in the bounded concurrent setting is important since there would be multiple
uncoordinated executions of the covert two-party computation protocol in our final construction. We then
define a hierarchy of reactive functionalities where the functionality at level 0 has all the required inputs
and can compute the output while each functionality at level log(n) defines the algorithm of a real party.

We show how these virtual parties can communicate with each other through parties at the level just
“below”. The communication channel of these virtual parties can, in general, be controlled by a man in
the middle. We employ the techniques from Barak et al [BCL+05] to solve this problem. Finally, we show
that the round complexity of our protocol is polynomial in n, and that the computational complexity of our
protocol is polynomial in the security parameter if the number of parties n is a constant.

50

