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Abstract

In recent years, there has been a major effort to design cryptographic schemes that remain
secure even if part of the secret key is leaked. This is due to a recent proliferation of side channel
attacks which, through various physical means, can recover part of the secret key. We explore
the possibility of achieving security even with continual leakage, i.e., even if some information
is leaked each time the key is used.

We show how to securely update a secret key while information is leaked: We construct
schemes that remain secure even if an attacker, at each time period, can probe the entire memory
(containing a secret key) and “leak” up to a (1− o(1)) fraction of the secret key. The attacker
may also probe the memory during the updates, and leak O(log k) bits, where k is the security
parameter (relying on subexponential hardness allows kε bits of leakage during each update
process). All of the above is achieved without restricting the model as is done in previous works
(e.g. by assuming that “only computation leaks information” [Micali-Reyzin, TCC04]).

Specifically, under the decisional linear assumption on bilinear groups (which allows for a
leakage rate of (1/2−o(1))) or the symmetric external Diffie-Hellman assumption (which allows
for a leakage rate of (1− o(1))), we achieve the above for public key encryption, identity-based
encryption, and signature schemes. Prior to this work, it was not known how to construct
public-key encryption schemes even in the more restricted model of [MR].

The main contributions of this work are (1) showing how to securely update a secret key
while information is leaked (in the more general model) and (2) giving a public key encryption
(and IBE) schemes that are resilient to continual leakage.
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1 Introduction

Modern cryptography, starting from the foundational work in the late 70s, has been a huge success,
leading to the definition and construction of various cryptographic primitives such as digital sig-
natures, public-key encryption, identity-based encryption, and so forth. The working assumption
in most of modern cryptography is that secret keys are generated using perfectly random bits,
and once they are generated, they are perfectly secret. However, it has been observed that this
assumption does not hold in practice, where attackers use different types of side-channel attacks
to leak information about the secret key. These attacks exploit the physical characteristics of the
execution of a cryptographic device, such as timing, power consumption, electro-magnetic radi-
ation, and so forth (see [Koc96, KJJ99, OST06, HSH+08] and the references therein). What’s
worse, many constructions that were proven to be secure under traditional cryptographic security
definitions are known to be completely insecure under many such attacks (see, e.g., [Koc96] for
how to break the RSA algorithm under timing attacks, and [HSH+08] for how to break RSA as
well as the Advanced Encryption Standard (AES) under cold-boot attacks). The focus of this work
is constructing cryptographic protocols that are provably secure in the presence of side-channel
attacks.

Recently, starting with the work of Ishai, Sahai and Wagner [ISW03] and Micali and Reyzin [MR04],
there has been a major effort by the cryptographic community to construct such protocols. The
influential work of Micali and Reyzin proposed to construct cryptographic protocols under the
assumption that

“any computation, and only computation, leaks information”.

Indeed, the vast variety of side-channel attacks lead to a myriad of different ways in which infor-
mation can leak every time the cryptographic device performs some computation. Thus, it seems
prudent to allow any computation to leak information – we will refer to this as the continual leakage
model. Furthermore, even though different side-channel attacks leak vastly different types of infor-
mation, the amount of information thus leaked is always assumed to be “bounded”. In short, to
account for the different side-channel attacks, we will allow the attacker to obtain any polynomial-
time computable function of the current internal state of the device in every time-period, as long as
the information thus obtained is “bounded”. Of course, it is easy to observe that achieving security
in this model requires that the secret key (or, its representation) be refreshed periodically.

The second clause of the Micali-Reyzin proposal turns out to be problematic. Roughly speaking,
the “only computation leaks information” assumption means that the parts of memory that are not
“touched” during a certain time-period do not leak during that time-period. Is it really true that
(temporarily) inactive memory does not leak information? Some recently proposed attacks such
as the cold-boot attack [HSH+08] leak information from the memory even when no computation
is taking place. In addition, various memory architectures leak information when there is no
explicit computation going on; for example, a dynamic random-access memory (DRAM) needs to
be automatically refreshed every once in a while (just to maintain the state of the memory), hard-
disks might leak information because of the electro-magnetic polarizations, and so on. This raises
the question:

Can we protect against continual leakage of information from all parts of the memory?

In other words, we would like to remove the “only computation leaks” assumption, and allow all
parts of memory – including the secret key, the random bits generated by the system, and the
intermediate bits of computation – to leak during all time-periods. This powerful model of leakage,
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which we refer to as the continual memory leakage model, is the focus of our work. Our main goal
will be to construct a variety of cryptographic schemes – public-key and identity-based encryption
schemes, and digital signature schemes – that are secure in the continual memory leakage model.

Before going any further, let us review two important lines of work that are vitally related to this
discussion.

Previous Work. The first line of work constructs cryptographic schemes that are proven secure
in the Micali-Reyzin model, that is, assuming that only computation leaks information. There
have been a few such constructions, including the work of Dziembowski and Pietrzak who con-
structed stream ciphers [DP08, Pie09], and the work of Faust et al. who constructed digital sig-
nature schemes [FKPR10]. In addition, the recent works of Faust et al. [FRR+10], Juma and
Vahlis [JV10], and Goldwasser and Rothblum [GR10] shows how to do general leakage-resilient
cryptography assuming access to secure (perfectly leakage-proof) hardware. We elaborate on these
results in Section 1.2, but here, we emphasize that there are several very basic cryptographic tasks,
such as public-key encryption schemes, for which we do not know of any construction that is secure
against continual leakage even assuming that “only computation leaks”.

A complementary line of work – initiated by Akavia, Goldwasser and Vaikuntanathan [AGV09]
– deals with the so-called bounded memory-leakage model. Here, the attacker chooses an arbitrary,
efficiently computable function f (possibly as a function of the public parameters of the system),
and receives the result of f applied to the secret key sk. Clearly, to have some secrecy left, we must
restrict the attacker to choose a function f that does not fully reveal the secret. This (apparently
necessary) condition has been modeled in several ways, leading to more and more general definitions,
by [AGV09], Naor and Segev [NS09] and Dodis, Kalai and Lovett [DKL09]. The important point
to note is that the information leakage here is one-shot – that is, the total amount of information
that the attacker obtains is fixed, regardless of the amount of computation that is going on within
the device. Many cryptographic schemes were proven secure in these bounded leakage models,
including weak pseudorandom functions, signature schemes, and public-key and identity-based
encryption schemes [DKL09, NS09, ADW09, KV09]. We elaborate on these in Section 1.2.

The Best of Both Worlds – the Continual Memory Leakage Model. In this work, we
propose the continual memory leakage model that combines the best features of both the continual
leakage model of [MR04, DP08, Pie09, FKPR10, JV10, GR10], and the bounded memory leakage
model of [AGV09, NS09, KV09, ADW09]. In particular, in the continual memory leakage model,
the leakage of information is unrestricted in time (thus, information leaks continuously over time)
and unrestricted in space (thus, every bit of the cryptographic device is liable to leak, regardless of
whether it is being used in computation or not). Let us pin down a little more precisely what we
mean by this.

For concreteness, let us illustrate the continual memory leakage model in the context of digital
signature schemes. We view the signing device as consisting of two types of memory:

1. Public memory that stores the public verification key, the public randomness used by the
system, and the inputs and outputs of the computation.

2. Secret memory that stores the secret key, the secret randomness used by the system, and the
intermediate steps in the (signature) computations.

The attacker can see the contents of the public memory in its entirety, while (as we will see) he is
allowed to obtain a limited amount of information about the secret memory.
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More specifically, we partition time to discrete time periods, where during each time period,
the signature device may sign many messages. During each time period (and during each signature
computation), we allow the attacker to choose an arbitrary (efficiently computable) leakage function,
and obtain as a result the leakage function applied to the internal state (namely, the secret key and
the internal randomness and the bits of the intermediate computation) of the device. Following
[AGV09], the only restriction we place on the leakage functions is that their total output length
during each time-period is at most a pre-specified fraction of the number of bits of the internal
state.1

At the end of each time-period, we “update” or “refresh” the secret key. Secret-key update is
a randomized procedure that takes as input a secret key sk corresponding to a public key pk, and
outputs a uniformly random secret key sk′ for the same public key. As we argued above, tolerating
continual leakage necessitates such an update of the secret key. We emphasize that information
leakage could happen during the update of the secret key as well, and such leakage potentially
depends on the randomness used for the update procedure (among other things).

We refer the reader to Section 3 for a full-fledged and formal description of the model.

1.1 Our Results

We construct public-key and identity-based encryption schemes, as well as a signature scheme
secure in the continual memory leakage model, under the decisional linear assumption over bilinear
groups. More specifically, for any (arbitrarily small) constant ε > 0, we prove that our schemes
are resilient to continual memory leakage, where at each time period, any bounded (poly-time
computable) function of the secret-key sk can be leaked, as long as the leakage-rate is at most
1
4 − ε; i.e., the size of the leakage is (1

4 − ε) · |sk|. Moreover, our schemes are resilient to leakage
during each secret-key update process, as long as this leakage contains only O(log k) bits, where
k is the security parameter. Furthermore, if we are willing to rely on subexponential hardness of
the linear assumption over bilinear groups, then we can tolerate up to O(kε) bits of leakage from
each update process. We note that while tolerating a logarithmic number of bits of leakage in
non-continual, one-shot memory attack model is quite easy (since this leakage can be guessed), this
is not the case in the continual leakage model (since in this model, guesses need to be made over
and over again).

We emphasize that when leakage occurs during a computation (such as during the update
procedure), a bounded function of all the memory content can leak; this includes the secret key,
but also all the randomness used by the procedure. It is the latter that makes it difficult to tolerate
leakage during a computation.

Our Main Results: Public-key and Identity-based Encryption Schemes. The corner-
stone of all our results is the construction of a public-key encryption scheme secure against continual
memory leakage with the leakage parameters as described above. We then show the following.

• We show how to modify the construction to create an identity-based encryption scheme secure
against continual memory leakage of the secret keys of individual users (see Section 2.3 and
Section 7; also, see below for more details).

• Given an encryption scheme that is resilient to continual memory leakage, we show how to
(relatively easily) construct a signature scheme that is resilient to continual memory leakage;

1We can in fact extend our results to the more general “leftover entropy” leakage model of Naor and Segev [NS09]
which requires only that the secret key has non-trivial min-entropy conditioned on the leakage.
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this follows the paradigm of Katz and Vaikuntanathan [KV09] (see Section 2.4 and Sec-
tion 8.1). The resulting scheme tolerates leakage from the memory, the key-generation and
update procedures, but not during the signing process. We then show how to modify this
scheme to tolerate leakage from the signing process as well, under additional computational
assumptions; see below for details.

We view the encryption (and IBE) schemes as the main results of this paper, and the signature
scheme as secondary, for several reasons: First, as mentioned above, it is relatively easy to construct
the signature scheme given our encryption scheme (at least without tolerating leakage from the
signing algorithm). Second, and more importantly, prior to this work, it was known how to construct
signature schemes that are secure in a continual leakage model assuming that only computation leaks
information [FKPR10]; however, it was not known how to construct encryption schemes that are
secure in a continual leakage model, even with the Micali-Reyzin assumption.

Finally, we would like to note that our public key encryption scheme gives rise to a symmetric
encryption scheme resilient against continual memory leakage (where the secret key contains both
the secret and public keys), where two parties can interact over an insecure channel, while indi-
vidually and independently updating their secret keys. In other words, at any point of time, the
two communicating parties might have completely different secret keys, and still they will be able
to communicate meaningfully. What’s more, this requires no interaction whatsoever! We defer an
elaborate treatment of this connection, and more, to the full version.

Remarks on the Identity-based Encryption Result. We note that in our identity based
encryption scheme, we can only tolerate leakage from the signing keys of the users, but cannot
tolerate leakage from the master secret key. On the one hand, one could argue that since the
master secret key is a much more appealing target (as it is related to the security of all the users),
it may attract more attention from attackers and thus deserves more protection. On the other
hand, the trusted authority has much more resources than the individual users, and can afford to
implement iron-clad counter-measures at the implementation level to prevent key leakage. That
said, we view the problem of finding identity-based encryption schemes that are resilient to the
leakage of the master secret-key as a very interesting open question.

Remarks on the Signature Scheme. In the case of signature schemes, tolerating leakage from
the signing process (which is typically a randomized process) is highly non-trivial (this situation
should be contrasted with encryption schemes, where the decryption operation is deterministic,
and leakage from the decryption process can be interpreted as memory leakage). Indeed, our first
signature scheme (that we described above) cannot tolerate any leakage from the signing process.

However, we construct another signature scheme that can tolerate leakage from the signing
process relying on two additional assumptions. The first is that short non-interactive arguments
exist. We note that known constructions of such arguments, were proven to be secure only in the
random oracle model [Kil92, Mic00, BG08]. The second assumption is that there exists a family
of collision resistant hash functions that map strings in {0, 1}∗ to strings in {0, 1}α(k), for some
α(k) ∈ N. Given these constructs, the scheme can then tolerate a leakage-rate of (1

4 − ε) · 1
α(k)

(from both memory, and more significantly, also from the signing algorithm). Thus the smaller
the number α(k) is, the better the leakage-rate we get, but the stronger the assumption becomes.
We note that (as in the original signature scheme) this scheme can also tolerate leakage during
each update process, as long as this leakage contains only O(log k) bits (or kε bits if we rely on a
subexponential hardness assumption).
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Improving the Leakage Rate. We note that the main drawback of our schemes is that the
leakage-rate that we can tolerate is not optimal. For example, we can only tolerate a leakage-rate
of 1

4 − ε between each update procedure. We don’t view this as a serious drawback, since it simply
means that we should update our secret key more often.

Moreover, we mention that for signature schemes, we have an additional construction that
tolerates leakage-rate of 1− ε between update procedures. unfortunately, this scheme relies on the
very strong and non-standard assumption, posed by Valiant [Val08], which assumes the existence
of a non-interactive CS proof-of-knowledge. Also, this scheme cannot tolerate any leakage from the
update procedure or the signature procedure. Since we view this result as inferior to the others
(due to the strong assumption it relies on and due to the fact that the update and signing processes
cannot tolerate any leakage), we omit the details of this construction from this version.

Finally, we note that the fact that our schemes can only tolerate log k bits of leakage from the
update procedure (or kε bits if we rely on subexponential hardness), is a drawback which we cannot
overcome. We leave the problem of improving this leakage parameter as an important open problem.

Finally, we mention that one of the technical tools we develop to achieve these results is a
new linear algebraic theorem (which is unconditional, and requires no computational assumptions),
stating that “random subspaces are leakage-resilient”. See Section 2.1 and Section 5 for details.

1.2 Related Work

It should not come as a surprise that the theory of cryptography community has been cognizant
of the issue of inadvertent information-leakage for quite a while. A number of early results address
this issue, although most of them do not explicitly mention side-channel attacks as a motivating
factor. Most notably, the line of work on exposure-resilient cryptography, initiated by Rivest and
Boyko [Riv97, Boy99], and continued in a number of other works [CDH+00, ISW03, IPSW06],
considers simple leakage functions that reveal a subset of the bits of the secret key or the inter-
nal memory of the cryptographic device. This line of research culminated in the works of Ishai,
Prabhakaran, Sahai and Wagner [ISW03, IPSW06] who show how to “compile” any cryptographic
algorithm into one that tolerates such types of leakage. In contrast to these works, that considers
leakage functions that act locally, the focus of later works has been to consider powerful leakage
functions that can perform some global computation on the secret key. In addition, several works
on “cryptography with imperfect randomness” [DOPS04] can also be construed as dealing with
information leakage.

The modern approach to dealing with leakage starts with the ground-breaking conceptual work
of Micali and Reyzin [MR04] who propose to construct and study formal models that capture
general types of leakage. This study has led to two distinct strands of work, which we describe
below.

The “Computational Leakage” Model. As described earlier in this section, the work of Micali
and Reyzin proposed to study side-channel attacks under the assumption that only computation
leaks information. In other words, information leakage occurs whenever computation takes place
on the secrets; furthermore, the parts of memory that are not involved in computation, during
a certain time-period, are not subject to leakage during that time-period. A number of works
design cryptographic schemes that are resilient to leakage under this assumption. In particular,
the beautiful work of Dziembowski and Pietrzak [DP08, Pie09] constructs stream ciphers secure
in this model. Subsequently, Faust et al. [FKPR10] show a construction of signature schemes in
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this model as well. Notably, there have been no constructs of public-key encryption schemes that
tolerate continual leakage (even under the Micali-Reyzin axiom).

More recently, Juma and Vahlis [JV10] and Goldwasser and Rothblum [GR10] show how to
“compile” any cryptographic algorithm into one that is secure against continual leakage. These
works rely on the Micali-Reyzin axiom and make use of a (very simple) perfectly leakage-proof
hardware device (this device simply samples from a fixed distribution). In particular, these results
can be used to come up with leakage-resilient variants of popular cryptographic algorithms such as
RSA and AES. In contrast, the focal point of our work is to do away with the Micali-Reyzin axiom,
and avoid any type of secure hardware assumption; however, we construct specific cryptographic
primitives in this work, as opposed to [JV10, GR10] whose (more ambitious) goal is general leakage-
resilient computation.

The “Bounded Memory Leakage” Model. The second line of work considers the bounded
leakage model that allows the adversary to obtain a function f of his choice applied the secret
key sk, as long as the output f(sk) “does not reveal the entire secret key”. This latter condition
has been formalized in many different ways, starting from the work of Akavia, Goldwasser and
Vaikuntanathan [AGV09] who restrict the leakage function f to have output length `(|sk|) ¿ |sk|.2
A number of generalizations have been proposed, including the “leftover entropy model” of Naor
and Segev who consider the class of all functions f , for which sk has non-trivial min-entropy
conditioned on f(sk). An even more general model (and arguably, the most general model along
these lines) was given by Dodis, Kalai and Lovett [DKL09], who considered the class of all functions
f which are computationally hard to invert. The work on bounded retrieval model, initiated by
[CLW06], and explored in [ADW09, ADN+10] is also closely related to this line of research.

Quite significantly, in all these works (unlike this paper), the attacker can only obtain an a-priori
bounded amount of leakage from the secret key, regardless of the amount of computation taking
place in the system

Other Models and Results. In addition to these works, there have been a small number of
models that capture specific classes of side-channel attacks. The work of Faust et al. [FRR+10]
show how to compile any cryptographic algorithm into one that resists continual leakage, where
the leakage functions are computable by constant-depth AC0 circuits. Their result assumes the use
of a simple leakage-proof hardware device as well. Standaert et al. [PSP+08] construct pseudoran-
dom generators that are secure against specific, naturally occuring, classes of leakage such as the
Hamming weight leakage.

Contemporaneous Work of Dodis et al. [DHLAW10]. We finally mention the concurrent
work of Dodis et al., which constructs efficient signature schemes, identification schemes and au-
thenticated key agreement that are secure in the continual leakage model (and similarly to us, do
not rely on the only computation leaks information assumption). Their signature scheme is secure
with leakage-rate 1

2 − ε in each time period, under the SXDH assumption, or 1
3 − ε under the linear

assumption. Unlike this work, they do not address the issue of leakage from the update process
and, furthermore, they do not construct public-key or IBE encryption schemes that are secure in
the continual leakage model.

2In this work, we follow the [AGV09] approach, and restrict the leakage function to have bounded output length
during every time period.
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2 Overview of Our Results

In this section, we provide an extended overview of our results, constructions, proofs and techniques.
Our notational conventions are mostly standard. The notation gX, where X is a matrix and g is
a group element (typically a generator), denotes a matrix where (gX)i,j = g(X)i,j . We rely on (the
matrix form of) the linear assumption in bilinear groups stating that the ensembles gX, gY are
computationally indistinguishable if X,Y have the same dimensions and if X is a random rank-d
matrix (d ≥ 2) and Y is a random rank-(d + t) matrix (t ≥ 0). This assumption is widely assumed
to hold even in groups with bilinear maps. We refer the reader to Section 4 for more details on
conventions and assumptions.

We start by describing our linear-algebraic tool in Section 2.1 and then move on to describe our
public-key encryption scheme in Section 2.2, our identity based encryption scheme in Section 2.3,
and finally our signature scheme in Section 2.4.

2.1 Random Subspaces are Leakage Resilient

We first provide an algebraic tool that is crucial to our leakage resilient constructions. More
specifically, we give two algebraic theorems that essentially say that random subspaces are resilient
to continual leakage. These are information theoretic theorems (i.e., they do not rely on any
cryptographic assumption). We believe that these theorems are interesting on their own, and may
find further applications.

Consider a random subspace X of dimension at least 2 of a given linear space. For concreteness,
think of X as a random subspace of Zm

q of dimension ` ≥ 2. For notational convenience, X is
represented as a rank-` matrix in Zm×`

q , whose columns form a basis of the subspace. A leakage on
X is given in the following form: an arbitrary leakage function f (that must not depend on X) is
applied to a random vector v in the subspace X. We show a bound linking the size of the range of
the leakage function f (i.e. the amount of information it reveals on v), to the statistical distance
between the pair (X, f(v)) and the pair (X, f(u)), where u is a random vector in Zm

q . In particular,
we show that if the leakage f(v) reveals “bounded” information about v, then the pairs (X, f(v))
and (X, f(u)) are statistically close. In the latter pair, the leakage function reveals nothing about
the subspace X, and therefore we conclude that applying a “bounded” leakage function (such as a
length-restricted leakage function) to a random vector in the subspace X is leakage resilient in the
sense it does not reveal information about X.

We also consider the case where the leakage function is applied to two random vectors in X. In
other words, the leakage function is applied to a random dimension-2 subspace, Y, of X (using a
matrix notation, Y = X ·T, where T is a random rank-2 matrix in Z`×2

q ). In this case, we need to
assume that the subspace X is of dimension ` ≥ 4.

More generally, the dimension of X needs to be at least twice the dimension of the subspace
leaked. Namely, if the leakage function is applied to a random subspace of X of dimension d then
we would need X to be of dimension ` ≥ 2d. This requirement stems from the fact that random
dimension-d subspaces of X are (almost) pairwise independent assuming X is of dimension ` ≥ 2d.

We formally state the two theorems below. The first theorem considers the case where the
leakage function is applied to one random vector in X (or a random one-dimensional subspace of
X), and the second theorem considers the case where the leakage function is applied to a random
two-dimensional subspace of X. In what follows, we denote by dist the statistical distance, and
denote by Rk2(Z`×2

q ) the set of all rank-2 matrices in Z`×2
q .

Theorem 2.1. Let m, ` ∈ N, m ≥ ` ≥ 2 and let q be a prime. Let X $← Zm×`
q , let r $← Z`

q and let
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u $← Zm
q . Let f : Zm

q → W be some function. Then,

dist
(
(X, f(X · r)), (X, f(u))

) ≤ ε,

as long as
|W | ≤ q`−1 · ε2.

Theorem 2.2. Let m, ` ∈ N, m ≥ ` ≥ 4 and let q be a prime. Let X $← Zm×`
q , let T $← Rk2(Z`×2

q )

and let Y $← Zm×2
q . Let f : Zm×2

q → W be some function. Then,

dist
(
(X, f(X ·T)), (X, f(Y))

) ≤ ε,

as long as
|W | ≤ q`−3 · ε2.

We note that our original proofs resulted in parameters that are slightly worse than those
given in Theorems 2.1 and 2.2. The proofs which achieve the improved parameters (as stated in
Theorems 2.1 and 2.2) were pointed to us independently by Gil Segev, Yevgeniy Dodis and Daniel
Wichs, and follow the proof of the “generalized crooked leftover hash lemma” [DS05, BFO08].

In what follows we give an outline of our original analysis. The outline is for Theorem 2.1,
however the outline for Theorem 2.2 is essentially the same.

Proof outline. We note that the (marginal) distributions f(X · r) and f(u) are identical. We call
this component w, and concentrate on the conditional distribution of X conditioned on w. In the
case where w = f(u), the conditional distribution of X is of course uniform. We will prove that
this is also the case when w = f(X · r) (up to ε statistical distance), and the theorem will follow.

The proof uses the fact that for almost all fixed values of r1, r2, it holds that X · r1, X · r2 are
independent. Consider the distribution of X conditioned on f(X · r) = w. The probability of a
specific X is proportional to the number of vectors r for which f(X · r) = w. Since this can be
written as a sum of (almost) pairwise independent random variables, it follows that the number of
such r’s is well concentrated around its mean value. Therefore, the said conditional distribution of
X is close to uniform.

For more details, see Section 5.

2.2 A Continual-Leakage Secure Encryption Scheme

We next present our public-key encryption schemes L and L∗ that are secure against continual
leakage attacks. These schemes are parameterized by a polynomially bounded integer ` that allows
for a tradeoff between the sizes of keys and ciphertexts, and the maximal tolerable leakage rate.
The scheme L is secure under the decisional linear assumption in bilinear groups, as long as at
most 1/2 − o(1) fraction of the memory leaks between any two consecutive secret-key updates.
The security of L∗ relies on the less standard SXDH assumption (described below), however it can
tolerate leakage of almost the entire secret key (in particular, a 1− o(1) fraction thereof) between
consecutive key-updates. See below for a more detailed explanation on parameters. The scheme
L∗ is somewhat simpler than L and one can think of it as a “toy example” for L. However, since
it is based on a less standard assumption, we will focus our attention mostly on L. We stress that
the analyses of L and L∗ are very similar and differ almost only in the use of the correct linear
algebraic tool (Theorem 2.2 is used for L and Theorem 2.1 is used for L∗).
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As we described above, the amount of tolerable leakage is measured by the ratio between the
total number of bits being leaked at each time period and the total amount of “secret memory” being
used at that time period. We distinguish between the leakage rates in 3 phases of the algorithm, and
thus characterize the scheme’s leakage resiliency using 3 parameters: (1) the leakage rate during
the key generation, denoted by ρG, which is the total amount of leakage during the key generation
divided by the total amount of secret randomness required for this procedure; (2) the leakage rate
during key updates, denoted by ρU , which is the total amount of leakage during a key-update
procedure, divided by the size of the secret-key (which is a “secret input” to the procedure) and
the size of the secret randomness used; and (3) the memory leakage rate between updates, denoted
by ρM , which is the leakage during “normal operation” of the scheme, this is the total number of
bits leaked between consecutive updates divided by the size of the secret-key (which is the only
secret information during this phase).

We show that our schemes are resilient to leakage of constant rate from the memory and very
small leakage (of sub-constant rate) from the key-update procedure. The same amount of leakage
can also be tolerated in the key-generation procedure. Recalling our notation, this corresponds to
a case where ρM = Ω(1), ρG = ρU = o(1).

The leakage parameters for L[`]. In the scheme L[`], the value of ρM for a general ` can
be as high as `−6−γ

2` , for all γ > 0. For example, taking ` = 12 guarantees resiliency to leakage
rate of 1/4− γ, while the keys and ciphertexts only contain a constant number of group elements.
Taking ` to be asymptotically increasing, on the other hand, makes the keys and ciphertexts sizes
asymptotically increase but makes the tolerable leakage rate 1/2−o(1) (as mentioned above, based
on the SXDH assumption, a rate of 1− o(1) can be achieved).

The value of ρU for general ` is ω
(

log k
` log p

)
, where k is the security parameter and p is the order

of the group relative to which we work. We cannot provide an explicit expression for ρU , but rather
we show that for all c > 0, the scheme is resilient in the case where ρU = c·log k

` log p . This translates to
O(log k) bits of leakage during each update procedure. In fact, our argument can be generalized
in a straightforward manner to imply resiliency of ρU = Ω

(
log T (k)
` log p

)
(corresponding to Ω(log T (k))

bits of leakage during each update procedure) if one is willing to assume that the linear assumption
is hard for adversaries that run in time (roughly) T (k). Similar techniques show that the same
amount of leakage (i.e., any O(log k) bits under a standard assumption or Ω(log T (k)) bits under
a strengthened one) can be tolerated from the key-generation procedure, implying ρG = ω

(
log k
` log p

)

in this case as well.
To put these results in context, we recall that tolerating a leakage of a logarithmic number of

bits in non-continual memory attacks, while not completely trivial, is fairly simple: the leakage
value can be guessed and then the adversary has to be simulated in order to make sure that the
value guessed is indeed correct (since a success in the security game for encryption is not verifiable).
It is important to notice that this is no longer the case in a model with memory leakage and key
updates. Here, even a one time leakage of logarithmic size is not necessarily trivial: the reduction
cannot simulate the adversary by itself to check the validity of the leakage value guessed. Therefore,
even just logarithmic leakage from the key-generation, for example, is non-trivial. The situation
becomes even worse when considering leakage from the key-update procedure, since the reduction
now needs to make guesses over and over again, and will almost for sure guess wrong at some
point. Therefore we view the ability to withstand even such minimal amounts of leakage as an
accomplishment.
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The Scheme L[`]. Let us overview the main ideas behind the structure of our scheme. We want
to use the fact that under the linear assumption, random rank-2 matrices in the exponent are
indistinguishable from random rank-3 matrices.

We start by setting the public-key to gA, where A is a random 2× ` matrix in Z2×`
p , and where

p is the order of the group element g. The ciphertexts are of the form gvT
, where v ∈ Z`

p. Namely,
the public-key and the ciphertext together form a (3× `) matrix in the exponent. Our scheme has
the property that this (3 × `) matrix is random rank-2 for encryptions of 0, and random rank-3
for encryptions of 1, and thus we can use the indistinguishability argument to achieve (semantic)
security. To get this property, our encryption algorithm operates as follows: To encrypt 0 set gvT

to be a linear combination of the rows of gA; to encrypt 1 set gvT
to be a random vector. One can

see that the resulting distributions are statistically close to the prescribed ones. Thus, security is
achieved.

The next question, of course, is figuring out how to decrypt such ciphertexts. We notice that
any non-zero vector y in the kernel of A can be used to decrypt: simply compute gvT ·y and see if
the result equals to g0. This will always be the case for encryptions of 0 and will only happen with
negligible probability for encryptions of 1. This suggests that such y can be used as a secret-key.
However, it is not clear how such a secret-key can be safely updated.

In order to allow for updates, we use a secret key of the form gY, where Y has two column
vectors, Y = [y1‖y2] ∈ Z`×2

p , and y1,y2 ∈ Z`
p are random vectors in the kernel of A. The fact that

the vectors are given in the exponent means that we cannot compute the product gvT ·yi as suggested
before. We thus work over groups with bilinear maps, which enable computing e(g, g)v

T ·Y instead.
The key update operation is done by “rotating” the matrix Y: sample a random 2 × 2 full

rank matrix R ∈ Z2×2
p , and set the new secret key to gY·R. Intuitively, since everything is done in

the exponent, the update operation is indistinguishable from sampling a fresh random secret-key,
which turns out to be a useful property.

The scheme L[`] is formally presented in Figure 1.

Encryption scheme L[`]

Parameters. The scheme is parameterized by groups G,GT of prime order p, such that there exists
a bilinear map e : G × G → GT . Let g be a generator of G (and so e(g, g) is a generator for GT ).
An additional parameter ` ≥ 7 is polynomial in the security parameter. Setting different values for
` will enables a tradeoff between efficiency and the rate of tolerable leakage.

Key-generation. The key-generation algorithm samples A $← Z2×`
p and Y $← ker2(A) (i.e. Y ∈

Z`×2
p ) (note that this is easy to sample since A is known). It sets pk = gA and sk = gY.

Key-update. To update the secret key sk = gY ∈ G`×2, sample R $← Rk2(Z2×2
p ) and then set

sk′ = gY·R.

Encryption. Given a public-key pk = gA ∈ G2×`, encrypting the bit 0 is done by sampling r $← Z2
p

and setting the output ciphertext to c = grT ·A. Encrypting the bit 1 is done by setting the ciphertext
to c = guT

where u $← Z`
p.

Decryption. Given a ciphertext c = gvT

and a secret-key sk = gY, the decryption process computes
e(g, g)v

T ·Y. If the result is equal to e(g, g)0, then output 0 and otherwise output 1.

Figure 1: Encryption scheme in the CML model.

Theorem 2.3. Under the linear assumption, for every ` ≥ 7, the encryption scheme L[`] (described
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in Figure 1) has the following security guarantee: For all constants γ, c > 0, L[`] is secure in the
continual leakage model with leakage rate

(ρG, ρU , ρM) =
(

c · log k

4` · log p
,

c · log k

(2` + 4) · log p
,

`− 6− γ

2`

)
.

We refer the reader to Section 6 for details. The proof overview of Theorem 2.3 can be found
in Section 6.2, and the formal proof can be found in Section 6.3.

The Scheme L∗[`]: a simpler scheme with better guarantees under the SXDH assump-
tion. It was recently pointed out to us by Daniel Wichs that a simpler variant of our scheme,
which we initially used for explanatory purposes, can in fact be proven secure under the symmetric
external Diffie-Hellman (SXDH) assumption in bilinear groups. Moreover, the simplified scheme
enjoys better leakage resilience – it achieves security against a leakage rate of 1−o(1) from memory
between secret-key updates (the amount of sustainable leakage during the key generation and key
updates remains the same as in our original scheme).

Let G1,G2,GT be groups of equal prime order p such that there exists a bilinear map e :
G1×G2 → GT . The SXDH assumption says that the decisional Diffie-Hellman (DDH) assumption
holds in both G1 and G2. Translating into matrix notation, as we use in our original scheme, the
SXDH assumption says that it is hard to distinguish random rank-1 matrices from random rank-2
matrices (of the same dimensions) in the exponent, in both the groups G1 and G2.

Since the SXDH assumption is not as widely used as the linear assumption, and to avoid
repeating essentially the same proof twice, we present our SXDH based scheme L∗[`] in Figure 2
and state its properties below, without proof.

Encryption scheme L∗[`]

Parameters. The scheme is parameterized by groups G1,G2,GT of prime order p, such that there
exists a bilinear map e : G1 × G2 → GT . Let g1, g2 be generators of G1,G2 respectively (and
so e(g1, g2) is a generator for GT ). An additional parameter ` ≥ 3 is polynomial in the security
parameter. Setting different values for ` will enables a tradeoff between efficiency and the rate of
tolerable leakage.

Key-generation. The key-generation algorithm samples a $← Z`
p and y $← ker(a) (i.e. y ∈ Z`

p)
(note that this is easy to sample since a is known). It sets pk = ga

1 and sk = gy
2 .

Key-update. To update the secret key sk = gy
2 ∈ G`

2, sample r
$← Zp and set sk′ = gry

2 .

Encryption. Given a public-key pk = ga
1 ∈ G`

1, encrypting the bit 0 is done by sampling a number
r

$← Zp and setting the output ciphertext to c = gra
1 . Encrypting the bit 1 is done by setting the

ciphertext to c = guT

1 where u $← Z`
p.

Decryption. Given a ciphertext c = gvT

1 and a secret-key sk = gy
2 , the decryption process computes

e(g1, g2)v
T ·y. If the result is equal to e(g1, g2)0, then output 0 and otherwise output 1.

Figure 2: Encryption scheme in the CML model, based on the SXDH assumption.

Theorem 2.4. Under the SXDH assumption, for every ` ≥ 3, the encryption scheme L∗[`] (de-
scribed in Figure 2) has the following security guarantee: For all constants γ, c > 0, L∗[`] is secure
in the continual leakage model with leakage rate

(ρG, ρU , ρM) =
(

c · log k

2` · log p
,

c · log k

(` + 2) · log p
,

`− 2− γ

`

)
.
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The proof of this theorem is almost identical to that of Theorem 2.3 above (see Section 6 for
more details and proof of the latter), except for the usage of Theorem 2.1 instead of Theorem 2.2
inside the proof.

2.3 A Continual-Leakage Secure IBE Scheme

We present an identity based encryption (IBE) scheme that is secure against continual leakage. This
scheme can be seen as a combination of our encryption scheme described above and the d-linear
IBE scheme of Brakerski and Kalai [BK10].

We recall that in the context of IBE there are two types of “entities” holding secrets: a trusted
authority holding a master secret-key that enables producing specific secret-keys per user; and
individual users, each holding their own secret-key. In this work, we only allow leakage from the
memory of the individual users. For a more detailed discussion on identity based encryption schemes
and the associated security notions under continual leakage, we refer the reader to Section 7.

In our construction, we consider an IBE scheme where the set of identities is {0, 1}m. The
public parameters of the scheme is a set of 2m+1 matrices of dimension 2×2 in the exponent (gA0 ,
{gAi,b}i∈[m],b∈{0,1}). Identity id ∈ {0, 1}m is associated with the matrix Aid = [A0‖Aid1‖ · · · ‖Aidm ].
Specifically, we use gAid in order to encrypt messages for id. To decrypt, the user corresponding to id

uses the secret-key skid:=g[y1‖y2], where y1,y2
$← ker(Aid). In other words, each user is associated

with a pair of keys corresponding to L[`], defined by its identity and the public parameters (recall
that L[`] is our public-key encryption scheme defined in Section 2.2). We notice that the trusted
authority only needs to know msk = A0 in order to produce secret-keys for all users. The encryption
and decryption algorithms are similar to the ones in L[`].

The proof of security is by reduction to the security of L[`] for ` = 2m + 2. Specifically we
prove that our scheme is selectively secure with continual leakage (then, standard techniques can
be used to achieve other, stronger, notions of security). In selective security we assume that the
attacker decided on the identity it wants to attack before seeing the public-parameters. Let id∗ be
that identity. This enables generating the public parameters such that all matrices Ai,1−id∗i (i.e.
all matrices that do not “play” in Aid∗) are explicitly known, and a public key for L[2m + 2] is
“embedded” in the public parameters as the matrix gAid∗ . This enables the adversary to know
everything about all other identities (since it is sufficient to explicitly know one sub-matrix of
Aid in order to generate a corresponding secret-key) while knowing nothing about id∗. Thus, an
adversary that breaks the security of id∗, even with continual leakage, actually breaks the security
of L[2m + 2].

For full details on our construction, see Section 7.

2.4 A Continual-Leakage Secure Signature Scheme

We show how to use any encryption scheme secure with continual leakage (such as the encryption
scheme L[`] presented in Section 2.2) to construct a signature scheme that is secure with continual
leakage. When discussing continual leakage in signature schemes, we must also take into account
the signing operation. This operation involves the secret-key and additional secret randomness and
may potentially leak extra information. Therefore, we are concerned with an additional parameter
of leakage resiliency, namely the leakage rate during the signing process, which we denote by ρS.
This is defined as the total amount of information leaked during signing, divided by the total size of
the secret-key and secret-randomness used by the signing procedure. For a more detailed discussion
and for the full constructions, see Section 8.

Our first construction is essentially applying the paradigm of Katz and Vaikuntanathan [KV09]
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to our encryption scheme, to obtain a signature scheme that preserves the leakage guarantees of the
underlying encryption scheme, but does not allow any leakage during the signing process (ρS = 0).
The signing key now contains a secret-key sk for the encryption scheme, and the verification key
contains the public-key pk, as well as an additional public-key pk′ for a (not necessarily leakage-
resilient) public-key encryption scheme, and a common random string crs for a non-interactive
simulation-sound zero-knowledge (NIZK) proof system. A signature for a message m contains an
encryption of sk using pk′ and a NIZK proof that the contents of the ciphertext are indeed a valid
secret-key for the leakage resilient encryption scheme. The dependence on the message m comes
from properly defining the language for the simulation-sound NIZK proof, as is done in [KV09].

We show that we can use a successful forger for this scheme to break the security of the leakage
resilient encryption scheme. In the security reduction, we simulate all NIZK proofs and sample
pk′ together with a respective secret-key sk′. We can then provide valid looking signatures for
a successful forger without it being able to tell the difference. Then we can take its successful
forged signature, which must contain an encryption of a valid secret-key for the leakage resilient
encryption scheme, decrypt it using sk′, and obtain a valid sk that enables breaking the security
of the leakage resilient encryption scheme. For more details on this construction, see Section 8.1.

Our second construction does tolerate leakage from the signing algorithm. In this case, the
signatures cannot be simulated. However, we construct the scheme such that each signature (in-
formation theoretically) reveals very little information about the secret key, and therefore can be
obtained as leakage queries. To this end, we rely on the existence of short non-interactive arguments
(see Definition 4.3). We note that all known constructions of the latter, were proven to be secure
only in the random oracle model [Kil92, Mic00, BG08]. For more details on this construction, see
Section 8.2.

3 A Model for Continual Memory Leakage

In this section, we discuss several ways to model cryptography with continual memory leakage.
We begin by explaining the basic principles that underlie the choice of our model, and based on
these principles, derive formal models for secure encryption and digital signatures in the context of
continual memory leakage. While the discussion below is rather general and could apply to many
cryptographic primitives, we use digital signatures as the running example.

Suppose that we have some cryptographic application (e.g., a signature scheme) that performs
computation on some secret information, and runs in an environment where an adversary may be
able to extract some information about the internal secret state by “probing” the memory (e.g.,
the locations where the signing key is stored). This can be done either when the system is idle or
during the computation itself (e.g., during the execution of the signing algorithm). If the adversary’s
probing is not limited in any way, then it can “copy” the entire internal state of the device, thus
breaking any reasonable security requirement (e.g., if the adversary attains the signing key, it can
then trivially sign any message). This leads to an understanding that some restrictions need to be
imposed on the probing process.

A first such model, suggested by Micali and Reyzin [MR04], introduced the “axiom” that only
computation leaks information. This axiom asserts that an area in memory that is not accessed at
a certain time period, cannot be probed during that time period. This enables “shielding” parts
of the secret-state from leaking at certain time periods by not letting the adversary access them at
that time. In particular, if at every time-slot, some (different) part of the secret is shielded, then
this shielded part is uncorrelated with the leakage that occurred during this time-slot, and therefore
can be used to “refresh” the remainder of the secret. Making this assumption, therefore, suggests
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a methodology for coping with leakage even when it is continual. However, while this axiom may
be justifiable in certain situations, there are known attacks that do not adhere to it. Specifically,
these include “memory attacks”, such as the cold-boot attack [HSH+08], where the content of the
memory is “dumped”, almost entirely, and probed by the attacker.

One approach to address the issue of “memory attacks” mentioned above, is to allow the secret
state of the scheme (e.g., the signing-key) to be leaked in an arbitrary (efficient) way, so long as the
amount of information revealed to the attacker is bounded. Hence, we do not assume that parts of
the state are untouched during certain periods of time, only that the adversary learns a bounded
amount of information – which seems necessary as otherwise the entire secret state can be leaked.

However, since we allow the leakage to be continual (letting the adversary learn additional
bounded amount of information at any time period), then the secret-key must be periodically re-
freshed,3 since otherwise it will eventually be completely leaked. Moreover, we must allow deletions,
since otherwise the adversary can choose to (gradually) leak the initial secret-state from which ev-
erything can be derived. In such case, refreshing the state is useless because the adversary will leak
from the original state and not the refreshed one. For example, in the case of digital signatures,
the adversary will choose to leak bits from the initial signing key at every time slot, and eventually
will gain the ability to sign messages of its choosing. Since the public verification key does not
change, the initial key must still be “valid” for signing, even if it has so far been refreshed. It
seems that the only way to prevent such an attack, without changing the leakage model (i.e., while
still allowing the adversary to select an arbitrary efficient leakage function at every time slot), is to
allow information to be safely deleted.

We therefore, consider the model of continual memory leakage with deletions (and refer to it
as the CML model). A computation in this model can be thought of as a Turing machine that
has a special “secret tape”, with content s. All other tapes of the machine are readable by the
adversary at all times. The deletion operation is implicit in the model as cells in the tape of a
Turing machine can be deleted/rewritten. At any time period, the adversary can obtain some
“bounded” information f(s) about the secret state s.

There are several ways to define “bounded” in this context:4 The first, is using the definition of
Akavia, Goldwasser, and Vaikuntanathan [AGV09], which says that f(s) is “bounded” if |f(s)|

|s| ≤ ρ
for some predefined bound ρ < 1. The second, is the slightly more general definition due to Naor
and Segev [NS09], which says that f(s) is “bounded” if s high min-entropy, conditioned on f(s).
The third, is the most general one due to Dodis et al. [DKL09], which says that f(s) is “bounded”
if f is hard-to-invert with probability 2−t, for some parameter t = t(k).

In our definitions below (both in Section 3.1, and in Section 3.2), we use the [AGV09] definition
for “bounded” functions, though all of our results hold also with the slightly stronger definition
of [NS09]; we choose to present the definitions using the former only for the sake of simplicity. We
note in Section 8.2, we even make use of the fact our encryption scheme from Section 6 is secure
even if we use the slightly stronger definition of [NS09] for “bounded” functions. Finally, we note
that we do not know how to prove our results using the [DKL09] definition for “bounded” functions,
and leave this as an important open problem.

3.1 Public-Key Encryption in the CML Model

An encryption scheme in the CML model contains the following ppt algorithms.

• Key-generation. Takes as input 1k (where k is the security parameter) and produces a secret-
3This should be done without modifying the public key.
4In what follows, think of the secret key as being truly random.
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key sk and a public-key pk. We denote this by (sk, pk) ← Gen(1k).

• Encryption. Takes as input a public-key pk and a message m and outputs a ciphertext c. We
denote this by c ← Encpk(m).

• Decryption. Takes as input the secret-key sk and a ciphertext c and outputs a message m′.
We denote this by m′ ← Decsk,pk(c).

• Key-update. Takes as input a secret-key sk and outputs a “refreshed” secret-key sk′ such
that

∣∣sk′∣∣ = |sk|.5 We denote this by sk′ ← Updatepk(sk).

The first three algorithms are identical to the standard definition of public-key encryption
schemes. The key-update algorithm is an addition that allows for continual leakage resilience.

The correctness requirement is that for all m and a polynomially bounded t ∈ N, setting
(sk0, pk) ← Gen(1k), ski ← Updatepk(ski−1) for i ∈ [t], c ← Encpk(m), m′ ← Decskt,pk(c), it holds
that m = m′ with all but negligible probability (where the probability is over all randomness in
the experiment).

We next define semantic security in the CML model. Formally, leakage in this model is as-
sociated with three leakage parameters (ρG, ρU , ρM), where ρG bounds the leakage rate from the
key-generation process, ρU bounds the leakage rate from the update process, and ρM is a “global”
(relative) memory leakage bound that is enforced between key updates. Taking ρG = ρU = 0
corresponds to allowing leakage only from the memory and not from the key-generation or update
processes.

Definition 3.1. An encryption scheme (Gen,Enc, Dec,Update) is semantically secure in the CML
model with leakage rate (ρG, ρU , ρM), if any ppt adversary succeeds in the following game with
probability 1/2 + negl(k).

1. Initialize. The adversary specifies a key-generation leakage circuit f with |f(r, p)| ≤ ρG · |r| for
all r, p. The challenger chooses “secret randomness” r and “public randomness” p, generates
(sk0, pk) ← Gen(1k; r, p), sends (pk, p, f(r, p)) to the adversary, and sets i := 0 and L0 :=
|f(r, p)|.

2. Leakage and updates. The forger makes queries of the following type:

• Update queries (update, f), where f is a circuit with |f(sk, r, p)| ≤ ρU · (|sk|+ |r|) for
all sk, r, p. The challenger chooses “secret randomness” r and “public randomness” p,
and computes ski+1 := Updatepk(ski; r, p). If Li + |f(ski, r, p)| ≤ ρM · |ski| then the
challenger returns (p, f(ski, r, p)) to the adversary, sets i := i + 1, and sets Li+1 :=
|f(ski, r, p)|. Otherwise, the challenger aborts.

• Leakage queries (leak, f), where f is a circuit. If Li + |f(ski)| ≤ ρM · |ski| then the
challenger returns f(ski) to the adversary and sets Li := Li + |f(ski)|. Otherwise, the
challenger aborts.

3. Challenge. The adversary sends two messages m0,m1 to the challenger. The challenger flips
a coin b

$← {0, 1} and computes c ← Encpk(mb). It sends c to the adversary.

4. Finish. The adversary outputs a “guess” b′ ∈ {0, 1}.
The adversary succeeds if b′ = b.

5This requirement is in order to prevent the secret-key from “blowing up”.
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3.2 Digital Signatures in the CML Model

A digital signature scheme in the CML model comprises the following ppt algorithms:

• The key-generation algorithm Gen takes as input the security parameter 1k, and outputs a
pair of signing/verification keys sk, vk; we denote this by (sk, pk) ← Gen(1k).

• The signing algorithm Sign takes as input a signing key sk, a verification key vk, and a message
m in some message space M, and outputs a signature σ. We denote this by σ ← Signsk,vk(m).

• The deterministic verification algorithm Ver takes as input the verification key vk, a message
m ∈ M and a signature σ and outputs a bit b denoting acceptance or rejection. We denote
this by b := Vervk(m,σ).

• The key-update algorithm Update takes as input a signing key sk and a verification key vk, and
outputs a “refreshed” signing key sk′ with

∣∣sk′∣∣ = |sk|. We denote this by sk′ ← Updatevk(sk).

The correctness requirement is that for all m ∈ M and any polynomial t, setting (sk0, vk) ←
Gen(1k) and then computing ski ← Updatevk(ski−1) for i ∈ [t], we have Vervk(m,Signskt,vk(m)) = 1
except with negligible probability. (where the probability is over all randomness in the experiment).

Next we define security in the CML model. We consider the standard notion of existential
unforgeability under adaptive chosen message attack, but in the presence of leakage. Allowable
leakage is specified by four parameters ρG, ρS, ρU that specify, respectively, the (relative) leakage
allowed from the key-generation, signing, and update processes, as well as a “global” (relative)
memory leakage bound ρM that is enforced between key updates.

Definition 3.2. Signature scheme (Gen,Sign, Ver, Update) is existentially unforgeable under adap-
tive chosen message attack in the CML model, with leakage rate (ρG, ρU , ρS, ρM), if any ppt forger
succeeds in the following game with only negligible probability.

1. Initialize. The forger specifies a circuit f with |f(r, p)| ≤ ρG · |r| for all r, p. The chal-
lenger chooses “secret randomness” r and “public randomness” p, generates (sk0, vk) ←
Gen(1k; r, p), sends (vk, p, f(r, p)) to the forger, and sets i := 0 and L0 := |f(r, p)|.

2. Signatures, leakage, and updates. The forger makes queries of the following types:

• Update queries (update, f), where f is a circuit with |f(sk, r, p)| ≤ ρU · (|sk|+ |r|) for
all sk, r, p. The challenger chooses “secret randomness” r and “public randomness” p,
and computes ski+1 := Updatevk(ski; r, p). If Li + |f(ski, r, p)| ≤ ρM · |ski| then the chal-
lenger returns (p, f(ski, r, p)) to the forger, sets i := i+1, and sets Li+1 := |f(ski, r, p)|.
Otherwise, the challenger aborts.

• Signing queries (sign,m, f), where f is a circuit with |f(sk, r, p)| ≤ ρS · (|sk|+ |r|) for
all sk, r, p. The challenger chooses “secret randomness” r and “public randomness” p,
and computes σ := Signski,vk(m; r, p). If Li + |f(ski, r, p)| ≤ ρM · |ski| then the challenger
returns (σ, p, f(ski, r, p)) to the forger and sets Li := Li + |f(ski, r, p)|. Otherwise, the
challenger aborts.

• Leakage queries (leak, f), where f is a circuit. If Li + |f(ski)| ≤ ρM · |ski| then the
challenger returns f(ski) to the forger and sets Li := Li + |f(ski)|. Otherwise, the
challenger aborts.

3. Finish. Assuming the challenger did not abort, the forger outputs (m∗, σ∗).

The forger succeeds if it never made the query (sign, m∗), and Vervk(m∗, σ∗) = 1 .
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4 Preliminaries

We use the following notational conventions. Bold uppercase denotes matrices (X ∈ Zn×k
q ) and

bold lowercase denotes vectors (x ∈ Zn
q ). All vectors are column vectors, row vectors are denoted

by xT . For a scalar (usually a group element) g and a matrix X ∈ Zk×n (or a vector, as a special
case), we let gX denote a k × n matrix such that (gX)i,j = g(X)i,j .

Let X be a probability distribution over a domain S, we write x
$← X to indicate that x is

sampled from the distribution X. The uniform distribution over a set S is denoted U(S). We use
x

$← S as abbreviation for x
$← U(S). For any function f with domain S we let f(X) denote the

random variable (or corresponding distribution) obtained by sampling x
$← X and outputting f(x).

The min-entropy of a (discrete) random variable X is H∞(X) = minx∈S{− log Pr[X = x]}.
We write negl(k) to denote an arbitrary negligible function, i.e. one that vanishes faster than

the inverse of any polynomial.
The statistical distance between two distributions X, Y (or random variables with those dis-

tributions) over a common domain S is defined as dist(X, Y ) .= maxA⊆S |Pr[X ∈ A]− Pr[Y ∈ A]|.
Two ensembles X = {Xk}k, Y = {Yk}k are ε = ε(k)-close if the statistical distance between them
is at most ε(k), this is also denoted by X

ε≡ Y (where X ≡ Y means that X, Y are identically dis-
tributed). They are called statistically indistinguishable if ε(k) = negl(k). An ensemble X = {Xk}k

over domains S = {Sk}k is ε = ε(k)-uniform in S if it is ε-close to the uniform ensemble over S (we
sometimes omit S when it is clear from the context). X = {Xk}k, Y = {Yk}k are computationally
indistinguishable if every poly(k)-time adversary A has negligible distinguishing advantage:

|Pr[A(Xk) = 1]− Pr[A(Yk) = 1]| = negl(k) .

4.1 Linear Algebra

We make extensive use of linear algebra over finite fields of the form Zq for a prime q. Some of our
results apply to any finite field.

For a linear subspace of column vectors S ⊆ Zn
q , we let Sk ⊆ Zn×k

q denote the set of matrices
whose every column is an element in S. If S ⊆ Zn

q is a row subspace then Sk ⊆ Zk×n
q is defined

symmetrically.
The dimension of a linear subspace S ⊆ Zn

q is the maximal number of linearly independent
vectors in S. The basis of a linear subspace S ⊆ Zn

q with dimension d ≤ n is represented by a
matrix B ∈ Zn×d

q whose columns are the basis vectors, i.e. S is the span (see below) of the columns
of B. We sometimes consider linear subspaces of row vectors, in such case, the basis will be a
matrix B ∈ Zd×n

q whose rows are the basis vectors.
The rank of a matrix is the maximal number of linearly independent rows (or columns) in the

matrix. The set of (n×k)-matrices having rank-d is denoted by Rkd(Zn×k
p ). Given a set of matrices

M ⊆ Zn×k
p , we use Rkd(M) to denote the set of all rank-d matrices in M . The dimension of the

row span and of the column span (see below) of a matrix are equal to its rank.
We use the term span of a matrix to indicate its row span, i.e. for A ∈ Zn×k

q , we denote
Span(A) = {zT ·A : z ∈ Zn

q }. The kernel of a matrix is the linear space that is orthogonal to its
span, this corresponds to defining ker(A) = {x ∈ Zk

q : A · x = 0}.
We will also use the following simple fact (see e.g. [BK10]), we provide the proof for complete-

ness.

Lemma 4.1. Consider a finite field F of order q. For any n,m ∈ N such that m ≥ n, the distance
between the distributions U(Fn×m) and U(Rkn(Fn×m)) is at most 1/(qm−n · (q − 1)).
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Proof. Consider sampling the matrix row by row. The probability that row i is a linear combination
of previous rows is at most q−m · qi−1. Applying the union bound gives the result.

4.2 Hardness Assumptions in Bilinear Groups

Consider multiplicative groups G1, G2, GT , all of prime order p, and let g1, g2 be generators for
G1,G2 respectively. A bilinear map e : G1 × G2 → GT has the following properties. Bilinearity:
for all x ∈ G1, y ∈ G2, a, b ∈ Z it holds that e(xa, yb) = e(x, y)ab; Non-degeneracy: e(g1, g2) 6= 1.

The symmetric external Diffie-Hellman (SXDH) assumption. For i = 1, 2, let Gi =
{Gi,k}k∈N be a family of groups, where each group Gi,k is of order p, and where p is a k-bit
prime. Fix (arbitrary) generators gi = gi,k for Gi,k (we omit the subscript k to avoid cluttering of
notation).

The SXDH assumption is that the DDH problem is hard in G1 and in G2. Let us explicitly
present a linear algebraic form of this assumption which will allow for a better intuitive under-
standing of our constructions. Let x,x′ $← Zn

p be uniformly distributed vectors of any (polynomial)

dimension n and let α
$← Zp be a uniform scalar. Then the SXDH assumption is equivalent to

the assumption that for i = 1, 2, the distributions (gx
i , gα·x

i ) and (gx
i , gx′

i ) are computationally
indistinguishable.

The linear assumption. This assumption was first introduced in [BBS04], we use a matrix form
that was introduced in [NS09] and proven ([NS09, Lemma A.1]) to be implied by the standard form.
Throughout this work, the term “linear assumption” refers to the matrix form described below.
While this assumption can be stated for the general case of groups G1,G2,GT as above, we only
present the simpler case where G1 = G2 = G. Our results extend to the general case as well.

Let G = {Gk}k∈N be a family of groups as above with a fixed generator g. Consider the
distribution Dr (r ∈ {2, 3}) defined by the following sampling process: sample A $← Rkd(Z3×3

p )
and output gA. The linear assumption is that D2 and D3 are computationally indistinguishable.
In other words, it is hard to distinguish a random 3× 3 rank-2 matrix from a random such rank-3
matrix, if given in the exponent of a group generator.

An immediate corollary of the above definition (see e.g. [NS09, Appendix A]) is that under the
linear assumption, for all polynomially-bounded m, ` ≥ 3, r ≥ 2, t ≥ 0, a random (m × `) rank-r
matrix is computationally indistinguishable from a random such rank-(r + t) matrix, when given
in the exponent.

4.3 Simulation Sound NIZK Proofs

We define the notion of simulation-sound NIZK, a notion that was introduces by Sahai [Sah99].
Intuitively, a simulation-sound NIZK proof system is a NIZK proof system with the extra property
that a polynomially bounded cheating prover is incapable of convincing the verifier of a false
statement, even after seeing any (polynomial) number of simulated proofs of her choosing.

Throughout this paper, when we refer to a NIZK proof system we always mean adaptive NIZK,
as defined below.

Definition 4.1. [FLS90, BFM88, BSMP91]: Π = (`, P, V, S = (S1, S2)) is an efficient adaptive
NIZK proof system for a language L ∈ NP with witness relation R if ` is a polynomial, P, V, S1, S2

are all ppt algorithms, and there exists a negligible function µ such that for all n the following
three requirements hold.
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• Completeness: For all x ∈ L of length n, and all w such that R(x,w) = 1, and for all
strings r ∈ {0, 1}`(n),

V (x, P (x,w, r), r) = 1.

• Adaptive Soundness: For all adversaries A, if r ∈R {0, 1}`(n) is chosen uniformly at
random, then the probability that A(r) will output a pair (x, π) such that x 6∈ L and yet
V (x, π, r) = 1, is at most µ(n).

• Adaptive Zero-Knowledge: For all ppt adversaries A,
∣∣Pr[ExptA(n) = 1]− Pr[ExptSA(n) = 1]

∣∣ ≤ µ(n),

where the experiment ExptA(n) is defined by:

r ← {0, 1}`(n)

Return AP (·,·,r)(r)

and the experiment ExptS
A(n) is defined by:

(r, τ) ← S1(1n)

Return AS′(·,·,r,τ)(r),

where S′(x,w, r, τ) = S2(x, r, τ).

We next define the notion of simulation-sound NIZK.

Definition 4.2 ([Sah99]). Let Π = (`, P, V, S = (S1, S2)) be an efficient adaptive NIZK proof
system for a language L ∈ NP. We say that Π is simulation sound if for all ppt adversaries A we
have that

Pr[ExptA,Π(n) = 1] = negl(n),

where ExptA,Π(n) is the following experiment:

(r, τ) ← S1(1n)

(x, π) ← AS2(·,r,τ)(r)
Let Q be the list of proofs given by S2 above
Return 1 iff (π 6∈ Q and x 6∈ L and V (x, π, r) = 1)

As was shown by Sahai [Sah99], every language in NP has a simulation-sound NIZK proof
assuming the existence of enhanced trapdoor permutations.

4.4 Short Non-Interactive Arguments

Definition 4.3. A non-interactive argument system for an NP language L is defined by a
polynomial p and a pair of ppt Turing machines (P, V ) satisfying the following properties:

• Completeness. If (x,w) ∈ RL then for all crs ∈ {0, 1}p(k) we have Vcrs(x, Pcrs(x,w)) = 1.

• Computational (adaptive) soundness. For every (non-uniform) polynomial-time P ′, the
following is negligible:

Pr
[
crs ← {0, 1}p(k); (x, π) ← P ′(crs) : Vcrs(x, π) = 1

∧
x 6∈ L

]
.
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The argument system has proofs of length ` if for all k, all crs ∈ {0, 1}p(k), and all (x,w) ∈ RL

it holds that |Pcrs(x,w)| ≤ `(k).

The results of [Kil92, Mic00, BG08] imply that for any fixed NP language L, there exists a
non-interactive argument system for L with proofs of length ω(log2 k) in the random oracle model
(and, in fact, with the crs being the emptystring). Nevertheless, use of the random oracle here
does not appear to be inherent and one could hope to base the existence of short non-interactive
arguments on cryptographic/complexity-theoretic assumptions

4.5 Lossy Trapdoor Functions

The notion of lossy trapdoor functions (LTDF) was first defined by Peikert and Waters [PW08]. Let
n(k) = poly(k) represent the input length of the function and `(k) ≤ n(k) represent the lossiness
of the collection. For convenience, we also define the residual leakage r(k) := n(k) − `(k). For all
these quantities, we often omit the dependence on k.

In this work, we require a family of lossy trapdoor functions with the additional special property
of oblivious sampling. Essentially this means that the description of a random function from
the family (either the lossy or injective) is computationally indistinguishable from the uniform
distribution. It turns out that known constructions indeed have this property.

Definition 4.4 (Lossy trapdoor functions with oblivious sampling). A collection of (n, `)-lossy
trapdoor functions is given by a tuple of ppt algorithms (Sinj , Sloss, G, G−1) having the properties
below.

• Easy to sample an injective function with trapdoor: Sinj takes as input a security parameter 1k

and outputs a pair (s, t), where s is a function index and t is the associated trapdoor, such
that Gs(·) is an injective function over the domain {0, 1}n, with inverse G−1

t (·).
• Easy to sample a lossy function: Sloss takes as input a security parameter 1k and outputs

(s,⊥), where s is a function index and Gs(·) is a function gs(·) over the domain {0, 1}n

whose image has size at most 2r = 2n−`.

• Hard to distinguish injective from lossy: The first outputs of Sinj and Sloss are computationally
indistinguishable. More formally, let Xk denote the distribution of s from Sinj, and let Yk

denote the distribution of s from Sloss. Then {Xk}k∈N
c≈ {Yk}k∈N.

We require an additional property:

• Oblivious sampling: The first outputs of Sinj and Sloss are computationally indistinguishable
from the uniform distribution.

We remark that the families of lossy trapdoor functions presented in [PW08], that are based on
the DDH and LWE assumptions have this property, under the same assumptions. In addition, the
d-linear based construction of [FGK+09] also has this property.

5 Random Subspaces are Leakage Resilient

In this section, we provide a linear algebraic tool that is crucial to our leakage resilient constructions,
but is rather general and may also be usable elsewhere.
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Informally, we consider a random subspace X of dimension at least 2 of a given linear space. A
leakage on X is given in the following form: an arbitrary leakage function (that must not depend
on X) is applied to a random vector v in X. We show a bound linking the size of the range of
the leakage function (i.e. the amount of information it reveals about v) to the statistical distance
between this experiment and the case where v is sampled uniformly at random in the entire linear
space (independently of X). In the latter case, the leakage function reveals nothing on the subspace
X, and therefore we conclude that applying a length-restricted leakage function to a random vector
in the subspace is leakage resilient, in the sense it does not reveal information about the subspace
that it originated from.

We also consider the case where the leakage function is applied to two random vectors in the
subspace. In this case, it is required that the subspace X is of dimension at least 4. More generally,
if the leakage function is applied to d random vectors in the subspace, we need the random subspace
to be of dimension 2d. This requirement stems from our analysis, which uses the fact that random
dimension-d subspaces of X are (almost) pairwise independent, which indeed holds in the case
where the dimension of X is at least twice that of the sampled subspaces.

We formally state the two theorem below. The first is for the case that the leakage is applied
to one random vector, and the second is for the case that the leakage is applied to two random
vectors.

Theorem 5.1. Let m, ` ∈ N, m ≥ ` ≥ 2 and let q be a prime. Let X $← Zm×`
q , let r $← Z`

q and let

u $← Zm
q . Let f : Zm

q → W be some function. Then,

dist
(
(X, f(X · r)), (X, f(u))

) ≤ ε,

as long as
|W | ≤ q`−1 · ε2.

Theorem 5.2. Let m, ` ∈ N, m ≥ ` ≥ 4 and let q be a prime. Let X $← Zm×`
q , let T $← Rk2(Z`×2

q )

and let Y $← Zm×2
q . Let f : Zm×2

q → W be some function. Then,

dist
(
(X, f(X ·T)), (X, f(Y))

) ≤ ε,

as long as
|W | ≤ q`−3 · ε2.

We note that our original proofs result in parameters that are slightly worse than the ones
given in Theorems 5.1 and 5.2. The proofs which achieve the improved parameters (as stated in
Theorems 5.1 and 5.2) were pointed to us independently by Gil Segev, Daniel Wichs and Yevgeniy
Dodis, and follow the proof of the “generalized crooked leftover hash lemma” [DS05, BFO08]. In
Section 5.1 we give an outline of our original proofs. The formal proofs (using our original analysis,
and thus yielding slightly worse parameters) are given in Section 5.2. A proof with tight parameters
appears in Appendix A.

5.1 Proof Overview

The proofs of Theorems 5.1 and 5.2 are essentially the same (both our original proofs which yield
worse parameters, and the improved ones). For simplicity, in what follows, we focus on Theorem 5.1.

The two distributions considered in this theorem can be described by the following experiment.
First X is uniformly sampled, then a vector v ∈ Zm

q is generated by either sampling a random
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vector r $← Z`
q and setting v = X · r (in the first distribution) or sampling a random u $← Zm

q and
setting v = u (in the second distribution). Then, the function f is applied to v to obtain w = f(v).
Finally, (X, w) is output.

We need to prove that even though the distributions of (X,v) in the two experiments are very
distinct in terms of statistical distance, it still holds that the distributions of (X, w) are very close.
To prove this, let us fix the value of w ∈ W and consider the conditional distribution of X (since the
marginal distribution of w is the same in both experiments, this will enable us to later average on w
and get the full result). In the second experiment, X is independent of v, w and thus the conditional
distribution of X is uniform. We need to prove, therefore, that the conditional distribution of X
in the first experiment is close to uniform as well. From now on we focus on the first experiment,
i.e. v = X · r.

Conditioned on w, the probability for any (fixed) subspace X is proportional to the probability
that, for a random r, it holds that f(X · r) = w. We show that for almost all X, this probability is
very close to its expected value (which is, of course, the probability that f(v) = w for a random v).

To see this, fix any r1, r2. Note that if r1, r2 are linearly independent, then X · r1 and X · r1

are independent (where the probabilities are now taken only over X). Moreover, note that if r1, r2

were chosen uniformly at random, then they would indeed be linearly independent with very high
probability. Thus, the probability that f(X · r) = w can be written as a sum (or expectancy) of
almost pairwise independent random variables. Applying Chebyshev’s inequality implies that such
variables are concentrated around their expected value.

We get, therefore, a bound on the distance between the two distributions conditioned on w. As
explained above, averaging over all values w and appropriately selecting the parameters implies the
theorem.

In what follows, we give the formal proofs which yields slightly weaker parameters than these
guaranteed by Theorems 5.1 and 5.2. In the formal treatment we focus on Theorem 5.2 (as opposed
to Theorem 5.1). The reason is that Theorem 5.2 is used to obtain our results based on the linear
assumption, and Theorem 5.1 is used to obtain our results based on the symmetric external Diffie-
Hellman (SXDH) assumption. Since the former assumption appears to be more standard, we give
all the formal proofs needed for these results. The proofs needed for our results based on the SXDH
assumption are essentially the same.

5.2 Formal Proof

In what follows we give the formal proof of a weaker version of Theorem 5.2, stated below.

Theorem 5.3. Let m, ` ∈ N, m ≥ ` ≥ 4 and let q be a prime. Let X $← Zm×`
q , let T $← Rk2(Z`×2

q )

and let Y $← Zm×2
q . Let f : Zm×2

q → W be some function. Then it holds that

dist
(
(X, f(X ·T)), (X, f(Y))

) ≤ ε

as long as

|W | ≤ q
`−3
2 · ε3/2

√
2

.

Relating the formal proof of this theorem to the overview above, Lemma 5.4 gives the Chebyshev-
based concentration bound discussed above (where the set S in the lemma statement is the set of all
Z ∈ Zm×2

q such that f(Z) = w). Lemma 5.5 uses this concentration bound to bound the distance of
the conditional distribution of X and the uniform distribution. The remainder of the proof, namely
the weighted average on the values of w is provided in the actual body of the proof of the theorem.
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As discussed in the overview above, we provide two required lemmas first and then derive the
proof of the theorem. The first lemma shows that the “intersection” of a random subspace X with
any set is well concentrated around its expected value.

Lemma 5.4. Let m, ` ∈ N, m ≥ ` ≥ 4 and let q be a prime. Consider S ⊆ Zm×2
q and let

ρ = Pr
Y

$←Zm×2
q

[Y ∈ S]. Define, for all X ∈ Zm×`
q ,

dS(X) = Pr
T

$←Rk2(Z`×2
q )

[X ·T ∈ S] .

Then for all δ > 0

Pr
X

$←Zm×`
q

[∣∣dS(X)− ρ
∣∣ ≥ δ

]
≤ 2ρ

δ2 · q`−3
.

Proof. Let T1,T2 ∈ Rk2(Z`×2
q ) such that Rk([T1‖T2]) = 4. Then X·T1 and X·T2 are independent

random variables, when X is a random matrix. This holds since if we define R = [T1‖T2], then
X ·R is exactly the first 4 columns of X under some basis-change. Since X is uniform, it is also
uniform under any basis change, and specifically the first 4 columns are random and therefore
independent.

We note that by definition

dS(X) = Pr
T

$←Rk2(Z`×2
q )

[X ·T ∈ S] = E
T

$←Rk2(Z`×2
q )

[1X·T∈S ] .

Therefore, it holds that E[dS(X)] = EX,T[1X·T∈S ] = ρ. Furthermore, letting F denote the event
that [T1‖T2] is full rank (and F̄ denote its complement),

V[dS(X)] = EX[(dS(X)− ρ)2]

= EX

[(
ET1 [1X·T1∈S − ρ]

) · (ET2 [1X·T2∈S − ρ]
)]

= EX

[
ET1,T2

[(
1X·T1∈S − ρ

)(
1X·T2∈S − ρ

)]]

= ET1,T2

[
EX

[(
1X·T1∈S − ρ

)(
1X·T2∈S − ρ

)]]

= ET1,T2 [CovX[1X·T1∈S ,1X·T2∈S ]]
= Pr[F̄ ] · E(T1,T2)|F̄ [CovX[1X·T1∈S ,1X·T2∈S ]] + Pr[F ] · E(T1,T2)|F [CovX[1X·T1∈S ,1X·T2∈S ]]︸ ︷︷ ︸

=0 (since X ·T1 and X ·T2 are independent)

= Pr[F̄ ] · E(T1,T2)|F̄ [CovX[1X·T1∈S ,1X·T2∈S ]]

≤ Pr[F̄ ] · E(T1,T2)|F̄ [VX[1X·T1∈S ]]

= Pr[F̄ ] · ET1 [VX[1X·T1∈S ]]
= Pr[F̄ ] · (ρ− ρ2)
≤ Pr[F̄ ] · ρ .

To bound Pr[F̄ ] = PrT1,T2 [F̄ ] = PrT1,T2 [Rk([T1‖T2]) < 4], fix T1 ∈ Rk2(Z`×2
q ) and consider

T2
$← Rk2(Z`×2

q ). Let t1 ∈ Z`
q denote the first column of T2 and let t2 ∈ Z`

q denote the second
column of T2. Both t1 and t2 are uniform in Zm

q \ {0}. By the union bound,

Pr
T1,T2

[F̄ ] ≤ Pr
t1

$←Z`
q\{0}

[t1 ∈ Span(T1)] + Pr
t2

$←Z`
q\{0}

[t2 ∈ Span(T1, t1)] ≤ q2

q`
+

q3

q`
≤ 2q3

q`
.
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We can therefore apply Chebyshev’s inequality and conclude that

Pr
X

[|dS(X)− ρ| ≥ δ] ≤ 2ρ

δ2 · q`−3
.

The second lemma uses the concentration obtained above to conclude that the conditional
distribution of X, given that f(X ·T) = w, is close to uniform.

Lemma 5.5. Let m, ` ∈ N, m ≥ ` ≥ 4 and let q be a prime. Consider S ⊆ Zm×2
q and let

ρ = Pr
Y

$←Zm×2
q

[Y ∈ S]. Consider the distributions X $← Zm×`
q , T $← Rk2(Z`×2

q ), conditioned on

the event X ·T ∈ S. Then

dist(X, U(Zm×`
q )) ≤

(
2

ρ2 · q`−3

)1/3

.

Proof. For convenience, let us denote α =
∣∣Zm×`

q

∣∣−1 = q−m`. Consider the conditional distribution
of X, it holds that for all A ∈ Zm×`

q

Pr[X = A|X ·T ∈ S] =
Pr[(X = A) ∧ (X ·T ∈ S)]

Pr[X ·T ∈ S]
=

α · Pr
T

$←Rk2(Z`×2
q )

[A ·T ∈ S]

ρ
=

α · dS(A)
ρ

.

Where dS is as defined in Lemma 5.4.
The statistical distance from uniform is therefore

dist(X, U(Zm×`
q )) =

1
2
·

∑

A∈Zm×`
q

∣∣∣∣
α · dS(A)

ρ
− α

∣∣∣∣ =
1
2ρ
· E

A
$←Zm×`

q

[|dS(A)− ρ|] .

Using Lemma 5.4, together with Bayes’ theorem, we get that for all δ > 0,

dist(X, U(Zm×`
q )) ≤ 1

2ρ
·
(
δ +

2ρ

δ2 · q`−3

)
.

Setting δ =
(

2ρ
q`−3

)1/3
, the result follows.

We can now prove the theorem by averaging on the values of w.

Proof of Theorem 5.3. For all w ∈ W , denote Sw = {Y : f(Y) = w}, ρw = PrY[Y ∈ Sw].
Using Lemma 5.5, the statistical distance, conditioned on the second element being w, is at

most
(

2
ρ2

w·q`−3

)1/3
. Averaging over all values w ∈ W , we get

dist
(
(X, f(X ·T)), (X, f(Y))

) ≤
∑

w∈W

ρw ·
(

2
ρ2

w · q`−3

)1/3

=

=
(

2
q`−3

)1/3

·
∑

w∈W

ρ1/3
w ≤

(
2

q`−3

)1/3

· |W |2/3 =

(√
2 · |W |
q

`−3
2

)2/3

≤ ε ,

assuming

|W | ≤ q
`−3
2 · ε3/2

√
2

.
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6 An Encryption Scheme Secure Against Continual Leakage

In this section, we present the first public-key encryption scheme L that is secure against continual
leakage attacks. Our scheme is based on the linear assumption in bilinear groups. It is param-
eterized by a polynomially bounded integer ` ≥ 7 that allows for a tradeoff between the sizes of
keys and ciphertexts and the maximal tolerable leakage rate: the public and secret keys contain 2`
group elements and a ciphertext contains ` group elements.

We show that our scheme is resilient to leakage of constant rate from the memory and leakage of
sub-constant rate from the key-update procedure and from the key generation procedure. Recalling
Definition 3.1, this corresponds to a case where ρM = Ω(1) and ρG = ρU = o(1).

More specifically, the value of ρM for a general ` can be as high as `−6−γ
2` , for all γ > 0.

For example, taking ` = 12 guarantees resiliency to leakage rate of 1/4 − γ, while the keys and
ciphertexts only contain a constant number of group elements. Taking ` to be asymptotically
increasing, on the other hand, makes the keys and ciphertexts sizes asymptotically increase but
makes the tolerable leakage rate 1/2− o(1).

The value of ρG, ρU for general ` is ω
(

log k
` log p

)
, where k is the security parameter and p is the

order of the group relative to which we work. We cannot provide explicit expressions for ρG, ρU , but
rather we show that for all c > 0, the scheme is resilient in the case where ρG, ρU = c·log k

` log p . In fact,

our argument can be generalized in a straightforward manner to imply resiliency of Ω
(

log T (k)
` log p

)
if

one is willing to assume that the linear assumption is hard for adversaries that run in time (roughly)
T (k). We note that while tolerating such leakage in non-continual memory attacks is trivial, this
is not the case in the continual model.

We remind the reader that a simpler scheme with better parameters can be achieved based on
the less standard SXDH assumption, as described in Section 2.2.

Our scheme is described in Section 6.1. We provide a high-level overview of the security proof
in Section 6.2 and then present the formal proof in Section 6.3.

6.1 The Scheme L[`]

Let us overview the main ideas behind the structure of our scheme. We want to use the fact that
under the linear assumption, random rank-2 matrices in the exponent are indistinguishable from
random rank-3 matrices.

We therefore set the public-key to gA, where A a random 2× ` matrix. The ciphertexts are of
the form gvT

, where v is a vector of length `. Namely, the public-key and the ciphertext together
form a (3 × `) matrix in the exponent. If this matrix is random rank-2 for encryptions of 0 and
random rank-3 for encryptions of 1, then we could use the indistinguishability argument to achieve
(semantic) security. We do this by encrypting 0 by setting gvT

to be a linear combination of the
rows of gA; and encrypting 1 by setting gvT

to be a random vector. One can see that the resulting
distributions are statistically close to the prescribed ones. Thus, security is achieved.

The next question, of course, is figuring out how to decrypt such ciphertexts. We notice a
non-zero vector y in the kernel of A can be used to distinguish the two cases: we can compute
gvT ·y and see if the result equals to g0. This will always be the case for encryptions of 0 and will
only happen with negligible probability for encryptions of 1. This suggests that such y can be used
as a secret-key, but it is not clear how such a secret-key can be safely refreshed.

In order to be able to refresh, we use a secret key of the form gY, where Y = [y1‖y2] and y1,y2

are random vectors in the kernel of A. The fact that the vectors are given in the exponent means
that we cannot compute the product gvT ·yi as suggested before. We thus work over groups with

25



bilinear maps, which enable computing e(g, g)v
T ·Y instead.

The key refresh operation is done by “rotating” the matrix Y: we sample a 2 × 2 full rank
matrix R, and set the new secret key to gY·R. Intuitively, since everything is done in the exponent,
the update operation is indistinguishable from sampling a fresh random secret-key, which turns out
to be a useful property.

The scheme L[`] is formally presented in Figure 3. Correctness (with all but negligible proba-
bility) follows almost immediately by the explanations above.

Encryption scheme L[`]

Parameters. The scheme is parameterized by groups G,GT of prime order p, such that there exists
a bilinear map e : G × G → GT . Let g be a generator of G (and so e(g, g) is a generator for GT ).
An additional parameter ` ≥ 7 is polynomial in the security parameter. Setting different values for
` will enable us a tradeoff between efficiency and the rate of tolerable leakage.

Key-generation. The key-generator runs as follows. It samples A $← Z2×`
p and Y $← ker2(A) (i.e.

Y ∈ Z`×2
p ) (note that this is easy to sample since A is known). It sets pk = gA and sk = gY.

Key-update. To update the secret key sk = gY ∈ G`×2, sample R $← Rk2(Z2×2
p ) and then set

sk′ = gY·R.

Encryption. Given a public-key pk = gA ∈ G2×`, encrypting the bit 0 is done by sampling r $← Z2
p

and setting the output ciphertext to c = grT ·A. Encrypting the bit 1 is done by setting the ciphertext
to c = guT

where u $← Z`
p.

Decryption. Given a ciphertext c = gvT

and a secret-key sk = gY, the decryption process computes
e(g, g)v

T ·Y. If the result is equal to e(g, g)0, then output 0 and otherwise output 1.

Figure 3: Encryption scheme in the CML model, based on the linear assumption.

6.2 Overview of the Security Proof

As explained above, our scheme is resilient to leakage from memory, from the key-update procedure
and from the key generation procedure. We will leave handling with leakage from key-generation
to the end. Thus assume from this point that ρG = 0 until we mention otherwise.

Let us start by considering a possible proof for standard CPA security of L[`] (as already sketched
in Section 6.1 above). The public-key gA contains a random 2 × ` matrix (in the exponent), and
the challenge ciphertext is either a linear combination of the rows of A or a random vector of
length `. The joint distribution of the public-key and ciphertext (we can consider this to be a
matrix V ∈ Z3×`

p whose first 2 rows are the matrix A and its last row is the challenge vT ) is
statistically close to either a random rank-2 matrix or a random rank-3 matrix (in the exponent),
respectively. An adversary that distinguishes these distributions, therefore, immediately breaks the
linear assumption.

Trying to make the argument above leakage resilient, we will need to somehow simulate the
leakage from the secret-key. This seems self defeating, as having a secret-key for the scheme should
mean that the CPA adversary becomes useless (as we can use the secret-key and decrypt the
ciphertext ourselves). We show that the above discouraging intuition is not accurate. To this end,
we rely on the fact that our scheme does not have perfect correctness, but rather has a negligible
probability of being incorrect.

Consider, at this point, the case where no update queries are made, i.e. the same secret-key is
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used throughout the attack. At a very high level, what we will do is show how to generate keys
and a challenge ciphertext in such a way that the secret-key, while being appropriately distributed
respective to the public-key, is useless against our challenge ciphertext. Namely, the distributions
(pk, sk) and (pk, c) are proper, but (pk, sk, c) is far from being proper, in the sense that the secret
key sk is useless in decrypting the specific ciphertext c (c will always decrypt to 0 using sk).6

Hence, a CPA adversary that decrypts c correctly can actually be useful in breaking the linear
assumption.

We then show that if the amount of leakage is sufficiently bounded, then an adversary cannot
gain sufficient information about the secret key sk to discriminate the ciphertext c from a random
ciphertext, and thus should indeed decrypt c correctly (with non-negligible probability). We explain
this in detail below and then explain how to extend this to the continual leakage scenario where
key-updates occur (and thus multiple secret-keys are used and are leaked during the attack).

Let us explain how to generate keys and a challenge ciphertext, such that the keys are properly
distributed but are still useless against the challenge ciphertext, so that a successful CPA adversary
can be used to break the linear assumption. Consider an instance of the linear assumption, this is
a matrix (in the exponent) gC, where C ∈ Z3×3

p is either rank-2 or rank-3. We will use a successful
CPA adversary A to construct a ppt algorithm B that distinguishes between the case that C is of
rank 2 and the case that C is of rank 3.

The algorithm B, on input gC does the following. It samples `− 3 random vectors {xi} $← Z`
p

(with all but negligible probability, these vectors are linearly independent), and generates a 3× `
matrix (in the exponent) gV that has the following properties: (1) If C is a random rank-2 matrix,
then V is a random rank-2 matrix; (2) If C is a random rank-3 matrix, then V is a random rank-3
matrix; (3) The vectors {xi} are uniformly distributed in the kernel of V.

This can be done using linear algebra, as follows. Let X denote the ` × (` − 3) matrix whose
ith column is xi. Let B be a basis for the linear subspace {wT ∈ Z`

p : wT ·X = 0}. Note that B is
efficiently computable given X. Setting gV = gC·B, it holds that V has the same rank as C. By
symmetry, the vectors {xi} are uniformly distributed in ker(V) as required.

The algorithm B feeds the adversary A with the first two rows of gV as the public-key, denoting
it by gA. It generates a secret-key gy1 , gy2 by choosing at random y1,y2

$← {X · t : t ∈ Z`−3
p }, i.e.

randomly sampling from the column span of X. Then, it feeds A with the challenge ciphertext gvT
,

which is the last row of gV. Notice that our secret-key will always decrypt the challenge ciphertext
gvT

to 0, even if vT is independent of the rows of A and hence should be decrypted to 1 (thus, our
secret key is “crippled” w.r.t. the ciphertext gvT

). A CPA adversary that succeeds in decrypting c
correctly (in spite of getting leakage from a “crippled” secret-key) will, therefore, break the linear
assumption by determining if V (and hence C) is rank-2 or rank-3.

Next, we explain why the adversary A, which is given leakage from our “crippled” secret key,
should nevertheless decrypt c correctly (with non-negligible probability). That is, we explain why
it cannot distinguish the “crippled” secret key distribution from the genuine one (given that the
leakage is small enough). To this end, we use the algebraic tool that we develop in Section 5, to show
that a small enough leakage statistically hides the subspace X that the secret-key is sampled from,
making it statistically hard to distinguish our secret-key distribution and the legal distribution
where y1,y2

$← ker(A). Thus, the adversary cannot use the leakage to distinguish between our
“crippled” secret-key and a genuine one. This completes the proof for the non-continual problem.

We now address the fact that the leakage is continual, namely that there is a sequence of phases
in which leakage occurs, each followed by a refresh operation. At this point, however, we still

6It is here that we use the fact that our scheme does not have perfect completeness.
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assume that the key update procedure does not leak (i.e. ρU = 0). While our “legal” key-update
operation never changes the column span of the secret-key,7 we notice that it is computationally
indistinguishable from one that re-samples new vectors y1,y2 from the column span of X at every
update operation.8 Indistinguishability holds as one can consider the legal key distribution as
setting sk′ = gX′·T where X′ is random rank-2, distinguishing gX and gX′

is hard by the linear
assumption, and this holds even in the presence of the matrix A. (Jumping ahead, it is this
indistinguishability argument that is troublesome when leakage from the key-update procedure is
allowed.) Note that this “improper” update can be simulated, since we explicitly know X. This
enables us to apply the above argument consecutively: at each phase, we will leak from new vectors
in the column span of X, which will be statistically close to leaking from y1,y2

$← ker(A), which
is, in turn, indistinguishable from the “legal” key distribution.

Lastly, we are left with treating leakage from the update process (i.e. ρU > 0). Any amount of
such leakage seems to completely break the indistinguishability argument of the previous paragraph.
Intuitively, the adversary is getting leakage from the input to the update procedure (including the
random tape used), and thus may have some information on what the legal output should be. Then,
once the adversary sees some memory leakage from an improper secret-key, used for the security
reduction, it can compare it to what it knows about the legal secret-key, thus catching any attempt
for a switch of distributions as above. In order to overcome this barrier, we must come up with a
way to simulate the leakage from the update, in such a way that will ease the mind of the adversary
A and make it behave properly in spite of the discrepancy between the distributions.

The key observation is that whether or not A’s mind is at ease is an efficiently checkable event.
We can simulate the remainder of the security game, using the proposed improper secret key and
some candidate leakage value (as if everything from this point and on is done legitimately) and
see if A’s success probability decreases or not. If the number of bits being leaked is small enough,
specifically O(log k), we can efficiently go over all possible values until we find the one that works.

This looks good and well, but what if no leakage value works? In this case, we recall again
that the improper key distribution used in our reduction is indistinguishable from the original one.
Therefore, since in the original distribution there is always a good leakage value — the legal value,9

this should also be the case with the improper one. This holds since the event of not finding
an acceptable leakage value is also efficiently checkable (again, by simulating A). A change in
behavior in this respect yields a distinguisher between the real and improper distributions, which
is impossible under our hardness assumption.

We get, therefore, that a leakage of O(log k) bits from the update procedure can indeed be
tolerated. This can be generalized in a straightforward manner to imply a tolerable leakage of
O(log T (k)) bits, if we assume that the linear assumption is hard for (roughly) T (k)-time adver-
saries.

The last thing to do is handle leakage from the key-generation. At this point, however, it is
clear how this can be done (for O(log k) bits of leakage). We use the same technique we use for
updates: after generating our initial secret-key, we go over all possible values of key-generation
leakage, and find one for which A works well.

7Recall that the update procedure takes sk = gY and outputs sk′ = gY·R for an invertible R.
8The new key distribution sets sk′ = gX·T, for a properly sampled matrix T, regardless of the previous sk.
9In fact, this is only true with noticeable probability over the sampling of the secret key, and therefore we may

need to try a few keys before we find a good one.
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6.3 Proof of Security of Encryption Scheme L[`]

Theorem 6.1. Under the linear assumption, for every ` ≥ 7, the encryption scheme L[`] (described
in Figure 3) has the following security guarantee: For all constants γ, c > 0, L[`] is secure in the
CML model with leakage rate

(ρG, ρU , ρM) =
(

c · log k

4` · log p
,

c · log k

(2` + 4) · log p
,

`− 6− γ

2`

)
.

Proof. Suppose, towards contradiction, that there exist constants c, γ > 0 and a ppt adversary A
such that A succeeds in breaking security in the CML model with leakage rate

(ρG, ρU , ρM) =
(

c · log k

4` · log p
,

c · log k

(2` + 4) · log p
,

`− 6− γ

2`

)
.

That is, A succeeds in the security game with probability 1
2 + ε, for ε ≥ 1/poly(k). Let t be some

(polynomial) upper bound on A’s running time. This, specifically, is also an upper bound on the
number of update queries made by A.

We construct a ppt algorithm B that runs in time poly(k, t, 1/ε, kc) = poly(k) and breaks the
linear assumption with probability 1

2 + ε2

32 − negl(k).
First, let us explicitly bound the absolute number of bits that can leak at every update operation

(as opposed to the relative bound ρU). The total bit-length of the secret-key and randomness used
in the update process is 2` log p+4 log p. Thus the absolute number of bits that can be leaked is at
most ρU · (2`+4) log p = c · log k. This means that the image of the leakage function has cardinality
at most kc = poly(k). Similarly, the total number of bits that can leak during the key generation
process is also bounded by c log k.

The algorithm B takes as input a matrix (in the exponent) gC, where C ∈ Z3×3
p , and where

the distribution of C is the following: a bit b
$← {0, 1} is sampled uniformly; if b = 0 then

C $← Rk2(Z3×3
p ) (i.e., C is a random rank 2 matrix); if b = 1 then C $← Rk3(Z3×3

p ) (i.e., C is a
random rank 3 matrix). B will output a guess b′ as to the value of the bit b, such that

Pr[b′ = b] ≥ 1
2

+
ε2

32
− negl(k) ≥ 1

2
+ 1/poly(k) ,

and thus break the assumption.
We actually assume that C is slightly differently distributed: The first two rows of C always

form a random rank-2 matrix, and the last row is either a random linear combination of the first
two rows, in the case that b = 0, or is a truly random vector, in the case that b = 1. We can assume
this w.l.o.g. since this distribution is statistically indistinguishable from the original one.

The algorithm B, on input gC, makes a guess b′ as to the value of the bit b, as follows:

1. Generate a matrix X, and matrices gV, gA, where X ∈ Z`×(`−3)
p , V ∈ Z3×`

p , A ∈ Z2×`
p , such

that

(a) X is uniformly distributed in Rk`−3(Z
`×(`−3)
p ).

(b) A is a random full-rank matrix such that A ·X = 0.

(c) The first two rows of V are identical to A, and the last row, denoted by vT , is distributed
as follows: If C is a rank-2 matrix then vT is a random linear combination of the rows
of A; and if C is a rank-3 matrix then vT is a random vector such that vT ·X = 0.
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This is done by sampling X $← Rk`−3(Z
`×(`−3)
p ), letting gV = gC·B, where B ∈ Z3×`

p is a
matrix whose rows form a basis of the subspace {wT : wT ·X = 0}, and letting gA be the
first two rows of gV.

2. Let pk = gA, and compute a corresponding secret key by choosing a random full-rank matrix
T0

$← Rk2(Z
(`−3)×2
p ) and setting sk0

.= gY0 :=gX·T0 . The distribution of the key pair (pk, sk0)
is statistically close to that of a “legal” key pair, generated by the original key generation
algorithm.

3. Test the success probability of A on the key pair (sk0, pk) with all possible values of leakage
from the key generation, as follows. Define M

.= k·t2
ε2

. For all α ∈ {0, 1}c log k, emulate
the security game with A, conditioned on (sk0, pk) and on α’s being the answer to the key
generation leakage, for M times. For each κ ∈ [M ], let Zκ be an indicator variable for the
event that A succeeded in the κth emulation. Set Z̄0,α:= 1

M

∑
i∈[M ] Zκ.

If Z̄0,α ≥ 1
2 + 3ε

4 − ε
2(t+1) then set η0:=Z̄0,α and continue to the next step. If no α has this

property, then B aborts and returns a random bit b′ $← {0, 1}.
4. Feed the adversary A with the public key gA.

5. In what follows we explain how B answers A’s queries. To this end, B maintains a value for the
current secret-key ski, which he uses to answer leakage queries. Jumping ahead, B emulates
update queries differently than the legal Update procedure, which results in the distribution
of the ski’s being different from the distribution of the secret-keys in the original game. As
a result, the emulation of the leakage from the update procedure will require special care to
prevent A from noticing the change.

• The leakage queries of A are answered by computing the leakage function on the current
secret-key ski. Namely, if in time period i the adversary A sends a leakage query
(leak, fi), then B returns the answer fi(ski).

• To answer update queries, B does the following. Consider the distribution DX defined
by sampling a random full-rank matrix T $← Rk2(Z

(`−3)×2
p ), and outputting gX·T (we

remark that sk0 was sampled in the same way).
Upon receiving the ith update query (update, fi), B updates the secret key as follows.
It samples gYi

$← DX.10 Then, to compute a corresponding leakage, B goes over all
the possible leakage values (note that there are only kc possibilities). For each possible
leakage value α ∈ {0, 1}c·log k, it tests if it is a “good” leakage w.r.t. ski = gYi . A good
leakage is one that (almost) preserves the success probability of A in spite of using the
wrong key-distribution. If no such good leakage is found, we try sampling gYi

$← DX

anew. We will have to show below that with high probability, a good gYi is found after
a sufficiently small number of trials.
In what follows, we show how B estimates the success probability of A, conditioned on
(gYi , α), in order to determine whether α is a good leakage w.r.t. gYi . This is done
similarly to the way B tested the success probability of A (conditioned on the key pair
(sk0, pk)) in Step 3. Recall our definition of M = k·t2

ε2
.

10We only refer to the distribution DX explicitly in the proof of Claim 6.2 below. Until then, one can just consider

setting gYi :=gX·Ti for Ti
$← Rk2(Z(`−3)×2

p ).
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(a) For each κ ∈ [M ], emulate a (fresh) continuation of A while simulating the rest of
its queries legally.
That is, upon receiving an update query (update, fj) in time period j > i, sam-
ple Rj

$← Rk2(Z2×2
p ), set skj :=Update(skj−1;Rj), and leak the prescribed value

fj(skj−1,Rj). Upon receiving a leakage query (leak, fj) in time period j, feed A
with the answer fj(skj). Finally, when A asks for the challenge ciphertext, choose
a random bit β

$← {0, 1}, and give A an encryption c ← Enc(gA, β).
If A’s output is equal to the bit β, then set Zκ = 1; otherwise set Zκ = 0.

(b) Compute Z̄(i,α,gYi ):=
1
M

∑M
κ=1 Zκ.

(c) If Z̄(i,α,gYi ) ≥ ηi−1 − ε
2(t+1) then we say that α is “good”. Otherwise we say that it

is “bad”.

After a good leakage value α has been found w.r.t. some secret key gYi , B will set
ski:=gYi , answer the update query of A with the leakage value α, and will continue the
simulation of A.
To ensure that a good leakage value is found with high probability, B repeats this trial
several times, as follows. Recall the value of η0 set above. Similarly to η0, the value of
ηi (in item (b) below) is an estimation of the success probability of A, conditioned on
its state after the first i updates.

(a) Sample gYi
$← DX

(b) Go over all α ∈ {0, 1}c log k in some arbitrary order (say lexicographic), and test
whether α is “good” with respect to the secret key gYi . If a “good” α is found then
the response to the ith leakage query is set to α and the new secret key is set to
ski:=gYi . In addition, set ηi:=Z̄(i,α,gYi).

(c) Otherwise, if all the possible α’s are “bad”, then go back to step (a). If more
than J

.= tk
ε values of gYi have been tried, then abort and output a random guess

b′ $← {0, 1}.

6. When A asks for the challenge ciphertext, B sends gvT
as the challenge ciphertext.

7. Finally, when A outputs a guess b′, then B outputs the same value b′.

We argue that B guesses the bit b (i.e., b′ = b) with probability 1
2 + ε2

32 − negl(k).
This will follow in a straightforward manner by combining the following 3 claims (the event Λ

will be defined below).

Claim 6.2. Under the linear assumption,

Pr[B doesn’t abort |Λ] ≥ ε/4− negl(k) .

Claim 6.3. It holds that

Pr[b′ = b|B doesn’t abort , Λ] ≥ 1
2

+ ε/8− negl(k) .

Claim 6.4. It holds that
Pr[Λ] = 1− negl(k) .

We start by defining the event Λ and proving Claim 6.4. For all i ∈ {0} ∪ [t], α ∈ {0, 1}c log k,
and for every possible value gYi sampled during the running of B, we define P(i,α,gYi ), as follows.
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Fix the coin tosses of B until it receives the i’th update query from A. Conditioned on this fixing,
P(i,α,gYi ) is the probability of A’s success in an emulated game in which the first i updates are
emulated by B with the ith secret key set to gYi and leakage value for the ith update set to α,
and the remainder of the game is emulated as perscribed (i.e. key updates are performed using
the procedure Update and leakage values are computed by definition). We note that P(i,α,gYi ) is
not a well defined value in its own right, but rather a function of the coin tosses of B until (and
including) the ith update. The value P0,α is defined to be the success probability of A in a game,
fixing (sk0, pk) and taking α as the value of the key-generation leakage. We also denote by Pi the
value of P(i,α,gYi ) for the (α, gYi) that are finally selected by B to be used as leakage value and ski

respectively (P0 is defined analogously to be P0,α for the α that is actually used).
Throughout B’s emulation of the security game with A, it tries to estimate the values of Pi by

sampling M continuations of A and checking the success rate. The event Λ indicates that all such
estimations are sufficiently close to the correct value. Formally, the event Λ holds if and only if
both for all α ∈ {0, 1}c log k, ∣∣Z̄0,α − P0,α

∣∣ ≤ ε

8t

and for every i ∈ {0} ∪ [t], every α ∈ {0, 1}c log k, and all the {gYi} chosen by B,
∣∣∣Z̄(i,α,gYi ) − P(i,α,gYi )

∣∣∣ ≤ ε

8t
.

Note that as a special case, Λ implies that for all i ∈ {0} ∪ [t] it holds that |ηi − Pi| ≤ ε
8t .

Claim 6.4, therefore, is a straightforward application of the Chernoff bound. The formal argu-
ment follows.

Proof of Claim 6.4. By Chernoff,11 for all i, α, gYi ,

Pr
[∣∣∣Z̄(i,α,gYi ) − P(i,α,gYi)

∣∣∣ >
ε

8t

]
≤ 2e−ε2M/(32t2) = 2e−k/32 ,

and the same also holds for Z̄0,α and P0,α. Since the total number of such (i, α, gYi) (and Z̄0,α) is
at most t · kc · J + kc = poly(k), the claim follows by the union bound. ¥

We move on to proving Claim 6.3.

Proof of Claim 6.3. Recall that this claim considers a probability space where B does not abort
and the event Λ occurs (i.e. all ηi’s are close to the respective Pi’s). In such case, by definition

ηt ≥ ηt−1− ε

2(t + 1)
≥ ηt−2− 2ε

2(t + 1)
≥ · · · ≥ η0− tε

2(t + 1)
≥

(
1
2

+
3ε

4
− ε

2(t + 1)

)
− tε

2(t + 1)
=

1
2
+

ε

4
.

Since Λ holds, it implies that Pt ≥ ηt − ε
8t ≥ 1

2 + ε
4 − ε

8t ≥ 1
2 + ε

8 .
However, we are not done because Pt refers to the success probability of A given a legal challenge

ciphertext, while B feeds it with gvT
which is malformed. For example, in the case where b = 1, a

legal challenge ciphertext is uniformly distributed, while the ciphertext gvT
always satisfies vT ·Yi =

0, for any secret key of the form gYi = gX·Ti .
It remains to show, therefore, that using such malformed challenge can only change the success

probability of A by a negligible amount. If b = 0 (i.e. the matrix C is of rank 2) then this
11Recall that the (additive) Chernoff bound implies that if X1, X2, . . . , XM are indicator random variables such

that E(Xi) = µ. Then, Pr[
∣∣X̄ − µ

∣∣ > ε] ≤ 2e−2ε2M .
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immediately follows: in such case, the distribution of vT is identical to that of a valid challenge
ciphertext. Proving this for b = 1 (where C has rank 3) is highly non-trivial, and is proved using
the algebraic tool developed in Section 5, as follows.

Consider the linear space ker(A). Notice that X and gA are sampled in such a way that the
columns of X are within negligible statistical distance from a set of `−3 random vectors in ker(A).
We apply Theorem 5.3 inside the linear space ker(A), one can think of the representation of X and
all other elements relative to some basis of ker(A). The amount of total allowed leakage from each
gYi consists of the leakage α from the update procedure, and of the leakage fi(gYi) from memory.
This amounts to

ρM · |sk|+ ρU(|sk|+ |r|) = ρM · 2` · log p + c · log k .

An important delicate point is that we also need to consider the “leakage” from the gYi that ended
up not being used, because the very fact that they are not used affected the view of the adversary
(since another value was used instead). One can consider these values as leaking a single bit saying
that they are “not good” (which is clearly less than what leaks from the ones that are actually
used, so we will just use the bound above). Therefore, we need to consider leakage from J · t + 1
values of the form gYi = gX·Ti (recall that sk0 also leaks).

Let u $← Z`
p and let Zi

$← ker2(A) for all i. Applying Theorem 5.3 with parameters m̂ = `− 2
(this is the dimension of ker(A)), ˆ̀= `− 3 (this is the number of random vectors in the subspace
that are contained in X), and with functions hi,12 whose range is of cardinality |W | = p2`·ρM · kc,
we get

(
A,v, h0(gX·T0), h1(gX·T1), . . .

) δ≡ (1)(
A,v, h0(gZ0), h1(gZ1), . . .

)≡ (2)
(
A,u, h0(gZ0), h1(gZ1), . . .

) δ≡ (3)(
A,u, h0(gX·T0), h1(gX·T1), . . .

)
. (4)

The transitions from (1) to (2) and from (3) to (4) follow immediately from Theorem 5.3 (in fact,
these also hold if X is a part of the distribution). The transition from (2) to (3) follows from the
fact that b = 1, and thus the distribution of v, even conditioned on A, is uniform in Z`

p.
The value of δ is derived from Theorem 5.2

δ
.= J · t ·

√
|W |
p`−6

+ negl(k) = J · t · 21/3 ·
√

p2`·ρM · kc

p`−6
+ negl(k) ,

where the additional negl(k) comes from X’s being only statistically close to uniform. Assigning
our value of ρM = `−6−γ

2` , we get δ = Jt · kc/2 · p−γ/2 + negl(k) = negl(k).
This concludes the proof of the claim. ¥

Finally, we prove Claim 6.2.

Proof of Claim 6.2. We need to prove that B does not abort with sufficient probability. To see
this, we use the fact that an abort is an efficiently recognizeable event. Our strategy, therefore, is
to replace B with an appropriate B′ that produces a computationally indistinguishable distribution
and bounding the abortion probability of B′. The claim on B will then immediately follow.

12Think of hi as containing the total amount of leakage on ski, including memory leakage and update leakage.
Namely, hi(g

X·Ti)
.
= (αi, fi(g

X·Ti)).
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Specifically, we define B′ as identical to B with the exception that the probability DX, that is
used in step 5, is replaced by a distribution D′ that is defined by the following sampling process:
sample R $← Rk2(Z2×2

p ) and output gY0·R (recall that sk0 = gY0). This means that in B′, the up-
dated secret-keys are sampled from the correct distribution, but the leakage value is still computed
using the “trial and error” mechanism. It should be clear (as will be formally proven below) that
if the keys are sampled legally, then a good leakage value has to exist (with sufficient probability).

The indistinguishability of B and B′ follows from the indistinguishability of the two distributions
DX and D′. This indistinguishability holds even given V, by the following argument. Let V be
a known matrix. Let B ∈ Z`×(`−3)

p be the first ` − 3 columns of a random basis for ker(V) (such
basis contains either ` − 2 or ` − 3 vectors), and let T $← Rk2(Z

(`−3)×2
p ). Let gM be such that

M ∈ Z(`−3)×(`−3)
p and is either random of rank 2 or random of rank `− 3. The linear assumption

implies that distinguishing the two cases given only gM is hard. Note that if M is of rank 2 then
gB·M·T is distributed according to D′. On the other hand, if M is of rank ` − 3 then gB·M·T is
distributed according to DX. Indistinguishability follows and thus,

Pr[B doesn’t abort |Λ] ≥ Pr[B′ doesn’t abort |Λ]− negl(k) .

We move on to bound Pr[B′ doesn’t abort |Λ]. From now on, all events are conditioned on Λ.
We first notice that a standard Markov argument implies that

Pr
[
P0 ≥ 1

2
+

3ε

4

]
≥ ε/4.

It follows that the test in step 3 passes with at least that probability (up to a negligible distance),
since (sk0, pk) are statistically indistinguishable from the proper distribution and therefore, since
Λ holds, when trying the “correct” key-generation leakage value, the test will pass.

Let us now recursively bound the probability of abortion in step i conditioned on no abortion in
previous steps. No abortion in previous steps implies that ηi−1 is well defined and Pi−1 ≥ ηi−1− ε

8t .
A Markov argument implies that with probability ε

8t over ski it holds that Pi ≥ ηi−1− ε
4t when the

“real” leakage value is used. Such ski will surely pass the test (recall that event Λ guarantees that
all Chernoff estimates are close to their respective values). Trying J = tk

ε times guarantees that
such gYi is sampled with all but negligible probability.

It follows that
Pr[B′ doesn’t abort |Λ] ≥ ε

4
− negl(k) ,

and the claim follows. ¥

This completes the proof of the theorem.

7 A Continual-Leakage Secure Identity-Based Encryption Scheme

In this section we present a definition for identity based encryption in the CML model. We then
show how to extend the scheme presented in Section 6 to obtain an identity based encryption
scheme.

First, in Section 7.1, we discuss what the correct definition of IBE in the CML model needs to be,
leading, in Section 7.2, to the formal security definition to be used in this work. Our construction
is presented at a high level in Section 7.3 and is formally stated in Figure 4. We provide a sketch
for the proof of security in Section 7.4 (we do not give a formal proof as it is a straightforward
combination of our encryption scheme, from Section 6, and the linear-based IBE of [BK10]).
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Interestingly, the simplified scheme L∗ (see Section 2.2) does not seem to extend to an IBE
scheme the way our main scheme L does.

7.1 Modeling IBE in the CML Model

In identity based encryption, a trusted authority holds a master secret-key (msk) and posts a set
of public parameters (pp). The public parameters enable anyone to encrypt messages, knowing
only the identity (id) of the intended recipient. The trusted authority can use its master secret key
to produce a respective secret-key (skid) for the user whose identity is id. This secret-key enables
decrypting messages intended for user id.

When applying the CML model to this framework, we notice a significant difference from the
cases of encryption or signatures discussed above. While in the aforementioned cases, only one
entity was holding secret information and thus susceptible to leakage (the decryptor and the signer,
respectively), in the IBE case, we have a “hierarchy” of secrets: The trusted authority holds
msk, naturally breaching its security could imply loss of security for all users; the individual users
have their own secret-keys skid which can also leak just as in the standard context of public-key
encryption. We stress that leakage from one user’s secret-key should have no effect on the security
of another’s. This is because even in the standard definition of security for IBE (with no leakage),
the attacker can access any secret-key of its choosing, except for that of the user being attacked.

The discussion above suggests that a proper definition of IBE in the CML model should address
the issues of leakage from the msk as well as leakage from the individual secret keys skid. While
we present the general model, our solution can only handle the latter leakage type, namely one
from the individual secret-keys skid. On one hand, one could argue that since the msk is a much
more appealing target (as it is related to the security of all users), it may attract more attention
from attackers and thus deserves more protection. This point of view makes our solution seem
less appealing. On the other hand, a situation where the trusted authority does not leak can be
justified by arguing that in real-life situations, the trusted authority has much more resources than
the specific users, and therefore can afford to take counter-measures at the implementation level
to prevent key leakage. In any case, finding schemes that are resilient to the more general class of
attacks remains an interesting open problem.

Most generally, an IBE scheme in the CML model consists of the algorithms Setup, Extract,
Updatemaster, Enc, Dec, Updateuser, where Setup, Extract, Enc, Dec are identical to those in the stan-
dard definition of IBE, the new algorithms Updatemaster, Updateuser correspond to the key-update
procedures of the trusted authority and of an individual user, respectively. The input-output func-
tionalities of these procedures are similar to that of the update procedure in the encryption case. In
the interest of keeping the discussion at an abstract level, we refrain from giving formal definitions.

An attack on an IBE scheme in the CML, therefore, is modeled as follows. The trusted authority
uses the Setup procedure to generate (msk, pp). The setup process may leak some information to
the adversary. The attacker can then (adaptively) specify as many values of id for which it wants to
see skid. In addition, it can make additional leakage queries to msk (Updatemaster is used to refresh
msk when required and this update process may also leak). After this query phase, the attacker
decides which identity id∗ it wants to attack. The trusted authority uses the Extract procedure to
compute skid∗ (this is, of course, not revealed to the adversary). This process may also leak. At
this point, the adversary can make more queries as above. It of course cannot ask for the secret-key
of id∗ but can ask for leakage from it (Updateuser is used to update skid∗ when required, and may
also leak). After this second query phase, the adversary decides on messages m0, m1 and receives
the challenge ciphertext cb, which is an encryption of mb, where b is a random bit sampled by the
challenger. A third query phase now commences, but now no leakage queries are allowed, only skid
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queries for id 6= id∗. After this final query phase, the adversary makes its guess b′ as to the value
of b.

As explained above, in this work we only present a solution for the case where In the case where
no leakage from msk is allowed. This means no leakage from the Setup and Extract procedures as
well. In such case, the above attack becomes simpler (specifically, the types of queries the adversary
can make significantly reduces). We will in fact consider an even weaker security definition that
corresponds to the CML version of selective identity security (or just selective security for short).
In selective security, the adversary is required to decide on the value of id∗ at the beginning of
the experiment (before the public parameters are generated). A trivial reduction shows that a
selective-secure scheme with identity space {0, 1}m, where m is polynomially related to the security
parameter (m = kε), can be extended to a fully-secure scheme with identity space {0, 1}∗ using a
family of collision resistant hash function, with a loss of 2−m factor in security. It is easy to see that
this transformation carries over to the CML model (at least in the case where there is no leakage
from msk). This transformation is rather standard and we will not describe it here in detail.

We give a formal definition of selective security in the CML model in Section 7.2.

7.2 Selective IBE Security in the CML Model — Definition

We formally define the model of attack for selective secure IBE in the CML model. The definition
is in the spirit of the discussion in Section 7.1 above.

Definition 7.1. An IBE scheme (Setup,Extract,Updateuser, Enc,Dec) is selectively secure under
chosen plaintext attack in the CML model, with leakage rate (ρM , ρU), if any ppt adversary succeeds
in the following game with probability negligibly close to 1

2 .

1. Identity selection. The adversary decides on an identity id∗ for which it wants to break the
security of the encryption. It sends id∗ to the challenger.

2. Setup. The challenger runs Setup(1k) to generate (msk, pp) and sends pp to the adversary.

3. Secret-key generation. The challenger runs skid∗,0 ← Extract(msk, pp, id∗). It further sets
i := 0 and L0 := 0.

4. Query 1. The adversary makes queries of the following types:

• Extraction queries (extract, id) where id 6= id∗. The challenger generates skid := Extract(sk, pp, id)
and sends this value to the adversary.

• Leakage queries (leak, f), where f is a circuit. If Li +
∣∣f(skid∗,i)

∣∣ ≤ ρM ·
∣∣skid∗,i

∣∣ then the
challenger returns f(skid∗,i) to the adversary and sets Li := Li +

∣∣f(skid∗,i)
∣∣. Otherwise,

the challenger aborts.
• Update queries of the form (update, f), where f is a poly-size circuit. The challenger

chooses randomness r for the updating process, and computes f(skid∗,i, r). If |f(skid∗,i, r)| >
ρU · |skid∗,i| or if Li + |f(skid∗,i, r)| > ρU ·

∣∣skid∗,i
∣∣ then it aborts. Otherwise, it re-

turns f(skid∗,i, r) to the adversary, and it sets skid∗,i+1 ← Updateuser(skid∗,i, pp, r),
Li+1 ← |f(skid∗,i, r)|, and i ← i + 1.

5. Challenge. The adversary sends two messages m0,m1 to the challenger. The challenger flips
a coin b

$← {0, 1} and computes c ← Enc(pk,mb). It sends c to the adversary.

6. Query 2. The adversary makes additional extraction queries (extract, id) (with id 6= id∗) to
which the challenger answers the same as above.
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7. Finish. The adversary outputs a guess b′ ∈ {0, 1} as to the value of b.

The adversary succeeds if b′ = b.

7.3 Our Construction

We adapt our CML secure public-key encryption scheme into a CML secure IBE scheme. From now
on, we focus our attention on the case of selective security where no leakage from msk is allowed,
as described above. Our scheme can be seen as a combination of our basic scheme from Section 6
and the d-linear IBE scheme of [BK10].

Consider the following simplified version of the [BK10] construction. The public parameters
are a set of 2m + 1 random 2 × 2 matrices in the exponent (where ID = {0, 1}m is the identity
space): gA0 , {gAi,b}i∈[m],b∈{0,1}. The “public key” that corresponds to identity id (i.e. the part of
the public parameters that is required to encrypt for id) is gAid where Aid = [A0‖Aid1‖ · · · ‖Aidm ].
The corresponding secret key skid is a random vector in ker(Aid). Encryption and decryption are
performed very similarly to our scheme L[`]: the ciphertext is a vector in the exponent gvT

where
an encryption of 0 uses vT that is uniform in Span(A) and and an encryption of 1 uses a completely
uniform vT . The master secret key is the matrix A0 (in explicit representation). It is immediate
that using A0, one can sample uniformly from ker(Aid) for all id.

The proof of security in [BK10] is as follows. Since we consider the case of selective security,
the attacker decides on id∗ before the public parameters are generated. This enables generating
the public parameters such that all matrices Ai,1−id∗i (i.e. all matrices that do not “play” in Aid∗)
are explicitly known, the matrix gAid∗ is generated together with the challenge ciphertext gvT

such
that a successful adversary decides whether the matrix whose first two rows are gAid∗ and its third
row is gvT

is of rank 2 or 3, thus breaking the linear assumption. Clearly for all id 6= id∗, the
matrices that are explicitly known can be used to sample from ker(Aid) and thus one can answer
the adversary’s queries.

Adapting this idea to achieve key resiliency is straightforward using what we know of L[`]. We
now rather than generating the secret key as a single vector in ker(Aid), generate it as two such
vectors. This will enable Updateuser operations just as we do in L[`]. Therefore we can reduce the
CML security of the resulting IBE scheme to the CML security of L[`].

We formally define our IBE scheme IBL[m] in Figure 4. Correctness immediately follows. We
discuss its security guarantees below.

7.4 Overview of the Security Proof

The following theorem establishes the selective security of our scheme in the CML model (with no
leakage from the master key). Since the proof is just a combination of ideas from Section 6 and
from [BK10], we only sketch it here.

Theorem 7.1. For any polynomially bounded parameter m, the IBE scheme IBL[m] is selective
secure under chosen plaintext attack in the CML model, such that for all γ, c > 0 the scheme is
secure with leakage rate

(ρU , ρM) =
(

c · log k

` · log p
,
m− 2− γ

2(m + 1)

)
.

Proof sketch. We prove by reducing the security of IBL[m] to that of the scheme L[`] presented
in Section 6, with parameter `

.= 2m + 2. Assigning the said value of ` into the parameters of
Theorem 6.1 immediately implies the leakage parameters in the theorem statement above.
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Identity-based encryption scheme IBL[m]

• Parameters. The scheme is parameterized by groups G,GT of prime order p such that there
exists a bilinear map e : G×G→ GT . Let g be a canonic generator for G (and thus e(g, g) is
a generator for GT ).
The identity space of the scheme is ID = {0, 1}m, where m ∈ N is polynomially related to the
security parameter. We require an exponential identity space so that it is possible to apply
known methods for obtaining fully secure IBE from a selective-secure one.
Our scheme is a bit-encryption scheme, namely its message space is M = {0, 1}.

• Setup. The setup procedure runs as follows. It samples A0
$← Z2×2

p and sets msk ← A−1
0 (if

A0 is not invertible, the procedure fails).

It then samples gAi,b
$← G2×2 for all i ∈ [m] and b ∈ {0, 1} (note that no explicit generation

of Ai,b is required). The public parameters are set to pp:={gA0 , {gAi,b}i,b}.
We denote Aid

.= [A0‖Aid1‖ · · · ‖Aidm
]

• Extract. To extract a secret key for identity id ∈ {0, 1}m we sample x1,x2
$← ker(Aid) and

set gX:=[gx1‖gx2 ]. We then define skid
.= gX.

In order to sample x $← ker(Aid) ⊆ Z2m+2
p , we define Bid

.= [Aid1‖ · · · ‖Aidm
] to be the part of

Aid that does not contain A0 and recall that A0 is invertible and msk = A−1
0 . The marginal

distribution of any 2m elements in the vector x is uniform. Therefore we sample r $← Z2m
p

and set

gx:=
[

gr

g−A−1
0 ·Bid·r

]
.

• Update (user). To update a secret-key skid = gX, we sample T $← Rk2(Z2×2
p ) and output

sk′id = gX·T.

• Encrypt. To encrypt a message µ ∈ {0, 1} for identity id, using the public parameters
pp = {gA0 , {gAi,b}i,b}, we compute the ciphertext c

.= gvT

where gvT ∈ G2m+2 is defined such
that

vT $←
{

Span(Aid) if µ = 0
Z2m+2

p if µ = 1 .

Clearly, gvT

can be efficiently sampled in both cases.

• Decrypt. To decrypt a ciphertext c = gvT

using secret key skid = gX, we use the bilinear
map to compute e(gvT

, gX) = e(g, g)v
T ·X and output µ = 0 if the result is equal to e(g, g)0

and µ = 1 otherwise.

Figure 4: IBE scheme in the CML model.

Consider an adversary A for the selective IBE security in the CML model of IBL[m]. Then an
adversary B for the semantic security of L[2m+2], with essentially the same success probability can
be defined as follows. The adversary B will use the challenger of L[2m+2] to simulate a challenger
for IBL[m].

1. B simulates A to receive the value of the target identity id∗.

2. B gets a public key for L[2m + 2] from the challenger. This public key is of the form gA for
A $← Z2×(2m+2)

p . B interprets this value as gAid∗ . This interpretation defines values for gA0

and {gAi,id∗
i }i.
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3. B samples matrices Ai,1−id∗i
$← Z2×2

p for all i ∈ [m]. It then sets pp := {gA0 , {gAi,b}i,b}
and sends this to A as the set of public parameters for the scheme IBL[m]. Note that the
distribution of pp here is exactly as prescribed.

4. The first query phase of A is simulated. For the queries made by A, B answers as follows.

• Extraction queries of the form (extract, id) for id 6= id∗ can be answered by B by consid-
ering a location i′ ∈ [m] for which idi′ 6= id∗i′ . This implies that Ai′,id is explicitly known
to B who can use it to generate skid (assuming that Ai′,id is invertible which is the case
with all but negligible probability).

• Leakage queries of the form (leak, f) and update queries of the form (update, f) are
forwarded to the challenger of L[2m+2] as leakage and update queries. The challenger’s
answer is then forwarded back to A.
We notice that by definition, the distribution of answers that A gets in this simulation
is identical to that produced by a “legal” challenger for IBL[m].

5. B simulates the challenge phase of A to obtain the messages µ0, µ1. It forwards these messages
to the challenger to obtain the challenge ciphertext c, which is forwarded to A.13

6. The second query phase of A is simulated exactly as the first one.

7. When A terminates and returns a guess b′, B terminates as well and returns the same b′.

It is straightforward that the simulation of A’s view is accurate up to a negligible term and also
that if A wins in its experiment then so does B in its. The result thus follows.

8 Continual Leakage Resilience: From Encrypting to Signing

In this section, we show how to construct a signature scheme that is secure against continual leakage,
using as a building block any encryption scheme secure against continual leakage. Specifically, given
an encryption scheme that is semantically secure in the CML model with leakage rate (ρG, ρU , ρM),
we construct a signature scheme that is existentially unforgeable under adaptive chosen message
attacks in the CML model, with leakage rate (ρG, ρU , ρS, ρM), where the value of ρS, which is the
leakage rate from the signing algorithm, is given below.

In fact, our construction only relies on the ability to verify that a key-pair (sk, pk) is valid, and
our security proof reduces the unforgeability of the signature scheme to actually finding a valid sk
for the encryption scheme. Thus a much weaker primitive (a “leakage resilient one-way function”)
could have been used. In the interest of keeping the presentation simple, we do not explicitly define
this “middle stage” and work directly with an encryption scheme.

Throughout this section, we assume a stronger leakage resilience property on the CML secure
encryption scheme that underlies our construction: We assume that the scheme remains secure even
if the size of the leakage is unbounded, so long as the image of the leakage function has bounded
cardinality. Namely, we allow the leakage to be arbitrarily long, but require that the secret key sk
has “enough” min-entropy left conditioned on the leakage. We stress that our encryption scheme,
presented in Section 6, is indeed secure with respect to this (stronger) security definition.

First, in Section 8.1, we construct such a signature scheme with ρS = 0; i.e., the scheme does
not tolerate any leakage from the signing process. In addition to relying on an encryption scheme

13Since both schemes encrypt bit by bit, one can just assume that µ0 = 0 and µ1 = 1, however we chose to give a
more general description.
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secure against continual leakage, here we also rely on the existence of an unbounded simulation-
sound NIZK proof system (see Definition 4.2). This scheme follows the paradigm of Katz and
Vaikuntanathan [KV09] for constructing leakage-resilient signature schemes in the bounded leakage
model, although we must modify the scheme appropriately so as to tolerate continual leakage.

Then, in Section 8.2, we construct such a signature scheme with ρS = ρM/α(k), where α(k) =
ω(log k), and the smaller α(k) is, the stronger the underlying assumption is. Namely, we rely
on the assumption that there exists a family H = {Hk}k∈N of collision resistant hash functions
such that for every h ∈ Hk, h : {0, 1}∗ → {0, 1}α(k). Moreover, we rely on the existence of lossy
trapdoor functions with oblivious representation (see Definition 4.4), and we rely on the existence
of short non-interactive arguments (see Definition 4.3). We note that all known constructions of
the latter, were proven to be secure only in the random oracle model [Kil92, Mic00, BG08]. Finally,
we note that in order to deal with leakage from the signing process we generalize the CML model,
as explained in Section 8.2 (see Definition 8.1).

8.1 Continual Leakage Resilience — No Leakage from Signing Process

In this section we construct a signature scheme T1 = (Gen, Sign, Ver, Update) that is existentially un-
forgeable under adaptive chosen message attack in the CML model with leakage rate (ρG, ρU , 0, ρM).
Our signature scheme relies on the following ingredients:

• A public-key encryption scheme L = (L-Gen,L-Enc,L-Dec,L-Update) that is semantically
secure in the CML model with leakage rate (ρG, ρU , ρM). We assume the encryption scheme
L has the following property:14 there exists a negligible function µ and a deterministic
polynomial-time predicate T such that T (pk, sk) = 1 iff (pk, sk) ← L-Gen(1k) or sk cor-
rectly decrypts ciphertexts encrypted using pk except with probability µ(k)).

• A dense public-key encryption scheme E = (Gen, Enc,Dec) that is semantically secure (with
no leakage guarantees). The “dense” property means that the public key is indistinguishable
from a random string, and so public keys (or at least strings indistinguishable from valid
public keys) can be sampled “obliviously” without knowledge of the corresponding secret key.

Such schemes are known to exist e.g. under the DDH or the LWE assumptions (e.g. [Gam84,
Reg05]). In fact, even our scheme from Section 6 has this property.

• An unbounded simulation-sound NIZK proof system Π = (`, P, V, S1, S2) for the following
language L:

L =
{
(m, c, pk′, pk) : ∃sk, r s.t. c = Encpk′(sk; r) and T (pk, sk) = 1

}
.

Namely, (m, c, pk′, pk) ∈ L if and only if c is an encryption (using encryption scheme E and
the public key pk′) of a secret key sk that corresponds to pk (with respect to encryption
scheme L).15

Our signature scheme T1 = (Gen, Sign, Ver, Update) is defined in Figure 5.
14In fact, we can use a slightly weaker property that all encryption schemes have, but for the sake of readability,

we make this simplifying assumption.
15One may notice that the m part of the input does not participate in the verification process. Namely, whether

(m, c, pk′, pk) ∈ L, or not, is independent of the value of m. As demonstrated in [KV09], having m as a part of the
input makes the NIZK proof attached to a specific message, and prevents “cut and paste” attacks.
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Signature scheme T1

Key generation. The key-generation algorithm Gen does as follows:

1. Sample a key-pair for the leakage-resilient encryption scheme (pk, sk) ← L-Gen(1k), using
secret/public randomness as specified by L-Gen.

2. Using public randomness, sample (obliviously) a public key pk′ for the (ordinary) encryption
scheme E .

3. Using public randomness, sample a string crs
$← {0, 1}`(k).

The signing key is sk, and the verification key is vk = (pk, pk′, crs).

Signing. Given inputs m, a secret key sk, and a verification key vk = (pk, pk′, crs), do:

1. Choose a random string r and compute c ← Encpk′(sk; r).

2. Compute a proof π for the statement (m, c, pk′, pk) ∈ L, with respect to the common random
string crs, using (sk, r) as the witness. Namely, compute π ← Pcrs((m, c, pk′, pk), (sk, r)).

Output σ = (c, π) as a signature for m.

Verifying. To verify a signature σ = (c, π) on a message m with respect to the verification key
vk = (pk, pk′, crs), check whether π is a valid proof of the statement (m, c, pk′, pk) ∈ L with respect
to the common random string crs.

Updates. The update procedure Update is identical to the update procedure of L, using se-
cret/public randomness as specified by L-Update.

Figure 5: Signature scheme in the CML model.

Theorem 8.1. Let L be a semantically secure public-key encryption scheme in the CML model,
with leakage rate (ρG, ρU , ρM); let E be a semantically secure dense public-key encryption scheme;
and let Π be an unbounded simulation-sound NIZK proof system. Then signature scheme T1 =
(Gen, Sign,Ver,Update) described in Figure 5 is existentially unforgeable under adaptive chosen
message attacks in the CML model, with leakage rate (ρG, ρU , 0, ρM).

Proof. Let F be a ppt forger attacking T1 with the specified leakage rate. We consider a sequence
of experiments, and let Pri[·] denote the probability of an event in Experiment i. We let Succ
denote the event that F succeeds, as in Definition 3.2.

Experiment 0. This is the experiment of Definition 3.2.

Experiment 1. We introduce the following differences with respect to the preceding experiment:
when setting up the public key, we now generate the common random string crs of the simulation-
sound NIZK by computing (crs, τ) ← S1(1k). We also generate the public key pk′ by running the
key-generation algorithm (pk′, sk′) ← Gen(1k). Note that when answering leakage queries of F ,
the secret randomness is unchanged and crs, pk′ are treated as public randomness just as in the
previous experiment. It follows easily that the difference |Pr1[Succ]− Pr0[Succ]| is negligible.

Experiment 2. We modify the preceding experiment by answering signing queries as follows: to
sign m, generate c ← Encpk′(sk) as before but then compute π as π ← S2((m, c, pk′, pk), crs, τ).
The (adaptive) zero-knowledge property of Π implies that |Pr2[Succ]−Pr1[Succ]| is negligible. Note
that we rely here on the fact that there is no leakage from the signing process (i.e., ρS = 0).

Experiment 3. We modify the preceding experiment by answering signing queries as follows:
to sign m, now compute c ← Encpk′(0|sk|) (and then compute π as in Experiment 2). Semantic
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security of encryption scheme E implies that |Pr3[Succ] − Pr2[Succ]| is negligible. Again, we rely
here on the fact that there is no leakage from the signing process.

We now prove that Pr3[Succ] is negligible, by reduction to the semantic security of public-key
encryption scheme L in the CML model. Construct the following ppt adversary A attacking L:

1. Generate (pk′, sk′) ← Gen(1k) and (crs, τ) ← S1(1k).

2. Run F as a subroutine. Given f as output by F , define fL(·, ·) .= f(·, ·, pk′, crs) and output
the leakage function fL. (Note that fL(r, p) ≤ ρG · |r| iff f(r, p, pk′, crs) ≤ ρG · |r|.) Obtain in
return a public key pk, public randomness p, and leakage fL(r, p). Give to F the verification
key (pk, pk′, crs), public randomness p, pk′, crs, and leakage fL(r, p) = f(r, p, pk′, crs).

3. Continue running F , responding to its signing queries as specified in Experiment 3. (Recall
that we do not allow leakage during signing queries.)

4. When F makes a leakage query (leak, f), adversary A forwards this query to its own leakage
oracle and then forwards the response to F . Note that the size of the secret key in T1 is
identical to the size of the secret key in L, so the relative leakage bound ρM is respected.

5. When F makes an update query (update, f), adversary A forwards this query to own update
oracle and then forwards the response to F .

6. Assuming the challenger has not aborted, F outputs a pair (m,σ) with σ = (c, π). If F
succeeds, thenA uses the secret key sk′ to decrypt the ciphertext c and obtain sk := Decsk′(c).
If (pk, sk) is not a valid key-pair, then A aborts. Otherwise, A outputs two distinct messages
m0,m1 and receives a challenge ciphertext cb ← L-Encpk(mb). It then uses the secret key sk
to decrypt cb and thus guess b.

Note that A provides a perfect simulation of Experiment 3 for F . Therefore, F succeeds in
outputting a valid forgery with probability exactly Pr3[Succ]. Simulation soundness of Π, together
with the fact that σ = (c, π) is a valid signature, implies that (pk, sk) is a valid key-pair with all
but negligible probability. Thus,

Pr[A succeeds] ≥ Pr[A succeeds |F succeeds in Experiment 3] · Pr[F succeeds in Experiment 3]
≥ (1− negl(k)) · Pr[F succeeds in Experiment 3] ,

and so Pr3[Succ] must be negligible, as desired.

8.2 Continual Leakage Resilience — With Leakage from the Signing Process

The construction in the previous section is not necessarily resilient to leakage that occurs during
the signing process. In particular, if part of the randomness used to encrypt sk (during the course
of computing a signature) is leaked, then there is no longer any guarantee that sk remains secret.
Similarly, if part of the randomness used to compute the NIZK proof is leaked then there is no
longer any guarantee that the witness (which includes sk) remains hidden.

Here we show how to modify the signature scheme so as to obtain security against continual
leakage, even if it occurs during the signing process. Interestingly, we solve this by making our
scheme leak more: In our new scheme, the signatures themselves leak information about the signing-
key. Thus the scheme does not even conform with the standard definition of security (without
leakage). In the CML model, however, this caveat is tolerable, since we have a method for refreshing
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the key. We have to require, however, that the signing-key is periodically refreshed, even regardless
of any adversarial action, resulting in a variant of CML security. In addition, we need to rely on
stronger assumptions. We discuss these in turn.

In our modified model of continual leakage resilience, we add an additional `-bit leakage that
occurs each time a signature is generated; this leakage is in addition to any leakage explicitly
specified by the adversary. As explained above, this additional leakage represents information
included in the signature itself (that is needed in order to verify). To ensure meaningful security, as
usual, we need to ensure that the total leakage is some bounded fraction of the secret-key length.
As a consequence, the signer must now run the update operation every time it issues a certain
number of signatures, even if it is willing to assume that no additional leakage occurred. A formal
definition, for the case of general `, follows.

Definition 8.1. Signature scheme (Gen,Sign, Ver, Update) is existentially unforgeable under adap-
tive chosen message attack in the CML model, with leakage rate (ρG, ρU , ρS, ρM) and signature
leakage ` = `(k), if any ppt forger succeeds in the following game with only negligible probability.

1. Initialize. The forger specifies a circuit f with |f(r, p)| ≤ ρG · |r| for all r, p. The chal-
lenger chooses “secret randomness” r and “public randomness” p, generates (sk0, vk) ←
Gen(1k; r, p), sends (vk, p, f(r, p)) to the forger, and sets i := 0 and L0 := |f(r, p)|.

2. Signatures, leakage, and updates. The forger makes queries of the following types:

• Signing queries (sign,m, f), where f is a circuit with |f(sk, r, p)| ≤ ρS · (|sk|+ |r|) for
all sk, r, p. The challenger chooses “secret randomness” r and “public randomness” p,
and computes σ ← Signski,vk(m; r, p). If Li + |f(ski, r, p)| + ` ≤ ρM · |ski| then the
challenger returns (σ, p, f(ski, r, p)) to the forger and sets Li := Li + |f(ski, r, p)| + `.
Otherwise, the challenger aborts.

• Update queries (update, f), where f is a circuit with |f(sk, r, p)| ≤ ρU · (|sk|+ |r|) for
all sk, r, p. The challenger chooses “secret randomness” r and “public randomness” p,
and computes ski+1 := Updatevk(ski; r, p). If Li + |f(ski, r, p)| ≤ ρM · |ski| then the chal-
lenger returns (p, f(ski, r, p)) to the forger, sets i := i+1, and sets Li+1 := |f(ski, r, p)|.
Otherwise, the challenger aborts.

• Leakage queries (leak, f), where f is a circuit. If Li + |f(ski)| ≤ ρM · |ski| then the
challenger returns f(ski) to the forger and sets Li := Li + |f(ski)|. Otherwise, the
challenger aborts.

3. Finish. Assuming the challenger did not abort, the forger outputs (m∗, σ∗).

The forger succeeds if it never made the query (sign, m∗), and Vervk(m∗, σ∗) = 1 .

Note that Definition 8.1 generalizes Definition 3.2, and the two coincide for ` = 0.
Our construction, presented in Figure 6, can be viewed as modifying the scheme from the

previous section in two ways:

• Recall that in our previous construction, each signature contained an encryption of sk — the
secret-key of the underlying leakage-resilient encryption scheme. Now, rather than using a
public-key encryption scheme to encrypt sk, we “encrypt” it using a family of lossy trapdoor
functions (Sinj , Sloss, G, G−1), in a particular way (see Figure 6).
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• Instead of using a (simulation-sound) NIZK proof system, we use a (non-interactive) argument
system with short proofs; i.e., proofs that are significantly shorter than the witness size.
Intuitively, even though we cannot say much about what information might be leaked by a
proof of some statement, we can bound the leakage by the length of the proof. (For our
purposes, we can obtain proofs of size ω(log2 k).) Proofs are with respect to the following
NP language: L′ =

{({yi}k
i=1, {si}k

i=1, pk
)}

for which there exist sk, {ri} such that:

yi = Gsi(ri)
∧ ⊕k

i=1 ri = sk
∧

T (pk, sk) = 1.

The scheme we describe achieves only a weaker notion of security, termeda-priori unforgeability
against chosen-message attacks (a-cma) in [BK10], where the adversary is given a random “chal-
lenge” message m in advance, can request signatures on any messages other than m, and then
succeeds only if it outputs a forgery on m. We then apply a recent transformation from [BK10] to
obtain a scheme satisfying Definition 8.1.

Signature scheme T2

Key Generation. The key-generation algorithm Gen does as follows:

1. The message space of the scheme is {0, 1}n where n ∈ N is related to the security parameter
k by some function n = α(k) to be determined later.

2. Sample a pair of keys for the leakage-resilient encryption scheme (pk, sk) ← L-Gen(1k), using
secret/public randomness as specified by L-Gen.

3. For i ∈ [n] and b ∈ {0, 1}, sample (obliviously, using public randomness) a key si,b for a lossy
trapdoor function.

4. Using public randomness, choose a string crs for a non-interactive argument system.

The signing key is sk, and the verification key is vk = (pk, {si,b}, crs).
Signing. Given inputs m, a secret key sk, and a verification key (pk, {si,b}, crs), do:

1. Using secret randomness, choose n random strings r1, . . . , rn such that
⊕n

i=1 ri = sk.

2. Compute yi := Gsi,mi
(ri) for all i.

3. Using public randomness, compute a non-interactive argument π for the statement
({yi}n

i=1, {si,mi}n
i=1, pk) ∈ L′, using sk, {ri}n

i=1 as the witness.

Output σ = ({yi}n
i=1, π) as a signature for m.

Verifying. To verify a signature σ = ({yi}, π) on a message m, with respect to the verification key
(pk, {si,b}, crs), check whether π is a valid proof of the statement ({yi}n

i=1, {si,mi}n
i=1, pk) ∈ L′ with

respect to crs.

Updating. The update procedure Update is identical to the update procedure of the underlying
leakage-resilient encryption scheme L, using public/secret randomness as directed by L-Update.

Figure 6: Signature scheme in the CML model.

Theorem 8.2. Let L be a semantically secure public-key encryption scheme in the CML model,
with leakage rate (ρG, ρU , ρM); let (Sinj , Sloss, G, G−1) be a family of LTDF with oblivious sampling
(see Definition 4.4) with lossy parameter `/2; and let Π be a non-interactive argument system with
proofs of length `/2. Then signature scheme T2 described in Figure 6 is a priori unforgeable under
chosen-message attacks in the CML model, with leakage rate (ρG, ρU , ρS, ρM), where ρS = ρM , and
signature leakage `.
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Proof. Let F be a ppt forger attacking T2, and let Pr[Succ] denote the success probability of F
with respect to the notion of a priori unforgeability (and the stated leakage parameters).

We first modify the experiment in the following way: Let m = m1 · · ·mn be the random
(challenge) message given to the adversary. Instead of generating all seeds {si,b} obliviously, we
now generate the seeds {si,mi}n

i=1 using Sinj , and generate the remaining seeds using Sloss. The
properties of the LTDF immediately imply that this has only a negligible effect on the success
probability of F . Let Pr′[Succ] denote the success probability of F in this modified experiment.

We show that Pr′[Succ] is negligible, by reduction to the semantic security of L in the CML
model. Construct the following ppt adversary A attacking L:

1. Choose a random message m ← {0, 1}n and give it to F .

2. For all i, compute (si,mi , ti) ← Sinj(1n) and (si,m̄i ,⊥) ← Sloss(1n). Also choose a random crs
for the non-interactive argument system.

3. Run F as a subroutine. Given f as output by F , define fL(·, ·) .= f(·, ·, {si,b}, crs) and output
the leakage function fL. (Note that fL(r, p) ≤ ρG · |r| iff f(r, p, pk′, crs) ≤ ρG · |r|.) Obtain in
return a public key pk, public randomness p, and leakage fL(r, p). Give to A the verification
key (pk, {si,b}, crs), public randomness (p, {si,b}, crs), and leakage fL(r, p) = f(r, p, {si,b}, crs).

4. When F makes a signing query for a message m′ with leakage function f , adversary A answers
it as follows.

(a) Find an index i such that m′
i 6= mi.

(b) For all j 6= i, choose random rj and compute yj := Gsj ,m′
j
(rj).

(c) Choose randomness r for the non-interactive argument system.

(d) Make a leakage query (leak, g) where the circuit g has the values {rj}j 6=i hard-wired into
it, and on input sk it computes the following:

• Set ri := sk ⊕⊕
j 6=i rj and compute yi

.= Gsi,m′
i
(ri).

• Compute a non-interactive argument π for the statement ({yi}n
i=1, {si,m′

i
}n

i=1, pk) ∈
L′ with respect to crs, using witness (sk, {ri}n

i=1) and randomness r.
• Compute f(sk, {ri}n

i=1, r).

Finally, the circuit g on input sk outputs (yi, π, f(sk, {ri}n
i=1, r)).

(e) Give to F the signature ({yi}n
i=1, π), public randomness r, and leakage f(sk, {ri}n

i=1, r).

The total leakage of A’s query (in an information-theoretic sense) is |f(sk, {ri}, r)| + `/2 +
`/2 = |f(sk, {ri}, r)|+ ` bits, where `/2 bits are due to the leakage16 from yi and `/2 bits are
due to π.

5. When F makes a leakage query (leak, f), adversary A forwards this query to its own leakage
oracle and then forwards the response to F . Since the size of the secret key in T2 is identical
to the size of the secret key in L, the global bound on the relative leakage is respected.

6. When F makes an update query (update, f), adversary A forwards this query to own update
oracle and then forwards the response to F .

16Although |yi| > `/2, the value yi only leaks `/2 bits (with all but negligible probability) in an information-
theoretic sense.
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7. Assuming the challenger has not aborted, F outputs a signature σ = ({yi}, π). If F succeeds
(and so, in particular, the proof π is valid), then A uses the trapdoors {ti} to compute
{ri := G−1

si,mi
(yi)} and finally sk =

⊕n
i=1 ri. If (pk, sk) is not a valid key-pair, then A

aborts. Otherwise, A outputs two distinct messages m0, m1 and receives a challenge ciphertext
cb ← L-Encpk(mb). It then uses the secret key sk to decrypt cb and thus guess b.

Note that A provides a perfect simulation of the modified experiment for F . Therefore, F
succeeds in outputting a valid forgery with probability exactly Pr′[Succ]. Computational soundness
of Π, together with the fact that σ = ({yi}, π) is a valid signature, implies that (pk, sk) is a valid
key-pair with overwhelming probability. The theorem follows easily.

We now relate security in the model of a priori unforgeability to security against the standard
notion of existential unforgeability.

Theorem 8.3. Assume that there exists a signature scheme T2 (for messages of length at least
n = α(k)) that is a priori unforgeable under adaptive chosen-message attacks in the CML model,
with leakage rate (ρG, ρU , ρS, ρM) and signature leakage `, and assume the existence of collision-
resistant hash functions mapping strings of length k to strings of length α(k). Then there exists
a signature scheme T ′2 that is existentially unforgeable under adaptive chosen-message attacks with
leakage rate (ρG, ρU , ρS

α(k) , ρM) and signature leakage ` · α(k).

Note that α(k) can be made as small as ω(log k), at the price of relying on an exponential
hardness assumption.
This theorem follows from a very recent work of [BK10], which shows how to convert any signature
scheme that is a priori unforgeable under adaptive chosen message attacks, into one which is exis-
tentially unforgeable under adaptive chosen message attacks.17 Looking into their transformation,
it is easy to see that their transformation also works for signature schemes in the CML model, with
the following parameters.

Corollary 8.4 ([BK10]). There exists a generic transformation for converting any signature scheme T2

that is a priori unforgeable under adaptive chosen message attacks in the CML model with leak-
age rate (ρG, ρU , ρS, ρM) and signature leakage `, into a new signature scheme T ′2 that is exis-
tentially unforgeable under adaptive chosen message attacks in the CML model with leakage rate
(ρG, ρU , ρS

α(k) , ρM) and signature leakage ` · α(k), assuming the message space of T2 is contained in

{0, 1}α(k).

Very loosely speaking, the new signing algorithm signs all the prefixes of the message to be
signed (actually, it signs a universal hash function applied to each prefix, where the universal hash
function is added to the verification key). This intuitively explains the loss in the leakage rate from
the signing algorithm and the loss in the signature leakage. The key generation of T ′2 is almost
identical to that of T2, except that T ′2 has the additional universal hash function in its verification
key, but the private randomness used by the key generation of T ′2 is identical to that of T2 (and
the secret keys in both schemes are identical). Moreover, the update algorithm of T ′2 is identical to
that of T2. This explains why the rest of the parameters ρG, ρU , ρM are left unchanged.

Proof of Theorem 8.3. First, using the collision resistant hash family H, one can assume without
loss of generality that the message space of T2 is contained in {0, 1}α(k), by first hashing the message

17Actually, the transformation of [BK10] converts any signature scheme that is a priori unforgeable under static
message attacks into one which is existentially unforgeable under adaptive chosen message attacks. But we will only
apply it to schemes which are a priori unforgeable under adaptive chosen message attacks.
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and then signing it. Then, Corollary 8.4 immediately implies that there exists a signature scheme
T ′2 that is existentially unforgeable under adaptive chosen message attacks in the CML model with
leakage rate (ρG, ρU , ρS

α(k) , ρM) and signature leakage ` · α(k), as desired.

Finally, we combine Theorem 8.2 and Theorem 8.3, to obtain the main result of this subsection.

Theorem 8.5. Assume the existence of: (1) a semantically secure public-key encryption scheme
in the CML model, with leakage rate (ρG, ρU , ρM); (2) a family of LTDF with oblivious sampling
with lossy parameter `/2; (3) a non-interactive argument system with proofs of length `/2; (4) a
collision-resistant hash functions mapping strings of length k to strings of length α(k). Then there
exists a signature scheme that is existentially unforgeable under adaptive chosen message attacks in
the CML model, with leakage rate (ρG, ρU , ρS, ρM), where ρS = ρM

α(k) , and signature leakage ` · α(k).
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A A Linear Algebraic Tool

We prove the following lemma whose proof is a straightforward implementation of the analysis in
[BFO08, Lemma 7.1].

Lemma A.1. Let m, `, d ∈ N, m ≥ ` ≥ 2d and let q be a prime. Let X $← Zm×`
q , let T $← Rkd(Z`×d

q )

and let Y $← Zm×d
q . Let f : Zm×2

q → W be some function. Then,

dist
(
(X, f(X ·T)), (X, f(Y))

) ≤ ε,

as long as
|W | ≤ 4 · (1− 1/q) · q`−(2d−1) · ε2.

Proof. The proof is an adaptation of the “simple case” in the proof of [BFO08, Lemma 7.1]. The
first part of our proof, up to and including Eq. (5), is taken directly from there (with the required
changes of notation), the remainder of the proof is a sequence of straightforward derivations.

Define, for random variables X, Y supported on a domain W ,

Col(X) .=
∑

w∈W

Pr[X = w]2

D(X, Y ) .=
∑

w∈W

(Pr[X = w]− Pr[Y = w])2 .

It holds that

dist
(
(X, f(X ·T)), (X, f(Y))

) ≤ 1
2

√
|W | · EX[D(f(X ·T), f(Y))] . (5)

Let us focus, therefore, on EX[D(f(X ·T), f(Y))], recalling that for all T ∈ Rkd(Z`×d
q ) it holds

that X ·T is uniformly distributed in Zm×d
q (i.e. identically distributed to Y).

EX[D(f(X ·T), f(Y))] = EX

∑

w∈W

(
Pr
T

[f(X ·T) = w]− Pr
Y

[f(Y) = w]
)2

= EX

∑

w∈W

(
ET[1f(X·T)=w]− EY[1f(Y)=w]

)2

= EX,T1,T2

[ ∑

w∈W

1f(X·T1)=f(X·T2)=w

]− 2 · EX,T,Y

[ ∑

w∈W

1f(X·T)=f(Y)=w

]

+EX,Y1,Y2

[ ∑

w∈W

1f(Y1)=f(Y2)=w

]

= EX,T1,T2 [1f(X·T1)=f(X·T2)]− 2 · EX,T,Y[1f(X·T)=f(Y)] + EY1,Y2 [1f(Y1)=f(Y2)]
= EX,T1,T2 [1f(X·T1)=f(X·T2)]− Col(f(Y)) .

We are left with analyzing EX,T1,T2 [1f(X·T1)=f(X·T2)]. Denote by F the event where the matrix
[T1‖T2] is of full rank (and by F̄ the complementary event). Note that for all T1,T2 for which F
happens, it holds that X ·T1 and X ·T2 are uniform and independent. Therefore

EX,T1,T2 [1f(X·T1)=f(X·T2)] ≤ Pr
T1,T2

[F̄ ] + ET1,T2|F
[
EX[1f(X·T1)=f(X·T2)]

]
= Pr[F̄ ] + Col(f(Y)) .
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To bound PrT1,T2 [F̄ ], we use Lemma 4.1 to get

Pr
T1,T2

[F̄ ] = Pr
[
[T1‖T2] is not full rank

] ≤ Pr
R

$←Z`×2d
q

[R is not full rank] ≤ q2d−`

q − 1
.

Putting it all together, we get that

dist
(
(X, f(X ·T)), (X, f(Y))

) ≤
√

|W |
4 · (1− 1/q) · q`−(2d−1)

,

and the result follows.
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