
Garbled Circuits for Leakage-Resilience: Hardware
Implementation and Evaluation of One-Time Programs

(Full Version)?

Kimmo Järvinen1, Vladimir Kolesnikov2,
Ahmad-Reza Sadeghi3, and Thomas Schneider3

1 Dep. of Information and Comp. Science, Aalto University, Finland
kimmo.jarvinen@tkk.fi??

2 Alcatel-Lucent Bell Laboratories, Murray Hill, NJ 07974, USA kolesnikov@research.bell-labs.com
3 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany

{ahmad.sadeghi,thomas.schneider}@trust.rub.de? ? ?

Abstract. The power of side-channel leakage attacks on cryptographic implementations
is evident. Today’s practical defenses are typically attack-specific countermeasures against
certain classes of side-channel attacks. The demand for a more general solution has given rise
to the recent theoretical research that aims to build provably leakage-resilient cryptography.
This direction is, however, very new and still largely lacks practitioners’ evaluation with
regard to both efficiency and practical security. A recent approach, One-Time Programs
(OTPs), proposes using Yao’s Garbled Circuit (GC) and very simple tamper-proof hardware
to securely implement oblivious transfer, to guarantee leakage resilience.
Our main contributions are (i) a generic architecture for using GC/OTP modularly, and (ii)
hardware implementation and efficiency analysis of GC/OTP evaluation. We implemented
two FPGA-based prototypes: a system-on-a-programmable-chip with access to hardware
crypto accelerator (suitable for smartcards and future smartphones), and a stand-alone hard-
ware implementation (suitable for ASIC design). We chose AES as a representative complex
function for implementation and measurements. As a result of this work, we are able to under-
stand, evaluate and improve the practicality of employing GC/OTP as a leakage-resistance
approach. Last, but not least, we believe that our work contributes to bringing together the
results of both theoretical and practical communities.

Keywords: Garbled Circuit, Hardware Implementation, Leakage-Resilience, One-Time Pro-
grams, Secure Function Evaluation

1 Introduction

Side-channels and protection. For over a decade, we saw the power and elegance of side-
channel attacks on a variety of cryptographic implementations and devices. These attacks refute
the assumption of “black-box” execution of cryptographic algorithms, allow the adversary to obtain
(unintended) internal state information, such as secret keys, and consequently cause catastrophic
failures of the systems. Often the attacks are on the device in attacker’s possession, and exploit
physical side-channels such as observing power consumption [22], emitted radiation [9, 42, 1], and
even the memory cache [21, 37, 35]. Moreover, even when no computation is performed, stored
secrets may be leaked [46] or read out from RAM, which is typically not erased at power-off,
allowing, e.g., cold-boot attacks [16]. Hence, from the hardware perspective, security has been
viewed as more than the algorithmic soundness in the black-box execution model (see, e.g., [28,
59, 57, 48]).

Today’s practical countermeasures typically address known vulnerabilities, and thus target not
all, but specific classes of side-channel attacks. The desire for a complete solution motivated the
recent burst of theoretical research in leakage-resilient cryptography, the area that aims to define
security models and frameworks that capture leakage aspects of computation or/and memory.

? A short version of this paper appears in CHES 2010 [20].
?? Supported by EU FP7 project CACE.

? ? ? Supported by EU FP7 projects CACE and UNIQUE, and ECRYPT II.



2 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

Information leakage is typically modeled by allowing the adversary learn (partial) memory or
execution states. The exact information given to the adversary is specified by the (adversarily
chosen) leakage function. Then, the assumption on the function (today, usually the bound on the
output length) directly translates into a physical assumption on the underlying device and the
adversary. Proving security against such an adversary implies security in the real-world with the
real device, subject to corresponding assumption (see [39] for a survey on this strand of research).
We note that many of the results of this new line of research (i.e., leakage assumptions and leakage-
resilient constructions), although clearly stated, have not yet been evaluated by practitioners and
side-channel community.4 Further, efficiency is a major concern with today’s solutions, since, e.g.,
embedded systems on an integrated circuit (IC) have very little cost tolerance.5

Secure Function Evaluation in hardware and leakage-resilience. Efficient Secure Func-
tion Evaluation (SFE) in an untrusted environment is a longstanding objective of modern cryp-
tography. Informally, the goal of two-party SFE is to let two mutually mistrusting (polynomially-
bounded) parties compute an arbitrary function on their private inputs without revealing any
information about the inputs, beyond the output of the function. SFE has a variety of applica-
tions, particularly in settings with strong security and privacy demands. Deployment of SFE was
very limited and believed expensive until recent improvements in algorithms, code generation,
computing platforms and networks.

As advocated in numerous prior works [31, 30, 26, 40, 25, 19, 24], Garbled Circuit (GC) [60] is
often the most efficient (and thus viable) SFE technique in the two-party setting. As we argue in
§3.2, the emerging fully homomorphic encryption schemes [11, 7, 47] are unlikely to approach the
efficiency of GC.

Because of the execution flow of the GC solution (one party can non-interactively evaluate the
function once the inputs have been fixed), the security guarantees of SFE are well-suited to prevent
all side-channel leakage. Indeed, even GC evaluation in the open reveals no information other than
the output. Clearly, it is safe to let the adversary see (as it turns out, even to modify) the entire GC
evaluation process. The inputs-related stage of GC can also be made non-interactive with appropri-
ate hardware such as Trusted Platform Modules (TPM) [15]. Goldwasser et al. [13] observed that
very simple hardware is sufficient, one that, hopefully, can be manufactured tamper-resistant at low
cost. They propose to use One-Time Programs (OTP), a combination of GC and above hardware,
for leakage-resilient computation. The combination of non-interactive computation, count-limited
execution, and leakage resistance holds great promise, e.g., for outsourcing computation and soft-
ware business model. As we explain below one of our goals in this paper is to evaluate today’s
performance of OTP in hardware. Indeed, one of our goals is to evaluate today’s performance of
OTP in hardware.

Our objectives. Practical efficiency of SFE and leakage-resilient computing is critical. Indeed,
in most settings, the technology can only be adopted if its cost impact is acceptably low. In this
work, we pursue the following two objectives.

First, we aim to mark this (practical efficiency) boundary by considering hardware-accelerated
GC evaluation. In our implementation, we use state-of-the-art GC techniques, and optimize the
code for embedded systems such as Systems on a Chip (SoC) based on FPGAs. Hash functions
form the most significant computational burden in GC evaluation and throughout this paper we
use SHA-256 as hash function. A cost-effective, straightforward and useful accelerator architecture
is likely to implement SHA-256 functions in hardware, and thus will have similar cost structure to
what we consider: low-cost SHA-256 evaluation and high-cost memory access. Implementing (at
least some of) the SFE functionality in hardware promises to significantly improve computation
speed and reduce power consumption. Our optimized hardware design and implementation allows
us to evaluate costs, benefits and trade-offs of hardware support for GC evaluation.

Second, we use our GC hardware-accelerator to implement OTP and evaluate the efficiency of
this provably leakage-resilient protection. The envisioned applications for OTPs mentioned in [13]
are complex functionalities such as one-time proofs, E-cash, or extreme software protection (with
features such as limited number of executions or temporary transfer of cryptographic abilities).

4 Indeed, ongoing work of [49] investigates the practical applicability and usability of theoretical leakage
models and the constructions proven secure therein.

5 At the same time, e.g., the size of private circuits in [18] grows quadratically with the number of wire
probes by the adversary.



GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 3

However, the exact circuit sizes of these functions, and hence the OTP practicability for these
applications, are not yet clear. We make a first step towards estimating the costs of such complex
OTP applications by implementing OTP evaluation of the AES function. We chose AES as it is
relatively complex and allows comparison with existing (heuristic) leakage protection. We stress
that OTP, and our implementation, are resilient against arbitrary side-channel attacks, based on
the OTM (relatively weak) hardware assumption. Further, as an application on its own, OTP
evaluation of AES can be used for sending a small number of messages securely over a completely
untrusted platform (e.g., a computer in an internet café) using a simple tamper-proof hardware
token (e.g., a USB token) and the same key for encrypting/authenticating multiple messages.

1.1 Our Contributions and Outline

In line with our objectives stated above, we implement a variant of OTP with state-of-the-art GC
optimizations discussed in §2.1. As an algorithmic contribution, we propose an efficiency improve-
ment for OTPs with multiple outputs in §3.1. Further, we describe a generic architecture for using
GC/OTP in a modular way to protect against arbitrary side-channel attacks in §3.2.

In our implementation, we present a hardware architecture (§4.1) and optimizations (§4.2) for ef-
ficient evaluation of GC/OTP on memory-constrained embedded systems. We measure performance
of GC/OTP evaluation of AES on our two FPGA-based implementations in §4.3: a system-on-a-
programmable-chip with access to SHA-256 hardware accelerator (representative for smartcards
and future smartphones) and a stand-alone hardware implementation. Using our optimizations,
GC evaluation of AES on our implementations requires about 1.3 s and 0.15 s, respectively. This
shows that provable leakage-resilience via GC/OTP comes at a relatively high cost (but its use
might still be justified in high-security applications): an unprotected implementation of AES in
hardware runs in 0.15 µs, and requires 2.6 times smaller area than OTP-based solution. We note
that the chip area for hardware-accelerated GC/OTP evaluation is independent of the evaluated
function. As AES is a representative complex function, we believe that our results, in particular
our performance measurements, will serve as reference point for estimating GC/OTP runtimes of
a variety of other functions (e.g., public key schemes).

1.2 Related Work

In this section we only briefly consider garbled circuits and one-time programs, and give more
detailed explanations of them in §2. Efficient implementations of Garbled Circuits (GC).
We believe that our results are the first hardware implementation of garbled circuits (GC) and
one-time programs (OTP) evaluation. While several implementations and measurements of GC
exist in software, e.g., [31, 30, 40], the hardware setting presents different challenges. Our work
allows to compare the approaches and estimate the resulting performance gain (our hardware im-
plementation is faster than the software implementation of [40] by a factor of 10-17). Hardware
implementation of GC generation in a cost-effective tamper-proof token with constant memory
was shown in [19]. Our work is complementary, and our hardware accelerator for GC evaluation
can be combined with the token of [19], or software frameworks.
One-Time Programs (OTP). The combination of GC with non-interactive oblivious transfer
in the semi-honest setting was proposed in [15]. For malicious evaluator, OTP were introduced in
[13] using minimal hardware assumptions. Subsequently, [14] showed how to build non-interactive
secure computation unconditionally secure against malicious parties using tamper-proof hardware
tokens. We extend and implement OTPs in hardware. Our extension is in the computational model
with Random Oracles (RO), secure against malicious evaluator, and more efficient than the con-
structions of [13, 14].
Protecting AES against side-channel attacks. We consider AES as reference implementation
and summarize current techniques for protecting AES implementations. We stress that our imple-
mentation is provably leakage-free, but comes at a computational cost which we evaluate in this
work.

A large amount of research has been done on countermeasures against side-channel attacks,
e.g., to protect against power analysis attacks [22], the power consumption needs to be made
independent of the underlying secrets by either randomizing the power consumption or making



4 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

it constant [32]. Randomizing is done with masking, i.e., by adding random values. A variety of
masking schemes for both algorithmic and circuit level have been proposed for AES, e.g., [2, 8].
For constant power consumption one can use gates whose power consumption is independent of
input values, e.g., with dynamic differential (dual-rail) logic (see, e.g., [54, 17, 41, 44]). Counter-
measures against power analysis have significant area overheads ranging from factor 1.5 to 5 [52].
Protecting implementations against other side-channel attacks or even fault attacks needs addi-
tional overhead. For instance, fault attack countermeasures require error detection techniques such
as proposed in [45]. None of these countermeasures provides complete security. Indeed, counter-
measures providing protection against simpler attacks have been shown to be useless against more
powerful attacks, such as, template attacks [6, 36, 3] and higher-order differential power analysis [33,
12].

2 Preliminaries

In this section we describe the components and preliminaries underlying our constructions – garbled
circuits (§2.1) and one-time programs (§2.2).

2.1 Garbled Circuits (GC)

Yao’s Garbled Circuit (GC) approach [60] allows two parties, sender S with private input y and
receiver R with private input x, to securely evaluate a boolean circuit C on (x, y) without revealing
any information other than the result z = C(x, y) of the evaluation. In particular, no intermediate
values are revealed. We summarize the idea of Yao’s GC protocol next (see Fig. 1 for an overview).

The circuit constructor S creates a garbled circuit C̃ from the circuit C: for each wire Wi of C,
he randomly chooses two garblings w̃0

i , w̃
1
i , where w̃j

i is the garbled value of Wi’s value j. (Note:

w̃j
i does not reveal j.) Further, for each gate Gi, S creates a garbled table T̃i with the following

property: given a set of garbled values of Gi’s inputs, T̃i allows to recover the garbled value of the
corresponding Gi’s output, but nothing else. S sends these garbled tables, called garbled circuit C̃,
to evaluator (receiver R).

Additionally, R (obliviously) obtains the garbled inputs w̃i corresponding to the inputs of both
parties: the garbled inputs ỹ corresponding to the inputs y of S are sent directly: ỹi = ỹyi

i . For
each of R’s inputs xi, both parties run a 1-out-of-2 Oblivious Transfer (OT) protocol (e.g., [34]),
where S inputs x̃0i , x̃

1
i and R inputs xi. The OT protocol ensures that R receives only the garbled

value corresponding to his input bit, i.e., x̃i = x̃xi
i , while S learns nothing about xi.

Now, R evaluates the garbled circuit C̃ on the garbled inputs to obtain the garbled output z̃
by evaluating C̃ gate by gate, using the garbled tables T̃i. Finally, R determines the plain value z
corresponding to the obtained garbled output value using an output translation table sent by S.

Correctness of GC follows from the way garbled tables T̃i are constructed. Yao’s garbled circuit
protocol is provably secure ([29]) when both parties are semi-honest (i.e., follow the protocol but
may try to infer information about the other party’s inputs from the messages seen). We stress

that each GC can be evaluated only once, i.e., a new GC C̃ must be used for each invocation.
Improved Garbled Circuits. We use the improved GC construction of [40], summarized next.
Each garbled value w̃i = 〈ki, πi〉 consists of a t-bit key ki and a permutation bit πi, where t denotes
the symmetric security parameter. XOR gates are evaluated “for free”, i.e., no garbled table and
negligible computation, by computing the bitwise XOR of their garbled values [26]. For each non-

XOR gate with d inputs the garbled table T̃i consists of 2d − 1 entries of size t + 1 bits each; the
evaluation of a garbled non-XOR gate requires one invocation of SHA-256 [40]. At the high level,
the keys ki of the non-XOR gate’s garbled inputs are used to obtain the corresponding garbled
output value by decrypting the garbled table entry which is indexed by the input permutation bits
πi. We present the detailed description of the construction in Appendix §A.

2.2 Non-Interactive Garbled Circuits and One-Time Programs

The GC construction, although traditionally considered in the interactive setting, relies on inter-
action only as much as do the underlying OT executions. Consequently, (e.g., noted in [4, 23])



GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 5

receiver R: input x

circuit C:

sender S: input y

�C

OT

�z
EVAL GC

�xi = �xxi
i

xi

z = C(x, y)

TRANSLATE

�x0
i , �x1

i

�yi = �yyi

i

translation table

garbled circuit �C:

⇐

gate Gi

W1W2

W3

∧

garbled table �Ti

�w1 �w2

�w3

∧⇐

Fig. 1. Overview of Yao’s Garbled Circuit Protocol (AND gate as example circuit)

the round complexity and (non-)interactivity features of the GC protocol are exactly those as the
underlying OT.

Traditionally, for computational and storage efficiency, and because considered client-server
applications permitted it, OT was considered in the interactive setting. In [15] the authors suggested
to extend the Trusted Platform Module (TPM) [55] for implementing non-interactive OT, resulting
in a non-interactive version of Yao’s protocol. Subsequently, One-Time Programs (OTP) were
introduced in [13]. This approach considers malicious receivers and can be viewed simply as Yao’s
Garbled Circuit (GC), where the oblivious transfer (OT) function calls are implemented with One-
Time Memory (OTM) tokens. An OTM token Ti is a simple tamper-proof hardware, which allows
a single query of one of the two stored garbled values x̃0i , x̃

1
i ([13] suggests using a tamper-proof

one-time-settable bit bi which is set as soon as the OTM is queried).6 Further, OTM-based GC
execution can be non-interactive, in the sense that the sender can send the GC and corresponding
OTMs to the receiver, who will be able to execute one instance of SFE on any input of his choice.7

Finally, GC (and hence also OTP) is inherently a one-time execution object (generalizable to
k-time execution by repetition).

A subtle issue in this context, noted and addressed in [13], is the following. Previous GC-based
solutions were either in the semi-honest model, or used interaction during protocol execution,
which precluded the receiver R from choosing his input adaptively, based on given (and even
partially evaluated) garbled circuit. This possibility of adaptively chosen inputs results in possible
real attacks by a malicious receiver R in the non-interactive setting.8 The solution of [13] is to
mask (each) output bit zj of the function with a random bit mj , equal to XOR of (additional)
random bits mi,j contributed by each of the input OTMs Ti, i.e., mj = m1,j ⊕ m2,j ⊕ . . . and
z′j = zj ⊕mj . The real-world adversary does not learn the output of the function before he had

queried all OTMs with his inputs, which precludes him from adaptively selecting the input.9 In §3
we present an efficiency improvement, and a generic architecture for leakage-resilient and tamper-
proof computation derived from OTP.

6 Indeed, this is one of the simplest functionalities possible, and one that is hopefully easier to protect
against leakage and tampering (we refer the reader to [13] for extended discussion on such protection).

7 As also noted in [14], the function can be fully hidden by evaluating a universal function instead. In
practice, one would evaluate a garbled Universal Circuit that is programmed to compute the intended
function. For a k-gate function, the universal circuit constructions of [56, 27, 43] result in an overhead of
O(k log k), O(k log2 k) and O(k2) gates respectively with decreasing constant factors.

8 From the mathematical perspective, the standard proof of security of GC now does not go through,
since the simulator Sim would have to output to R the simulated garbled circuit (i.e., its garbled tables
and output wire decoding) before knowing the inputs of the malicious receiver.

9 In the proof, the new Sim is able to produce an indistinguishable simulation, since he only commits to
the output values of the simulated GC when the last OTM is queried, the point at which Sim knows
the inputs of the malicious receiver.



6 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

3 Extending and Using One-Time Programs

In §3.1 we present an extension of the OTP construction of [13], which results in improved per-
formance for multiple outputs. Additionally we make several observations about uses, security
guarantees and applicability of OTP, and present a generic architecture for using OTPs for leakage-
resilient computation in §3.2.

3.1 Extending One-Time Programs

As mentioned in the previous section, the solution in [13] seems to require each OTM token to
additionally store a string of the size of the output. We propose a practical performance improve-
ment to the technique proposed in [13], which is beneficial for OTP evaluation of functions with
many output bits. In our solution each OTM token (additionally) stores a random string ri of
length of the security parameter t. Consequently, our construction results in smaller OTMs when
the function to be evaluated has more outputs than the size of the security parameter t. As a trade
off, our security proof utilizes Random Oracles (RO), as we do not immediately see how to avoid
their use and have OTM size independent of the number of outputs. We discuss RO, its uses and
security guarantees in Appendix §C.

Our main idea is to insert a “hold off” gate into each output wire Wj which can only be
evaluated once all input OTMs had been queried, thus preventing malicious R from choosing his
input adaptively. It can be implemented by requiring a call to a hash function H (modeled as a
Random Oracle) with inputs which include data from all OTMs. To implement this, we secret-
share a random value r ∈R {0, 1}t over all OTMs for the inputs. That is, OTM Ti additionally
stores a share ri (released to R with x̃i upon the query), where r =

⊕
i

ri. Receiver R is able to

recover r if and only if he queried all OTMs.
Fig. 2(b) depicts this contruction: Our version of OTM Ti, in addition to the two OT secrets

x̃0i , x̃
1
i and the tamper-proof bit bi, contains a random share ri ∈R {0, 1}t which is released together

with x̃xi
i once Ti is queried with input bit xi. The GC is constructed as usual (e.g., as described in

§2.1), with the following exception. On each output wire Wj with garbled outputs z̃0j , z̃
1
j , we append

a one-input, one-output OT-commit gate Gj , with no garbled table. We set the output wire secrets
of Gj to ẑ0j = H(z̃0j ||r), ẑ1j = H(z̃1j ||r). To enable R to compute the wire output non-interactively,

GC also specifies that ẑbj corresponds to b.
We note that a full formal construction is readily obtained from the above description. Also

note that a malicious R is unable to complete the evaluation of any wire of GC until all the OTMs
have been queried, and his input has been specified in full. Further, he is not able to lie about the
result of the computation, since he can only compute one of the two values z̃0j , z̃

1
j . Demonstration

of knowledge of z̃ij serves as a proof for the corresponding output value.

Theorem 1. The above protocol is secure against a semi-honest sender S, who generates the OTM
tokens and the garbled circuit, and malicious receiver R, in the Random Oracle model.

Proof. The proof of Theorem 1 is given in Appendix §B. ut

3.2 Using One-Time Programs for Leakage Protection

Most of today’s countermeasures to side-channel attacks are specific to known attacks. Protecting
hardware implementations (e.g., of AES) usually proceeds as follows (e.g., see [2]). First, the inputs
are hidden, typically by applying a random mask (this requires trusted operation, and often the
corresponding assumption is introduced). Afterwards, the computation is performed on the masked
data. To allow this, the functionality needs to be adapted (e.g., using amended AES S-boxes).
Finally, the mask is taken off to reveal the output of the computation.

We use a similar approach with similar assumptions (cf. Fig. 2(a)) to provably protect arbitrary
functionalities against all attacks, both known and unknown:

1. The private data x provided by R is masked in a trusted environment MASK. The masked
data x̃ does not reveal any information about the private data, but still allows to compute on
it.



GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 7

2. The computation on the masked data is performed in an untrusted environment where the
adversary is able to arbitrarily interfere (passively and actively) with the computation. To
compute on the masked data, the evaluation algorithm EVAL needs a specially masked version
of the program P̃ . Additional masked inputs ỹ of S that are independent of R’s inputs can be
provided as well. The result of EVAL is the masked output z̃.

3. Finally, z̃ is unmasked into the plain output z. The procedure UNMASK allows to verify
that z̃ was computed correctly, i.e., no tampering happened in the EVAL phase in which
case UNMASK outputs the failure symbol ⊥. For correctness of this verification, UNMASK
is executed in a trusted environment where the adversary can observe but not modify the
computation.

masked input �x

masked output �z

output z or fail ⊥

UNMASK

EVAL

input x

MASK

untrusted
environment

trusted
environment

trusted
environment

masked program �P ,
masked input �y of S

(a) Generic Architecture

xi

�xi

OTM Ti

�x0
i , �x1

i , bi, ri

ri

�x

EVAL GC �C, �y

�z

MASK

EVAL

UNMASK

r =
�
i

ri

zj =





0 if H(�zj ||r) = �z0
j

1 if H(�zj ||r) = �z1
j

⊥ else

(b) Using One-Time Memory

Fig. 2. Evaluating a Functionality Without Leakage

More specifically, the masked program P̃ is a garbled circuit C̃, masked values x̃, ỹ, z̃ are garbled
values and the algorithms MASK, EVAL and UNMASK can be implemented as described next.

MASK: Masking the input data x of receiver R is performed by mapping each bit xi to its
corresponding garbled value x̃i, i.e., to one of two garblings x̃0i , x̃

1
i . This can be provided externally

(e.g., by interaction with a party on the network). We concentrate on on-board non-interactive
masking which requires certain hardware assumptions (see below). The following can be directly
used as a (non-interactive) MASK procedure:

– OTMs [13]: For small functionalities, we favor the very cheap One-Time Memory (OTM), as
this seems to carry the weakest assumptions (cf. §2.2). However, as OTMs can be used only
once, a fresh OTM must be provided for each input bit of the evaluated functionality. For
practical applications, OTMs (together with their garbled circuits) could be implemented for
example on tamper-proof USB tokens for easy distribution.

– TPM [15]: Trusted Platform Modules (TPM) are low-cost tamper-proof cryptographic chips
embedded in many of today’s PCs [55]. TPM masking based on the non-interactive Oblivious
Transfer (OT) protocol of [15] requires the (slightly extended) TPM to perform asymmetric
cryptographic operations in form of a count-limited private key whose number of usages is
restricted by the TPM chip. An interactive protocol allows re-initialization for future non-
interactive OTs instead of shipping new hardware.

– Smartcard: In our preferred solution for larger functionalities, masking could be performed by
a tamper-proof smartcard. The smartcard would keep a secure monotonic counter to ensure a
single query per input bit. Another advantage of this approach is that the same smartcard can
be used to generate GC as well, thus eliminating GC transfer over the network as done in [19].
Further, the smartcard can be naturally used for multiple OTP evaluations.

For non-interactive masking, the hardware that masks the inputs must be trusted and the entire
input must be specified before anything about the output z is revealed to prevent adaptive input
selection as discussed in §2.2 and §3.1.



8 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

EVAL: The main technical contribution of this paper, the implementation of EVAL (of the

masked program P̃ on masked inputs x̃ and ỹ) in embedded systems is presented in detail in §4.

Here we note that P̃ and ỹ (masked input of S) can be generated offline by the semi-honest sender
S and provided to EVAL by convenient means (e.g., via a data network or a storage medium).

This is the scenario advocated in [13]; one of its advantages is that generation of P̃ does not leak

to EVAL. Alternatively, P̃ and ỹ could be generated “on-the-fly” using a cheap simple constant-
memory stateless and tamper-proof token as shown in [19]. We reiterate that the masked program

P̃ can be evaluated exactly once.
UNMASK: Finally, the masked output z̃ is checked for correctness and non-interactively

decoded by R into the plain output z as follows (cf. §3.1 and Fig. 2(b)). For each output wire,

the masked program P̃ specifies the correspondence ẑj → zj in form of the two valid hash values
ẑ0j and ẑ1j . Even if EVAL is executed in a completely untrusted environment (e.g., processed on

untrusted HW), its correct execution can be verified efficiently: when H(z̃j ||r) is neither ẑ0j nor ẑ1j
the garbled output z̃j is invalid and UNMASK outputs the failure symbol ⊥. The reason for this
verifiability property of GC is that a valid garbled output z̃j can only be obtained by correctly
evaluating the GC but cannot be guessed.

How far can we go with Homomorphic Encryption. At the first glance, the recently proposed
Fully Homomorphic Encryption (FHE) [11, 7, 47] may seem as an attractive alternative solution
for leakage-free computation. Indeed, FHE allows to compute arbitrary functions on encrypted
data without the need for helper data in form of a masked program. The MASK algorithm would
homomorphically encrypt the input x and the UNMASK algorithm could decrypt the result. Using
verifiable computation [10], fully homomorphic encryption can also be extended to allow verification
that the computation was performed correctly.

However, we argue that FHE is in fact not appropriate in our setting: Our first comment, which
concerns any application of FHE, is that, in its state today, FHE is extremely computationally
intensive. Although significant effort is underway in theoretical community to improve its perfor-
mance, it seems unlikely that FHE would reach the efficiency of current public-key encryption
schemes. Intuitively, this is because FHE must provide the same strong security guarantees, while,
at the same time, possessing extra algebraic structure to allow for homomorphic operations. The
extra structure weakens security, and countermeasures (costing performance) are necessary. Fur-
ther, even assuming performance similar to that of RSA, this solution would be hundreds of times
slower than GC-based solution, as symmetric primitives used in GC are orders of magnitude faster.
Finally, from the leakage-resilience perspective, the UNMASK algorithm will be problematic, as
it would need to perform complicated decryptions based on secret key. We would need to ensure
nothing is leaked in these modules, which would bring us either to using much stronger assumptions
or to a chicken-and-egg problem.

4 Efficient Evaluation of Garbled Circuits in Hardware

In this section we describe how GCs (and hence also OTPs) can be efficiently evaluated on embed-
ded systems and memory-constrained devices. We first describe the HW architecture in §4.1. Then
we present important compile-time optimizations and show their effectiveness in §4.2. Finally, we
discuss technical details of our prototype implementation and timings in §4.3.

We stress that our designs and optimizations are generic. However, for concreteness and for
meaningful comparison (e.g., with prior SW SFE of AES [40]), we take SFE of the AES function
as our example for timings and other measurements. AES was chosen by [40] as a useful and
representative function, with applications such as Oblivious Pseudo-Random Functions (OPRF),
side-channel protection, blind MACs and encryption, and computation on encrypted data.

For AES evaluation, sender S provides AES key k as input y, and receiverR provides a plaintext
block m as input x. R obtains the ciphertext c as output z, where c = AES(k,m). Recall, during
GC evaluation (EVAL), both key and message are masked (garbled) and hence cannot be leaked.

We use the [40] evaluation time of 2 seconds as a comparison baseline for our HW implemen-
tation.



GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 9

4.1 Architecture for Evaluating Garbled Circuits in Hardware

We describe our architecture for efficient evaluation of GC on memory-constrained devices, i.e.,
having a small amount of slow memory only.

To minimize overhead, we choose key length t = 127; with a permutation bit, garbled values
are thus 128 bits long (cf. §2.1). In the following we assume that memory cells and registers store
128 bit garbled values. This can be mapped to standard hardware architectures by using multiple
elements in parallel.

Fig. 3 shows a conceptual high-level overview of our architecture described next. At the high-
level, EVAL, the process of evaluating GC, on our architecture consists of the following steps (cf.
§3.2). First, the garbled input values x̃, ỹ are stored in memory using the I/O interface. Then, GC
gates are evaluated, using registers A, B, and C to cache the garbled inputs and outputs of a single
garbled gate. Finally, garbled output value z̃ is output over the I/O interface.

Eval Gate

Garbled
Tables

OUTI/O

(1
or

2)
of

3

XOR AC

EVAL A/B/C
EVAL AB/AC/BC

M
em

or
y

(m
em

)

STORE C

LOAD A

LOAD B

STORE A

STORE B

XOR A

XOR B

XOR C Reg C

Reg B

Reg A

XOR AB

XOR BC

�x, �y

�z SHA-256

Fig. 3. Architecture for GC Evaluation (EVAL) on Memory-Constrained Devices

As memory access is expensive (cf. §4.3) we optimize code to re-use values already in registers.
Our instructions are one-address, i.e., each instruction consists of an operator and up to one
memory address. Each of our instructions has length 32 bits: 5 bits to encode one of 18 instructions
(described next) and 27 bits to encode an address in memory.

LOAD/STORE: Registers can be loaded from memory using instructions LOAD A and
LOAD B. Register C cannot be loaded as it will hold the output of evaluated non-XOR gates
(see below). Values in registers can be stored back into memory using STORE A, STORE B, and
STORE C respectively.

XOR: We evaluate XOR gates [26] as follows. XOR A addr computes A ← A ⊕ mem[addr].
Similarly, the other one-operand XOR operations (XOR1) XOR B and XOR C xor the value from
memory with the value in the respective register. To compute XOR gates where both inputs are
already in registers (XOR2), the instruction XOR AB computes A← A⊕B. Similarly, XOR AC
computes A← A⊕ C and XOR BC computes B ← B ⊕ C.

EVAL: Non-XOR gates [40] are evaluated with the Eval Gate block that contains a hardware
accelerator for SHA-256 (cf. §2.1 for details). The garbled inputs are in one (EVAL1) or two
registers (EVAL2), and the result is stored in register C. The respective instructions for 1-input
gates are EVAL A, EVAL B, EVAL C and for 2-input gates EVAL AB, EVAL AC, EVAL BC.
The required garbled table entry is read from memory.

I/O: The garbled inputs are always stored at the first |x|+ |y| memory addresses. The garbled
outputs are obtained from memory with OUT instructions.

Example 1. Fig. 4 shows an example circuit and a possible sequence of instructions to evaluate it
on our architecture. First, register A is loaded with x̃1 from memory address 0x0, then x̃2 ⊕ ỹ1
is computed in register B and the AND gate is evaluated to obtain output z̃1 which is stored at
address 0x0 and overwrites x̃1, which is no longer needed. Then, the NOT gate is computed using
register B as input and stored at address 0x1. The two outputs z̃1, z̃2 are at addresses 0x0 and 0x1.

4.2 Compile-time Optimizations for Memory-Constrained Devices

In this section, we present several compile-time optimizations to improve performance of GC eval-
uation (EVAL) on our hardware architecture. We aim to reduce the size of GC (by minimizing



10 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

��x1

�x2

�y1 1

�z1

�z2

LOAD A 0x0 // A← mem[0x0] = x̃1

LOAD B 0x1 // B ← mem[0x1] = x̃2

XOR B 0x2 // B ← B ⊕mem[0x2] = x̃2 ⊕ ỹ1

EVAL AB // C ← A ∧ B
STORE C 0x0 // mem[0x0]← C
EVAL B // C ← not B
STORE C 0x1 // mem[0x1]← C

OUT 0x0 // z̃1 ← mem[0x0]

OUT 0x1 // z̃2 ← mem[0x1]

Fig. 4. Example Circuit (left) and Instruction Sequence to Evaluate its GC on our Architecture of Fig. 3
(right).

the number of non-XOR gates), the size of the program (number of instructions), the number of
memory accesses and memory size for storing intermediate garbled values. For concreteness, we
use AES as representative functionality for the optimizations and performance measurements, but
our techniques are generic.

Optimization a:Base [40]) Our baseline is the AES circuit/code of [40], already optimized for a
small number of non-XOR gates. Their circuit consists of 11, 286 two-input non-XOR gates; thus,
its GC has size 11, 286 · 3 · 128 bit ≈ 529 kByte. Without considering any caching strategies, this
results in 113, 054 instructions, hence the program size is 113, 054 · 32 bit ≈ 442 kByte, and the
total amount of memory needed for EVAL is 34, 136 · 128 bit ≈ 533 kByte.

We start with further reduction of the size of the garbled circuit.

Optimization b:NoXNOR) We reduce the GC size by replacing XNOR gates with XOR gates,
and propagating the inverted output into the successor gates. Output XNOR gates are replaced
with XOR and a 1-input inverter gate. The cost of this optimization is linear in the size of the
circuit [38]. Overall, this optimization results in the elimination of 4, 086 XNOR gates and reduces
the size of AES GC to (7, 200 · 3 + 40) · 128 bit ≈ 338 kByte (improvement of 36%).

Remaining optimizations use b:NoXNOR; d:MaxFanout, e:Rand use c:Cache.

Optimization c:Cache) We re-use values already in registers to reduce the number of LOADs.
Values in registers are saved to memory only if needed later.

Optimization d:MaxFanout) We select a specific topologic order (traversing the circuit depth-
first and following children in decreasing order of their fan-out).

Optimization e:Rand) We randomly consider several orders of evaluation, and select the most
efficient one for EVAL. (This is a one-time compilation expense per function.) For present work,
we considered several random topologic orders of the circuit, constructed by the traversal where
the next gate is selected at random from the set of unprocessed gates with maximal fan-out. A
more rigorous approach to this randomized technique can result in more substantial improvement,
and is a good direction for future work.

Result. Using our optimizations we were able to substantially decrease the memory footprint
of EVAL. As shown in Table 1 the smallest program was obtained with the non-deterministic opti-
mization e:Rand which is only slightly better than our best deterministic optimization d:MaxFanout
and improves over a:Base [40]as follows. The size of the AES program P is only 73, 583 · 32 bit ≈
287 kByte (improvement of 34.9%). The amount of intermediate memory is 17, 315 · 128 bit ≈
271 kByte (improvement of 49.3%) and the number of memory accesses (read and write) is re-
duced by ≈ 35%.

Table 1. Optimized AES Circuits (Sizes in kB)

Garbled Circuit C̃ Program P Memory for GC Evaluation

Optimization non-XOR 1-input XOR Size Instr. Size Read Write Entries Size

a:Base [40] 11,286 0 22,594 529 113,054 442 67,760 33,880 34,136 533

b:NoXNOR 7,200 40 26,680 338 109,088 426 67,800 33,920 34,176 534
c:Cache 7,200 40 26,680 338 95,885 375 56,779 30,338 21,237 332
d:MaxFanout 7,200 40 26,680 338 74,052 289 42,469 23,767 18,676 292
e:Rand 7,200 40 26,680 338 73,583 287 42,853 22,650 17,315 271



GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 11

4.3 Implementation

We have designed two prototype implementations of the architecture of §4.1 – one for a System-
on-a-Programmable-Chip with a hardware accelerator for SHA (reflecting smartcard and future
smartphone architectures) and another for a stand-alone unit (reflecting a custom-made GC ac-
celerator in hardware). Both prototype implementations are evaluated on an Altera/Terasic DE1
FPGA board comprising an Altera Cyclone II EP2C20F484C7 FPGA and 512kB SRAM and 8MB
SDRAM (and several other peripherals that are not relevant for this work) and are functionally

equivalent: they take the same inputs (program P , garbled circuit C̃, and garbled inputs x̃, ỹ) and
return the same garbled outputs z̃; the only differences are the methods used in the implementa-
tion. The interfaces (I/Os in Fig. 5) allow the host to write to and read from the SDRAM. In the
beginning, the host writes the inputs to the SDRAM and, in the end, the outputs are written into
specific addresses from which the host retrieves them.

SDRAM

SRAM

NIOS II
Processor

FPGA

I/O

SHA-256

(a) System-on-a-Programmable-Chip

SDRAM Control SHA-256

FPGA

I/O

Regs

(b) Stand-Alone Unit

Fig. 5. Architectures for Hardware-Assisted GC Evaluation

System-on-a-Programmable-Chip (SOPC). Our first implementation is a system-on-a-
programmable-chip (SOPC) consisting of a processor with access to a hardware accelerator for
SHA-256, which speeds up the most computational burden of the GC evaluation. This is a rep-
resentative architecture for next generation smartphones or smartcards such as the STMicroelec-
tronics ST33F1M smartcard which includes a 32-bit RISC processor, cryptographic peripherals,
and memory comparable to our prototype system [51].

The architecture of our implementation is shown in Fig. 5(a). It consists of a NIOS II/e 32-
bit softcore RISC processor (the smallest variation of NIOS II), a custom-made SHA-256 unit,
the SRAM, and the SDRAM. The entire process is run in the NIOS II processor which uses the
SHA-256 unit for accelerating gate evaluations. The SHA-256 unit is connected to the Avalon bus
of the NIOS II as a peripheral component and it computes the hash for a 512-bit message in 66
clock cycles (excluding interfacing delays). The NIOS II program, etc., are stored in the SRAM
and the SDRAM is devoted solely for the data required to execute an OTP, i.e., the program for
our architecture, the garbled circuit, the garbled inputs, the intermediate garbled values, etc.

Stand-Alone Unit. Our second implementation is a stand-alone unit consisting of a custom-
made control state machine, registers (A, B, C), a custom-made SHA-256 unit, and SDRAM. This
architecture could be used to design an Application Specific IC (ASIC) as high-speed hardware
accelerator for GC evaluation. The architecture is depicted in Fig. 5(b).

When the host has written the inputs to the SDRAM, the stand-alone unit executes the pro-
gram. The state machine parses the program and reads/writes data from/to SDRAM to/from the
registers or evaluates the non-XOR gates using the SHA-256 unit according to the instructions
(see §4.1 for details).

Prototyping Environment. The implementations were synthesized with Altera Quartus II,
version 9.1 (2009). The custom-made units were written with VHDL and verified with simulations
in ModelSim Altera-edition, version 6.5b (2009). The NIOS II processor was programmed with
C using NIOS II IDE, version 9.1 (2009). All parts of both implementations run with a 50 MHz
clock. The interfacing with the host was implemented with NIOS II also for the stand-alone unit. In
both implementations, data was transferred to the FPGA by using the Host File System (HFS) of
NIOS II; we point out that HFS is feasible for prototyping phase only, and the interface should be
replaced with a more appropriate one (e.g., PCI-Express or Gigabit Ethernet) in a real application.

Area. The area requirements of our implementations are shown in Table 2. Both fit into the
low-cost Cyclone II FPGA with 18,754 logic cells (LC), each containing a 4-to-1-bit look-up table



12 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

(LUT) and a flip-flop (FF), and 52 4096-bit embedded memory blocks (M4K). The values of
the stand-alone unit exclude NIOS II used for the HFS in the prototype. SHA-256 is the largest
and most significant block in both prototypes. The SOPC additionally contains NIOS II, on-chip
memory, and S(D)RAM controller, and the stand-alone unit contains additional control logic,
registers, and SDRAM controller (cf. Fig. 5).

Table 2 also shows the area for a straightforward iterative implementation of AES-128 on the
same FPGA to ease cost evaluation of our methodology; however, this implementation does not
include any countermeasures against side-channel attacks. Compared to an unprotected implemen-
tation, countermeasures against power analysis have area overheads ranging from factor of 1.5 to
5 [52] as discussed in §1.2; therefore, the area overheads of OTP evaluation are comparable with
other side-channel countermeasures.

Table 2. Areas of the Prototypes for GC
Evaluation on an Altera Cyclone II FPGA

Design LC FF M4K

SOPC 7501 4364 22
NIOS II 1104 493 4
SHA-256 2918 2300 8

Stand-Alone Unit 6252 3274 8
SHA-256 3161 2300 8

AES (unprotected) 2418 431 0

Table 3. Timings for Instructions on
Prototypes (clock cycles, average)

Instruction SOPC Stand-Alone Unit

LOAD 291.43 87.63

XOR1 395.30 87.65
XOR2 252.00 1.00

STORE 242.00 27.15

EVAL1 1,282.30 109.95
EVAL2 1,491.68 135.05

OUT 581.48 135.09

Timings. Instructions. The timings of instructions are summarized in Table 3. They show the
average number of clock cycles required to execute an instruction excluding the latency of fetching
the instruction. Gate evaluations are expensive in the SOPC implementation, although the SHA-
256 computations are fast, because they involve a lot of data movement (to/from the SHA-256
unit and from the SDRAM) which is expensive. The dominating role of memory reads and writes
is clear in the timings of the stand-alone implementation: the only instructions that do not require
memory operations (XOR2) require only a single clock cycle and EVAL1 is faster than EVAL2
because it accesses the memory on average every other time (no access if the permutation bit is
zero) compared to three times out of four (no access if both permutation bits are zeros).

AES. The timings to evaluate the optimized GCs for the AES functionality of §4.2 on our
prototype implementations are given in Table 4. These timings are for GC evaluation only; i.e,
they neglect the time for transferring data to/from the system because interface timings are highly
technology dependent (HFS is extremely slow, but convenient for prototyping). The SHA-256
computations take an equal amount of time for both implementations as the SHA-256 unit is the
same. The (major) difference in timings is caused by data movement, XORs, interface to the SHA-
256 unit, etc. The runtimes for both implementations are dominated by writing and reading the
SDRAM; e.g., 84.3% for the stand-alone unit and our smallest AES circuit (optimization e:Rand).
Hence, accelerating memory access, e.g., with burst reads and writes, is the key for further speedups.

Table 4. Timings for the FPGA-based Prototypes for GC Evaluation

System-on-a-Programmable-Chip Stand-Alone Unit

Clock cycles Timings (ms) Clock cycles Timings (ms)
Optimization SHA Total SHA Total SHA Total SHA Total

a:Base [40] 744,876 94,675,402 14.898 1,893.508 744,876 11,235,118 14.898 224,702

b:NoXNOR 477,840 87,433,180 9.557 1,748.664 477,840 10,604,268 9.557 212.085
c:Cache 477,840 77,991,519 9.557 1,559.830 477,840 9,208,586 9.557 184,172
d:MaxFanout 477,840 62,929,278 9.557 1,258.586 477,840 7,203,630 9.557 144.073
e:Rand 477,840 62,629,261 9.557 1,252.585 477,840 7,201,150 9.557 144.023



GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 13

Performance Comparison. A software implementation that evaluates the GC/OTP of the un-
optimized AES functionality a:Base [40] required 2 seconds on an Intel Core 2 Duo 3.0 GHz with
4GB of RAM [40]. Our optimized circuit e:Rand evaluated on the stand-alone unit requires only
144 ms for the same operation and, therefore, provides a speedup by a factor of 10.4–17.4 (taking
the lack of precision into account).

On the other hand, the unprotected AES implementation listed in Table 2 encrypts a message
block in 10 clock cycles and runs on a maximum clock frequency of 66 MHz resulting in a timing
of 0.1515µs; hence, the GC/OTP evaluation suffers from a timing overhead factor of ≈ 950, 000.
For comparison, the timing overhead of one specific implementation with countermeasures against
differential power analysis was factor of 3.88 [53].

5 Conclusion

The power of side-channels attacks on cryptographic implementations have motivated both theo-
reticians and practitioners to seek more general defense models and solutions. The recent strand
of research on leakage-resilient cryptography is still in its early stage, and most proposals are not
yet implemented and evaluated in practice. The recent observation of one-time programs (OTPs)
uses established Garbled Circuit (GC) techniques, and relies on hardware with relatively weak
tamper-proof assumptions, to realize provably leakage-resilient evaluation of arbitrary functions in
an untrusted environment.

In this work, we studied the performance of GC/OTP evaluation in hardware. For this, we
implemented two hardware prototypes for GC/OTP evaluation based on FPGA: one for a system-
on-a-programmable-chip with access to a hardware accelerator for SHA-256 (representative for
smartcards and future smartphones), and a stand-alone hardware implementation (reflecting a
custom-made GC accelerator in hardware). We chose AES as the representative complex function,
and we believe our measurements will serve as a reference point for estimating runtimes of a variety
of useful functions.

Our measurements show an order of magnitude performance improvement over the previous
software implementation of AES GC evaluation reported in [40]. We thus believe that GC/OTP is
a viable option for hardware implementation, especially for secure computation scenarios, where
hardware acceleration is desired. The use of GC/OTP for leakage resilience carries high cost, and
should be reserved for truly security-critical applications. Finally, OTP can be inherently evaluated
only once, i.e., each additional evaluation requires fresh OTM hardware modules and data transfer
for the GC (338 kByte for AES), which prevents certain deployment scenarios.

Acknowledgements. We thank anonymous reviewers of CHES’10 for their helpful comments
and co-authors of [40] for the initial AES circuit.

References

1. D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM side-channel(s). In Cryptographic
Hardware and Embedded Systems (CHES’02), volume 2523 of LNCS, pages 29–45. Springer, 2002.

2. M.-L. Akkar and C. Giraud. An implementation of DES and AES, secure against some attacks. In
Cryptographic Hardware and Embedded Systems (CHES’01), volume 2162 of LNCS, pages 309–318.
Springer, 2001.

3. C. Archambeau, E. Peeters, F.-X. Standaert, and J.-J. Quisquater. Template attacks in principal
subspaces. In Cryptographic Hardware and Embedded Systems (CHES’06), volume 4249 of LNCS,
pages 1–14. Springer, 2006.

4. C. Cachin, J. Camenisch, J. Kilian, and J. Müller. One-round secure computation and secure au-
tonomous mobile agents. In International Colloquium on Automata, Languages and Programming
(ICALP’00), volume 1853 of LNCS, pages 512–523. Springer, 2000.

5. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. J. ACM, 51(4):557–
594, 2004.

6. S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In Cryptographic Hardware and Embedded
Systems (CHES’02), volume 2523 of LNCS, pages 13–28. Springer, 2003.



14 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

7. M. v. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over the
integers. Cryptology ePrint Archive, Report 2009/616, 2009. http://eprint.iacr.org. To appear at
EUROCRYPT 2010.

8. W. Fischer and B. M. Gammel. Masking at gate level in the presence of glitches. In Cryptographic
Hardware and Embedded Systems (CHES’05), volume 3659 of LNCS, pages 187–200. Springer, 2005.

9. K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete results. In Cryptographic
Hardware and Embedded Systems (CHES’01), volume 2162 of LNCS, pages 251–261. Springer, 2001.

10. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing computation
to untrusted workers. Cryptology ePrint Archive, Report 2009/547, 2009. http://eprint.iacr.org.

11. C. Gentry. Fully homomorphic encryption using ideal lattices. In ACM Symposium on Theory of
Computing (STOC’09), pages 169–178. ACM, 2009.

12. B. Gierlichs, L. Batina, B. Preneel, and I. Verbauwhede. Revisiting higher-order DPA attacks: Mul-
tivariate mutual information analysis. In Cryptographers’ Track at RSA Conference (CT-RSA ’10),
volume 5985 of LNCS, pages 221–234. Springer, 2010.

13. S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. One-time programs. In Advances in Cryptology –
CRYPTO 2008, volume 5157 of LNCS, pages 39–56. Springer, 2008.

14. V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia. Founding cryptography on tamper-proof
hardware tokens. In Theory of Cryptography (TCC’10), volume 5978 of LNCS, pages 308–326. Springer,
2010.

15. V. Gunupudi and S. Tate. Generalized non-interactive oblivious transfer using count-limited objects
with applications to secure mobile agents. In Financial Cryptography and Data Security (FC’08),
volume 5143 of LNCS, pages 98–112. Springer, 2008.

16. J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino, A. J. Feldman,
J. Appelbaum, and E. W. Felten. Lest we remember: Cold boot attacks on encryption keys. In USENIX
Security Symposium (Security’08), pages 45–60. USENIX Association, 2008.

17. D. Hwang, K. Tiri, A. Hodjat, B. Lai, S. Yang, P. Schaumont, and I. Verbauwhede. AES-based security
coprocessor IC in 0.18-µm CMOS with resistance to differential power analysis side-channel attacks.
IEEE Journal of Solid-State Circuits, 41(4):781–791, 2006.

18. Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing attacks. In
Advances in Cryptology – CRYPTO 2003, volume 2729 of LNCS, pages 463–481. Springer, 2003.

19. K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Embedded SFE: Offloading server and
network using hardware tokens. In Financial Cryptography and Data Security (FC’10), volume 6052
of LNCS, pages 207–221. Springer, 2010.

20. K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Garbled circuits for leakage-resilience:
Hardware implementation and evaluation of one-time programs. In Cryptographic Hardware and Em-
bedded Systems (CHES’10), volume 6225 of LNCS, pages 383–397. Springer, 2010.

21. J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side channel cryptanalysis of product ciphers. In
European Sumposium on Research in Computer Security (ESORICS ’98), volume 1485 of LNCS, pages
97–110. Springer, 1998.

22. P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in Cryptology – CRYPTO
1999, volume 1666 of LNCS, pages 388–397. Springer, 1999.

23. V. Kolesnikov. Gate evaluation secret sharing and secure one-round two-party computation. In ASI-
ACRYPT’05, volume 3788 of LNCS, pages 136–155. Springer, 2005.

24. V. Kolesnikov. Truly efficient string oblivious transfer using resettable tamper-proof tokens. In Theory
of Cryptography (TCC’10), volume 5978 of LNCS, pages 327–342. Springer, 2010.

25. V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Improved garbled circuit building blocks and appli-
cations to auctions and computing minima. In Cryptology and Network Security (CANS’09), volume
5888 of LNCS, pages 1–20. Springer, 2009.

26. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and applications. In
International Colloquium on Automata, Languages and Programming (ICALP’08), volume 5126 of
LNCS, pages 486–498. Springer, 2008.

27. V. Kolesnikov and T. Schneider. A practical universal circuit construction and secure evaluation of
private functions. In Financial Cryptography and Data Security (FC’08), volume 5143 of LNCS, pages
83–97. Springer, 2008.

28. K. Lemke. Embedded security: Physical protection against tampering attacks. In C. Paar K. Lemke
and M. Wolf, editors, Embedded Security in Cars, chapter 2, pages 207–217. Springer, 2006.

29. Y. Lindell and B. Pinkas. A proof of Yao’s protocol for secure two-party computation. Journal of
Cryptology, 22(2):161–188, 2009. Cryptology ePrint Archive, Report 2004/175, http://eprint.iacr.
org.

30. Y. Lindell, B. Pinkas, and N. Smart. Implementing two-party computation efficiently with security
against malicious adversaries. In Security and Cryptography for Networks (SCN’08), volume 5229 of
LNCS, pages 2–20. Springer, 2008.



GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 15

31. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-party computation system. In
USENIX Security Symposium (Security’04). USENIX Association, 2004.

32. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the Secrets of Smart Cards.
Springer, 2007.

33. T. S. Messerges. Using second-order power analysis to attack DPA resistant software. In Cryptographic
Hardware and Embedded Systems (CHES’00), volume 1965 of LNCS, pages 238–251. Springer, 2000.

34. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In ACM-SIAM Symposium On Discrete
Algorithms (SODA’01), pages 448–457. Society for Industrial and Applied Mathematics, 2001.

35. D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: The case of AES. In
Cryptographers’ Track at RSA Conference (CT-RSA’06), volume 3860 of LNCS, pages 1–20. Springer,
2006.

36. E. Oswald and S. Mangard. Template attacks on masking—resistance is futile. In Cryptographers’
Track at RSA Conference (CT-RSA ’07), volume 4377 of LNCS, pages 243–256. Springer, 2007.

37. D. Page. Theoretical use of cache memory as a cryptanalytic side-channel. Technical Report CSTR-
02-003, University of Bristol, 2002.

38. A. Paus, A.-R. Sadeghi, and T. Schneider. Practical secure evaluation of semi-private functions. In
Applied Cryptography and Network Security (ACNS’09), volume 5536 of LNCS, pages 89–106. Springer,
2009.

39. K. Pietrzak. Provable security for physical cryptography. In Western European Workshop on Research
in Cryptology (WEWORC’09), 2009. Survey available at http://homepages.cwi.nl/~pietrzak/

publications/Pie09b.pdf.
40. B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure two-party computation is practical.

In Advances in Cryptology – ASIACRYPT 2009, volume 5912 of LNCS, pages 250–267. Springer, 2009.
41. T. Popp and S. Mangard. Masked dual-rail pre-charge logic: DPA-resistance without routing contraints.

In Cryptographic Hardware and Embedded Systems (CHES’05), volume 3659 of LNCS, pages 172–186.
Springer, 2005.

42. J.-J. Quisquater and D. Samyde. Electromagnetic analysis (EMA): Measures and countermeasures
for smart cards. In Research in Smart Cards (E-smart 2001), volume 2140 of LNCS, pages 200–210.
Springer, 2001.

43. A.-R. Sadeghi and T. Schneider. Generalized universal circuits for secure evaluation of private func-
tions with application to data classification. In International Conference on Information Security and
Cryptology (ICISC’08), volume 5461 of LNCS, pages 336–353. Springer, 2008.

44. M. Saeki, D. Suzuki, K. Shimizu, and A. Satoh. A design methodology for a DPA-resistant cryp-
tographic LSI with RSL techniques. In Cryptographic Hardware and Embedded Systems (CHES’09),
volume 5747 of LNCS, pages 189–204. Springer, 2009.

45. A. Satoh, T. Sugawara, N. Homma, and T. Aoki. High-performance concurrent error detection scheme
for AES hardware. In Cryptographic Hardware and Embedded Systems (CHES’08), volume 5154 of
LNCS, pages 100–112. Springer, 2008.

46. S. P. Skorobogatov. Data remanence in flash memory devices. In Cryptographic Hardware and Em-
bedded Systems (CHES’05), volume 3659 of LNCS, pages 339–353. Springer, 2005.

47. N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key and cipher-
text sizes. In Public Key Cryptography (PKC’10), volume 6056 of LNCS, pages 420–443. Springer,
2010.

48. S. W. Smith. Fairy dust, secrets, and the real world. IEEE Security & Privacy, 1(1):89–93, 2003.
49. F.-X. Standaert, O. Pereira, Y. Yu, J.-J. Quisquater, M. Yung, and E. Oswald. Leakage resilient

cryptography in practice. Cryptology ePrint Archive, Report 2009/341, 2009. http://eprint.iacr.

org/.
50. M. Stevens, A. Sotirov, J. Appelbaum, A. K. Lenstra, D. Molnar, D. A. Osvik, and B. d. Weger. Short

chosen-prefix collisions for MD5 and the creation of a rogue CA certificate. In Advances in Cryptology
– CRYPTO 2009, volume 5677 of LNCS, pages 55–69. Springer, 2009.

51. STMicroelectronics. Smartcard MCU with 32-bit ARM SecurCore SC300 CPU and 1.25 Mbytes high-
density Flash memory. Data brief, October 2008.
http://www.st.com/stonline/products/literature/bd/15066/st33f1m.pdf.

52. K. Tiri. Side-channel attack pitfalls. In Design Automation Conference (DAC’07), pages 15–20. ACM,
2007.

53. K. Tiri, D. Hwang, A. Hodjat, B.-C. Lai, S. Yang, P. Schaumont, and I. Verbauwhede. Prototype IC
with WDDL and differential routing — DPA resistance assessment. In Cryptographic Hardware and
Embedded Systems (CHES ’05), volume 3659 of LNCS, pages 354–365. Springer, 2005.

54. K. Tiri and I. Verbauwhede. A logic level design methodology for a secure DPA resistant ASIC
or FPGA implementation. In Design, Automation and Test in Europe (DATE’04), volume 1, pages
246–251. IEEE, 2004.



16 K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, T. Schneider

55. Trusted Computing Group (TCG). TPM main specification. Main specification, Trusted Computing
Group, May 2009. http://www.trustedcomputinggroup.org.

56. L. G. Valiant. Universal circuits (preliminary report). In ACM Symposium on Theory of Computing
(STOC’76), pages 196–203. ACM, 1976.

57. I. Verbauwhede and P. Schaumont. Design methods for security and trust. In Design, Automation
and Test in Europe (DATE’07), pages 672–677. ACM, 2007.

58. X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In Advances in Cryptology –
CRYPTO 2005, volume 3621 of LNCS, pages 17–36. Springer, 2005.

59. S. H. Weingart. Physical security devices for computer subsystems: A survey of attacks and defences.
In Cryptographic Hardware and Embedded Systems (CHES’00), volume 1965 of LNCS, pages 302–317.
Springer, 2000.

60. A. C. Yao. How to generate and exchange secrets. In IEEE Symposium on Foundations of Computer
Science (FOCS’86), pages 162–167. IEEE, 1986.

A Improved Garbled Circuits

Yao’s original GC construction has been improved by reducing its computation and communica-
tion complexity as described next. As throughout the entire paper we denote symmetric security
parameter with t.
Free XOR gates. An efficient method for creating garbled circuits which allows “free” evaluation
of XOR gates was presented in [26]. More specifically, a garbled XOR gate has no garbled table
(no communication) and its evaluation consists of XORing its garbled input values (negligible
computation). The main observation of [26] is, that the constructor S randomly chooses a global
key difference ∆ ∈R {0, 1}t which remains unknown to evaluator R and relates the garbled values
as w̃0

i = w̃1
i ⊕ (∆||1). The usage of such garbled values allows for free evaluation of XOR gates

with input wires W1,W2 and output wire W3 by computing w̃3 = w̃1⊕ w̃2 (no communication and
negligible computation).
Reduced non-XOR gates. Non-XOR gates, can be evaluated as in Yao’s GC construction [60] with
a point-and-permute technique (as used in [31]): The garbled values w̃i = 〈ki, πi〉 ∈ {0, 1}t+1 consist
of a symmetric key ki ∈ {0, 1}t and a random permutation bit πi ∈ {0, 1}. The entries of the garbled
table are permuted such that the permutation bits πi of a gate’s garbled input wires can be used
as index into the garbled table to directly point to the entry to be decrypted. After decrypting this
entry using the garbled input wires’ t-bit keys ki, evaluator obtains the garbled output value of the
gate. The encryption is done with the symmetric encryption function Encsk1,...,kd

(m), where d is the
number of inputs of the gate and s is a unique identifier used once, e.g., a monotonic gate counter.
Enc can be instantiated with m⊕ H(k1|| . . . ||kd||s), where H is a Random Oracle (RO) which can
be instantiated with a suitably chosen cryptographic hash function such as SHA-256 in practice.
We note that the RO assumption can be avoided or weakened at small additional computation
cost – see [40]. Additionally, garbled row reduction of [40] allows to remove the first entry from
the garbled tables of non-XOR gates, i.e., the garbled table of a d-input non-XOR gate consists of
2d − 1 table entries of size t+ 1 bits each.

B Proof of Theorem 1.

Proof. (sketch) Security against semi-honest S is trivial as S does not see R’s input (we consider
OTMs a separate entity from S).

We now describe the simulator Sim which will produce a view indistinguishable from the view
of R in real execution. Sim will query the receiver R as a black box and answer all of R’s queries,
including calls to (simulated) RO O. Our proof is based on the idea that Sim will “program” O
such that the output of the “hold off” gates will match the output given by the trusted party of
the ideal game.

Without loss of generality, we assume that R queries RO only once for each distinct input.
Upon initialization, Sim constructs GC, as would an honest S in the construction described above,
and sends the GC to R together with randomly chosen commitments ẑ0j , ẑ

1
j for all output wires.

Additionally, Sim generates a random key r and a random secret sharing r =
⊕
i

ri of it. For the

wires corresponding to the input of S, Sim sends secrets corresponding to 0-values. Whenever R



GCs for Leakage-Resilience: HW Implementation and Evaluation of OTPs 17

queries the i-th OTM with input bit xi, Sim responds with the corresponding garbled value x̃xi
i ,

constructed earlier as part of GC construction, and the share ri. Once R had queried the final
OTM, Sim sends the input received from R to the trusted party, and receives the output f(x, y)
of the computation. Now Sim “programs” O to output certain values according to the received
f(x, y). That is, on input (z̃j ||r) (call associated with OT-commit gate Gi and the j-th bit of the

output), O will output ẑ
fj(x,y)
j , i.e., the commitment for the wire leaving Gj that corresponds to

the bit fj(x, y) of the output he received from the trusted party.
It is not hard to see that the above simulator generates view indistinguishable from the view

of R in real execution. First, we note that the simulated GC and responses to RO and OTM
queries are indistinguishable from real execution. Thus, in particular, R “behaves normally” during
the simulation, and would not be able to, e.g., substitute inputs in a special way, etc. Further,
“programming” of O will not be noticed by R, since he can query programmed values only with
negligible probability prior to completing all OTM calls (since r is random and unknown to R
prior to completing all OTM calls). ut

C On our use of Random-Oracle

We note that in our extension of one-time programs described in §3.1, we use a relatively strong
assumption of programmable RO. In fact, it had been shown [5] that some (contrived) uses of
RO cannot be securely instantiated with any hash function. Therefore, proofs in the RO model
cannot be seen as proofs in the strictest mathematical sense. However, we believe that modeling
cryptographic hash functions, such as SHA-256, as RO is well-justified in our setting.

Firstly, to date, no attacks exploiting the RO assumption are known on practical systems. This
holds true even in academic context10. Further, even in well-understood and deployed real-life
systems, the crypto core (which includes the employed hash functions) is almost never targeted
for attacks, in favor of much easier to exploit implementation flaws. In our setting, we deal with
much less understood physical leakage, and make strong assumptions on the amount and content
of leakage. We believe that exploiting the structure of real hash function (required to violate the
RO assumption), something that eluded cryptographers for decades, is far harder and costlier than
violation of other assumptions used in design of leakage-resilient systems.

In sum, we strongly believe that making the RO assumption on the employed hash function is
practically justified in ours and many other settings.

10 Important attacks on SHA-1 [58] that exploit the structure of the functions were far impractical, and
simply accelerated migration to stronger primitives, which are believed secure today. While some attacks,
such as the attack on MD5 [50], are in fact practical, the use of MD5 had long been considered unsafe,
and [50] broke poorly managed systems. Thus we do not consider [50] an attack on properly implemented
protocols. In fact, [50], and the works that lead to it only support the historic fact that users of hash
functions do receive weakness warnings years ahead of possible real breaks.


