
Selecting Parameters for Secure McEliece-based Cryptosystems

Robert Niebuhr1, Mohammed Meziani2, Stanislav Bulygin2, and Johannes Buchmann1

1 TU Darmstadt, FB Informatik
Hochschulstrasse 10, 64289 Darmstadt, Germany

{rniebuhr, buchmann}@cdc.informatik.tu-darmstadt.de
2 CASED – Center for Advanced Security Research Darmstadt,

Mornewegstrasse 32, 64293 Darmstadt, Germany
{mohammed.meziani, stanislav.bulygin}@cased.de

Abstract. In 1994, P. Shor showed that quantum computers will be able to break cryptosystems based
on integer factorization and on the discrete logarithm, e.g. RSA or ECC. Code-based crytosystems are
promising alternatives to public key schemes based on these problems, and they are believed to be secure
against quantum computer attacks. In this paper, we solve the problem of selecting optimal parameters
for the McEliece cryptosystem that provide security until a given year and give detailed recommendations.
Our analysis is based on the lower bound complexity estimates by Sendrier and Finiasz, and the security
requirements model proposed by Lenstra and Verheul.

Key words: Post-quantum cryptography, codes, McEliece, key length, parameters.

1 Introduction

Public key cryptosystems are essential components of IT-security solutions. When public key cryptosystems are
used in such solutions, appropriate key sizes must be selected. For RSA, EC-ElGamal, and other factoring and
discrete logarithm-based systems that are used today, Lenstra and Verheul [13] proposed a model on how to
select appropriate keys that provide security until a given year.

We know from [19] that quantum computers can break all these “classical” systems. This is why post-quantum
public key cryptosystems, which remain secure in the presence of quantum computers, must be found, and the
problem of selecting cryptographic keys for such systems must be solved.

This paper solves the problem of selecting appropriate parameters for the McEliece cryptosystem based on bi-
nary Goppa codes. This cryptosystem is as old as RSA, and it is expected to resist quantum computer attacks.
Together with cryptographic schemes based on lattices, multivariate polynomials, or on hash functions, it is one
of the most interesting post-quantum candidates.

To instantiate McEliece, a vector space dimension n, a code dimension k, and an error-correcting capability t
are chosen. The selection of a parameter set (n, k, t) determines the properties of the cryptosystem instance, e.g.
security level, size of the public and private keys, information rate, computation complexity. Two of these pa-
rameters can be chosen independently; usually these are n and t, and k is treated as a function of these parameters.

Our main goal for the selection of parameters is to satisfy a minimum security level. Given that the first goal is sat-
isfied, we want to minimize the public key size. The results of our optimization can be found in Table 2 on page 8.

There are, of course, other properties that can be optimized, e.g. encryption or decryption speed. The reason
why we focus on the key sizes is the following. While the McEliece cryptosystem is very efficient and does not
require special hardware, it suffers from the drawback of having large public and private keys. For example, in
a smart card implementation we analyzed3, the computation time for encryption and decryption accounted for
3 Implemented by Falko Strenzke, FlexSecure GmbH, Darmstadt, Germany



only 5% of the total time, while the data transfer of the public key required 95% of the total time. Therefore,
reducing the public and private key size is an important target.

The paper is organized as follows: In Section 2, we will review relevant details from coding theory and the McEliece
cryptosystem, so as to introduce our notations and review the commonly-used relevant terminology. Section 3
describes our security model. Based on this model we explain our approach for selecting optimal parameters and
present our results in Section 4. In Section 5, we summarize our findings and formulate topics for further research.

2 Preliminaries

2.1 Coding theory

Error-correcting codes are widely used in practice, especially for information transfer over noisy channels. Applica-
tions are: CDs/DVDs, DSL, DVB-TV, mobile phones, satellite communication, and many more. In cryptography,
error-correcting codes also have applications. Many code-based cryptosystems make use of the error-correcting
capability of an underlying code by intentionally adding errors to the message, such that these errors may only
be efficiently corrected using the private key. The extensive research and many hardware developments due to
the increasing popularity of error-correcting codes make code-based cryptosystems a promising candidate for
cryptography.

In this section we provide a short introduction to error-correcting codes and the McEliece cryptosystem. A more
detailed description can be found in [14].

In general, a linear code is a k-dimensional subspace of an n-dimensional vector space over a finite field Fq, where
k and n are positive integers with k < n and q a prime power. The elements of a code are called codewords. The
information rate (or rate) is defined as R = k/n. The weight of a vector x, denoted by wt(x), is the number of
its non-zero entries, and the Hamming distance of two vectors is the weight of their difference. The minimum
distance d of a code is the minimum distance between any two distinct codewords; a code with these properties
is denoted as an [n, k, d] code.

The error-correcting capability of a linear code is the maximum number t∗ = b(d − 1)/2c of errors that the
code is able to decode. Sometimes we want to add fewer errors than theoretically possible. Therefore, we denote
by (n, k, t) an [n, k, d] code with t ≤ t∗. In this paper, we restrict our attention to the binary case, i.e., q = 2. In
the rest of this section, we fix n, k, t, and a linear (n, k, t) code C over F2.

The security of code-based cryptosystems is based on the difficulty of some classical problems of coding theory.
The most relevant in our context is:

Coset weights: Let r and n be two positive integers such that r < n. Given a binary matrix H ∈ Fr×n2 , a
vector s ∈ Fr2 and a non-negative integer t. Find a vector x ∈ Fn2 of weight wt(x) ≤ t such that HxT = s.

It was proved in [3] that the respective decisional problem is NP-complete.

2.2 The McEliece cryptosystem

The McEliece public-key encryption scheme was presented by R. McEliece in 1978 ([15]) and is one of the best-
studied code-based schemes up to date.

The idea behind this scheme is to first select a particular (linear) code for which an efficient decoding algorithm is
known, and then to create a trapdoor function by disguising the code as a general linear code. Since the problem
of decoding a linear code is NP-complete, a description of the original code can serve as the private key, while a

2



description of the transformed code can serve as the public key.

The McEliece encryption scheme using Goppa codes, as originally proposed by McEliece, has resisted cryptanal-
ysis to date. The system was also the first public-key encryption scheme to use randomization in the encryption
process. Although computationally very efficient, the McEliece encryption scheme has received little attention in
practice because of the very large public keys.

Construction: We provide an overview on the construction of the McEliece cryptosystem. See [17] for more
details.
Fix n, k, t as in the previous section. Let C be a binary (n, k, t)-Goppa code defined by a Goppa polynomial g of
degree t, together with a fast decoding algorithm that can correct up to t errors. In the case of Goppa codes, we
have the relation k = n− t · dlog2(n)e. Let G be a k × n generator matrix for C. To create the disguise, choose a
random k× k invertible binary matrix S (the scrambler) and let P be a random n× n permutation matrix. The
matrix,

Ĝ = SGP

is made public, while g, S, and P form the private key (G can be constructed from g and the set of points where
g is evaluated).

Encryption: Represent the plaintext as a vector m of length k, choose a random error vector e of weight at
most t, and compute the ciphertext c = mĜ+ e.

Decryption: To recover the plaintext m from c, first compute ĉ = cP−1 = mSG + eP−1. As P is a permu-
tation matrix, eP−1 has the same weight as e. Therefore, the decoding algorithm for the code generated by G
finds and corrects these errors, resulting inmSG, which is then decoded to m̂ = mS. Finally, computem = m̂S−1.

Remark 1. We assume Ĝ to be in systematic form, which can be achieved by Gaussian elimination:

Ĝ = [Ik|G′],

where Ik is the identity matrix of size k. This allows to store the public key more efficiently and reduces its size
to k(n− k) bits. See [17] for more details.

3 Our Security Model

3.1 Security of the McEliece cryptosystem

Since the introduction of the McEliece cryptosystem, different attacks against it have been proposed in the liter-
ature. Some attacks, called structural attacks, aim at recovering the private key from the public key. A detailed
overview of these attacks can be found in [7]. Other attacks, called decoding attacks, attempt to recover the plain
text from a given cipher text, and most of them are based on Information Set Decoding (ISD) or, in some cases,
on the Birthday algorithm, generalizations, and improvements of these two. Other types of attacks has been
proposed, like iterative decoding [10] and statistical decoding [11,16], but they achieved little success. The ISD
attacks seem to have the lowest complexity. For these reasons, we base our security analysis on the complexity
of this kind of attacks.

The working principle of an ISD attack is as follows: Consider an (n, k, t)-linear code C of a generator matrix G
of rank k. Denote by c ∈ Fn2 a received word, i.e. c = x + e with x = mĜ ∈ C and e ∈ Fn2 is the added error of
weight t, wherem ∈ Fk2 is the plain text. To recoverm from c, an attacker randomly selects a subset I ⊂ {1, . . . , n}
of size k, called an Information Set, in the hope that the sub-matrix ĜI formed by the I-indexed columns of Ĝ is
invertible and cI is error-free, i.e. eI = 0, where zI denotes the I-indexed positions of word z. If this is the case,

3



then x = cI · Ĝ−1
I and the plain text is m = x · Ĝ.

Over the years, several ISD algorithms have been described and improved. The most important of these are listed
in Table 1, together with their respective binary work factor to decode a (1024, 524, 50) Goppa code (these are
the original McEliece parameters). An explicit bounds for some of these algorithms can be found in [8].

Table 1. Complexity of ISD algorithms against (1024, 524, 50) McEliece cryptosystem

Year Algorithm Log. of binary work factor
1986 Adams-Mejier [1] 80.7
1988 Lee-Brickell [12] 70.89
1989 Stern [20] 66.21
1994 Canteaut-Chabanne [5] 65.5
1998 Canteaut-Chabaud [6] 64.1
2008 Bernstein-Lange-Peters [4] 60.4
2009 Finiasz-Sendrier [9] 59.9

In 2009, Finiasz and Sendrier developed lower bounds for ISD algorithms [9] by analyzing an idealized ISD
algorithm. Their work can be used to calculate conservative estimates for the security of arbitrary parameters.
Therefore, we will use this algorithm to determine the security level of a given Goppa code.

3.2 Lenstra-Verheul Model

In [13], Lenstra and Verheul developed a formal model to find appropriate parameters for symmetric and some
asymmetric cryptosystems. Their model is based on a set of assumptions that combine the impact of cryptanalytic
progress and the effect of changes in computing environment. The key points of their model on which the choice
of parameters depends are the following:

1. Security margin: is the year s in which attacks on a certain cryptographic primitive were infeasible. It
defines the term of ”adequate security”. In order to determine this, Lenstra and Verheul evaluate a function
IMY(s). This abbreviation stands for ”Infeasible number of MIPS-years4 for year s“, and it refers to the
minimum computational effort that is expected to be infeasible to do in year s. In [13] the default value of s
is 1982 which represents the last year for which it is assumed that a 56-bit key DES cryptosystem provides
adequate security for commercial use. The computational effort for breaking the 56-bit DES system was
estimated to be 5 · 105 MIPS-years.

2. Computing environment: estimates the changes in computational power available to attackers. This es-
timation is based on a slight variation of Moore’s law by introducing three three variables a, b, and c that
specify the changes in hardware speed, IT budget, and price over time. The definitions of these variables and
their default values are as follows:

– a is the expected average number of months in which processor speed and memory size increase by a
factor of two. The default value is a = 18, which is the value specified by Moore’s law and is so far in
line with current hardware developments. In this paper we are going to use the same value due to the
fact that over the last years, hardware development has resulted in a doubling of transistors (for a fixed
price) every 12-24 months5. Thus, a default of 18 is a compromise of this historic data. Also, opinions
differ in whether hardware development will slow down or new technologies will further accelerate it;

– c ∈ {0, 1} indicates how to interpret the variable a: For c = 0, the amount of computing power and
memory which is available to an attacker doubles every a months, while for c = 1, the computing power

4 MIPS = million instructions per second
5 See http://wi-fizzle.com/compsci/

4



and RAM for a given price double every a months. We will use c = 1 since the historic trend mentioned
above refers to a fixed price.

– b is defined as the average number of years it takes for IT budgets to double. According to historic data6,
the US Gross National Product has doubled approx. every 10.5 years over the last 30 years. Since the
exact growth varies every year, we will use an average value to extrapolate over a larger period of time.
Our default setting for b is 10.

3. Cryptanalysis: the expected cryptanalytic progress. It is measured by the number of months r it is expected
for cryptanalytic attacks to become twice as effective. We estimate this number by attacks against code-based
cryptosystems only, since the cryptanalytic development can be very different for other cryptosystems. Lenstra
and Verheul’s default value is r = 18. In code-based cryptography, we find it reasonable to assume that the
pace of future cryptanalytic developments and their impact will be relatively close to what we have seen from
1988 until 2009. By applying a linear regression on data points listed in Table 1, we get a line whose slope
roughly equals −0.41 meaning that a twofold attack efficiency improvement will happen in each 1/0.41 ≈ 2, 44
years. Also the value of r is r = 2, 44 · 12 ≈ 29.27. In this paper, we take r = 30, which corresponds to 2.5
years.

Based on these variables, Lenstra and Verheul present a formula which can be used to derive lower bounds for
cryptographic key sizes that offer at least a specified security margin until year y in the future (independent of
the concrete asymmetric cryptosystem). To do this, they show how IMY(y) is derived from the parameters above.
Given that breaking the DES system takes 5 · 105 MIPS-years, which was infeasible in the year s, the function
IMY(y) is defined by:

IMY(y) = 5 · 105 · 212(y−s)/a · 2c(y−s)/b MIPS-years. (1)
With our default settings, it follows that in year y a computational complexity of

IMY(y) = 5 · 105 · 2 23
30 (y−1982) MIPS-years (2)

provides an acceptable level of security. Furthermore, if we use as a data point the result that approximately
260.4 binary operations are needed to break the original McEliece with parameters (1024, 524, 50) [4], and expect
cryptanalytic developments by a factor 212(y−2008)/r (with r = 30), we claim that a sufficient condition for
security level, denoted by S(n, k, t), of a McEliece instance with parameter set (n, k, t) providing an adequate
security until a given year y is the following:

S(n, k, t) ≥ IMY(y) · 212(y−2008)/30 · 260.4

1.7 · 105 . (3)

The value 1.7 · 105 is expressed in MIPS-years and obtained from the fact that the attack by Bernstein et al. [4]
required 1400 CPU days on Q6600 quad processors. Assuming that a Q6600 processor [4] does approximately
44, 000 MIPS (SiSoft Sandra benchmark and [2]), this corresponds to 1.7 · 105 MIPS-years.

Therefore, the inequality (3) becomes:

S(n, k, t) ≥ 2.9412 · 2 23
30 (y−1982)+ 12

30 (y−2008)+60.4 (4)

4 Parameters selection

4.1 Our methodology

The problem of estimating secure parameters for the McEliece cryptosystem for a given year consists in obtaining,
for the security level S calculated as above, a set of parameters that achieves this security level and provides the
smallest key size among all other such sets. To solve this problem, we use the following methodology:
6 See http://www.bea.gov

5



1. Based on simplified theoretical arguments we show that there exists an optimal rate R∗ with R∗ ≈ 0.8 such
that for a given key size the maximum of security is achieved at this rate.

2. We show how an instance attaining maximum security for a given key size can be used to solve the problem
of finding the optimal key size for a given security level.

3. We present an algorithm that we use to find optimal instances that experimentally have a rate of ≈ 0.74,
corresponding to the arguments from 1.

Already in [18] it was pointed out that the ISD-family of algorithms has an approximate complexity of

C(n,R) = p(n)2−t log2(1−R), (5)

where p(n) is some polynomial in n. For the classical ISD the degree of p is 3 and it gets lower for improvements.
In the case of a t-error correcting Goppa code of length n and dimension k = n − tdlog2 ne, the above formula
becomes

CG(n,R) = p(n)2c(R)n/ log2 n(1+o(1)), (6)
where c(R) = −(1−R) log2(1−R) is the complexity coefficient. In [18] it is also mentioned that, neglecting p(n)
and concentrating only on the exponential part, the following can be shown: for a given code length n, the highest
complexity is achieved at an information rate of 1 − e−1 ≈ 0.63. Although we will compute our table using the
lower bounds from [9], we would first like to provide some theoretical evidence that the optimal rate exists also
for the problem of the smallest key size. Considering that the numerous improvements of the ISD enhance only
the polynomial part significantly, the reasoning seems to be sound. In the following lemma we simplify CG(n,R)
to

CG(n,R) = 2(c(R)n/ log2 n(1+o(1))), (7)
similarly to [18].
Lemma 1. Given the key size K, the maximum complexity of an ISD-like algorithm as per (7) is achieved at
an information rate R∗ ≈ 0.8.

Proof. The proof is quite elementary, but we still provide it for completeness. First, from the formula
K = R(1 − R)n2 we have that n =

√
K/(R(1−R)). Now if we substitute this expression on n in (7) we

have that
CG(K,R) = 2(cK(R)

√
K/ log2

√
K

R(1−R) )(1+o(1))
,

where cK(R) = − log2(1 − R)
√

1−R
R . So in order to maximize CG(K,R) for a given K we need to maximize

cK(R)
√
K/ log2

√
K

R(1−R) for this K. By taking a derivative for R we have the following equation for obtaining
the point of maximum:

c′K(R) Ks

log2
Ks√

(1−R)R

+ cK(R) Ks(1− 2R)
2 log2 2 Ks√

(1−R)R
R(1−R)

= 0,

where Ks =
√
K. This simplifies to

c′K(R) + cK(R) 1− 2R
2 log2

Ks√
(1−R)R

R(1−R)
= 0.

Considering that Ks →∞ for K →∞, the second summand tends to 0, and we are left with the equation

c′K(R) = 0.

The solution of the above equation is a root of the equation

ln(1−R)
R

= −2

and numerically this root is R∗ ≈ 0.8.

6



Now let us show that, given the fact that the maximum complexity for the given key size is attained at some R∗,
the minimum key size for the given security level is achieved for a code with the same rate R∗.

Proposition 1. Let the security level S∗ be given. Let C(K,R) be the complexity of an algorithm A for decoding
up to half the minimum distance a Goppa code with the key size K and rate R. We impose the following formal
assumptions on C(K,R):

(a) C(K,R) is continuous on ]0,∞[×[0, 1].
(b) C is unbounded in K for all R: ∀R ∈]0, 1[: C(K,R)→∞,K →∞.
(c) C is increasing in K: ∀K2 > K1 > 0 ∀R ∈]0, 1[: C(K1, R) < C(K2, R).

Further, assume that for given K the maximum complexity of A is achieved at R∗:

(d) ∀K > 0 ∀R 6= R∗ : C∗(K) := C(K,R∗) > C(K,R).

Then the McEliece cryptosystem that satisfies the security level S∗ w.r.t A with the smallest possible key size has
an underlying Goppa code of rate R∗.

Proof. Due to (a) the function C∗(K) is continuous and due to (c) is strictly increasing. Now because of (b) there
exists a solution to C∗(K) = S∗. And because of the above mentioned properties of C∗ this solution is unique:
C∗(K∗) = S∗. Finally, the claim of the proposition follows from S∗ = C(K∗, R∗) > C(K∗, R) ∀R 6= R∗.

Remark 2. Conditions (a)-(c) are natural for any complexity function of a decoding algorithm. The property (d)
is true at least for ISD-like algorithms as we have seen in Lemma 1.

So now we may expect the following to happen in our table (Table 2): Although we use more advanced lower
bounds from [9] we still expect that for given K the maximum security will be achieved at some R∗, the same
for all K. As we have mentioned this is due to the fact that the improvements of the ISD algorithm do not seem
to improve much on the exponential part. Moreover, because of the same reason we expect this R∗ not to differ
significantly from the value 0.8 predicted by Lemma 1. Having this, we will then use Proposition 1 to construct
an algorithm that with arbitrary precision finds an instance with the smallest key possible that achieves the
given security level S. This algorithm is depicted below (see Algorithm 1). In this algorithm, the value of S is
calculated via the inequality (4), the interval [Rstart, Rend] is chosen large enough and contains 0.8, so we take
an information rate which ranges from Rstart = 0.6 to Rend = 0.85. All other parameters are chosen so that it
is feasible to complete the algorithm in a reasonable time. For the key size, we set Kupper = 200 kB as an up-
per bound and use the step size Kstep = 1 kB. Moreover, we use the lower bound formula from [9] as a function C.

4.2 Proposed Parameters

Our results are presented in Table 2 which shows the following information:

– Year: the year until which data security is required. Historic data is given mainly to allow comparison with
other sources.

– Symmetric key size: the symmetric key size required to ensure data security, calculated in accordance with
Lenstra and Verheul’s approach.

– Lower bound for log2(S(n, k, t)): the log2 of the minimum number of binary operations (required to break a
McEliece cryptosystem) that are infeasible in the respective year.

– RSA and EC parameters: the original parameters proposed by Lenstra and Verheul. They allow for easy
comparison between ”classical“ and code-based cryptosystems.

– The last two columns are a translation of the required symmetric key size into parameters relevant in practice,
i.e. the number of MIPS years that render a cryptosystem infeasible to break, and the corresponding number
of years on a modern Quad core CPU.

7



Table 2. Proposed parameters for the McEliece cryptosystem – optimized for public key size

RSA Elliptic Corresponding
Sym- Lower McEliece para- Key Size Curve Key Infeasible number of years

metric bound for meters (n, k, t) and and SDLa Size (bits) for number of on a 2.4 GHz Intel
Year Key Size log2 S(n, k, t) public key size (kB) Field Size c = 0, c = 18 MIPS-years Core 2 Quad Q6600
2009 77 83 (1634, 1217, 39) 62 1323 1024 145 157 8.52 · 1011 1.94 · 107

2010 78 84 (1635, 1197, 41) 64 1369 1056 146 160 1.45 · 1012 3.30 · 107

2011 79 85 (1652, 1203, 42) 66 1416 1088 148 163 2.47 · 1012 5.61 · 107

2012 80 87 (1687, 1226, 43) 69 1464 1120 149 165 4.19 · 1012 9.52 · 107

2013 80 88 (1702, 1219, 45) 72 1513 1184 151 168 7.14 · 1012 1.62 · 108

2014 81 89 (1770, 1306, 43) 74 1562 1216 152 172 1.21 · 1013 2.75 · 108

2015 82 90 (1823, 1368, 42) 76 1613 1248 154 173 2.07 · 1013 4.70 · 108

2016 83 91 (1833, 1356, 44) 79 1664 1312 155 177 3.51 · 1013 7.98 · 108

2017 83 92 (1845, 1356, 45) 81 1717 1344 157 180 5.98 · 1013 1.36 · 109

2018 84 93 (1877, 1387, 45) 83 1771 1376 158 181 1.02 · 1014 2.32 · 109

2019 85 95 (1951, 1481, 43) 85 1825 1440 160 185 1.73 · 1014 3.93 · 109

2020 86 96 (1955, 1463, 45) 88 1881 1472 161 188 2.94 · 1014 6.68 · 109

2021 86 97 (1983, 1479, 46) 91 1937 1536 163 190 5.01 · 1014 1.14 · 1010

2022 87 98 (2013, 1508, 46) 93 1995 1568 164 193 8.52 · 1014 1.94 · 1010

2023 88 99 (2018, 1491, 48) 96 2054 1632 166 197 1.45 · 1015 3.30 · 1010

2024 89 101 (2104, 1596, 46) 99 2113 1696 167 198 2.47 · 1015 5.61 · 1010

2025 89 102 (2106, 1576, 48) 102 2174 1728 169 202 4.20 · 1015 9.55 · 1010

2026 90 103 (2135, 1604, 48) 104 2236 1792 170 205 7.14 · 1015 1.62 · 1011

2027 91 104 (2157, 1614, 49) 107 2299 1856 172 207 1.21 · 1016 2.75 · 1011

2028 92 105 (2198, 1654, 49) 110 2362 1888 173 210 2.07 · 1016 4.70 · 1011

2029 93 106 (2220, 1664, 50) 113 2427 1952 175 213 3.52 · 1016 8.00 · 1011

2030 93 108 (2241, 1673, 51) 116 2493 2016 176 215 5.98 · 1016 1.36 · 1012

2032 95 110 (2344, 1784, 50) 122 2629 2144 179 222 1.73 · 1017 3.93 · 1012

2034 96 112 (2440, 1877, 50) 129 2768 2272 182 227 5.01 · 1017 1.14 · 1013

2036 98 115 (2496, 1920, 51) 135 2912 2400 185 232 1.45 · 1018 3.30 · 1013

2038 99 117 (2440, 1776, 59) 144 3061 2528 188 239 4.20 · 1018 9.55 · 1013

2040 101 119 (2521, 1854, 59) 151 3214 2656 191 244 1.22 · 1019 2.77 · 1014

2042 103 122 (2623, 1964, 58) 158 3371 2784 194 248 3.52 · 1019 8.00 · 1014

2044 104 124 (2662, 1979, 60) 165 3533 2944 197 255 1.02 · 1020 2.32 · 1015

2046 106 126 (2691, 1973, 63) 173 3700 3072 200 260 2.95 · 1020 6.70 · 1015

2048 107 129 (2798, 2088, 62) 181 3871 3232 203 265 8.53 · 1020 1.94 · 1016

2050 109 131 (2804, 2048, 66) 189 4047 3392 206 272 2.47 · 1021 5.61 · 1016

a Subgroup Discrete Logarithm

8



Algorithm 1 Search(S,C,Kstep,Kupper, Rstart, Rend)
Require:

- A security level S
- The complexity function C(n,R) satisfying (a)-(d) of Proposition 1
- Step for the key size search Kstep
- Search upper bound for the key size Kupper
- Rate search interval bounds Rstart, Rend

Ensure: nout and Rout such that
- C(nout, Rout) ≥ S
- The key size is the smallest possible up to steps Kstep and Rstep

Begin
for K = Kstep to Kupper do
n := b

√
K

Rstart(1−Rstart)c
while (k < n ·Rend) do
R := k

n

if C(n,R) ≥ S then
return n and R

end if
k := k + 1
n := bK

k
+ kc

end while
end for
return ”NO solution found”
End

5 Conclusion

In this work we have addressed the problem of selecting optimal parameters for the McEliece cryptosystem based
on binary Goppa codes. This problem was to find instances of McEliece cryptosystem that are secure in a given
year and providing the smallest key sizes. For this problem, we have presented detailed parameter recommen-
dations. This allows (potential) users of the McEliece cryptosystem to optimize the parameter choice, thereby
improving the applicability of code-based cryptography. We have also shown the fact that all such optimal in-
stances have a certain rate close to 0.74.

As a next step, we suggest a comprehensive analysis of concrete application scenarios. As we have illustrated
above, in these scenarios constraints, as well as the trade-offs between the code properties, strongly depend on
the details of the application, e.g. available bandwidth, acceptable response times, or (typical) message size. This
analysis would provide further insights into the current strengths and limitations of code-based cryptography,
thereby also suggesting new research foci for the future.

References

1. C.M. Adams and H. Meĳer. Security-related Comments Regarding McEliece Public-key Cryptosystem. IEEE Trans.
Inform. Theory, 35(2):454–455, 1989.

2. Au-Ja.de. Intel core 2 Quad Q6600, May 2007. http://www.au-ja.de/review-core2quad6600-5.phtml.
3. E. Berlekamp, R. McEliece, and H. van Tilborg. On the Inherent Intractability of Certain Coding Problems. IEEE

Trans. Inform. Theory, 24(3):384–386, 1978.
4. D. J. Bernstein, T. Lange, and C. Peters. Attacking and defending the McEliece cryptosystem. In J. Buchmann and

J. Ding, editors, PQCrypto, volume 5299 of Lecture Notes in Computer Science, pages 31–46. Springer, 2008.
5. A. Canteaut and H. Chabanne. A further improvement of the work factor in an attempt at breaking McEliece’s

cryptosystem. Research Report RR-2227, INRIA, 1994.

9



6. A. Canteaut and F. Chabaud. A New Algorithm for Finding Minimum-Weight Words in a Linear Code: Application
to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEE Transactions on Information Theory,
44(1):367–378, 1998.

7. R. Overbeck D. Engelbert and A. Schmidt. A Summary of McEliece-Type Cryptosystems and their Security. Cryp-
tology ePrint Archive, Report 2006/162, 2006. http://eprint.iacr.org/.

8. C. Peters D. J. Bernstein, T. Lange and H. van Tilborg. Explicit Bounds for Generic Decoding Algorithms for Code-
based Cryptography. In Proc. of the International Workshop on Coding and Cryptography, WCC’2009, pages 68–180,
2009.

9. M. Finiasz and N. Sendrier. Security Bounds for the Design of Code-based Cryptosystems. In Mitsuru Matsui, editor,
Advances in Cryptology - ASIACRYPT 2009, number 5912 in LNCS, pages 88–105. Springer, 2009.

10. M. P. C. Fossorier, K. Kobara, and H. Imai. Modeling Bit Flipping Decoding Based on Nonorthogonal Check Sums
With Application to Iterative Decoding Attack of McEliece Cryptosystem. IEEE Transactions on Information Theory,
53(1):402–411, 2007.

11. A. Kh. Al Jabri. A Statistical Decoding Algorithm for General Linear Block Codes. In Proceedings of the 8th IMA
International Conference on Cryptography and Coding, pages 1–8. Springer-Verlag, 2001.

12. P.J. Lee and E.F. Brickell. An Observation on the Security of McEliece’s Public-key Cryptosystem. In EURO-
CRYPT ’88, Lect. Notes in CS, pages 275–280, 1988.

13. A. K. Lenstra and Eric R. Verheul. Selecting Cryptographic Key Sizes. Journal of Cryptology: the journal of the
International Association for Cryptologic Research, 14(4):255–293, 2001.

14. F.J. MacWilliams and N.J.A. Sloane. The Theory of Error Correcting Codes. North-Holland, 1977.
15. R.J. McEliece. A public-key cryptosystem based on algebraic coding theory. DNS Progress Report, pages 114–116,

1978.
16. R. Overbeck. Statistical Decoding Revisited. In ACISP, pages 283–294, 2006.
17. R. Overbeck and N. Sendrier. Code-based Cryptography. In Post Quantum Cryptography, pages 95–146. Springer-

Verlag, 2008.
18. N. Sendrier. On the Security of the McEliece Public-key Cryptosystem. In M. Blaum, P.G. Farrell, and H. van Tilborg,

editors, Information, Coding and Mathematics, pages 141–163. Kluwer, 2002. Proceedings of Workshop honoring Prof.
Bob McEliece on his 60th birthday.

19. P. W. Shor. Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In SFCS ’94: Proc. of the
35th Annual Symposium on Foundations of Computer Science, pages 124–134. IEEE Computer Society, 1994.

20. J. Stern. A method for finding codewords of small weight. In Proc. of Coding Theory and Applications, pages 106–113,
1989.

10


