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Abstract

We present a brief report on the factorization of RSA-180, currently

smallest unfactored RSA number. We show that the numbers of similar

size could be factored in a reasonable time at home using open source

factoring software running on a few Intel Core i7 PCs.

1 Introduction

In 1991 RSA Labs published a list of semiprime numbers of different size and
announced a reward for their factorization. The numbers from that list called
RSA numbers became a measure of the quality of the factorization tools.

We began working on our factorization project on November 2009. We
started with the smallest unfactored RSA number for that moment, RSA-170,
written in 170 decimal digits. The factorization was finished on 31 December
2009, then we found out that Dominik Bonenberger and Martin Krone [1] were
ahead of us for two days and had already presented the RSA-170 prime de-
compostion. Meanwhile the new world record in factorization was set [2] – the
international team of scientists managed to factor the RSA-768, a 232 decimal
digits long RSA number.

On January 2010 after a short break we decided to continue the project and
took the number

RSA-180 = 191147927718986609689229466631454649812986246
276667354864188503638807260703436799058776201
365135161278134258296128109200046702912984568
752800330221777752773957404540495707851421041,

the next smallest RSA number with unknown factorization.
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2 Factorization of RSA-180

Our tools for factorization are essentially based on two open source implemen-
tations of General Numebr Field Sieve (GNFS) algorithm – the community
maintained GGNFS suite [3] and Jason Papadopoulos’s msieve [4]. We adopted
them for parallel computations using MPI and tested on two independent plat-
forms:

1. 24 virtual processors of 3 Intel Core i7 4GHz PCs with 6Gb RAM con-
nected over Gigabit Etherenet and running open source MPI implemen-
tation MPICH2 [5],

2. 100 virtual processors of Moscow State University supercomputer SKIF
MSU ‘Chebyshov’ [6].

The GNFS algorithm has 4 major steps: polynomial selection, sieving and
post-processing, solving sparse linear system, square root extraction. Let us
make a few comments on each of them in our parallel GNFS implementation.

2.1 Polynomial selection

Although J. Papadopoulos implemented a very nice polynomial selection algo-
rithm on nVidia CUDA architecture we decided to parallelize the J.Franke and
T. Kleinjung’s pol5 tool from the GGNFS suite so we were able to run it on
both platforms.

The parallelization was trivial, basicly we’ve rewritten the perl script coming
with the GGNFS suite and equally divided the highest polynomial coefficient
search interval between parallel processors. This technique is not very efficient
since the ‘good’ polynomials are not equally distributed on each subinterval
and therefore many of the processors are underloaded. However this was a good
start and allowed us to find after 12 days on platform 1 and 13 days on platform
2 a few polynomial pairs of almost equal quality, the best of which was

a(x) = 7563318480x5

+17595930596689122x4

−39645427355913493154751x3

−17198395720703347534221482658x2

+17747480317181638340745152993046310x
−717997517149198776797652540283041093812,

r(x) = 6387961227166713233237x
−7595061086400998499293221500552275.

with skew 1090750.

2.2 Sieving and post-processing

A modified version of GGNFS’s lattice siever lasieve4I15 was used for sieving
stage. The parallelization was again very simple – the special-q interval [5135 ·
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104, 35135 · 104] was equally splitted between the processors. Both large prime
bounds were set to 231. The stage took 63 days on platform 1 and 26 days
on platform 2 and resulted in 192 and 198 million of partial relations stored in
about 21,5 Gb file.

The post-processing stage was done by the latest msieve and after 2 hours on
single processor of platform 1 and 4 hours on single processor of platform 2 re-
duced the problem on platform 1 to the linear system of size 21414654×21414832
and weight 2028585084. There was a small oversieving on platform 2 resulted
in slightly different matrix size 20572576× 20572753 and weight 1955919707.

2.3 Solving linear system

We implemented a parallel version of P. Montgomery block Lanczos algorithm
[7] based on the implementation from the msieve. It was taking some time to
write it and remembering the previous experience with the RSA-170 we decided
to launch the matrix step on the single processor of platform 1 using the 4-thread
msieve while debugging the parallel one on the platform 2.

The matrix step finished in 33 days on platform 1 and gave us 31 nontrivial
dependencies. The parallel version on platform 2 finished in 24 days and showed
that the implementation wasn’t good enough since the expected speedup was a
square root of a number of processors. Currently we are working on the further
speedup of the parallel version of Montgomery’s block Lanczos algorithm.

2.4 Square root extraction

The square root extraction stage was done purely by msieve and took 10 hours
on the single processor of platform 1 and 19 hours on the single processor of
platform 2.

After all the stages we found that RSA-180 = pq, where

p =
400780082329750877952581339104100572526829317
815807176564882178998497572771950624613470377

and

q =
476939688738611836995535477357070857939902076
027788232031989775824606225595773435668861833.

The factorizations of p± 1 and q ± 1 can be found in Appendix A.

3 Conclusions

We used freely available open source tools to factor RSA-180 on 3 Intel Core i7
PCs and the supercomputer SKIF MSU ‘Chebyshov’. The whole process took
a comparable time on both platforms: although the sieving stage was more ef-
ficient on supercomputer due to a bigger number of processors, all the other
stages were more efficient on the Intel Core i7 PC. This means that nowdays
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for about $3000 one can buy a computational power comparable to the small
supercomputer and factor numbers of about 180 decimal digits in 3 months.
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A Factorizations of p± 1 and q ± 1

The factorizations of p± 1 and q ± 1 are as follows

p− 1 = 23×
74051×
571409×
118396302321376822252686398515336778055028140925367145504
7486308276274179178583,

p+ 1 = 2×
3×
7×
11×
631×
757661×
80415217×
43164234793001183523080176706701×
522754256877405520606972067650473564077,

q − 1 = 23×
277×
751×
47779×
88291435965578199481003×
67935712535668043985232693389634831578450559709946498371,

q + 1 = 2×
3×
13×
29×
40780001×
9488340193×
36601837387×
14887798995502551010395541052456872321039885951355136372877.
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