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Abstract.  In this paper we study order-preserving encryption (OPE), a primitive in the database 

community for allowing efficient range queries on ecrypted data. OPE was suggested by Agrawal 

et al [1], and was throughly studied by Boldyreva et al [2]. In this paper we present a practical 

OPE scheme, which is a key-controlled algorithm, based on simple computation. A primary 

analysis shows that our algorithm is secure enough. 
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1 Introduction 

 

Order-preserving encryption (OPE) is a peculiar encryption scheme, whose encryption 

function preserves numerical ordering of plaintexts. Such special feature of OPE makes it useful 

in database security designing. OPE was suggested by R. Agrawal et al [1], and was throughly 

studied by Alexandra Boldyreva et al [2]. Alexandra Boldyreva et al [2] proved that OPE can not 

withstand chosen-plaintext-attack (CPA), so that an OPE machine must be securely holded. Then 

[2] they proposed an OPE scheme based on Lazy Sampling Algorithm. Finally [2] they proved the 

security of their scheme, in the security notion “look as random as possible”. Their work is 

excellent, but their scheme is bulky, with large sized Lazy Sampling Algorithm. More important is 

that, the correctness of their scheme depends on computation precision. 

In this paper we present a practical OPE scheme, which is a key-controlled algorithm, based 

on simple computation. Our scheme is composed of 4 layers, each of which is reversible, and each 

of which is order-preserving. We can not prove the security of our scheme in the notion “look as 

random as possible”, but a primary analysis shows that our algorithm is secure enough.  

 

 

2 Computing Components for Constructing OPE 

 

2.1 Notations 

 

For the sake of convenient description, some times we take a bit-string, with the length n, as an 

integer from the interval [0, 2
n
-1]. HW(a1a2…am) is Hamming Weight of bit-string (a1a2…am) 

(that is, the number of 1’s in the string (a0a1a2…am)). For an integer a, a    is the largest integer 
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not larger than a. In this paper the operation “+” is always taken as the addition over real number 

field, other than “bit-oriented exclusive or”. 

 

2.1 Key-Controlled Transformations f(0)(., k) and f(1)(., k) 

 

The key k=(k0k1k2…k15) is 16 bits long. The input X is 4 bits long. The output Y is 5 bits long. 

f(0)(., k) is described as 

Y= f(0)(X, k)=X+HW(k0k1k2…kX). 

The computation of inverse X=f(0)
-1

(Y, k) is easy, which is to find unique value X such that 

X+HW(k0k1k2…kX)=Y.  f(1)(., k) is described as 

Y= f(1)(X, k)=X+16-HW(kXkX+1kX+2…k15). 

The computation of inverse X=f(1)
-1

(Y, k) is easy, which is to find unique value X such that 

X+16-HW(kXkX+1kX+2…k15)=Y.  

Both f(0)(., k) and f(1)(., k) are order-preserving functions of the input X. For any key k, any X
(1)

 

and X
(2)

 such that X
(1)

<X
(2)

, we have f(0)(X
(1)

, k)<f(0)(X
(2)

, k) and f(1)(X
(1)

, k)<f(1)(X
(2)

, k). The 

difference between f(0)(., k) and f(1)(., k) is that f(0)(., k) tends to be small, while f(1)(., k) tends to be 

large. We can easily induce Property 1 and Property 2, stated in the follow. 

Property 1 For random key k and random input X, the average values of f(0)(X, k) and f(1)(X, k) 

are respectively 11.75 and 19.25. 

Property 2 It always holds that f(0)(X, k)≤2X+1, and it always holds that f(1)(X, k)≥2X. 

 

2.2 Linear expensions l(0)(., m) and l(1)(., m) 

 

The input X is n bits long. The output Y is n+1 bits long. m is an integer such that 1≤m≤n-1. 

l(0)(., m) is described as 

Y= l(0)(X, m)=X+ / 2n mX    . 

The computation of inverse X=l(0)
-1

(Y, m) is easy. Compute Y÷(1+2
n-m

) to obtain integer 

quotient u and fraction residual v. Then (1) w=v×(1+2
n-m

) is an integer such that 0≤w<2
n-m

; (2) 

X=u×2
n-m

+w. l(1)(., m) is described as 

Y= l(1)(X, m)=X+2
n
-  2 1 / 2n n mX   
 

. 

The computation of inverse X=l(1)
-1

(Y, m) is easy. Compute Z=2
n+1

-1-Y, then 

Z=(2
n
-1-X)+  2 1 / 2n n mX   

 
. 

Compute Z÷(1+2
n-m

) to obtain integer quotient u and fraction residual v. Then (1) w=v×(1+2
n-m

) 

is an integer such that 0≤w<2
n-m

; (2) (2
n
-1-X)=u×2

n-m
+w.  

Both l(0)(., m) and l(1)(., m) are order-preserving functions of the input X. For any parameter m 

such that 1≤m≤n-1, any X
(1)

 and X
(2)

 such that X
(1)

<X
(2)

, we have l(0)(X
(1)

, m)<l(0)(X
(2)

, m) and 

l(1)(X
(1)

, m)<l(1)(X
(2)

, m). The difference between l(0)(., m) and l(1)(., m) is that l(0)(., m) tends to be 

small, while l(1)(., m) tends to be large. We can easily induce that l(0)(X, m)≤(1+2
-(n-m)

)X, and that 

l(1)(X, m)≥(1+2
-(n-m)

)X+2
n
-2

m
+2

-(n-m)
. 

 

 



3 Description of Our OPE Scheme 

 

Our scheme encrypts plaintexts with the length 64, into ciphertexts with the length 126. The 

scheme is composed of 4 layers, with the encryption procedure as:  

plaintext→the first layer→the second layer→the third layer→the fourth layer→ciphertext. 

 

3.1 The First Layer 

 

The key k(1)={(k(1, 1, *), k(1, 1, 0), k(1, 1, 1), …, k(1, 1, 15)), (k(1, 2, *), k(1, 2, 0), k(1, 2, 1), …, k(1, 2, 15)), …, 

(k(1, 16, *), k(1, 16, 0), k(1, 16, 1), …, k(1, 16, 15))} is 272 bits long. The input X is 64 bits long. The output Y 

is 80 bits long. Denote X=(X1, X2, …, X16), Y=(Y1, Y2, …, Y16), where each Xj is 4 bits long, and 

each Yj is 5 bits long. Then 

(1, ,*)( ) (1, ,0) (1, ,1) (1, ,15)( , ( , , , ))
jj k j j j jY f X k k k , j=1~16. 

According to subsection 2.1, the first layer is easy to be reversed. It is not difficult to induce 

that the first layer is an order-preserving function. 

 

3.2 The Second Layer 

 

The key k(2)=(k(2, 1), k(2, 2), …, k(2, 20)) is 20 bits long. The input X is 80 bits long. The output Y 

is 100 bits long. This layer is 

U1=  
(2,1)( ) ,1kl X , 

U2=  
(2,2)( ) 1,2kl U , 

… 

U19=  
(2,19)( ) 18,19kl U , 

Y=  
(2,19)( ) 19 ,20kl U . 

According to subsection 2.2, the second layer is easy to be reversed. It is obvious that the 

second layer is an order-preserving function. 

 

3.3 The Third Layer 

 

The key k(3)={(k(3, 1, *), k(3, 1, 0), k(3, 1, 1), …, k(3, 1, 15)), (k(3, 2, *), k(3, 2, 0), k(3, 2, 1), …, k(3, 2, 15)), …, 

(k(3, 25, *), k(3, 25, 0), k(3, 25, 1), …, k(3, 25, 15))} is 425 bits long. The input X is 100 bits long. The output 

Y is 125 bits long. Denote X=(X1, X2, …, X25), Y=(Y1, Y2, …, Y25), where each Xj is 4 bits long, 

and each Yj is 5 bits long. Then 

(3, ,*)( ) (3, ,0) (3, ,1) (3, ,15)( , ( , , , ))
jj k j j j jY f X k k k , j=1~25. 

According to subsection 2.1, the third layer is easy to be reversed. It is not difficult to induce 

that the third layer is an order-preserving function. 

 



3.4 The Fourth Layer 

 

Both the key k(4)=(k(4, 1), k(4, 2), …, k(4, 125)) and the input X are 125 bits long. The output Y is 

126 bits long. This layer is Y=X+k(4). 

 

3.5 Key Schedual 

 

We can see that the encryption key is (k(1), k(2), k(3), k(4)), with the total length 842. We need to 

use a key scheduall algorithm, to generate 842 bits of encryption key by a short user key. This is 

not an important problem, many tools can do this. For example, we can use a simple stream cipher 

generator. 

 

3.6 Explaining Our OPE Scheme 

 

Each of 5 layers is easy to be reversed, and each of them is order-preserving, so that our 

scheme is easy to be reversed, and that our scheme is order-preserving. 

The function of the second layer is to generate confusion and diffusion. We can see that, in this 

layer, each bit of the output depends on each bit of the input, and depends on each bit of the key 

k(2). Because of the restriction “order-preserving”, such confusion and diffusion are not sufficient. 

But it is enough against those allowed attacks (Notice that the attacker is not allowed to make 

chosen-plaintext attack. He is only allowed to make known-plaintext attack. He can accumulate 

random (plaintext, ciphertext) pairs, other than elaborately chosen pairs). 

The reason for using the fourth layer is that the output of the third layer is not random enough. 

Notice that the output of the third layer is 

(4, ,*)( ) (4, ,0) (4, ,1) (4, ,15)( , ( , , , ))
jj k j j j jY f X k k k , j=1~25. 

If Yj tends to be small, the attacker can guess k(4, j, *)=0. If Yj tends to be large, the attacker can 

guess k(4, j, *)=1. The fourth layer covers such non-randomness, so that the fourth layer protects the 

third layer. 

 

 

4 Primary Analysis of Our OPE Scheme 

 

4.1 The Strength Against Chosen-Plaintext Attack (CPA) 

 

Although Alexandra Boldyreva et al [2] proved that OPE can not withstand 

chosen-plaintext-attack (CPA), here we still present an analysis of our OPE scheme against CPA. 

From our checking, there is only one weak plaintext X=(0, 0, …, 0). 

If the plaintext is X=(0, 0, …, 0), the ciphertext Y is a ordinary value, we can not find any 

useful information about the key. An extreme example is that X=(0, 0, …, 0) and Y=(0, 0, …, 0). 

In this case we can induce that  

(k(1, 1, *), k(1, 1, 0))=(0, 0) or (k(1, 1, *), k(1, 1, 0), k(1, 1, 1), …, k(1, 1, 15))=(1, 1, 1, …, 1); 

(k(1, 2, *), k(1, 2, 0))=(0, 0) or (k(1, 2, *), k(1, 2, 0), k(1, 2, 1), …, k(1, 2, 15))=(1, 1, 1, …, 1); 

…; 



(k(1, 16, *), k(1, 16, 0))=(0, 0) or (k(1, 16, *), k(1, 16, 0), k(1, 16, 1), …, k(1, 16, 15))=(1, 1, 1, …, 1); 

(k(2, 1), k(2, 2), …, k(2, 20))=(0, 0, …, 0); 

(k(3, 1, *), k(3, 1, 0))=(0, 0) or (k(3, 1, *), k(3, 1, 0), k(3, 1, 1), …, k(3, 1, 15))=(1, 1, 1, …, 1); 

(k(3, 2, *), k(3, 2, 0))=(0, 0) or (k(3, 2, *), k(3, 2, 0), k(3, 2, 1), …, k(3, 2, 15))=(1, 1, 1, …, 1); 

…; 

(k(3, 25, *), k(3, 25, 0))=(0, 0) or (k(3, 25, *), k(3, 25, 0), k(3, 25, 1), …, k(3, 25, 15))=(1, 1, 1, …, 1); 

(k(4, 1), k(4, 2), …, k(4, 125))=(0, 0, …, 0). 

For any key schedual algorithm, such case is impossible. 

 

 

5 Conclusion 

 

Our OPE scheme is a key-controlled algorithm, based on simple computation. It is reversible, 

and is order-preserving. Although we can not prove the security of our scheme in the notion “look 

as random as possible”, a primary analysis shows that our algorithm is secure enough.  
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