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Abstract. Proxy re-encryption (PRE), introduced by Blaze, Bleumer and Strauss in Eurocrypt’98, allows a semi-

trusted proxy to convert a ciphertext originally intended for Alice into an encryption of the same message intended

for Bob. PRE has recently drawn great interest, and many interesting PRE schemes have been proposed. However,

up to now, it is still an important question to come up with a chosen-ciphertext secure unidirectional PRE in the

adaptive corruption model. To address this problem, we propose a new unidirectional PRE scheme, and prove

its chosen-ciphertext security in the adaptive corruption model without random oracles. Compared with the best

known unidirectional PRE scheme proposed by Libert and Vergnaud in PKC’08, our schemes enjoys the advantages

of both higher efficiency and stronger security.
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1 Introduction

Proxy re-encryption (PRE), introduced by Blaze, Bleumer and Strauss[1] in Eurocrypt’98, allows a semi-

trust proxy to transform a ciphertext originally intended for Alice into an encryption of the same message

intended for Bob. The proxy, however, cannot learn anything about the messages encrypted under

either key. PRE turns out to be a very useful tool, and has found many practical applications, such as

distributed file systems[2,3], outsourced filtering of encrypted spam[2,3], and encrypted email forwarding[1],

etc. According to the direction of transformation, PRE can be categorized into bidirectional PRE and

unidirectional PRE. In bidirectional PREs, the proxy can transform from Alice to Bob and vice versa.

In contrast, the proxy in unidirectional PREs cannot transform ciphertexts in the opposite direction.

According to another criterion, PRE systems can also be classified into multi-hop PRE, in which the

ciphertexts can be transformed from Alice to Bob and then to Charlie and so on, and single-hop PRE, in
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which the ciphertexts can only be transformed once1.

In their seminal paper, Blaze et al.[1] proposed the first bidirectional PRE scheme. In 2005, Ateniese

et al.[2,3] presented unidirectional PRE schemes from bilinear pairings. All of these schemes are only

secure against chosen-plaintext attack (CPA). However, applications often require security against chosen-

ciphertext attacks (CCA). To fill this gap, in ACM CCS’07, Canetti and Hohenberger[4] presented the

first CCA-secure bidirectional PRE scheme without random oracles. They left six open questions in ACM

CCS’07. One of these questions is to come up with a CCA-secure unidirectional PRE scheme without

random oracles. In PKC’08, Libert and Vergnaud[5] partially resolved this problem by presenting a single-

hop unidirectional PRE scheme without random oracles. They proved that their scheme is secure against

the replayable chosen-ciphertext attack (RCCA)[6] in the non-adaptive corruption model. Here RCCA-

security is a weaker variant of the CCA-security in the sense that a harmless mauling of the challenge

ciphertext is tolerated. In addition, the non-adaptive corruption model is somewhat weak, since the

adversary is required to commit ahead of time which public key she wants to challenge. Thus, in their

full paper2, Libert and Vergnaud left an open question of constructing a CCA-secure PRE scheme in the

adaptive corruption model.

To address this problem, in this paper, we propose a new single-hop unidirectional PRE scheme, and

prove its CCA-security (instead of RCCA-security) in the adaptive corruption model without random

oracles. In addition to the stronger security, our scheme is more efficient than Libert-Vergnaud’s PRE

scheme[5].

1.2 Related Work

In ACM CCS’07, Canetti and Hohenberger[4] left an open question of constructing a CCA-secure PRE

scheme without pairings. In CANS’08, Deng et al.[8] successfully presented a CCA-secure bidirectional

PRE scheme without pairings in the random oracle model. In PKC’09, Shao and Cao[9] proposed a

unidirectional PRE without pairings, and claimed that their scheme is CCA-secure in the random oracle

model. However, Chow et al. [24] pointed out that Shao-Cao’s scheme is not CCA-secure by giving a

concrete attack. In the same paper, Chow et al. also presented a more efficient CCA-secure unidirectional

PRE scheme without pairings in the random oracle model. Recently, Zhang et al.3 further showed that

Shao-Cao’s comparisons[9] between their scheme and Libert-Vergnaud’s is unfair, since Shao-Cao’s scheme

is even not CPA-secure in Libert-Vergnaud’s security model.

To control the proxy at a fine-grained level, Tang[10] and Weng et al.[11] independently introduced a vari-

ant of PRE named conditional proxy re-encryption (C-PRE). In such systems, ciphertexts are generated

with respect to a certain condition, and the proxy can translate a ciphertext only if the associated condition

is satisfied. Recently, Weng et al.[12] re-formalized the definition and security notions for C-PRE systems,

and presented a more efficient C-PRE scheme. Chu et al.[13] introduced a generalized concept named

conditional proxy broadcast re-encryption (CPBRE), and proposed a RCCA-secure CPBRE scheme.

Traceable proxy re-encryption, introduced by Libert and Vergnaud[14], attempts to solve the problem

of disclosing re-encryption keys, by tracing the proxies who have done so. Proxy re-encryption has also

been studied in identity-based scenarios, such as [15,16,17].

2 Preliminaries

1In refs. [2,3,5], for a single-hop unidirectional PRE scheme, the original ciphertext is named second level ciphertext, and the transformed

ciphertext is called first level ciphertext. Through out this paper, we also follow these terminologies.
2Libert, B, Vergnaud, D. Unidirectional chosen-ciphertext secure proxy re-encryption. http://hal.inria.fr/inria-00339530/en/. This is

the extended version of [5].
3Zhang, X, Chen, M.R, Li, X. Comments on Shao-Cao’s proxy re-encryption scheme from PKC 2009. Cryptology ePrint Archive,

Report 2009/344 (2009), http://eprint.iacr.org.
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2.1 Notations

For a finite set S, x
$← S means choosing an element x from S with a uniform distribution. For a string

x, we use |x| to denote its bit-length, [x]ℓ denote its first ℓ bits, and [x]ℓ denote its last ℓ bits. We use

A(x, y, · · · ) to indicate that A is an algorithm with the input (x, y, · · · ). By z ← A(x, y, · · · ), we indicate

the running of A(x, y, · · · ) letting z be the output. We use AO1,O2,···(x, y, · · · ) to denote that A is an

algorithm with the input (x, y, · · · ) and can access to oracles O1,O2, · · · . By z ← AO1,O2,···(x, y, · · · ), we
denote the running of AO1,O2,···(x, y, · · · ), and letting z be the output.

2.2 Bilinear Pairings

Let G and GT be two cyclic multiplicative groups with the same prime order p. A bilinear pairing

is a map e : G × G → GT with the following properties: (i). Bilinearity: ∀g1, g2 ∈ G,∀a, b ∈ Zp, we

have e(ga1 , g
b
2) = e(g1, g2)

ab; (ii). Non-degeneracy: There exist g1, g2 ∈ G such that e(g1, g2) ̸= 1GT
; (iii).

Computability: There exists an efficient algorithm to compute e(g1, g2) for ∀g1, g2 ∈ G.

2.3 Complexity Assumptions

The security of our proposed schemes is based on a complexity assumption named 3-weak Decisional Bi-

linear Diffie-Hellman Inversion (3-wDBDHI) assumption4, which has been used by Libert and Vergnaud[5]

to construct unidirectional PRE schemes. The 3-wDBDHI problem in groups (G,GT ) is, given a tuple

(g, ga, g(a
2), g(a

3), gb, Q) ∈ G5 × GT with unknown a, b
$← Zp, to decide whether Q = e(g, g)b/a. Libert

and Vergnaud[5] has proved that, the above problem is equivalent to how to decide whether Q is equal to

e(g, g)b/a
2

or a random value given (g, g1/a, ga, g(a
2), gb, Q).

A probabilistic polynomial-time (PPT) algorithm B has advantage ϵ in solving the 3-wDBDHI problem

in groups (G,GT ), if∣∣∣Pr [B (g, g 1
a , ga, g(a

2), gb, Q = e(g, g)
b
a2

)
= 1

]
− Pr

[
B
(
g, g

1
a , ga, g(a

2), gb, Q = e(g, g)c
)
= 1

]∣∣∣ > ϵ,

where the probability is taken over the random choices of a, b, c in Zp, the random choice of g in G, and

the random bits consumed by B.
We say that the (t, ϵ)-3-wDBDHI assumption holds in groups (G,GT ), if there exists no t-time algorithm

B that has advantage ϵ in solving the 3-wDBDHI problem in (G,GT ).

2.4 TCR Hash Function

The notion of target collision resistant (TCR) hash function family of hash functions was shown by

Cramer and Shoup[18]. In a TCR hash function family, given a randomly chosen hash function H and

a random element x from the definition domain of H, it is infeasible for a PPT adversary H to find

y ̸= x such that H(x) = H(y). Informally, we define the advantage of adversary H in attacking the

target collision resistance of H as AdvTCR
H,H , Pr[A succeeds]. A TCR family is said to be target collision

resistant if the advantage AdvTCR
H,H is negligible for any PPT adversary H and any hash function H chosen

from this TCR hash function family.

In practice, to build a target collision resistant hash function H, one can use a dedicated cryptographic

hash function such as SHA-1. For that reason and for simplicity of our presentation, hereinafter, we will

consider the hash function H to be a fixed function.

2.5 Pseudorandom Function Family

We here review the definition of pseudorandom function family[19]. Let F : K ×D → R be a function

family, where K is the set of keys of F , and D is the domain and R is the range. Let G : D → R be a

true random function family. Let F be a PPT adversary which outputs a bit. We consider the following

4In ref. [5], Libert and Vergnaud also called this assumption as 3-Quotient Decision Bilinear Diffie-Hellman (3-QDBDH) assumption.
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two experiments:
Experiment ExpPRF-1

F (F)
K

$← K
b

$← FF (K,·)

Return b

Experiment ExpPRF-0
F (F)

g
$← G

b
$← Fg(·)

Return b

We define F ’s advantage AdvPRF
F,F in attacking the pseudorandomness of the function family F as∣∣∣Pr [ExpPRF-1

F (F) = 1
]
− Pr

[
ExpPRF-0

F (F) = 1
]∣∣∣ .

If for any PPT adversary F , his advantage in attacking the pseudorandomness of the function family F

is negligible, then we say that F is a pseudorandom function family.

3 Model of Unidirectional PRE

In this section, we review the definition and security notions for unidirectional PREs. Since it is still

unknown how to construct a secure multi-hop unidirectional PRE scheme under proper security model,

we here concentrate on single-hop unidirectional PREs. Formally, a single-hop unidirectional PRE scheme

consists of the following algorithms[5]:

Setup(1k): The setup algorithm takes as input a security parameter 1k and outputs the global parameters

param, which includes a description of the message spaceM.

KeyGen(param): On input of the security parameter 1k , all parties use this randomized algorithm to

generate a public/private key pair (pk, sk).

For brevity, we assume that param is implicitly included in the input of the other algorithms.

ReKeyGen(ski, pkj): The re-encryption key generation algorithm takes as input a private key ski and

another public key pkj. It outputs a re-encryption key rki→j.

Enc2(pk,m): On input of a public key pk and a message m ∈ M, this encryption algorithm outputs a

second level ciphertext CT that can be re-encrypted into a first level one (intended for a possibly

different receiver) using the suitable re-encryption key.

Enc1(pk,m): On input of a public key pk and a message m ∈ M, this encryption algorithm outputs a

first level ciphertext that cannot be re-encrypted for another party.

ReEnc(rki→j,CTi): On input a re-encryption key rki→j and a second level ciphertext CTi under public

key pki, this re-encryption algorithm outputs a first level ciphertext CTj under public key pkj.

Dec2(sk,CT): On input a private key sk and a second level ciphertext CT, this decryption algorithm

outputs a message m ∈M or the error symbol ⊥ if CT is invalid.

Dec1(sk,CT): On input a private key sk and a first level ciphertext CT, this decryption algorithm

outputs a message m ∈M or the error symbol ⊥ if CT is invalid.

Next, we review the game-based security definitions for unidirectional PRE systems derived from refs.

[4,5]. Before giving these security notions, we consider the following oracles which together model the

ability of an adversary:

• Public key oracle Opk(i): Run (pki, ski)← KeyGen(param), and return pki to A.

• Secret key oracle Osk(pki): Return the secret key ski with respect to pki to A.
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• Re-encryption key oracle Ork(pki, pkj): Run rki→j ← ReKeyGen(ski, pkj) and return rki→j to A.
Here ski is the private key with respect to pki.

• Re-encryption oracle Ore(pki, pkj,CTi): Return CTj ← ReEnc(ReKeyGen(ski, pkj),CTi) to A.

• First level decryption oracle O1d(pkj,CTj): Return the result of Dec1(CTj, skj) to A. Here CTj is

a first level ciphertext.

Note that for the last four oracles, we require that pki and pkj are generated by oracleOpk beforehand.

Security of second level ciphertexts. Libert and Vergnaud[5] defined the security notion for a single-

hop unidirectional PRE scheme under replayable chose-ciphertext attacks at the second level. We here

modify this security notion to allow adaptive corruptions of users. In addition, we consider the CCA-

security instead of RCCA-security. We term this notion as IND-2PRE-CCA.
Definition 1 For a single-hop unidirectional PRE scheme E and a PPT adversary A running in two

stages find and guess, we define A’s advantage against the IND-2PRE-CCA security of E as

AdvIND-2PRE-CCA
E,A (1k) =

∣∣∣∣∣∣Pr
δ′ = δ

∣∣∣∣∣∣
param← Setup(1k); (pki∗ , (m0,m1),st)← A

Opk,Osk,Ork,Ore,O1d

find (param);

δ
$← {0, 1}; CT∗ ← Enc2(pki∗ ,mδ); δ

′ ← AOpk,Osk,Ork,Ore,O1d
guess (param,CT∗,st).

− 1

2

∣∣∣∣∣∣ ,
where st is some internal state information of adversary A. Here it is mandated that |m0| = |m1|,
and the following requirements are simultaneously satisfied: (i). A cannot issue the secret key query

Osk(pki∗); (ii). For any public key pkj, A cannot simultaneously issue the secret key query Osk(pkj)

and the re-encryption key query Ork(pki∗ , pkj); (iii). For any public key pkj, A cannot simultaneously

issue the secret key query Osk(pkj) and the re-encryption query Ore(pki∗ , pkj,CT
∗); (iv). For a first-

level ciphertext CTj output by the re-encryption oracle Ore(pki∗ , pkj,CT
∗), A cannot issue the first level

decryption query O1d(pkj,CTj). We refer to the above adversary A as an IND-2PRE-CCA adversary. We

say that a single-hop unidirectional PRE scheme E is (t, qpk, qsk, qrk, qre, qd, ϵ)-IND-2PRE-CCA secure, if

for any t-time IND-2PRE-CCA adversary A that makes at most qpk, qsk, qrk, qre and qd queries to oracles

Opk,Osk,Ork,Ore and O1d, respectively, we have AdvIND-2PRE-CCA
E,A (1k) 6 ϵ.

Remark. As said in ref. [5], explicitly providing adversary A with a second level decryption oracle is

useless, since (i). for the challenge ciphertext CT∗, A is obviously not allowed to ask the second level

decryption oracle to decrypt it; (ii). while for any other second level ciphertext CT′, adversary A can

first ask the re-encryption oracle to re-encrypt it into a first level ciphertext, and then ask the first level

decryption oracle to decrypt it.

Security of first level ciphertexts. The above definition provides the adversary with a second level

ciphertext in the challenge phase. In ref. [5], a complementary definition of security is defined to capture

the inability to distinguish first level ciphertexts. We here review this definition (referred as IND-1PRE-
CCA) as defined in ref. [5], with a slight modification to allow the adaptive corruptions of users and

the CCA-security. In this definition, a first level ciphertext is provided for adversary A in the challenge

phase. Note that, in a single-hop unidirectional PRE scheme, since the first level ciphertext cannot be

re-encrypted, A should be allowed to obtain any re-encryption keys, even including those from the target

public key pki∗ to other public keys which are generated by oracle Osk. Furthermore, since A is allowed

to obtain any re-encryption keys, there is no need to provide the re-encryption oracle Ore for him. As the

aforementioned remark, the second level decryption oracle is also unnecessary.

Definition 2 For a single-hop unidirectional PRE scheme E and a PPT adversary A running in two
stages find and guess, we define A’s advantage against the IND-1PRE-CCA security of E as

AdvIND-1PRE-CCA
E,A (1k) =

∣∣∣∣∣∣Pr
δ′ = δ

∣∣∣∣∣∣
param← Setup(1k); (pki∗ , (m0,m1),st)← A

Opk,Osk,Ork,O1d

find (param);

δ
$← {0, 1}; CT∗ ← Enc1(pki∗ ,mδ); δ

′ ← AOpk,Osk,Ork,O1d
guess (param,CT∗,st).

− 1

2

∣∣∣∣∣∣ ,
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where st is some internal state information of adversary A. Here it is mandated that |m0| = |m1|, and A
can issue neither Osk(pki∗) nor O1d(pki∗ ,CT

∗). We refer to the above adversary A as an IND-1PRE-CCA
adversary. We say that a single-hop unidirectional PRE scheme E is (t, qpk, qsk, qrk, qd, ϵ)-IND-1PRE-CCA
secure, if for any t-time IND-1PRE-CCA adversary A that makes at most qpk, qpk, qrk and qd queries to

oracles Opk,Osk,Ork and O1d, respectively, we have AdvIND-1PRE-CCA
E,A (1k) 6 ϵ.

Remark. Note that there is no need to explicitly provide the re-encryption oracle for A, since he can

obtain any re-encryption key by resorting to oracle Ork, and thus he can re-encrypt any second level

ciphertext himself.

Master Secret Security. In ref. [2], Ateniese et al. defined another important security notion, named

delegator secret security, for unidirectional PRE. This security notion captures the intuition that, even

if the dishonest proxy colludes with the delegatee, it is still impossible for them to derive the delegator’s

private key in full. We define this security notion (referred as MSS-PRE) in the following definition:

Definition 3 For a unidirectional PRE scheme E and a PPT adversary A, we define A’s advantage
against the MSS-PRE security of E as

AdvMSS-PRE
E,A (1k) = Pr

[
ski∗ is a valid secret key

∣∣param← Setup(1k); ski∗ ← AOpk,Osk,Ork(param)
]
,

where it is mandated that the public key pki∗ with respect to ski∗ is generated by Opk, and A cannot

issue the secret key query Osk(pki∗). We refer to the above adversary as a MSS-PRE adversary. We

say that a unidirectional PRE scheme E is (t, qpk, qsk, qrk, ϵ)-MSS-PRE secure, if for any t-time MSS-PRE
adversary A that makes at most qpk, qsk and qrk queries to oracles Opk,Osk and Ork, respectively, we have

AdvMSS-PRE
E,A (1k) 6 ϵ.

As indicated by the following Lemma, for single-hop unidirectional PREs, the master secret security is

implied by the first level ciphertext security.

Lemma 1 For a single-hop unidirectional PRE, the master secret security is implied by the first

level ciphertext security. That is, if there exists an adversary A who can break the MSS-PRE security of

a single-hop unidirectional PRE scheme E , then there also exists an adversary B who can also break E ’s
IND-1PRE-CCA security.

The proof for Lemma 1 is straightforward, and hence is omitted here.

4 Our Unidirectional PRE Scheme

In this section, we first present our single-hop unidirectional PRE scheme, and then give the security

proofs for our scheme. A comparison between our scheme and Libert-Vergnaud’s scheme is also given.

4.1 Construction

Before presenting our scheme, some important and necessary principles for designing CCA-secure single-

hop unidirectional PRE schemes should be mentioned: (i) the validity of the second level ciphertexts

should be publicly verifiable; otherwise, it will suffer from a similar attack as illustrated in [8]5; (ii)

it should also be impossible for the adversary to maliciously manipulate the first level ciphertext. In

addition, to ensure the first level ciphertext security, another principle should be kept in mind: (iii) for

a first level ciphertext CTj re-encrypted from a second level ciphertext CTi, CTj should not contains all

the components of CTi; otherwise, it will inevitably suffer from an attack as applied to Shao’s scheme[7].

We will explain how our scheme follows these principles in the following description of our scheme. Our

proposed scheme consists of the following algorithms:

5Weng, J, Deng, R.H, Liu, S, et al. Chosen-ciphertext secure proxy re-encryption without pairings. Cryptology ePrint Archive, Report

2008/509 (2008), http://eprint.iacr.org. This is the full paper of [8].
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Setup(1k): Given a security parameter 1k, this setup algorithm works as follows:

1. Choose bilinear groups (G,GT ) of prime order p > 2k.

2. Pick generators g, g1, u, v, w
$← G, and set Z = e(g, g).

3. Choose a collision-resistant hash function H : G× {0, 1}ℓ → Z∗
p. Choose also a pseudo-random

function (PRF) family F : GT × G → {0, 1}ℓ−ℓ1∥{0, 1}ℓ1 such that, given a seed in GT and an

input in G, it outputs an ℓ-bit pseudorandom string. Here ℓ and ℓ1 are security parameters.

4. Output the public parameters param = (p,G,GT , g, g1, u, v, w, Z,H, F, ℓ1, ℓ).

KeyGen(param): User i picks xi
$← Z∗

p, and sets his public key as pki = gxi and private key as ski = xi.

ReKeyGen(ski, pkj): On input user i’s private key ski = xi and user j’s public key pkj = gxj , this

algorithm generates the re-encryption key rki→j = pk
1/ski

j = gxj/xi .

Enc2(pki,m): To encrypt a message m ∈ {0, 1}ℓ1 under the public key pki at the second level, the sender

proceeds as follows:

1. Pick r
$← Z∗

p, and set C1 = gr1 and C2 = pkr
i .

2. Compute K = Zr and set C3 = [F (K,C1)]ℓ−ℓ1
∥([F (K,C1)]

ℓ1 ⊕m).

3. Pick t
$← Z∗

p, and compute h = H(C1, C3) and C4 =
(
uhvtw

)r
.

4. Output the second level ciphertext CTi = (t, C1, C2, C3, C4).

Note that the validity of the second level ciphertext can be publicly verified as in eqs. (1) and (2)

to be given. Hence it is impossible for the adversary to manipulate the second level ciphertext.

Enc1(pkj,m): To encrypt a message m ∈ {0, 1}ℓ1 under the public key pkj at the first level, the sender

proceeds as follows:

1. Pick r
$← Z∗

p, and set C1 = gr1, C
′
2 = e(pkj, g)

r,K = Zr, C3 = [F (K,C1)]ℓ−ℓ1∥([F (K,C1)]
ℓ1 ⊕m).

2. Pick t
$← Z∗

p, and compute h = H(C1, C3) and C4 =
(
uhvtw

)r
.

3. Output the first level ciphertext CTi = (t, C1, C
′
2, C3, C4).

Note that the validity of components t, C1, C3 and C4 can be checked as in eq. (1), and the validity of

C ′
2 can be verified as in eq. (4). So, it is also impossible for the adversary to maliciously manipulate

the first level ciphertext.

ReEnc(rki→j,CTi): On input a re-encryption key rki→j, an second level ciphertext CTi = (t, C1, C2, C3, C4)

under public key pki, compute h = H(C1, C3), and then check the validity of CTi by testing whether

the following equalities hold:

e(C1, u
hvtw) = e(C4, g1), (1)

e(C1, pki) = e(C2, g1). (2)

If not, output ⊥. Otherwise, compute C ′
2 = e(C2, rki→j), and output the first level ciphertext under

public key pkj as CTj = (t, C1, C
′
2, C3, C4).

Note that, the verification of eqs. (1) and (2) can be alternately done by picking r1, r2
$← Z∗

p and

testing if

e
(
C1, pk

r1
i (uhvtw)r2

)
= e (Cr1

2 cr24 , g1) . (3)
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In this way, the verification of the well-formedness of ciphertext CTi reduces two pairings at the cost

of only one more multi-exponentiation. Note that the multi-exponentiation can be computed more

efficiently than the pairing.

Dec2(ski,CTi): To decrypt a second level ciphertext CTi = (t, C1, C2, C3, C4), user i with private key

ski proceeds as follows:

1. First check the validity of the ciphertext as in eq. (3). If the verification fails, output “⊥”.
2. Compute K = e(C2, g)

1/ski . If [F (K,C1)]ℓ−ℓ1 = [C3]ℓ−ℓ1 holds, output m = [F (K,C1)]
ℓ1⊕ [C3]

ℓ1 ;

else output “⊥”.

Dec1(skj,CTj): On input a private key skj and a first level ciphertext CTj = (t, C1, C
′
2, C3, C4), user j

with private key skj proceeds as follows:

1. First check the validity of the ciphertext as in eq. (1). If the verification fails, output “⊥”.
2. Compute K = C

′1/skj

2 . Output m = [F (K,C1)]
ℓ1 ⊕ [C3]

ℓ1 if the following equality holds:

[F (K,C1)]ℓ−ℓ1 = [C3]ℓ−ℓ1 . (4)

Otherwise, output “⊥”.

Remark: Libert-Vergnaud’s scheme applies a technique introduced in Boyen-Boneh’s selective-ID se-

cure identity-based encryption scheme[20] (refer to the ciphertext component C4 = (usvk · v)r in Libert-

Vergnaud’s scheme). Thus in the security proofs of Libert-Vergnaud’s scheme, the adversary must commit

ahead of time to the target user that it wants to attack; otherwise, the challenger will be unable to gener-

ate the challenge ciphertext for the adversary. In contrast, we use a technique inspired by Hohenberger-

Waters’ recent signatures scheme[21] (refer to the ciphertext component C4 = (uhvtw)r in our scheme)6.

As will be seen in our security proofs, this technique enables the challenger to successfully generate the

challenge ciphertext for the adversary, even if the adversary is allowed to adaptively corrupt users.

4.2 Security Analysis

The chosen-ciphertext security at the second level for our scheme is asserted by the following theorem.

Theorem 1 Our scheme is IND-2PRE-CCA secure, assuming the hash function H is target collision

resistant, F is a pseudorandom function family and the 3-wDBDHI assumption holds in groups (G,GT ).

Proof Without loss of generality, assume that H is target collision resistant and F is a pseudorandom

function family. Then suppose that there is an adversary A who can break the (t, qpk, qsk, qrk, qre, qd, ϵ)-

IND-2PRE-CCA security of our scheme. We can construct an algorithm B which can break the (t′, ϵ′)-3-

wDBDHI assumption in (G,GT ) with

ϵ′ > ϵ

2ė(1 + qsk + qrk)
− qd + qre

p
−AdvTCR

H,H −AdvPRF
F,F , t′ 6 t+O(τ(qpk + qrk + 8qre + 8qd)),

where τ is the maximum over the time to compute an exponentiation, a multi-exponentiation and a

pairing; ė denotes the base of the natural logarithm.

Suppose algorithm B is given a 3-wDBDHI instance (g,A−1 = g1/a, A1 = ga, A2 = g(a
2), B = gb, Q) ∈

G5 × GT with unknown a, b
$← Z∗

p. B’s goal is to decide whether Q = e(g, g)b/a
2

. B works by interacting

with adversary A in the IND-2PRE-CCA game as follows:

Initialize. B provides A with public parameters including g1 = Aα0
2 , u = Aα1

1 Aβ1

2 , v = Aα2
1 Aβ2

2 and

w = Aα3
1 Aβ3

2 for random α0, α1, α2, α3, β1, β2, β3
$← Z∗

p.

6Lai et al. has used this technique to construct an efficient CCA-secure public key encryption scheme [22].
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Find Stage. A issues a series of queries as in the IND-2PRE-CCA game. B maintains a list Llist, and

answers these queries for A as follows:

• Public key oracle Opk(i): B picks xi
$← Z∗

p. Next, using the Coron’s technique[23], it chooses a number

ci ∈ {0, 1, ‘−′} such that Pr[ci = 0] = Pr[ci = 1] = θ and Pr[ci = ‘−′] = 1 − 2θ, where θ will be

determined later. If ci = ‘−′, it sets pki = gxi ; if ci = 0, it sets pki = Axi
2 ; if ci = 1, it sets pki = Axi

1 .

Next, it adds the tuple (pki, xi, ci) to Llist and returns pki to A.

• Secret key oracle Osk(pki): B first recovers the tuple (pki, xi, ci) from Llist. If ci = ‘−′, it returns

ski = xi to A. Otherwise, B outputs a random bit in {0, 1} and aborts.

• Re-encryption key oracle Ork(pki, pkj): B first recovers tuples (pki, xi, ci) and (pkj, xj, cj) from Llist,

and then generate the re-encryption key rki→j for A according to the following cases:

– ci = ‘−′: It means that ski = xi. B outputs rki→j = pk
1/xi

j .

– ci = cj: B returns rki→j = gxj/xi , which is indeed a valid re-encryption key.

– ci = 1 ∧ cj = 0: It means that ski = axi and skj = a2xj. B returns rki→j = A
xj
xi
1 = g

a2xj
axi , which

is indeed a valid re-encryption key.

– ci = 1∧ cj =‘−’: It means that ski = axi and skj = xj. B returns rki→j = A
xj/xi

−1 = g
xj
axi , which

is indeed a valid re-encryption key.

– ci = 0 ∧ cj = 1: It means that ski = a2xi and skj = axj. B returns rki→j = A
xj
xi
−1 = g

axj

a2xi , which

is indeed a valid re-encryption key.

– ci = 0 ∧ cj =‘−’: B outputs a random bit in {0, 1} and aborts.

• Re-encryption oracle Ore(pki, pkj,CTi): B first parses CTi as (t, C1, C2, C3, C4), and then checks the

validity of the ciphertext as in eq. (3). If the verification fails, it returns “⊥” to A. Otherwise, B
proceeds to execute the following steps:

1. Recover tuples (pki, xi, ci) and (pkj, xj, cj) from Llist.

2. If (ci = 0 ∧ cj = ‘−′) does not hold, first generate the re-encryption key rki→j as in the

re-encryption key oracle Ork, and then return ReEnc(rki→j,CTi) to A.
3. Else (it means that ski = a2xi and skj = xj), from C1 = gr1 = Ar·α0

2 and C4 = (uhvtw)r =(
Aα1h+α2t+α3

1 Aβ1h+β2t+β3

2

)r
where h = H(C1, C3), B can compute

Ar
1 =

 C4

C
β1h+β2t+β3

α0
1

 1
α1h+α2t+α3

. (5)

Then compute K = e(A−1, A
r
1) = e(g, g)r, set C ′

2 = Kxj = e(pkj, g)
r, and return CTj =

(t, C1, C
′
2, C3, C4) to A.

Recall that, in the public parameters u = Aα1
1 Aβ1

2 , v = Aα2
1 Aβ2

2 and w = Aα3
1 Aβ3

2 , α1 (α2, α3, resp.) is

blinded by β1 (β2, β3, resp.), and hence no information about α1, α2 and α3 is leaked to the adversary.

So, in eq. (5), the equality α1h+α2t+α3 = 0 mod p information-theoretically holds with probability

at most
1

p
.

• First level decryption oracle O1d(pkj,CTj): Algorithm B first parses the first level ciphertext CTj as

(t, C1, C
′
2, C3, C4). Next, it recovers tuple (pkj, xj, cj) from Llist. If cj = ‘−′, it means that skj = xj,

and B returns Dec1(skj,CTj) to A. Otherwise, B proceeds as follows:
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1. Compute h = H(C1, C3) and check the validity of the ciphertext as in eq. (1). If the verification

fails, output “⊥” indicating an invalid ciphertext; else continue to execute the rest steps.

2. Compute Ar
1 =

(
C4

C

β1h+β2t+β3
α0

1

) 1
α1h+α2t+α3

and then K = e(A−1, A
r
1) = e(g, g)r. Note that, simi-

larly to the analysis in the re-encryption oracle Ore, the chance of α1h + α2t + α3 = 0 mod p

holds with probability at most 1
p
.

3. If [F (K,C1)]ℓ−ℓ1 ̸= [C3]ℓ−ℓ1 , output “⊥” indicating an invalid ciphertext. Otherwise, output

m = [F (K,C1)]
ℓ1 ⊕ [C3]

ℓ1 .

Note that even for the case of α1h + α2t + α3 = 0 mod p, B is still able to reject invalid first level

ciphertexts. For a first level ciphertext CTj = (t, C1, C
′
2, C3, C4) under public key pkj, the validity of

t, C1, C3 and C4 can be ensured as in eq. (1). So, B needs only to check the validity of C ′
2. Suppose

C1 = gr1, C3 = [F (K,C1)]ℓ−ℓ1∥([F (K,C1)]
ℓ1 ⊕m) and C4 = (uH(C1,C3)vtw)r, where K = e(g, g)r. To

check the validity of C ′
2, B needs to check whether C ′

2 = e(pkj, g)
r holds. Fortunately, B can do this,

since she can compute e(pkj, g)
r according to the following cases:

– cj = 1 (it meas that pkj = A
xj

1 ): B can obtain e(pkj, g)
r by computing

e(C1, A−1)
xj
α0 = (gr1 , A−1)

xj
α0 = (Aα0r

2 , A−1)
xj
α0 = e(A

xj

1 , g)r = e(pkj , g)
r.

– cj = 0 (it meas that pkj = A
xj

2 ): B can obtain e(pkj, g)
r by computing

e(C1, g)
xj
α0 = (gr1, g)

xj
α0 = (Aα0r

2 , g)
xj
α0 = e(A

xj

2 , g)r = e(pkj, g)
r.

Challenge. When A judges that find stage is over, it outputs a public key pki∗ and messages m0,m1 ∈
{0, 1}ℓ1 with the restrictions specified in the IND-2PRE-CCA game. B responds as follows:

1. Recover tuple (pki∗ , xi∗ , ci∗) from Llist. If ci∗ ̸= 0, B outputs a random bit in {0, 1} and aborts.

Otherwise, it means that pki∗ = Axi∗
2 , and B proceeds to execute the rest steps.

2. Pick δ
$← {0, 1}. Define C∗

1 = Bα0 , C∗
2 = Bxi∗ , C∗

3 = [F (Q,C∗
1 )]ℓ−ℓ1∥([F (Q,C∗

1 )]
ℓ1 ⊕ mδ), t∗ =

−α1h
∗+α3

α2
and C∗

4 = B(β1h
∗+β2t

∗+β3) where h∗ = H(C∗
1 , C

∗
3 ). Return CT∗ = (t∗, C∗

1 , C
∗
2 , C

∗
3 , C

∗
4 ) as the

challenge ciphertext to A.

Observe that, if Q = e(g, g)
b
a2 , CT∗ is indeed a valid challenge ciphertext under public key pki∗ . To see

this, letting r∗ = b
a2 , we have

C∗
1 = Bα0 =

(
ga

2)α0· b
a2 = (Aα0

2 )
r∗

= gr
∗

1 ,

C∗
2 = Bxi∗ =

(
ga

2)xi∗ · b
a2 = (Axi∗

2 )
r∗

= pkr∗

i∗ ,

C∗
3 = [F (Q,C∗

1 )]ℓ−ℓ1∥([F (Q,C∗
1 )]

ℓ1 ⊕mδ) = [F (Zr∗ , C∗
1 )]ℓ−ℓ1∥([F (Zr∗ , C∗

1 )]
ℓ1 ⊕mδ),

C∗
4 = B(β1h

∗+β2t
∗+β3) =

(
Aβ1h

∗+β2t
∗+β3

2

)r∗
=
(
Aα1h

∗

1 A
−α1h∗+α3

α2
·α2

1 Aα3
1 ·A

β1h
∗+β2t

∗+β3

2

)r∗
=

(
Aα1h

∗

1 At∗·α2
1 Aα3

1 Aβ1h
∗+β2t

∗+β3

2

)r∗
=
((

Aα1
1 Aβ1

2

)h∗

·
(
Aα2

1 Aβ2

2

)t∗ · (Aα3
1 Aβ3

2 )
)r∗

=
(
uh∗

vt
∗
w
)r∗

.

On the other hand, whenQ is uniform and independent in GT , the challenge ciphertext CT
∗ is independent

of δ in the adversary’s view.

Guess Stage. Adversary A continues to issue the rest queries. B can respond these queries for A as

in the find stage, since A has to follow the restrictions described in the IND-2PRE-CCA game and the

hash function H is target collision resistant. Observe that, although the challenge ciphertext CT∗ leaks
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the information α1h
∗+α2t

∗+α3 = 0 to A, it can be seen that the probability of A’s querying a ciphertext

which can cause B to abort is still at most 1
p
.

Output. Eventually, A returns a guess δ′ ∈ {0, 1}. If δ′ = δ, B outputs β′ = 1; else, outputs β′ = 0.

This completes the description of the simulation. We next begin to analyze the simulation. It is

clear that the simulations of oracle Opk is perfect. Let Abort denote the event of B’s aborting during the

simulation of oraclesOsk,Ork or in Challenge phase. We have Pr[¬Abort] = (1−2θ)qsk(1−θ(1−2θ))qrkθ >
(1 − 2θ)qsk+qrkθ, which is maximized at θopt = qsk+qrk

2(1+qsk+qrk)
. Using θopt, the probability Pr[¬Abort] is at

least 1
2ė(1+qsk+qrk)

. Note that, if even Abort does not happen during the simulation of oracles Osk,Ork and

the Challenge phase, the simulation for oracles Osk,Ork and the challenge ciphertext are perfect.

We proceeds to analyze the simulation of the re-encryption oracle Ore. The simulation of Ore is perfect,

unless α1h + α2t + α3 = 0 mod p happens during the whole simulation (denote this event by ReEErr).
However, as argued before, the equality α1h+ α2t+ α3 = 0 mod p holds in each query with probability

at most 1
p
. So we have Pr[ReEErr] 6 qre

p
.

The simulation of decryption O1d is also perfect, unless α1h+α2t+α3 = 0 mod p happens during the

whole simulation (denote this event by DecErr). Similarly, we can have Pr[DecErr] 6 qd
p
.

Combining the above results and counting for the target collision resistant of the hash function H

and the pseudorandomness of F , we can see that B’s advantage against the 3-wDBDHI assumption

is at least ϵ′ > ϵ
2ė(1+qsk+qrk)

− qd+qre
p
− AdvTCR

H,A − AdvPRF
F,F , and B’s running time can be bounded by

t′ 6 t+O(τ(qpk + qrk + 8qre + 8qd)). This completes the proof of Theorem 1.

The CCA-security at the first level for our scheme is ensured by the following theorem:

Theorem 2 Our scheme is chosen-ciphertext secure at the first level, assuming the hash function

H is target collision resistant, F is a pseudorandom function family and 3-wDBDHI assumption holds in

groups (G,GT ).

Proof Without loss of generality, assume that H is target collision resistant and F is a pseudorandom

function family. Then, suppose there is an adversary A who can break the (t, qpk, qsk, qrk, qd, ϵ)-IND-1PRE-
CCA security of our scheme, we can construct an algorithm B which can break the (t′, ϵ′)-3-wDBDHI

assumption in (G,GT ) with

ϵ′ > ϵ

ė(1 + qsk)
− qd

p
−Adv TCR

H,A −AdvPRF
F,F , t′ 6 t+O(τ(qpk + qrk + 8qd)),

where τ and ė have the same meaning as in Theorem 1.

Suppose algorithm B is given a 3-wDBDHI instance (g,A−1 = g1/a, A1 = ga, A2 = g(a
2), B = gb, Q) ∈

G5 × GT with unknown a, b
$← Z∗

p. B’s goal is to decide whether Q = e(g, g)b/a
2

. B works by interacting

with adversary A in the IND-1PRE-CCA game as follows:

Initialize. B provides A with public parameters including g1 = Aα0
2 , u = Aα1

1 Aβ1

2 , v = Aα2
1 Aβ2

2 and

w = Aα3
1 Aβ3

2 for random α0, α1, α2, α3, β1, β2, β3
$← Z∗

p.

Find Stage. A issues a series of queries as in the IND-1PRE-CCA game. B maintains a list Llist, and

answers these queries for A as follows:

• Public key oracle Opk(i): B picks xi
$← Z∗

p, and flips a random coin ci ∈ {0, 1}. If ci = 0, it sets

pki = Axi
1 ; else it sets pki = gxi . Next, it adds the tuple (pki, xi, ci) to Llist and returns pki to A.

• Secret key oracle Osk(pki): B first recovers (pki, xi, ci) from Llist. If ci = 1, it returns ski = xi to A;
else it outputs a random bit in {0, 1} and aborts.

• Re-encryption key oracle Ork(pki, pkj): B first recovers tuples (pki, xi, ci) and (pkj, xj, cj) from Llist,

and then generates the re-encryption key rki→j for A according to the following cases:
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– ci = 1: It means that ski = xi. B outputs rki→j = pk
1/xi

j .

– ci = cj = 0: B returns rki→j = gxj/xi , which is indeed a valid re-encryption key.

– ci = 0 ∧ cj = 1: B returns rki→j = A
xj/xi

−1 .

• First level decryption oracle O1d(pkj,CTj): Algorithm B first parses the first level ciphertext CTj

as (t, C1, C
′
2, C3, C4). Next, it recovers tuple (pkj, xj, cj) from Llist. If cj = 1, it means that skj = xj,

and algorithm B returns Dec1(skj,CTj) to A. Otherwise, B proceeds as follows:

1. Compute h = H(C1, C3) and then check the validity of the ciphertext as in eq. (1). If the

verification fails, output “⊥”; else continue to execute the rest steps.

2. Compute Ar
1 =

(
C4

C

β1h+β2t+β3
α0

1

) 1
α1h+α2t+α3

and then K = e(A−1, A
r
1) = e(g, g)r. Note that, simi-

larly to the analysis in the proof of Theorem 1, the chance of α1h+ α2t+ α3 = 0 mod p holds

with probability at most 1
p
.

3. If [F (K,C1)]ℓ−ℓ1 ̸= [C3]ℓ−ℓ1 , output “⊥” indicating an invalid ciphertext. Otherwise, output

m = [F (K,C1)]
ℓ1 ⊕ [C3]

ℓ1 .

Note that even for the case of α1h+α2t+α3 = 0 mod p, challenger B is still able to reject invalid first

level ciphertexts. For a first level ciphertext CTj = (t, C1, C
′
2, C3, C4) under public key pkj = A

xj

1 , the

validity of t, C1, C3 and C4 can be ensured as in eq. (1). So, B needs only to check the validity of the

component C ′
2. Suppose C1 = gr1, C3 = [F (K,C1)]ℓ−ℓ1∥([F (K,C1)]

ℓ1 ⊕m) and C4 =
(
uH(C1,C3)vtw

)r
,

where K = e(g, g)r. To check the validity of C ′
2, B needs to check whether C ′

2 = e(pkj, g)
r holds.

Fortunately, B can obtain e(pkj, g)
r by computing

e(C1, A−1)
xj
α0 = (gr1, A−1)

xj
α0 = (Aα0r

2 , A−1)
xj
α0 = e(A

xj

1 , g)r = e(pkj, g)
r.

Challenge. When A judges that find stage is over, it outputs a public key pki∗ and two equal-

length messages m0,m1 ∈ {0, 1}ℓ1 with the restrictions specified in the IND-1PRE-CCA game. B first

recovers tuple (pki∗ , xi∗ , ci∗) from Llist. If ci∗ = 1, B outputs a random bit and aborts. Otherwise,

B picks δ
$← {0, 1}, defines C∗

1 = Bα0 , C ′∗
2 = e(A−1, B)xi∗ , C∗

3 = [F (Q,C∗
1 )]ℓ−ℓ1∥([F (Q,C∗

1 )]
ℓ1 ⊕ mδ),

t∗ = −−α1h
∗+α3

α2
and C∗

4 = B(β1h
∗+β2t

∗+β3), where h∗ = H(C∗
1 , C

∗
3 ), and returns CT∗ = (t∗, C∗

1 , C
′∗
2 , C

∗
3 , C

∗
4 )

as the challenge ciphertext to A.
Observe that, if Q = e(g, g)

b
a2 , CT∗ is indeed a valid challenge ciphertext under public key pki∗ . Letting

r∗ = b
a2 , the well-formedness of C∗

1 , C
∗
3 and C∗

4 can be seen as in the proof Theorem 1; while for C ′∗
2 , its

well-formedness can be seen as below:

C ′∗
2 = e(A−1, B)xi∗ = e(g1/a, gb)xi∗ = e(ga·xi∗ , g)

b
a2 = e(pki∗ , g)

r∗ .

On the other hand, when Q is uniform and independent in GT , the challenge ciphertext CT∗ is inde-

pendent of δ in the adversary’s view.

Guess Stage. A continues to issue the rest queries. B can respond these queries for A as in the find

stage, since A has to follow the restrictions described in the IND-1PRE-CCA game and the hash function

H is target collision resistant.

Output. Eventually, A returns a guess δ′ ∈ {0, 1}. If δ′ = δ, B outputs β′ = 1; else, outputs β′ = 0.

This completes the description of the simulation. We next begin to analyze the simulation. It is clear

that the simulations of oracles Opk and Ork are perfect. The simulation of decryption O1d is also perfect,

unless α1h + α2t + α3 = 0 mod p happens during the whole simulation (denote this event by DecErr).
Similarly to the proof in Theorem 1, we can have Pr[DecErr] 6 qd

p
. Let Abort denote the event of B’s
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aborting during the simulation of oracle Osk or in Challenge phase. Similarly to the proof of Theorem

1, we have Pr[¬Abort] 6 1
ė(1+qsk)

.

Combining the above results and counting for the target collision resistant of the hash functionH and the

pseudorandomness of F , we can easily see that B’s advantage against the 3-wDBDHI assumption is at least

ϵ′ > ϵ
ė(1+qsk)

− qd
p
− Adv TCR

H,A −Adv
PRF
F,F , and B’s running time can be bounded by t′ 6 t+O(τ(qpk+qrk+8qd)).

This completes the proof of Theorem 2.

From Lemma 1 and Theorem 2, we have

Theorem 3 Our scheme is MSS-PRE secure in the standard model, assuming the 3-wDBDHI as-

sumption holds in groups (G,GT ).

4.3 Comparisons

In Table 1, we compare our scheme with Livert-Vergnaud’s scheme[5] (denoted by LV08). We first

explain some notations used in Table 1. Here |G| and |GT | denote the bit-length of an element in groups

G and GT , respectively. |M| denotes the bit-length of the plaintext in LV08 scheme, and ℓ denotes

the security parameter in our scheme. |svk| and |σ| denote the bit-length of the verification key and

signature of one-time signature used in LV08 scheme[5], respectively. We use tp, te, tme, ts, tv to represent

the computational cost of a bilinear pairing, an exponentiation, a multi-exponentiation, one signing and

one verifying a one-time signature, respectively.

Table 1: Comparisons between LV08 Scheme and Our Scheme

Schemes Our Scheme LV08 Scheme[5]

2-level ciphtxt |Zp|+3|G|+ℓ |svk|+2|G|+1|GT |+|σ|
Ciphertext Length

1-level ciphtxt |Zp|+2|G|+1|GT |+ℓ |svk|+4|G|+1|GT |+|σ|
Enc1 1tme + 3te 1tme + 4te + 1ts

Enc2 1tme + 3te 1tme + 2te + 1ts

Computational Cost ReEnc 3tp + 2tme 2tp + 4te + 1tv

Dec2 3tp + 2tme + 1te 3tp + 2te + 1tv

Dec1 2tp + 2tme + 1te 5tp + 2te + 1tv

Security CCA RCCA

Corruption Model Adaptive Non-adaptive

Without RO? Yes Yes

The comparison results indicate that our scheme has a better overall performance than LV08 scheme

in term of both ciphertext length and computational cost. Most importantly, our scheme achieve the

CCA-security, while LV08 scheme only satisfies the RCCA-security. The latter is a weaker variant of

CCA-security in the sense that it cannot withstand the attack by re-randomizing the challenge ciphertext.

In addition, our scheme can be proved in the adaptive corruption model, while LV08 scheme cannot.

5 Conclusions

We presented a unidirectional proxy re-encryption scheme, and proved its CCA-security in the adaptive

corruption model without random oracles. Compared with the best know unidirectional PRE scheme

proposed by Libert and Vergnaud, our scheme enjoys the advantages of both higher efficiency and stronger

security.

Many interesting questions still remain. For example, (1) how to construct a CCA-secure multi-hop

unidirectional PRE scheme (either with or without random oracles); (2) study impossibility (or possibility)

of constructing a CCA-secure (either bidirectional or unidirectional) PRE scheme without parings in the
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standard model; (3) how to construct a CCA-secure PRE scheme with key privacy[25].
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