Cube Test Analysis of the Statistical Behavior
of CubeHash and Skein

Alan Kaminsky*
May 6, 2010

Abstract

This work analyzes the statistical properties of the SHA-3 candidate cryptographic hash algorithms
CubeHash and Skein to try to find nonrandom behavior. Cube tests were used to probe each algorithm’s
internal polynomial structure for a large number of choices of the polynomial input variables. The cube
test data were calculated on a 40-core hybrid SMP cluster parallel computer. The cube test data were
subjected to three statistical tests: balance, independence, and off-by-one. Although isolated statistical
test failures were observed, the balance and off-by-one tests did not find nonrandom behavior overall in
either CubeHash or Skein. However, the independence test did find nonrandom behavior overall in both
CubeHash and Skein.

1 Introduction

NIST inaugurated the Cryptographic Hash Algorithm Competition [10, 11] in November 2007 to select the
next U.S. government standard hash function, SHA-3. One of the criteria NIST will use to evaluate the
candidate hash algorithms is: “Hash algorithms will be evaluated against attacks or observations that may
threaten existing or proposed applications, or demonstrate some fundamental flaw in the design, such as
exhibiting nonrandom behavior and failing statistical tests.” [11] While numerous cryptographic attacks
against the candidate hash algorithms have been published, little attention has been paid to evaluating the
candidate hash algorithms’ statistical behavior; see [4] for one study.

Dinur and Shamir [5] reported the cube attack on a cryptographic primitive, which succeeds in a practical
amount of time if the primitive can be represented as a low-degree polynomial in GF(2). Specifically, the
cube attack’s complexity is 2¢7'n + n?, where d is the polynomial’s degree and n is the number of secret
bits to be recovered (such as a block cipher key).

Subsequently, Aumasson, Dinur, Meier, and Shamir [1] reported the cube test on a cryptographic prim-
itive. Rather than recovering a secret key or otherwise attacking the primitive, the cube test probes the
primitive’s internal polynomial structure and can be used to analyze the primitive’s statistical behavior.
Furthermore, the cube test can be applied to any cryptographic primitive, not just one represented by a
low-degree polynomial. Aumasson et al. applied cube tests to the Trivium stream cipher and the MDG6 hash
function, a SHA-3 Round 1 candidate.

Continuing the line of research suggested in [1], this paper reports the results of an analysis of the
statistical behavior of two of the SHA-3 Round 2 candidates, CubeHash and Skein. Section 2 describes the
cube test methodology used in the analysis and describes the massively parallel Java program that generated
the cube test data. Section 3 introduces the CubeHash and Skein algorithms and describes how the cube test
methodology was applied to them. Section 4 describes the statistical tests performed on the cube test data.
Section 5 presents the statistical test results on CubeHash and Skein. Section 6 offers concluding remarks.

*Department of Computer Science, Rochester Institute of Technology, ark@cs.rit.edu

Superpoly inputs Superpoly inputs

) Yi Y2 Vs Va) Yi V2 V3 Vs
Cube inputs Cube inputs
Xy Xp X5 Xg4 X1 Xo X3 X4
lolololo 0|0|0]O loioloio 00|00
IAAAAAAAAAAAAAAI IAAAAAAAAAAAAARI
Boolean function Boolean function
(cryptographic primitive) (cryptographic primitive)
gl AL
F FiF, ... F,
Output Outputs
Figure 1: Cube test of one output bit of a Figure 2: Cube test of all output bits of a
cryptographic primitive cryptographic primitive

2 Cube Tests
2.1 Cube Test Methodology

Consider a cryptographic primitive, such as a hash function, to be a Boolean function with multiple input bits
and output bits (Figure 1). Following the terminology of [1], some number ¢ of the input bits are designated
as a vector of cube inputs x = (x1, 22,...,z.), and some number s of the input bits are designated as a vector
of superpoly inputs y = (y1,Y2,-..,ys). All input bits other than the cube inputs and superpoly inputs are
set to 0. Then a particular output bit F' can be treated as a GF(2) polynomial function of the cube inputs
and superpoly inputs: F(x,y). Now, express I as follows:

F(xy) = z122 - 2.Q(y) + R(x,y) (1)

(Note that, in GF'(2), multiplication is the same as Boolean “and,” and addition is the same as Boolean
“exclusive-or.”) The first part of the right hand side of (1) consists of the terms in the polynomial F' that
include all the cube inputs plus one or more superpoly inputs. The cube inputs are factored out, leaving
a polynomial @ in just the superpoly inputs. The second part of the right hand side of (1) consists of the
remaining terms in the polynomial F', which is another polynomial R in the cube and superpoly inputs. The
polynomial @ is called the superpoly of F with respect to the cube inputs x.

The superpoly Q(y) can be calculated by the following summation procedure [5], without even knowing
the polynomial formula for @, as long as the overall Boolean function F' can be evaluated:

Set unused inputs of F' to 0

Set superpoly inputs of F' to y

Q0

For each x from 00...00 to 11...11:
Q—Q+F(xy)

Return @

Proof. In the summation of F' over the 2¢ values of x, each term in R is added in an even number of times,
since no term in R contains all of 7 through z.. Therefore, in GF(2) arithmetic, the terms in R sum up to
0. The terms in @), however, are added in only once, when x = 11...11. Therefore, the summation yields
just Q. O

The cube test is based on the above summation procedure. The null hypothesis is that the cryptographic
primitive is a random polynomial. Therefore, for any particular choice of cube and superpoly inputs, the
superpoly @ is also a random polynomial. Evaluate @) for some number of randomly chosen values for

the superpoly inputs, and apply a statistical test to the resulting series of superpoly output values. If the
statistical test fails at a designated significance level, then the null hypothesis is disproved, @ is not a random
polynomial, and the cryptographic primitive exhibits nonrandom behavior. Testing one or more superpolys
might reveal nonrandom behavior where testing the cryptographic primitive as a whole might not reveal
nonrandom behavior.

Calculating the superpoly @ requires calculating the whole cryptographic primitive, which yields n out-
put bits, not just one. Each output bit is a different polynomial function of the cube and superpoly inputs:
Fi, Fs, ..., F, (Figure 2). Thus, the cube test actually tests multiple superpolys Q1, Qa, ..., Q, for nonran-
domness.

2.2 Parallel Cube Test Program

The summation procedure performs 2¢ evaluations of F. To speed up the calculation, the evaluations of
F can be performed in a massively parallel fashion, followed by a parallel reduction to exclusive-or the F'
values, yielding Q.

Figure 3 depicts the design of the parallel program that calculates the superpoly values for the cube test.
The program is written in Java using the author’s Parallel Java Library [7, 8]. The program is designed
to run on a hybrid parallel computer with multiple compute nodes connected in a cluster via a high-speed
network, each node a shared memory multiprocessor (SMP) machine with multiple CPUs. The program
consists of multiple processes, one process running on each node. Each process in turn consists of multiple
threads, one thread running on each CPU and sharing memory with the other threads in the process.

Figure 4 describes the program’s operation. The program computes the superpolys for m randomly
chosen superpoly inputs y in parallel, partitioning the superpoly input samples among the processes. For
each superpoly input sample, the program performs the evaluations of F(x,y) in parallel, partitioning the
2¢ cube inputs x among the threads in the process. The results are written to a cube test data file for later
analysis.

The cube test program takes as an input the name of the Java class for the target, the cryptographic
primitive being tested. Instances of the target class are created using Java reflection to do the calculations
of F'. By defining an appropriate subclass of the base class Target, the program can perform cube tests on
any cryptographic primitive (or any Boolean function).

Besides the m random samples of the superpoly input values, the program chooses additional superpoly
input values if necessary such that every sample that differs from any original sample in one bit position
is included. For example, if 101110 is one of the m original superpoly input samples (s = 6), the program
ensures that superpoly input samples 001110, 111110, 100110, 101010, 101100, and 101111 are also evaluated.
This is needed to perform the off-by-one statistical test (see Section 4.4).

3 Hash Algorithms
3.1 CubeHash

Invented by Bernstein [2], the CubeHash algorithm has three parameters: r, the number of mixing rounds
applied to each message block (r > 1); b, the length of a message block in bytes (1 < b < 128); and h, the
size of the hash value in bits (h = 8,16,24,...,512). “CubeHashr/b-h” denotes the CubeHash variant with
parameter choices 7, b, and h. Bernstein recommends the following settings for SHA-3: CubeHash16/32-224,
CubeHash16/32-256, CubeHash16/32-384, and CubeHash16/32-512 [3]. This paper analyzes just the last
variant, CubeHash16/32-512.

The CubeHash16/32-512 algorithm was implemented in Java as a subclass of the base class Target for
the cube test program. The input is a single 32-byte message block, consisting of 31 bytes of data followed
by one required padding byte of 0x80; thus, the CubeHash target has 248 input bits from which to choose
the cube inputs and superpoly inputs. The CubeHash target has 512 output bits, yielding superpolys Q1
through Q512.

y=10110011 y=01110101 y=10001100 y=01111100
x=00 x=01 x=10 x=11 x=00 x=01 x=10 x=11 x=00 x=01 x=10 x=11 x=00 x=01 x=10 x=11

FIlFIlFILFEIIFILFIFILFIILFIIFIIFIFI|II|IFI|lFI| FI|l F

NO|0 |00

Figure 3: Parallel cube test program design

Inputs: Target class name for computing cryptographic primitive F' with n output bits
Number of cube inputs, ¢
Number of superpoly inputs, s
Number of random superpoly samples, m

Output: Cube test data file

Choose c¢ input bits at random to be cube inputs x
Choose s input bits at random to be superpoly inputs y

parallel for i = 0tom — 1 — partitioned equally among the processes
y < random(0,2° — 1)
parallel for x = 0 to 2¢ — 1 — partitioned equally among the threads in the process

Compute Fy(x,y),..., Fn(x,y)
end parallel for
Q1Y) Quly) — > Fi(xy),.. .. Fu(x,y) — shared memory parallel reduction
Send (y,Q1(y),...,Qn(y)) to one process — message passing
end parallel for
Write all (y, Q1(y),-..,Qn(y)) data to cube test data file

Figure 4: Parallel cube test program operation

3.2 Skein

Invented by Ferguson, Lucks, Schneier, Whiting, Bellare, Kohno, Callas, and Walker [6], the Skein algorithm
has three variants, with internal state sizes of 256, 512, and 1024 bits. The Skein algorithm can produce
a hash value of any size. (The hash size can even be larger than the internal state size, although the hash
value has no more entropy than the internal state.) “Skein-s-h” denotes the Skein variant with an s-bit
internal state and an h-bit hash value. Ferguson et al. recommend the following variants of Skein for SHA-3:
Skein-256-224, Skein-512-224, Skein-256-256, Skein-512-256, Skein-512-384, Skein-1024-384, Skein-512-512,
and Skein-1024-512 [6]. This paper analyzes just the Skein-512-512 variant.

The Skein-512-512 algorithm was implemented in Java as a subclass of the base class Target for the cube
test program. The input is a single 64-byte message block, consisting of 31 bytes of data followed by 33
padding bytes of 0. Thus, the Skein target has 248 input bits and 512 output bits, just like the CubeHash
target.

4 Statistical Tests

Each run of the cube test program samples a group of randomly chosen superpolys of the target hash function
(CubeHash or Skein), @1 through @512, one superpoly for each bit of the output hash value. The superpolys
are defined by choosing ¢ cube inputs and s superpoly inputs at random. m samples of the superpoly input
values are chosen at random and the superpolys are calculated, yielding a series of M samples for each
superpoly Q; through Qs12. (The results in Section 5 use M = min(100,2%).) These superpoly samples
were subjected to three statistical tests—balance test, independence test, and off-by-one test—to attempt
to disprove the null hypothesis that the target hash function is a random polynomial.

4.1 Chi-Square Test

Each of the three statistical tests is a chi-square test. The chi-square test categorizes the series of random
values being tested into discrete bins and counts the occurrences in each bin. The x? statistic is

b 2
XQZZW (2)

=1

where b is the number of bins, N; is the observed count in the i-th bin, and E; is the expected count in the
i-th bin if the null hypothesis is true. Typically, the E; values are derived from the total of the counts in all
the bins.

The x? statistic obeys a chi-square distribution with d degrees of freedom. When the E; values are
determined as described above, d is b — 1. The significance is the probability that a statistic greater than or
equal to x? would be observed by chance when the null hypothesis is true. The significance is 1 minus the
cumulative distribution function of the chi-square distribution:

d X2
Significance(d, x*) =1 — P (5, 7) 3)
where P(a,) is the incomplete gamma function:
[
P(a,x) = AV I (4)

o0
/ t*le7tdt
0

Formulas for calculating P(a,x) are well-known; see [12], for example.

As the observed counts N; deviate farther from the expected counts E;, x? increases and the significance
decreases. If the significance falls below a certain threshold p, the statistical test fails (the null hypothesis
is disproved at a significance of p), otherwise the statistical test passes. Statistical tests of cryptographic
pseudorandom number generators typically use p in the range 0.01 to 0.001 [13]. The results in Section 5
use p = 0.001. (The Conclusion will discuss the rationale for this choice.)

4.2 Balance Test

Under the null hypothesis that the cryptographic primitive is a random polynomial, each superpoly should
behave like a fair coin. Over all the input samples, half the time the output should be 0 and half the time
the output should be 1. The counts for the chi-square test of superpoly @; are N; = observed number of
zeroes in the series of m values for superpoly Q;, Na = observed number of ones, and Ey = Fy = m/2.
Applying the balance test to one cube test program run yields 512 pass/fail results.

4.3 Independence Test

Under the null hypothesis, each pair of superpolys should behave like two independent fair coins. Therefore,
over all the input samples, one-fourth the time the pair of outputs should be (0,0), and likewise for (0,1),
(1,0), and (1,1). The counts for the chi-square test of superpoly pair (Q;,Q;) are N; = observed number
of (0,0) pairs in the series of m values for superpolys @Q); and Q;, N2 = observed number of (0,1) pairs, N3
= observed number of (1,0) pairs, Ny = observed number of (1,1) pairs, and E; = Fy = E35 = E, = m/4.
Applying the independence test to one cube test program run yields 512 -511/2 = 130, 816 pass/fail results,
one for each pair of superpolys.

4.4 Off-By-One Test

Under the null hypothesis, over all the input samples, when one of the superpoly input bits is flipped from 0
to 1 or 1 to 0, half the time the output bit should also flip and half the time the output bit should not flip. The
counts for the chi-square test of output (); and input s; are N; = observed number of times @); did not flip
when s; flipped, No = observed number of times @; flipped when s; flipped, and £y = E; = m/2. Applying
the off-by-one test to one cube test program run yields 512 - s pass/fail results, one for each combination of
a superpoly output and a superpoly input.

One subtlety in the off-by-one test is that the same occurrence must not be counted twice. For example,
suppose two of the m superpoly input samples happen to be 101110 and 001110 (s = 6). Flipping the first
bit in the first sample will cause the output bits to flip or not flip in the same way as flipping the first bit in
the second sample. Thus, the outcomes from flipping the first bit for these two samples are not independent.
In each such case, the number of samples will be reduced by 1.

4.5 Summary Statistics

Applying one of the statistical tests to one cube test program run on the cryptographic primitive yields
multiple pass/fail results. To summarize the primitive’s behavior for that program run, a further statistical
test is applied. ¢ samples of the pass/fail results are chosen at random. (The results in Section 5 use t =
512 for the balance test and ¢t = 1,000 for the independence and off-by-one tests.) If the null hypothesis is
true, the pass/fail results should behave like a biased coin, with a probability (1 — p) of a pass result and a
probability p of a fail result. A chi-square test is used to test this hypothesis, with N; = observed number
of pass results, Ny = observed number of fail results, £1 = (1 —p) - ¢, and Ey = p - t.

If the significance of the summary Y2 statistic falls at or below a threshold p, the null hypothesis is
considered to be disproven, and the cryptographic primitive is considered to display nonrandom behavior,
for that cube test program run. (The results in Section 5 use p = 0.001, the same threshold as for the
individual statistical tests.)

4.6 Statistical Test Program

A Java program performs the statistical tests on the cube test program run data. The program takes as an
input the name of the Java class for the analyzer that embodies the statistical test. Instances of the analyzer
class are created using Java reflection to do the actual analysis. By defining an appropriate subclass of the
base class Analyzer, the program can apply any statistical test to the cube test results.

Figure 5 shows an example of the analysis program’s output. FEach line of output shows the total number
of statistical tests that passed and failed for all cube test program runs with a certain choice of the number of
superpoly inputs s and the number of cube inputs ¢, along with the summary x? statistic and its significance.

S C Pass Fail Chi~2 P

2 2 2048 0 2.050050 0.152201
2 3 2048 0 2.050050 0.152201
2 4 2048 0 2.050050 0.152201
2 5 2048 0 2.050050 0.152201
2 6 2048 0 2.050050 0.152201
24 20 2045 3 0.442974 0.505690
24 21 2046 2 0.001126 0.973230
24 22 2048 0 2.050050 0.152201
24 23 2044 4 1.862362 0.172352
24 24 2047 1 0.536818 0.463754

Figure 5: Example of analysis results on cube test program runs

5 Results

The cube test program runs were done on a 10-node hybrid parallel computer, each node with two AMD
Opteron 2218 dual-core CPUs, 2.6 GHz clock, and 8 GB main memory; 40 CPUs total. The nodes are
interconnected with a dedicated 1 Gbps switched Ethernet. Each run consisted of one choice of each of the
following;:

e Cryptographic primitive (target): CubeHash16/32-512 or Skein-512-512
e Number of cube inputs ¢ = 2, 3, ..., 23, 24

e Number of superpoly inputs s = 2, 3, ..., 23, 24

e Four different random seeds

Altogether, 23 - 23 - 4 = 2,116 runs were performed on CubeHash and 2,116 runs were performed on Skein.
Each run computed m = min(100, 2%) superpoly input samples, plus additional samples needed for the off-
by-one test (see Section 2.2). Each superpoly input sample required 2¢ evaluations of the cryptographic
primitive.

A total of 3,606,910,695,720 CubeHash16/32-512 evaluations were performed (a bit less than 242 evalua-
tions). The evaluations took 1.25x10° seconds. Computing the CubeHash16/32-512 hash of a single message
block took 346 nsec on 40 CPUs, which is equivalent to 13.9 usec on one CPU. (This includes the overhead
of the cube test program as well as the actual hash computation.)

A total of 3,603,992,046,760 Skein-512-512 evaluations were performed. The evaluations took 3.30 x 10°
seconds. Computing the Skein-512-512 hash of a single message block took 91.7 nsec on 40 CPUs, which is
equivalent to 3.67 usec on one CPU.

The cube test program results were subjected to the balance, independence, and off-by-one tests with
parameters m = 100 random superpoly input samples, ¢ = 512 random pass/fail result samples for the balance
test, ¢ = 1,000 random pass/fail result samples for the independence and off-by-one tests, and significance p
= 0.001.

Figure 6 depicts the balance test summary statistics for CubeHash16/32-512 and Skein-512-512. Likewise,
Figure 7 depicts the independence test summary statistics and Figure 8 depicts the off-by-one test summary
statistics. In the visualizations, each grid square represents the cube test program runs for a certain number
of superpoly inputs s and a certain number of cube inputs c. Each grid square’s gray shade represents the
significance of the summary 2 statistic, with black being a significance of 0.0 and white being a significance
of 1.0. Thus, darker gray shades are more nonrandom. If a significance falls at or below the threshold p
= 0.001, the grid square is marked with a white dot. Thus, white dots appear where the statistical tests
detected individual cube test program runs with nonrandom behavior.

If the null hypothesis is true, that the cryptographic primitive is a random polynomial, then the probabil-
ity of a white dot appearing in a grid square is the significance threshold p = 0.001. Thus, each visualization

CubeHash16/32-512 Balance Test Skein-512-512 Balance Test

o o

@)

Q@ Q@

Qo Qo

8 e

= =

IS <

> >

Q [}

o] Q

) >

o o

- o

S S

= =

3 38
9 9

1S IS

> 8 =

Z Z
6 6
5 5
4 4
3 3
2 2

2 34 56 7 8 9101112131415161718192021222324 2 3456 7 8 9 101112131415161718192021222324
Number of superpoly variables, s Number of superpoly variables, s

Figure 6: Balance test summary statistics for CubeHash16/32-512 and Skein-512-512

CubeHash16/32-512 Independence Test Skein-512-512 Independence Test

(8] o

@ 7]

2 Q@

Qo Q

g K

= =

I IS

> >

] (3]

o) Qo

3]

(8] (8]

“— s

o (=]

C =

3 3
9 9

1S £

S 8 S 8

z, Zz g
6 6
5 5
4 4
3 3
2 2

2 3 4 5 6 7 8 9101112131415161718192021222324 2 3456 7 8 9101112131415161718192021222324
Number of superpoly variables, s Number of superpoly variables, s

Figure 7: Independence test summary statistics for CubeHash16/32-512 and Skein-512-512

CubeHash16/32-512 Off-By-One Test Skein-512-512 Off-By-One Test

© 16

Number of cube variables, ¢

Number of cube vari

2 34 56 7 8 9101112131415161718192021222324 2 345 6 7 8 9 101112131415161718192021222324
Number of superpoly variables, s Number of superpoly variables, s

Figure 8: Off-by-one test summary statistics for CubeHash16/32-512 and Skein-512-512

Table 1: Instances of nonrandom behavior detected for various seeds

Seed = | Seed = | Seed = | Seed =

Test Hash Function 142857 | 285714 | 428571 | 571428
Balance CubeHash16/32-512 1 1 1 1
Skein-512-512 0 0 0 0

Independence | CubeHash16/32-512 14 16 16 14
Skein-512-512 9 11 12 14

Off-by-one CubeHash16/32-512 0 0 1 0
Skein-512-512 2 2 0 1

can be viewed as consisting of 529 flips of a biased coin, and a chi-square test can determine the probability
that the null hypothesis is true given a certain number of white dots. If there are three or more white dots,
the probability that the null hypothesis is true is less than 0.001. In this case, the statistical test detects
overall nonrandom behavior in the cryptographic primitive, not just nonrandom behavior for isolated cube
test program runs.

For CubeHash16/32-512, the balance test does not detect overall nonrandom behavior (one white dot),
and the off-by-one test does not detect overall nonrandom behavior (no white dots). However, the indepen-
dence test does detect overall nonrandom behavior (14 white dots).

For Skein-512-512, the balance test does not detect overall nonrandom behavior (no white dots), and the
off-by-one test does not detect overall nonrandom behavior (two white dots). However, the independence
test does detect overall nonrandom behavior (9 white dots).

For the independence and off-by-one tests, the significance (gray shade) of each grid square depends on
the choice of pseudorandom number generator seed when the statistical analysis program is run, because the
pseudorandom number sequence determines which individual statistical test pass/fail results are sampled
to compute the summary x? statistic. (This does not pertain to the balance test because all 512 pass/fail
results are included in the summary x? statistic.) Table 1 shows the number of instances of nonrandom
behavior (white dots) detected for various seeds. Even when different seeds were chosen, the independence
test consistently detected overall nonrandom behavior both in CubeHash16/32-512 and in Skein-512-512.

6 Conclusion

This study has shown that when the independence test is applied to selected superpolys inside CubeHash
and Skein, the null hypothesis that CubeHash or Skein is a random polynomial is disproved at a significance
level of 0.001. In other words, nonrandom behavior was detected in both CubeHash and Skein. The balance
and off-by-one tests did not disprove the null hypothesis.

Why choose a significance level of 0.0017 When p is larger, say 0.01, the chi-square tests are more
stringent; smaller differences between the observed and expected counts will cause the significance to fall
below the threshold and the test to fail. But this means a “false failure,” where the test fails even though
the function really is random, is more likely. On the other hand, when p is smaller, say 0.001, the chi-square
tests are more lenient; larger differences between the observed and expected counts are required to cause
the significance to fall below the threshold and the test to fail. But this means a “false pass,” where the
test passes even though the function really is nonrandom, is more likely. This study used the more lenient
significance level, p = 0.001. Even so, nonrandom behavior was still detected, although in only one of the
three statistical tests.

Future work includes running the cube tests on other SHA-3 candidate hash algorithms. Because of the
long running times involved, even on a parallel computer, this may have to wait until the SHA-3 Competition
progresses to Round 3 and only a few candidate hash algorithms remain. Future work also includes applying
additional statistical tests to the cube test results.

The cube test program output files, analysis program output files, and Java source code for all the
programs described herein are available [9].

Acknowledgments

I would like to thank Stanistaw Radziszowski for helpful comments on an earlier draft of this paper.

References

[1] J. Aumasson, I. Dinur, W. Meier, and A. Shamir. Cube testers and key recovery attacks on reduced-
round MD6 and Trivium. Fast Software Encryption, 2009.

[2] D. Bernstein. CubeHash specification (2.B.1). Extracted from CubeHash submission to the NIST SHA-3
Competition. http://csrc.nist.gov/groups/ST/hash/sha-3/Roundl/documents/CubeHash.zip

[3] D. Bernstein. CubeHash parameter tweak: 16 times faster. July 15, 2009. http://cubehash.cr.yp.
to/submission/tweak.pdf

[4] B. Bloom and A. Kaminsky. Single block attacks and statistical tests on CubeHash. Cryptology ePrint
Archive, Report 2009/407, August 21, 2009.

[5] I. Dinur and A. Shamir. Cube attacks on tweakable black box polynomials. Cryptology ePrint Archive,
Report 2008/385, January 26, 2009.

[6] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas, and J. Walker. The
Skein hash function family, version 1.2. September 15, 2009. http://www.skein-hash.info/sites/
default/files/skeinl.2.pdf

[7] A. Kaminsky. Parallel Java: A unified API for shared memory and cluster parallel programming in
100% Java. In 21st IEEE International Parallel and Distributed Processing Symposium (IPDPS 2007),
March 2007.

[8] A. Kaminsky. Parallel Java Library. http://www.cs.rit.edu/~ark/pj.shtml

[9] A. Kaminsky. Cube test analysis of the statistical behavior of CubeHash and Skein web site. http:
//www.cs.rit.edu/~ark/parallelcrypto/cubetest01/

10

[10] NIST Cryptographic Hash Algorithm Competition. http://csrc.nist.gov/groups/ST/hash/sha-3/

[11] National Institute of Standards and Technology. Announcing request for candidate algorithm nomina-
tions for a new cryptographic hash algorithm (SHA-3) family. Federal Register, 72(212):62212-62220,
November 2, 2007.

[12] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes: The Art of Scientific
Computing, Third Edition. Cambridge University Press, 2007.

[13] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A.
Heckert, J. Dray, S. Vo, and L. Bassham. A statistical test suite for random and pseudorandom number
generators for cryptographic applications. NIST Special Publication 800-22, Revision 1a. April 2010.

11

