
On FPGA-based implementations of Grøstl?

Bernhard Jungk and Steffen Reith

Hochschule RheinMain
University of Applied Sciences

Wiesbaden Rüsselsheim Geisenheim
{bernhard.jungk|steffen.reith}@hs-rm.de

Abstract. The National Institute of Standards and Technology (NIST)
has started a competition for a new secure hash standard. To make a
significant comparison between the submitted candidates, third party
implementations of all proposed hash functions are needed. This is one
of the reasons why the SHA-3 candidate Grøstl has been chosen for a
FPGA-based implementation.
Mainly our work is motivated by actual and future developments of the
automotive market (e.g. car-2-car communication systems), which will
increase the necessity for a suitable cryptographic infrastructure in modern
vehicles (cf. AUTOSAR project) even further. One core component of
such an infrastructure is a secure cryptographic hash function, which
is used for a lot of applications like challenge-response authentication
systems or digital signature schemes. Another motivation to evaluate
Grøstl is its resemblance to AES.
The automotive market demands, like any mass market, low budget
and therefore compact implementations, hence our evaluation of Grøstl
focuses on area optimizations. It is shown that, while Grøstl is inherently
quite large compared to AES, it is still possible to implement the Grøstl
algorithm on small and low budget FPGAs like the second smallest
available Spartan-3, while maintaining a reasonable high throughput.

Key words: Cryptography, hashfunction, Grøstl, FPGA, automotive,
car2car

1 Introduction

The National Institute of Standards and Technology (NIST) has started a
competition for a completely new hash function, very similar to the past
AES competition (cf. [1]), to overcome the problems related to SHA-1
(cf. [2]) and the SHA-2 family (e.g. [3,4]) of hash functions. Similar to the
former effort, the rules of this competition require third party software
and hardware implementations of all proposed candidates to evaluate the
overall performance and resource requirements.
? Research supported in part by BMBF grant 17N1308.

In the present paper, the focus lies on implementations of the SHA-3
candidate Grøstl (cf. [5]), because the Grøstl hash function borrows many
ideas from the Rijndael/AES algorithm (cf. [6,7]). This property makes
Grøstl an interesting SHA-3 candidate, because there is reasonable hope,
that this will lead to area/space efficient implementations of cryptographic
infrastructures, which contain both AES and a suitable hash function
together. Moreover it should be possible to adopt well-known optimization
techniques for the AES algorithm.

FPGA implementations of cryptographic primitives are interesting,
because they can offer better performance at a lower cost compared to
software implementations or greater flexibility as custom ASIC chips. A
very interesting and important application of cryptographic primitives are
low-end and slow embedded platforms for the mass market (e.g. automotive
or automation applications). Augmenting these slow embedded processors
with dedicated hardware solutions boosts the performance to a level,
where for example secure car-2-car communication with higher bandwidth
demands becomes possible. Therefore the focus of the present work lies on
compact implementations and thus optimizations, which are specifically
designed to improve the throughput, are not investigated.

Several FPGA-based implementations were developed and evaluated
to give a first exploration of the area-throughput trade-off. The applied
optimizations come in two flavors. The first kind of optimizations are of
architectural nature, which reduce the number of LUTs by arranging the
necessary registers, RAMs and logic. The other optimization approach uses
composite field arithmetic to reduce the area requirement for the S-box
used in the Grøstl algorithm. This idea was first proposed by Rijmen in [8]
and was subsequently investigated by many researchers (e.g. [9,10,11,12]).

Our results (cf. Tab. 2) present a first look at the achievable trade-off
between throughput and area consumption for Grøstl, where the smallest
implementation for 224/256 bit digests (1276 slices) is about 78% smaller
than our high-throughput implementation, but also 93% slower and hence
fits on a small Spartan-3 FPGA (XC3S200).

2 Previous work

The Grøstl algorithm is described in detail in [5], where additional results
and estimates on several hardware (ASIC/FPGA) implementations are
provided. Other recent hardware implementations are reported in [13,14]
and [15]. However, these results are hardly comparable to our work, because
either they only report ASIC implementation results (cf. [13,14]) or they

are not fully autonomous implementations (cf. [15]). Nevertheless, some
ideas from the work on ASIC implementations are applicable to the present
work, too. For example, the throughput of the serialized and hence smaller
versions can be very similar to the fully parallel design, if the compression
function is pipelined.

The FPGA implementations presented in [15] show some results on
the trade-offs between area and throughput, but unfortunately they do not
implement the padding function (cf. Sec. 3) and hence a fair comparison
to our results is not possible.

The similarity between Grøstl and the AES cipher is beneficial for
the optimization of the hash function, because some of the optimizations
applied to AES (e.g. [16,9,17,18,19]) can be easily adapted to Grøstl. A
good example are the ideas for a compact AES implementation described
in [17]. Especially the iterative design of this implementation can be
applied to Grøstl after some modifications. Another example are the AES
S-box optimizations (cf. [9]).

Other optimizations are probably not very useful for Grøstl. For ex-
ample, pipelined high-throughput implementations of AES often use the
ECB mode, which does not depend on the output of the previous compu-
tation (e.g. [19]). In contrast, Grøstl uses a Merkle-Darmg̊ard construction
(cf. [20,5]), hence the output is fed back into the processing of the next
message block and thus the usefulness of pipelining for Grøstl is limited.

3 The Grøstl Hash Function

Following the Merkle-Darmg̊ard construction Grøstl consists of a padding
function, a compression function f and the output transformation Ω.
The input to the padding function is a message m of any size (in bits).
The output is a padded message m′, with size a multiple of l bits. The
submission of Grøstl (cf. [5]) fixes l for 224 and 256 bit digests to l = 512
and for 384 and 512 bit digests to l = 1024.

The padding consists of three parts. The first part is a single bit, which
is set to one. The second part consists of |m| mod l − 65 zeros, such that
the message size will be 64 bits short of being a multiple of l. The third
and last part is is the number of message blocks #(m′

i) encoded in 64 bits.
Each message block m′

i is one part of the padded message m′ with l bits.
After the padding, the compression function f will be executed for each

message block m′
i, where f uses the permutations P and Q to compute

f(h,m′
i) = P (h⊕m′

i)⊕Q(m′
i)⊕ h. The value h is either an initial value,

depending on the desired hash length, if it is the first message block or
the output of the previous computation of f .

The permutations are each composed of four different sub-transfor-
mations AddRoundConstant, SubBytes, ShiftBytes and MixBytes. These
sub-transformations are sequentially computed for n rounds, where n = 10
for the 224 and 256 bit hashes and n = 13 for 384 and 512 bits. After each
round, the output of the previous round is fed back as input for the next
round. For the description of the sub-transformations it is convenient to
map each message block to a matrix representation with eight rows and
eight or sixteen columns, depending on l. Each entry of this matrix is one
byte of the message block.

The number of already executed rounds is counted and used by the
AddRoundConstant sub-transformation, which adds (XOR) the value of
the counter round to an element in this matrix representation. The P -
instance of this sub-transformations adds round to the first element in the
first row, whereas the Q-instance adds 0xFF ⊕ round to the first element
in the eighth row.

The SubBytes sub-transformation is the exact same S-box used by the
AES (cf. [6,7]). The ShiftBytes sub-transformation performs a cyclic left
shift for each row. The first to the seventh row is shifted 0 to 6 columns
to the left, whereas the eighth row is shifted 7 columns for l = 512, or 11
columns for l = 1024.

The MixBytes sub-transformation performs a matrix multiplication
over the finite field F256:

m′
i ←



02 02 03 04 05 03 05 07
07 02 02 03 04 05 03 05
05 07 02 02 03 04 05 03
03 05 07 02 02 03 04 05
05 03 05 07 02 02 03 04
04 05 03 05 07 02 02 03
03 04 05 03 05 07 02 02
02 03 04 05 03 05 07 02


×mi,

where mi is the message block mapped to the matrix representation.

After all message blocks are compressed by f , the final output x of f
is post-processed by the output transformation Ω, which first computes
P (x)⊕ x and then truncates the result to the desired digest size.

4 Optimizations

All of the presented Grøstl implementations share a common structure
(see Fig. 1), which will be described before delving into optimizations.
The design is basically a straight forward implementation of the Grøstl
algorithm, with some fairly easy general optimizations applied.

The padding function receives all message blocks and passes them to
the compression function f , padding the message blocks as necessary. The
compression function then takes each message block and applies the P and
Q permutations. The sub-transformations are applied to the input message
block for the first round and to the output of the previous round otherwise.
When the last round is complete, a new value for h is computed and fed
back into P combined (XORed) with the next message block. After all
message blocks are processed, the output tranformation is applied and the
final hash value is placed in an output register. The output transformation
reuses the instance of P in the compression function f .

4.1 General Architectural Optimizations

The first optimization idea is the reuse of the P -instance used by the
compression function f in the output transformation Ω. From the spec-
ification of the Grøstl hash function, we have Ω(h) = P (h) ⊕ h and
f(h,m) = P (h⊕m)⊕Q(m)⊕ h. Thus, we can achieve the reuse of P by
changing the padding function to output an all-zero message block after
the last message block and by ignoring the output of Q(m).

Fig. 1: The general design of the Grøstl implementations.

Changing Q to QΩ(m) = 0, such that P (h⊕m)⊕QΩ(m)⊕h = P (h)⊕h
for the computation of Ω does not reduce the area further, because both
approaches require the same number of LUTs (cf. [21]).

Another general area optimization technique is to reduce the par-
allelization by serializing the execution of P and Q (see Fig. 2). This
will half the number of S-boxes and MixBytes instances and thus reduce
the necessary area at the cost of doubling the number of clock cycles to
compute the compression function.

The performance can be boosted again, by introducing a pipeline
step in the round computation, hence the clock frequency can be much
higher, while maintaining the number of clock cycles for both permutations
(cf. Fig. 2).

4.2 Reduction of the Datapath Width

Another way to further reduce the parallelism and hence the area is
a reduction of the datapath width. The general idea is to reduce the
computation of a complete round in eight smaller parts. Thus only one
eighth of the original S-boxes and MixBytes calculations are required, at
the expense of an eightfold increase of clock cycles for the computation of
the compression function.

The approach is similar to the compact AES implementation proposed
in [17]. One of the proposed optimizations is an area reduced implemen-
tation of the input and output memories needed for the Grøstl round.
The first technique is based on distributed RAM, the second uses shift
registers. Both can be implemented with LUTs. Adapting their idea to
Grøstl, two memories of the necessary size hold the internal state of the
Grøstl compression function. The first one implements the input register,
the other one the output register. Input and output memories are swapped
after each round.

Fig. 2: The serialized Grøstl implementation.

For the input, it is necessary to tap the bytes out of the input register,
according to the ShiftBytes transformation, thus the explicit ShiftBytes
transformation is unnecessary. The tapping is achieved by using a counter
for the sub-rounds and offsets for each matrix row. The output is written
consecutively to the same address for each matrix row (see Fig. 3a).

We take this idea further by removing the second memory bank (see
Fig. 3b). We benefit from a feature of dual-ported distributed RAM, which
allows us to read and write to the same address in the same clock cycle
using a pipelined RAM (cf. [22]). The new idea works as follows:

i) Calculate the current read/write addresses by adding the sub-round
counter, the row offset and an additional round offset.

ii) Read the new inputs from these addresses.
iii) Write the current results to the same addresses.

The critical part in this procedure is the calculation of the addresses.
In contrast to the previous case, we have to add additional offsets for
each round of the compression function, to simulate the ShiftBytes sub-
transformation. A very similar idea may be adapted for the storage of
the output h of the compression function f and the subsequent feedback
of h to the computation of the next message block. First we read the
necessary part of the old value of h from the memory. Then we calculate
the corresponding part of P (h ⊕mi) ⊕ Q(mi) ⊕ h and write the result
back to the same memory. This construction can be implemented easier
than the previous. We have two reads, the first in the first round is done

(a) Two memory banks (b) One memory bank

Fig. 3: Different I/O register implementations for the Grøstl round.

according to ShiftBytes similar to the way it is done for the case with
two memories. The second time, we read in the last round to calculate the
new value. Here, we do not need a special treatment for the ShiftBytes
sub-transformation.

We could further reduce the area, by using an 8 bit wide datapath, thus
each round takes 64 clock cycles for each permutation P and Q. The main
obstacle is the MixBytes sub-transformation, where the output of a single
byte depends on 8 input bytes, which makes it more difficult to implement
than the 64 bit wide datapath. However, this design has probably a
extremely low throughput compared to the other implementations, hence
it is not considered here.

The performance loss caused by the reduction of the datapath width
could be mitigated by the introduction of more pipelining registers in
the compression function, e.g. the 64 bit datapath could be implemented
using a pipeline with depth 8 and therefore almost reach the original
throughput. The area would not increase significantly, because the flip-
flops implementing the pipeline registers could probably be placed in the
same slice as the logic (cf. [21]).

4.3 Optimized S-Box

The area reduction of the S-box optimizes the underlying finite field arith-
metic, which is used to calculate each value on-the-fly instead of the usage
of a S-box lookup table. The basic idea is to change the representation of
each finite field element to a computationally more efficient representation.
This change of representation works, because it is well known, that all finite
fields with the same cardinality are isomorphic (e.g. [23], Theorem 2.5).

The optimization decomposes the finite field F256, defined by the
AES polynomial, using the fields F22 , F(22)2 and F((22)2)2 . In this new
representation, the inversion of an element of F256, which is necessary
for the calculation of the SubBytes sub-transformation, uses arithmetic
operations in the sub-fields, resulting in a smaller implementation.

Canright [9] and others (e.g. [10,11,12,24]) have explored this optimiza-
tion technique quite in-depth for ASIC implementations. To our knowledge
there is no such work specific for FPGAs. The main relevant difference
between ASICs and FPGAs is the way how the logic is implemented. The
previous work counts the number of elementary binary logic gates (e.g.
XORs and ANDs in [9]). This is an adequate measurement for the area of
ASIC implementations, but not necessarily if we target FPGAs.

This inadequacy is the result of the following ideas. There is an
interesting result regarding the mapping of Boolean circuits to LUT-based

FPGAs. The minimal technological mapping without duplication of gates is
known to be solvable in polynomial time. However, this mapping is not the
global minimum for FPGA implementations, because duplication of logic
gates may further decrease the area (cf. [25]). This result suggests, that
some of the low-level optimizations proposed in [9] are counter-productive.
Furthermore, every n-ary Boolean function (n ∈ {4, 5, 6} depending on
the LUT), can be implemented with the same cost, hence a differentiation
between gate types is unnecessary. Therefore, a different choice of basis
could be better for FPGA implementations.

Instead of just taking some of the previous results, we built a optimiza-
tion framework, which optimizes the finite field arithmetic for LUT-based
FPGAs. Following some basic assumptions of Canright ([9]) the AES field
is similarly decomposed into the field F((22)2)2 using the following choices
for irreducible polynomials. Over F2 there is only one irreducible polyno-
mial f(x) = x2 + x+ 1, over F22 , there are two irreducible polynomials of
the form g(y) = y2 + y + u and over F(22)2 eight polynomials of the form
h(z) = z2 + z + v. These choices of irreducible polynomials result in 432
possible representations.

All of these 432 different representations were analyzed for LUT-based
FPGAs. The optimization framework creates optimized VHDL code for
the conversion matrices and the arithmetic operations in F22 , F(22)2 and
F((22)2)2 . The VHDL code for each representation is then synthesized and
further optimized using the Xilinx toolchain (cf. Fig. 4).

The optimizations applied by the optimization framework are similar to
the high level optimizations described in [9]. However, the final results after
the placement and routing are dependent on the optimizations applied
by the Xilinx toolchain. This may be more controllable by extending the
optimization framework to be able to generate LUT4 instances (cf. [21]),
instead of the current high level VHDL code generation.

For comparison we synthesized Grøstl with the S-box of of Canright
(cf. [9]) and an optimized Boolean circuit, which is an even further opti-

Digest Slices Frequency Throughput
(MHz) (MBit/s)

new 224/256 1672 38 243

see [9] 224/256 1693 36 230

see [24] 224/256 1684 31 198

Tab. 1: Grøstl implementation results with very compact S-box optimizations for
Spartan-3 FPGAs.

mized version of Canright’s result (cf. [24]). A fair comparison is achieved,
by synthesizing all implementations with the Xilinx toolchain and the
same optimization options. Tab. 1 illustrates the post place and route
results of the 64 bit datapath P/Q-parallel Grøstl implementations using
the new optimized S-box and the other optimized versions.

We can see, that the results are similar, but anyhow the new S-box
implementation1 slightly outperforms both other optimizations. The gener-
ated solutions were not examined in detail, hence one possible assumption
is, that some of the low level optimizations applied by Canright are more
difficult to optimize for the Xilinx toolchain. A similar assumption can be
made for the decreased throughput of the implementation based on the
result from [24], which is probably caused by an increased logic depth.

For further comparison, Fig. 4 shows all results for the 432 repre-
sentations. We can see, that only a few representations result in a very
small implementation, whereas most representations are rather mediocre
and some are worse. Hence, it is important to choose the representation
carefully. Furthermore, the plot includes our optimization of Canright’s
minimal representation and the optimizations presented in [9] and [24].

1 Let α = x and β = y be the roots of x2 + x + 1 and y2 + y + u, then u = α2 and
v = αβ + α. Two bases are normal, for F(22)2 we have a polynomial basis.

1700

1800

1900

S
iz

e
of

G
rø

st
l

/
#

S
li

ce
s

0 100 200 300 400

Representation of F256

Canright’s representation

[24], [9], Our optimization

New representation

Fig. 4: Size of VHDL-based implementations for all 432 representations using the Xilinx
toolchain.

5 Evaluation

We have implemented several different variants and synthesized each of
them for a Spartan-3. We did not implement the design for Virtex-5 or
other high-end FPGAs, because of the focus on low budget and compact
implementations.

The main differences between the implemented variants (see Tab. 2) are
the S-box implementations and the datapath width. The high-throughput
variants (Tab. 2 (1-3)) use the maximum width datapath and implement
the S-box as BRAM. The compact implementations (Tab. 2 (4-7)) have a
reduced size datapath and use the optimized S-box (cf. Sec. 4.3).

Some general observations about the presented implementations can
be made. A fully parallel implementation for 384/512 bit digests for the
Spartan-3 cannot be achieved, because the FPGA does not have enough
BRAM cells. Furthermore, the serialized versions are almost as fast as the
parallel implementations. A similar effect was already observed in [14].

Comparing our fastest (Tab. 2 (2)) and smallest (Tab. 2 (7)) Spartan-3
implementations for 224/256 bit digests, the area reduces to 1276 slices
which is about 22% of the high-throughput implementation. Hence, the
compact implementation fits on a small Spartan-3 FPGA (XC3S200).
At the same time the throughput drops to about 7%. This is a quite
significant loss of performance compared to the achievable area reduction,
but it is probably not critical for low budget implementations.

Tab. 3 shows the results of other FPGA implementations known to
us. Most of our implementations are slower compared to these third party
results, which was expected due to the focus on compact implementations.
As previously mentioned, a detailed comparison with the results of [15]
is not possible, because of the missing padding function. A comparison

Digest P/Q Slices BRAM MHz MBit/s

1024 bit datapath

1 384/512 serial 8308 64 95 3474

512 bit datapath

2 224/256 parallel 5693 64 54 2764

3 224/256 serial 4491 32 100 2560

64 bit datapath

4 384/512 parallel 2463 0 36 164

5 384/512 serial 2110 0 63 144

6 224/256 parallel 1672 0 38 243

7 224/256 serial 1276 0 60 192

Tab. 2: Implementation results for Spartan-3 FPGAs.

Reference Digest P/Q Slices BRAM MHz MBit/s

1024 bit datapath

8 [5] 384/512 parallel 20233 n/a 80.7 5901

9 [15] 384/512 serial 6313 n/a 79.61 2910

512 bit datapath

10 [5] 224/256 parallel 6582 n/a 86.7 4439

11 [15] 224/256 serial 3183 n/a 91.02 2330

64 bit datapath

12 [5] 224/256 parallel 3000-4000 n/a 75-125 400

13 [5] 384/512 parallel 6000-8000 n/a 35-60 300

Tab. 3: Third party results and estimates for Virtex-2P (12, 13) and Spartan-3 FPGAs
(8-11).

to the results of [5] reveals that the new high-throughput variants are
significant smaller than the results reported in [5], but also have lower
throughput. This problem is due to very high routing delays, which are
more than 50% of the overall delay in the longest paths.

The compact implementations do not have a good comparison candi-
date. Comparing our compact versions with the estimates of [5], both are
more compact than the estimate, but also slower. The slowdown is mainly
caused by the optimized S-box which increases the logic depth.

6 Conclusion and Further Work

The present paper focuses on FPGA implementations of the SHA-3 candi-
date Grøstl. Several optimized variations were implemented and evaluated.
Most optimizations were specifically designed to reduce the number of
occupied FPGA slices. Overall the Grøstl hash function fits on small sized
FPGAs like the Spartan-3 XC3S200. Further reduction of the area is
possible, however, it seems unlikely that Grøstl may be implemented on
any much smaller Spartan-3 or Spartan-2 FPGA.

The area reduction is possible by some optimizations we did not pursue,
e.g. an 8 bit wide datapath. Other optimizations, like the pipelining of
the reduced datapaths, may improve the performance of these compact
implementations. Compared to a compact AES implementation (e.g. 222
slices on a Spartan-2 [17]), Grøstl will probably remain rather area con-
suming. After all none of the proposed implementations fits on the smallest
Spartan-2 or Spartan-3 FPGAs. Hence, because our main target are auto-
motive applications, where low budget and therefore the area requirements
are important, our further work will continue to focus on additional area
optimizations, rather than improvements of the throughput.

References

1. Kayser, R.F.: Announcing Request for Candidate Algorithm Nominations for a New
Cryptographic Hash Algorithm (SHA-3) Family. In: Federal Register. Volume 72.
National Institute of Standards and Technology (November 2007) 62212–62220

2. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: In Proceedings
of Crypto. Volume 3621 of Lecture notes in computer science., Springer (2005)
17–36

3. Sanadhya, S., Sarkar, P.: New collision attacks against up to 24-step SHA-2. In:
Progress in Cryptology-INDOCRYPT. Volume 5365 of Lecture notes in computer
science., Springer (2008)

4. Isobe, T., Shibutani, K.: Preimage attacks on reduced tiger and SHA-2. In: Fast
Software Encryption. Volume 5665 of Lecture notes in computer science., Springer
(2009)

5. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. Submission to NIST
(2008)

6. Daemen, J., Rijmen, V.: AES Proposal: Rijndael. Submission to NIST (1999)
7. Rijmen, V., Daemen, J.: The Design of Rijndael. Springer (2002)
8. Rijmen, V.: Efficient implementation of the Rijndael S-Box. Technical report,

Katholieke Universiteit Leuven (2000)
9. Canright, D.: A Very Compact S-Box for AES. In: Proceedings of 7th International

Workshop on Cryptographic Hardware and Embedded Systems (CHES), Springer-
Verlag (2005) 441–455

10. Zhang, X., Parhi, K.K.: On the Optimum Constructions of Composite Field for
the AES Algorithm. In: IEEE Transactions on Circuits and Systems. Volume 53.
(2006) 1153–1157

11. Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: A Systematic Evaluation
of Compact Hardware Implementations for the Rijndael S-Box. In: Topics in
Cryptology - CT-RSA 2005. Volume 3376 of Lecture Notes in Computer Science.,
Springer-Verlag (2005) 232–333

12. Nikova, S., Rijmen, V., Schläffer, M.: Using Normal Bases for Compact Hardware
Implementations of the AES S-Box. In: Security and Cryptography for Networks.
Volume 5229 of Lecture Notes in Computer Science., Springer-Verlag (2008) 236–245

13. Tillich, S., Feldhofer, M., Issovits, W., Kern, T., Kureck, H., Mühlberghuber,
M., Neubauer, G., Reiter, A., Köfler, A., Mayrhofer, M.: Compact Hardware
Implementations of the SHA-3 Candidates ARIRANG, BLAKE, Grøstl, and Skein.
Cryptology ePrint Archive, Report 2009/349 (2009)

14. Tillich, S., Feldhofer, M., Kirschbaum, M., Plos, T., Schmidt, J.M., Szekely, A.:
High-Speed Hardware Implementations of BLAKE, Blue Midnight Wish, CubeHash,
ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD, and
Skein. Cryptology ePrint Archive, Report 2009/510 (2009)

15. Baldwin, B., Byrne, A., Hamilton, M., Hanley, N., McEvoy, R.P., Pan, W., Marnane,
W.P.: FPGA Implementations of SHA-3 Candidates:CubeHash, Grøstl, Lane,
Shabal and Spectral Hash. Cryptology ePrint Archive, Report 2009/342 (2009)

16. Canright, D., Osvik, D.A.: A More Compact AES. Selected Areas in Cryptography:
16th Annual International Workshop, SAC 2009, Calgary, Alberta, Canada, August
13-14, 2009, Revised Selected Papers (2009) 157–169

17. Chodowiec, P., Gaj, K.: Very compact FPGA implementation of the AES algorithm.
In: Proceedings of 5th International Workshop on Cryptographic Hardware and
Embedded Systems (CHES), Springer-Verlag (2003) 319–333

18. Pramstaller, N., Mangard, S., Dominikus, S., Wolkerstorfer, J.: Efficient AES
Implementations on ASICs and FPGAs. In: Advanced Encryption Standard – AES.
Springer-Verlag (2005) 98–112

19. McLoone, M., McCanny, J.: High Performance Single-Chip FPGA Rijndael Algo-
rithm Implementations. In: Proceedings of 3rd International Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES), London, UK, Springer-Verlag
(2001) 65–76

20. Regenscheid, A., Perlner, R., jen Chang, S., Kelsey, J., Nandi, M., Paul, S.: Sta-
tus Report on the First Round of the SHA-3 Cryptographic Hash Algorithm
Competition. Technical report, National Institute of Standards and Technology
(2009)

21. Xilinx: Spartan-3 Generation FPGA User Guide. (2009)
22. Alfke, P.: Creative Uses of Block RAM. Xilinx. (2008)
23. Lidl, R., Niederreiter, H.: Finite Fields (Encyclopedia of Mathematics and its

Applications). Cambridge University Press (1996)
24. Boyar, J., Peralta, R.: New logic minimization techniques with applications to

cryptology. Cryptology ePrint Archive, Report 2009/191 (2009)
25. Cong, J., Ding, Y.: On Area/Depth Trade-Off in LUT-Based FPGA Technology

Mapping. In: IEEE Transactions on VLSI Syystems. Volume 2. (1994) 137–148

