
Separable Hash Functions

Sarang Aravamuthan

Ignite R&D Labs, Tata Consultancy Services, Chennai, India.

E-mail: sarang.aravamuthan@tcs.com

Abstract. We introduce a class of hash functions with the property
that messages with the same hash are well separated in terms of their
Hamming distance. We provide an example of such a function that uses
cyclic codes and an elliptic curve group over a finite field.

A related problem is ensuring that the consecutive distance between mes-
sages with the same hash is as large as possible. We derive bounds on
the c.d. separability factor of such hash functions.

Keywords. hash functions, separability, algebraic codes.

1 Introduction

In recent times, the security of the hashing algorithm SHA-1 has been
brought under scrutiny following announcements by a group of researchers
on successful attacks to uncover messages with the same hash [10, 11].
This is a critical issue for digital signature algorithms as their security
against forgery depends on the robustness of the hash function against
such attacks.

Given that hash functions are inherently many-to-one maps, it’s in-
evitable that several messages will hash to the same value. A desirable
requirement is that such messages be “well-separated” in terms of their
Hamming distance. This prevents an attacker from attempting to find
another message with the same hash by tweaking just a few bits of the
original message.

We capture this notion through the concept of “separable hash func-
tions”. We show how one could construct such functions using algebraic
codes and one-way permutations. We illustrate these concepts with a con-
struction using a cyclic code and an elliptic curve group over a prime field.

We further introduce the notion of consecutive distance between mes-
sages. This is the minimum number of consecutive bits that may need to
be changed in a message in order to derive another with the same hash.

The idea of consecutive distance captures practical scenarios where an
attacker would want to change a few consecutive bits to derive another
nearly identical message with the same hash. Bounds on the value of t
for a t-c.d. separable hash function are derived.

1.1 Preliminaries

Let HN = {0, 1}N be the Hamming space of all binary vectors of length
N . Addition of vectors in HN is a component-wise x-or operation. The
vector of all zeros is indicated by 0. The (Hamming) distance between
two vectors x and y, denoted d(x,y), is the number of co-ordinates they
differ in (we adopt the convention of using boldface font for vectors and
non-boldface for scalars). The weight of a vector x, wt(x), is the number
of 1’s in x. One sees easily that d(x,y) = wt(x + y).

Let Hn and Hm be the message space and hash space respectively
where n is the message length and m the hash length.

A code C is any non-empty subset of Hn. It’s elements are called
codewords. The size of C is the number of codewords in C. n is the length
of C. The minimum distance of the code, denoted d(C), is the minimum
distance between all distinct pairs of codewords in C; see [2] for a detailed
background on coding theory.

An 〈n, k〉-code is a code of length n and minimum distance k. A max-
imal 〈n, k〉-code is one that is not contained in any other 〈n, k〉-code.
Unless specified otherwise, all codes introduced in this paper will be as-
sumed to be maximal.

The translate of an 〈n, k〉-code C by a vector y is another 〈n, k〉-code

C(y) := {x + y : x ∈ C}.

Informally, C(y) is “C shifted by y”.

Let Bn(x, R) be the ball of radius R centred at x ∈ Hn, i.e.

Bn(x, R) = {y ∈ Hn : d(x,y) ≤ R}.

The volume of this ball, Vn(R), is the size of Bn(x, R) and is independent
of x. Specifically

Vn(R) =
R∑

i=0

(
n

i

)
.

2

We can bound Vn(R) from above and below by(n

R

)R
≤

(
n

R

)
≤ Vn(R) ≤

(ne

R

)R
(1)

The upper bound is known as Sauer’s Lemma and is a well known com-
binatorial identity (for a specific reference, see [9, Lemma 4.3]).

The covering radius of a code C ⊆ Hn is the smallest integer s such
that every vector in Hn is within distance s of some codeword in C(see
[2]). We observe that taking union of the balls of radius s around each
codeword in C covers all of Hn, i.e.⋃

x∈C
Bn (x, s) = Hn. (2)

It can be shown that the covering radius s of a maximal 〈n, t〉-code satifies⌊
t

2

⌋
≤ s < t

The Separable Hash Problem:

Given m and t, determine n and a hash function

ft : Hn → Hm

with the following properties
(i) preimage resistance: Given a hash value y ∈ Hm, determining a

message x ∈ Hn such that ft(x) = y is an intractable problem.
(ii) 2nd preimage resistance: Given a message x with hash value

ft(x) = y, determining a different message with the same hash
value is intractable.

(iii) collision resistance: Finding any two distinct messages m1 and
m2 with ft(m1) = ft(m2) is intractable.

(iv) t-separability: Any two messages with the same hash value are
at least a distance t apart.

We will call t, the separability factor. We note that properties (i), (ii) and
(iii) are in increasing order of hardness. Thus, barring a few pathological
cases (see [6, 9.20] for an example), collision resistance always implies
preimage resistance ?.
? To see that this is usually true, take a random message and find its hash. It’s very

likely that the preimage of the hash is different from the message. So, if the preimage
resistance property fails, then collision resistance must fail as well.

3

2 Satisfying t-separability through algebraic codes

The t-separability property implies that the collection of all messages
with the same hash forms an 〈n, t〉-code. Thus one way of realizing a
t-separable hash function would be to

– Partition Hn into 〈n, t〉-codes.
– Map each code to a distinct element of Hm.

The number of codes in the partition must be at most 2m to realize the
map. This bounds the value of m.

2.1 Bounds for m in terms of t and n

Lemma 1. If ft : Hn → Hm is a t-separable function, then m is bounded
as

Vn(t/2) ≤ 2m ≤ Vn(t− 1). (3)

Proof. To see the lower bound, consider the ball Bn(0, t/2) of all vectors
of weight ≤ t/2. We observe that any two vectors in this ball are within
distance t of each other and thus map to distinct hashes.

The upper bound is proved by constructing an explicit t-separable
function. Let C be a maximal 〈n, t〉-code of covering radius s < t. By (2),
Hn is covered by the union of balls of radius s around each codeword.

Choose a codeword x ∈ C and consider the collection of translates of
C

X := {C(y) : d(x,y) ≤ s}. (4)

By (2), these codes cover all of Hn. If any vector in Hn appears in more
than one code in X, we may discard it from all but one code in X. Thus
we may assume that the codes C(y) form a partition of Hn. As each C(y)
is also an 〈n, t〉-code, by assigning a distinct hash value to each C(y),
we attain a t-separable function. The number of codes in (4) is clearly
Vn(s) ≤ Vn(t − 1) which is also the number of hash values. This proves
the upper bound. ut

One can use the bounds for Vn(t) given by (1) to estimate m in (3).
Specifically, taking logs in (3) and using (1), we obtain

t log
(

2n
t

)
2

≤ m ≤ (t− 1) log
(

ne

t− 1

)
(5)

Thus the hash length grows logarithmically with the message length.

4

It will be instructive to see how the separability factor varies for some
standard hash and message lengths. Let us choose m = 256. Using (5),
we bound the values of t for some standard message lengths in the table
below.

Message length n Range for t

(bits)

213 = 1KB 28 ≤ t ≤ 64

216 = 8KB 21 ≤ t ≤ 44

223 = 1MB 14 ≤ t ≤ 26

233 = 1GB 10 ≤ t ≤ 17

Table 1. Bounds for t for some standard message lengths when m = 256

We observe that as n gets larger, the range for t gets smaller. This is
because the functions t log

(
2n
t

)
and (t− 1) log

(
ne
t−1

)
increase with n and

t (when t ≤ 2n
e). Thus, for a fixed m, as n increases, t must get smaller

in order to satisfy (5).

The bounds for t should be interpreted in the following manner: for a
fixed message and hash length, if the goal is to maximize the separability
factor, then its value lies in the range given in the table.

The upper (optimistic) bound for t is based on the assumption that
we can find codes such that every message vector is within distance t/2
of some codeword.

Table 1 illustrates the relationship between collision resistance and
t-separability. For instance, when 1MB messages are hashed to 256 bit
strings, we infer that there are always two messages with the same hash
that differ from each other in at most 27 bits.

3 Building Blocks for Realizing t-separability

One way to realize the lower bound in Lemma 1 is to use perfect codes [5].
Then the balls around the codewords in C are disjoint and the lower bound
in (3) is attained for m. For example, to construct 3-separable functions,
one could use Hamming codes which are (n = 2m − 1, 2m − m − 1, 3)-
codes. However, realizing hash functions through perfect codes is only

5

possible for certain values of t and such realizations do not satisfy the
other properties desirable in a hash function (collision resistance...).

The construction in Lemma 1 allowed us to build a t-separable func-
tion from an 〈n, t〉-code C, but this does not satisfy the other properties
of a hash. For instance, these functions are not 2nd preimage-resistant;
given a codeword, to find another that hashes to the same value, we sim-
ply choose another codeword from the same code. So it seems as if the
code itself needs to be kept a secret.

A solution to this problem is to use one-way bijections to construct
hashes. The idea is to replace the global hash by a collection of one-way
bijections each centered around a codeword. Given a maximal 〈n, t〉-code
C of covering radius s, and an x ∈ C, let

πx : Bn(x, s) → Hm (6)

be the one-way bijection that maps elements in Bn(x, s) to distinct hash
values. The map x → πx is defined in a pseudorandom manner using a
one-way function (i.e. determining x from πx should be computationally
hard). As a result,

1. The map πx depends on x and is thus different for each ball.
2. Such a map satisfies the first three requirements of the hash func-

tion but not the fourth. This is because, within each Bn(x, s), πx
distributes the hashes randomly. Thus, it’s not necessarily true that
vectors with the same hash value are a distance t apart. However,
as we show in Theorem 2, for appropriate choices of πx, the average
distance between two vectors with the same hash value is at least t.

3. The balls Bn(x, s) are not necessarily disjoint. Thus some care has to
be taken to define the maps πx.

Theorem 2. Assuming that the map in (6) distributes the hash values
randomly and independently in each ball, and n ≥ 2t, the expected distance
between two vectors with the same hash is at least t.

Proof. The value we want to estimate is equivalent to the expected dis-
tance between two randomly chosen vectors in balls of radius s whose
centers are a distance t apart. WLOG assume that the two centers are
0 and t where t is a vector of weight t with its first t components equal
to 1. Then

E(d(x, t + y)|x,y ∈ Bn(0, s)) = E(wt(t + x + y)|x,y ∈ Bn(0, s))
= E(wt(t + v)|v = x + y, x,y ∈ Bn(0, s)) (7)

6

Now consider a v of the form above such that wt(t + v) < t. Such a
v must have more 1s in the first t components than in the last n − t
components. Let α, β and γ be the number of 1s in the first t, the next t
and the last (n− 2t) components of v. Then

wt(t + v) = t− α + β + γ.

We define a corresponding vector v′ obtained from v by reflecting the
first 2t components about the tth position (i.e. v′(i) = v(2t + 1 − i) for
i = 1, . . . , 2t). Then v′ has β, α and γ 1’s in the first t, next t and last
(n− 2t) components and

wt(t + v′) = t− β + α + γ.

Hence wt(t + v) + wt(t + v′) ≥ 2t and the average of this sum is at least
t. As there are an equal number of ways of expressing v or v′ as the sum
of two vectors in Bn(0, s), we infer that the expected value in (7) is at
least t. ut

We show that one-way bijections can be derived from one-way permu-
tations (a one-way bijection from a set to itself), a concept well studied
in literature (see for example [3]). To create a hash function using the
method outlined above, one performs the following steps. Let

F := {φ : Hm → Hm|φ is a one-way permutation}

be a family of one-way permutations on Hm.

Given a message m ∈ Hn, an 〈n, t〉-code C of covering radius s with
Vn(s) ≤ 2m, a 1-way generation function

α : C → F

that derives the one-way permutation for each ball centered around a
codeword and a one-to-one enumeration function

β : Bn(0, s) → Hm

that represents the vectors in Bn(0, s) as m-bit strings, we determine the
hash of a message m ∈ Hn in the following manner.

1. Locate the codeword x ∈ C nearest to m. For instance, if we assume
m to be a message received over a noisy channel, then we can use
decoding techniques to recover the nearest codeword x. It follows that
m ∈ Bn(x, s).

7

2. Determine the one-way permutation α(x) corresponding to x.
3. Determine the input to the one-way permutation y := β(m+x) ∈ Hm.

Note that m + x ∈ Bn(0, s) since m ∈ Bn(x, s).
4. Output the hash α(x)(y) ∈ Hm.

We discuss below, the security of this method and its implications.

Handling variable length messages: Our construction fixes the mes-
sage length to be n. Hash functions in general map variable length mes-
sages to a fixed length hash value.

A possible solution is to fix n at a large value. Given a message of
length less than n, we prepend it with the sequence 0 . . . 01 to derive an
n-bit string and then apply the transformation described above. For ex-
ample, the message 0101 is transformed to the n-bit string 0 . . . 010101.
One sees easily that this transformation is one-to-one, i.e. distinct mes-
sages map to different n-bit strings.

Messages of length n bits or longer are split into (n − 1) bit strings
and a hash is constructed for each string.

A small value of n will lead to efficiency in computation of hash but
lead to the splitting of many messages. However, too large a value of
n may lead to an inefficient hash computation. The choice of n is also
determined by the presence of codes with rapid decoding techniques as
well as the separability factor. As shown in Table 1, the separability factor
decreases with n and for large separability factors, n should be small.

Choice of C: The code C should be chosen to allow for efficient (in space
and time) decoding of messages. As both n and |C| are large, typical
decoding techniques using syndromes (see [8]) may prove inefficient (the
syndrome table would have a size of order 2m which is too large for
realistic hash lengths).

Preimage resistance: Given a hash value, the one-way property of F
ensures that finding its preimage is an intractable problem.

2nd preimage and collision resistance: We note that α is not one-to-
one if |C| > |F|. To break 2nd preimage or collision resistance, one would
need to find two codewords x1 and x2 such that α(x1) = α(x2). Then the
permutation function α(x) within the balls centered at x1 and x2 would
be identical.

To provide for collision resistance we require that

8

1. α be one-way.
2. |F| be large. This is because, using the birthday attack (see [6, 9.7.1]

for a description of the attack) to break collision resistance (on α)
requires O(|F|1/2) operations.

Even if two such codewords are found, our mapping ensures that the
messages are sufficiently spaced apart.

Constructing one-way permutations on Hm: One-way permuta-
tions are functions that map a set to itself and are easy to evaluate but
computationally hard to invert; see [3] for a precise definition. The in-
tractability of some public key cryptosystems is based on the existence of
such functions. These include the discrete log problem in elliptic curves,
the RSA algorithm and the discrete log problem in the multiplicative
group modulo a prime p.

Here’s one way of constructing the family F . Let G be a cyclic group
of prime order p ≈ 2m (with p ≤ 2m) such that

– The discrete log problem in G is intractable.
– There is a natural ordering of the elements of G, i.e. elements of G can

be mapped to m-bit vectors.

An example of such a group is the elliptic curve group of prime order
over a finite field. Using point compression techniques, a point (x,y) on
the curve can be represented as a vector (x, b) where b is 0 or 1; see [4]
for an introduction to elliptic curves and [1, IV.4] for point compression
techniques.

If g ∈ G is not the identity element, then the map

φg : Zp → G, φg(y) = y.g

is a one-way bijection. Composing this map with point compression yields
|G| ≈ 2m one-way permutations. Constructions using RSA or the discrete
log problem in multiplicative groups are described in [3].

As we observed earlier, the security of this scheme is directly related
to the size of F . Estimating the number of one-way permutations on Hm

is an interesting problem. Since the number of permutations on Hm is
2m! � 2m, it’s likely that F could be made much larger.

9

4 A Hash Function using Cyclic Codes and an Elliptic
Curve Group

We illustrate the ideas presented in the previous section with a practical
scheme using cyclic codes and an elliptic curve group over a prime field.
For ease of computation, our method associates a hypercube (instead of
a ball) with each codeword and a somewhat different decoding technique.

A linear code is invariant under addition of codewords, i.e. if c1, c2 ∈ C,
then c1 + c2 ∈ C. Thus a linear code can be viewed as a vector space over
F2. It’s dimension is the dimension of this vector space.

A cyclic code C is a linear code that is invariant under cyclic shifts
(i.e. if c = (c0, . . . , cn−1) ∈ C then (c1, . . . , cn−1, c0) ∈ C). See [5] for an
introduction to linear and cyclic codes.

There is a natural association between (binary) polynomials of degree
< n and elements of Hn. With every vector

a = (a0, a1, . . . , an−1) ∈ Hn

we associate the polynomial

a(x) = a0 + a1x + · · ·+ an−1x
n−1

and vice versa. Thus we will use these notations interchangeably.

We consider an 〈n, t〉 cyclic code C of dimension (n − m) defined by
a generator polynomial g(x) of degree m with g(x) |xn + 1. g is chosen to
maximize t. The code is then given by (see [5] for a proof)

C = {q(x)g(x) |deg(q(x)) < n−m}.

This associates codewords with binary strings of length (n−m); given a
codeword a = q(x)g(x), the corresponding string is q.

For each x ∈ C, we define the area around x to be

A(x) := {x + h(x) |deg(h(x)) < m}.

We note that

1. A(x) defines a hypercube of size 2m with x being one of the vertices.
2. A(x) contains no other codeword from C.
3. The collection {A(x)|x ∈ C} forms a partition ofHn into 2n−m regions

each of size 2m.

10

4. A message m is “decoded” to the codeword x if m ∈ A(x). We observe
that this does not correspond to minimum distance decoding as other
codewords may be nearer to m. However, the decoding algorithm is
efficient; given m, divide m(x) by g(x) to give the remainder r(x) of
degree < m. Then, m(x)− r(x) is the decoded codeword.

5. The remainder on dividing a message m(x) by g(x) allows us to asso-
ciate messages with m-bit strings.

We now fix m = 255. We assume a one-way function

γ : Hn−m → Hm

(more specifically, γ : C → Hm). For instance, γ could be the SHA-256
hash [7] restricted to 255 bits.

The elliptic curve we choose is one of the named curves recommended
by NIST, curve P-256. This is defined over a 256 bit prime field and gen-
erates a cyclic group of prime order < 2256; see [4] for the curve parameter
values.

Let G be the base point of this group. Given a message m that decodes
to x, and gives a remainder r(x), our hash value is

compress(r(x) · (γ(x) ·G))

where compress is the point compression function [1, I, IV.4] and · is the
point multiplication operation. The compression operation expands the
x-xoordinate of the product by a single bit, resulting in a hash length of
257 bits.

We observe that

1. Two distinct messages that decode to the same codeword x will have
different hash values. This is because they will have different remain-
ders (say r1(x) and r2(x)) and as a result, the points r1(x) · (γ(x) ·G)
and r2(x) · (γ(x) · G) will be different. Note that we have restricted
the size of A(x) to 2255 which is less than the order of γ(x) ·G.

2. While the hash length is 257, the number of possible hash values is
the order of the curve ≈ 2256.

3. This map provides collision resistance provided γ is collision resis-
tant. Finding two messages with the same hash value is equivalent to
determining two codewords x1 and x2 with γ(x1) = γ(x2).

11

Now we estimate the minimum distance between two messages with
the same hash. We assume that the point multiplication operation dis-
tributes the hashes randomly and independently in each hypercube. The
minimum distance will be attained when the corresponding codewords
are a distance t apart. Thus we may restrict ourselves to the regions A(0)
and A(t) where t is a codeword of (minimum possible) hamming weight
t. We estimate the expected value of the distance between two randomly
chosen vectors in A(0) and A(t) as

E(d(v1,v2)|v1 ∈ A(0),v2 ∈ A(t)) = E(d(v1, t + v2)|v1,v2 ∈ A(0))
= E(wt(t + v1 + v2)|v1,v2 ∈ A(0)) ≥ E(wt(v1 + v2)− t|v1,v2 ∈ A(0))

= m/2− t.

Thus, vectors with the same hash are sufficiently spaced apart.

5 The Consecutive Distance Problem

Another problem of practical interest is the detection of messages with the
same hash that differ at some consecutive bits. For example, to change the
message “pay one 1,000 dollars” to “pay 1,000,000 dollars” requires alter-
ing five consecutive bytes. We therefore reformulate the hashing problem
by introducing the notion of consecutive distance.

Define the consecutive distance between two messages m1 and m2

(abbreviated CD(m1,m2)) as the minimum number of consecutive bits
that must possibly be altered in m1 to arrive at m2. In other words, if m1

and m2 differ at positions i1 < i2 < · · · < ij , then CD(m1,m2) = ij − i1.

A t-c.d. separable hash function is a map Hn → Hm, such that for
any two messages m1,m2 with the same hash, CD(m1,m2) ≥ t. We call
t, the c.d. separability factor.

The following argument shows that for a t-c.d. separable hash func-
tion, t ≤ m.

Consider the collection of 2m messages that agree on all but the first
m bits. If any two of these messages have the same hash, then the con-
secutive distance between them is < m and we are done. Otherwise, con-
sider a message m that differs on the (m + 1)th bit from this collection.
m must have the same hash as some message m1 in this collection and
CD(m,m1) ≤ m.

12

Lower bounds for the c.d. separability factor is achieved through ex-
plicit constructions. Since on an average, 2n−m messages must map to a
single hash, we first find a code C of size 2n−m such that the consecutive
distance between any two codewords in C is at least m. C is defined in
the following manner.

C := {(xn−m−1, . . . , x0, ym−1, . . . , y0) ∈ Hn|xi = 0 or 1} where

yi = xi ⊕ xi+m ⊕ · · · ⊕ xi+lm =
l⊕

j=0

xi+jm for i = 0, . . . ,m− 1

and l = b(n−m− 1− i)/mc. In other words, to construct C, we take all
possible 0, 1 combinations for the first (n−m) components (giving 2n−m

vectors). The last m components are defined by taking x-or of every mth

component in (xn−m−1, . . . , x0).
When n < 2m, some of the x-or terms will have an empty sum. We

fix the corresponding yi to 1.

We claim that the minimum consecutive distance of C is at least m.
Given two distinct codewords a,b ∈ C, if the consecutive distance between
them in the first (n − m) components is at least m, then we are done.
Otherwise, there exists a component xi that takes values 0 and 1 in a and
b. As a result, the corresponding component yi must also be different in
a and b. Since xi and yi are at least m apart, the consecutive distance
between a and b is at least m proving our claim.

Next we define 2m such codes each of size 2n−m that partition Hn.
These are simply the translates C((0, z)) for each z ∈ Hm (i.e. the y com-
ponent of each codeword in C is x-ored by z). As a result these codes also
have minimum consecutive distance m.

Thus for a hash function, the c.d. separability factor may be much
higher than the separability factor. The challenge here is constructing a
t-c.d. separable hash function that satisfies the desirable properties of a
hash (collision resistance . . .).

6 Conclusions

The notion of separability is desirable if the goal is to disallow an attacker
from altering a few bits in a message to generate another with the same
hash. A related notion is that of consecutive distance where messages with
the same hash differ in bits that are spaced far apart.

13

Both of these concepts were introduced and we showed how separable
hash functions could be constructed using algebraic codes and one-way
permutations. An explicit construction using cyclic codes and point mul-
tiplication over the elliptic curve P-256 was realized. Finally bounds on
the c.d. separability factor were derived.

Acknowledgement. The author thanks M. Vidyasagar for raising
the consecutive distance problem and for his feedback on the earlier drafts
of this paper.

References

1. I. Blake, G. Seroussi, and N. P. Smart, Eds. Advances in Elliptic Curve Cryptogra-
phy, London Mathematical Society Lecture Note Series 317, Cambridge University
Press, 2005.

2. G.D. Cohen, S.N. Litsyn, A.C. Lobstein and H.F. Mattson Jr. Covering radius
1985–1994. Applicable Algebra in Engineering Communication and Computing,
8:173–239, 1997.

3. O. Goldreich, L.A. Levin and N. Nisan, “On Constructing 1-1 One-Way Functions”,
Electronic Colloquium on Computational Complexity (ECCC) 1995. Available on-
line at ftp://theory.lcs.mit.edu/pub/people/oded/gln.ps.

4. D. Johnson and A. Menezes, “The Elliptic Curve Digital Signature Algorithm
(ECDSA)”, Technical Report CORR 99-34, Dept. of C&O, University of Waterloo,
1999.

5. F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes,
North-Holland, Amsterdam, 1993.

6. A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1997. Available online at http://www.cacr.math.uwaterloo.ca/hac/.

7. “SHA-256 Cryptography Software”, http://www.cryptosys.net/sha256.html
8. J. H. Van Lint, Introduction to Coding Theory, GTM 86 (2nd ed.), Springer-Verlag,

1992.
9. M. Vidyasagar, Learning and Generalization with Applications to Neural Networks,

Springer, Second Edition, 2002.
10. X. Wang, H. Yu and Y.L. Yin, “Efficient Collision Search Attacks on SHA-0”,

CRYPTO 2005, 1–16.
11. X. Wang, Y.L. Yin and H. Yu, “Finding Collisions in the Full SHA-1”, CRYPTO

2005, 17–36.

14

