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Abstract. Motivated by the problem of establishing a session key among
parties based on the possession of certain credentials only, we discuss a
notion of attribute-based key establishment. A number of new issues arise
in this setting that are not present in the usual settings of group key
establishment where unique user identities are assumed to be publicly
available.
After detailing the security model, we give a two-round solution in the
random oracle model. As main technical tool we introduce a notion of
attribute-based signcryption, which may be of independent interest. We
show that the type of signcryption needed can be realized through the
encrypt-then-sign paradigm. Further, we discuss additional guarantees
of the proposed protocol, that can be interpreted in terms of deniability
and privacy.
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1 Introduction

In the context of group key establishment, protocol participants are typically
modeled as Turing machines U1, . . . , Un, and a unique identifier for each protocol
participant is assumed to be publicly known. This identifier is usually identified
with Ui and used to specify with whom a key is to be established. It can also
be used to impose a virtual connection topology among participants, e. g., the
construction of Burmester and Desdmedt in [8] arranges parties in a circle with
neighborhood relations being determined by an ordering on the set of identifiers.

In this paper we consider a scenario where participants in a group key estab-
lishment aim at obtaining a common session key with partners having certain
attributes, disregarding individual identities. This can, for instance, mean that
a key is to be established with members of a department that have the right
to negotiate agreements of a certain value. In a two-party setting it could mean
that a member from the sales department wants to establish a key with anyone
in human resources who is entitled to deal with healthcare issues, and the repre-
sentative in human resources establishes keys only with any representative of a



department committee. The essential point is that we do not distinguish between
individual user identities, but each participant specifies the attributes she expects
her partners to have and the session key should be available to users that meet
all imposed conditions. Another scenario where attribute-based group key estab-
lishment seems interesting is a project in an enterprise (or crossing enterprise
boundaries), where project team members need—read and/or write—access to
data relevant for the task at hand. In such a scenario, a common key could be
established among all members possessing the necessary attributes to work on a
particular project, without resorting to individual user identities.

Shifting the focus from individual identities to the possession of attributes,
privacy questions naturally arise: depending on the application context, it may
be a design goal that users do not have to reveal which exact set of attributes
they possess, but only the fact that they possess a qualified set. Consequently,
treating a user’s set of attributes as a substitute for a public identifier can be
problematic. In the protocol below we address this problem through (i) a form of
privacy reminiscent of attribute-based encryption with hidden ciphertext policy
[17] and attribute-hiding predicate encryption [5, 13], and (ii) through a form of
deniability reminiscent of deniable group key establishment [3].

Organization of the paper. For a general introduction to the topic of key es-
tablishment, we refer to the book [6] by Boyd and Mathuria. Throughout, we
formalize our setting of attribute-based key establishment in Section 2 by adapt-
ing the group key establishment model in [4] (which in turn builds on [7, 14])
appropriately; the replacement of unique identifiers for protocol participants
with attribute sets raises some technical issues that are to be addressed here.
As a technical tool, in Section 3 we start by defining an attribute-based variant
of signcryption, a tool which might be of independent interest. We will then use
this tool to devise a two-round solution in the random oracle model, based on
an attribute-based signcryption scheme.

Related work. As prior work on attribute-based key establishment, Wang et al.’s
results in [22, 21, 20] can be mentioned. These three papers address a two-party
scenario and suggest solutions for such a setting with [21] and without ran-
dom oracles [22, 20], respectively. After submission of the original manuscript of
our paper in November 2009, further work related to attribute-based key estab-
lishment has been made available, evidencing a wider interest in this topic. In
particular, Camenisch et al. [9] discuss Credential-Authenticated Key Exchange
(CAKE), where a two-party key exchange is conditioned on the compatibility
of credentials held by the involved parties. Unlike the approach taken below, on
the technical side, Camenisch et al. build on Canetti’s Universal Composability
(UC) framework [10]. Gorantla et al. [12] suggest a notion of attribute-based au-
thenticated key exchange, with the security being captured in an “oracle based”
security model, similar to the model employed below. While the essential work-
ing horse in our approach is attribute-based signcryption, a main technical tool
in [12] is a type of key encapsulation mechanism (KEM), to which Gorantla et
al. refer as encapsulation-policy attribute based KEM. Their paper presents a
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construction for deriving a secure attribute-based authenticated key exchange
from such a key encapsulation mechanism, assuming the latter fulfills an ap-
propriate security guarantee. In [2], Birkett and Stebila consider predicate-based
key authenticated exchange between two parties. Similarly as in [12] and be-
low, an “oracle based” security model is used. The authors of [2] show how
to achieve both credential privacy and session key security by combinining a
suitable predicate-based signature scheme with a Diffie-Hellman key exchange.

2 Security model

By ` we denote the security parameter, and by U ⊆ {0, 1}O(1) a non-empty
constant-size universe of attributes.

2.1 Communication model and adversarial capabilities

Participants and initialization. The set of potential protocol participants in an
attribute-based group key establishment are probabilistic polynomial time (ppt)
Turing machines labeled with subsets of U , and in slight abuse of terminology
we will speak of a “protocol participant U”, identifying a Turing machine with
its unique label. Analogously as in attribute-based encryption, an identifier U ∈
2U represents any user having exactly the attributes contained in U ; we do
not distinguish among users possessing identical attributes. During a trusted
initialization phase, a master key mk is chosen and used to derive the public
system parameters pk as well as secret (attribute) keys akU for each U ∈ 2U .
The secret key akU is stored by protocol participant U as long-term secret.

Each protocol participant U may execute a polynomial number of protocol
instances in parallel, and we will refer to instance s of protocol participant U ∈
2U as Πs

U (s ∈ N). Each such instance has associated seven variables: useds
U ,

states
U , terms

U , sids
U , pids

U , accs
U and sks

U :

useds
U indicates if the instance is or has been used for a protocol run. The useds

U

flag can only be set through a protocol message received by the instance due
to a call to the Send-oracle;

terms
U shows if the execution has terminated;

states
U keeps the state information during the protocol execution;

accs
U indicates if the protocol instance was succesful, i. e, if the the session key

has been accepted by U ;
sks

U stores the session key once it is accepted by the instance Πs
U . Before

acceptance, it stores a distinguished null value.
sids

U denotes a (non-secret) session identifier that can serve as identifier for the
session key sks

U ;
pids

U stores the possible sets of attributes a user U aims at establishing a key
with, i. e., pids

U ⊆ 2U such that U ∈ pids
U ;

Remark 1. Note that the role of pids
U differs from “ordinary” authenticated

key establishment: we interpret pids
U as access structure specifying the qualified
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sets of attributes, which in turn may be regarded as representing acceptable
communciation partners. In particular, for a successful protocol execution we
will not impose that all U ′ ∈ pids

U participate—but only U ′ ∈ pids
U may obtain

the established session key. In a threshold-based setting, pids
U could consist of

all subsets of U with cardinality greater than some threshold.

Communication network. We assume that arbitrary point-to-point connections
among parties are available. As connections are under adversarial control (cf. the
adversarial model below), the network is non-private and fully asynchronous. In
particular, when broadcasting a message, this means that the adversary can cre-
ate a situation where the protocol participants receive in fact different messages
or only a subset of the participants receives the message.

Adversarial capabilities. The adversaryA is modeled as ppt time Turing machine
and considered to be active: A has full control of the communication network
and may delay, eavesdrop, suppress, alter and insert messages at will. To make
the adversarys capabilities explicit, the subsequently listed oracles are used and
can be invoked by A:

Send(U, s,M) This oracle serves two purposes:
– If useds

U = true, the message M is sent to the instance Πs
U . If Πs

U sends
a message in the protocol right after receiving M , then the Send oracle
returns this message to the adversary.

– If useds
U = false, the message M has to be of the form M = (B, b),

where B ⊆ 2U is an access structure and b ∈ {init, init} is a role flag. In
this way the adversary can initialize a protocol run among principals U ′

such that each U ′ ∈ B. The flag b allows to designate a protocol initiator
whose computations may differ from those of other protocol participants.
After such a query, Πs

U ’s pids
U -value is initialized to B, the useds

U -flag is
set and Πs

U processes the first step of a protocol execution. This means
that in this session, U aims at establishing a common key with at least
one principal U ′ ∈ B \ {U}.

Reveal(U, s) yields the session key sks
U provided that it is defined, i. e., if accs

U =
true and sks

U 6= null. Otherwise the distinguished null-value is returned.
Corrupt(U) reveals the long-term secret key akU of U to the adversary. Given a

concrete protocol run, involving instances Πs
U , we say that user U is honest if

and only if no query of the form Corrupt(U) has been made by the adversary.
Test(U, s) Only one query of this form is allowed for the adversary A. Provided

that sks
U is defined, (i. e., accs

U = true and sks
U 6= null), A can execute

this oracle query at any time when being activated. A test bit t ∈ {0, 1} is
chosen uniformly at random and if t = 0 then the session key sks

U is returned.
If t = 1, then a uniformly chosen random session key is returned.

2.2 Protocol goals

Correctness. This property expresses that in the absence of adversarial interfer-
ence, the protocol will establish a common key along with a matching identifier:
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Definition 1 (Correctness). An attribute-based group key establishment is
correct if on honest delivery of all messages and all users being honest, a single
protocol execution among users V ⊆ 2U involves instances ΠsU

U (U ∈ V) such
that with overwhelming probability all of the following hold:

– all users in V accept, i. e., accsU

U = true for all U ∈ V;
– all users in V obtain the same session identifier, i. e., sidsU

U is identical for
all U ∈ V;

– all users in V accept the same session key, i. e., sksU

U is identical and 6=null
for all U ∈ V;

– all communication partners are specified as desired communication partner,
i. e., V ⊆ pidsU

U for all U ∈ V.

Correctness alone is a rather weak guarantee, as it refers to a scenario where
no attack takes place. For instance, the last condition ensures that every pro-
tocol participant is aware that the users in V may know the session key, but
no statement is made about the session key being known to users in U \ V—
actually, broadcasting the session key to all users is not ruled out by correctness.
To formalize security guarantees, we use the following terminology.

Partnering and freshness We have to specify under which circumstances a Test-
query may be executed and under which circumstances a correct guess of the
adversary constitutes a viable attack. To do so, we fix the following notions of
partnering and freshness.

Definition 2 (Partnering). We say that two instances Πs
U and Πs′

U ′ are part-
nered if sids

U = sids′

U ′ , accs
U = accs′

U ′ = true, U ∈ pids′

U ′ and U ′ ∈ pids
U .

The notion of partnering is mainly a technical tool, but crucial for capturing the
the intuition of a secure key establishment adequately. An adversary is restricted
to attacking fresh instances, and for an instance to be fresh, in particular no
partnered instance must have been queried to the Reveal oracle:

Definition 3 (Freshness). An instance Πs
U is said to be fresh if none of the

following events has occurred:

– For some U ′ ∈ pids
U a Corrupt(U ′) query was executed before a query of

the form Send(U ′′, s′′, ∗) has taken place where U ′′ ∈ pids
U .

– The adversary A queried Reveal(U ′, s′) with Πs
U and Πs′

U ′ being partnered.

With the above terminology we can capture (semantic) security of an attribute-
based key establishment protocol P in the usual way. For an adversary A at-
tacking an attribute-based key establishment protocol P , we define an advantage
function AdvA = AdvA(`) by setting AdvA := |Succsem

A − 1/2|, where Succsem
A is

the probability that the adversary queries the Test oracle on a fresh instance
Πs

U and guesses correctly the test bit t used by the Test oracle.
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Definition 4 (Semantic security). We call an attribute-based group key es-
tablishment secure if for any ppt adversary A the function AdvA = AdvA(`) is
negligible.

Remark 2. According to our freshness definition, an adversary is allowed to cor-
rupt all remaining honest parties right before quering Test without violating
freshness. Thus the above definition of semantic security implies forward secu-
rity in the usual sense: even after having access to all longterm secrets of users,
session keys remain indistinguishable from random keys.

In addition to these standard security goals, we adapt the notion of integrity
from [4], which can be seen as a correctness guarantee in the presence of an
active adversary:

Definition 5 (Integrity). We say that a correct attribute-based group key es-
tablishment fulfills integrity if with overwhelming probability all instances of hon-
est parties U , U ′ that have accepted with the same session identifier sids

U =
sids′

U ′ hold an identical session key sks
U = sks′

U ′ , and we have U ∈ pids′

U ′ and
U ′ ∈ pids

U .

Another possible protocol goal for an attribute-based key establishment is to re-
veal not more information about the identity of participating users than actually
needed: if a user U specifies a particular access structure in a pids

U -value, there
is no immediate need to reveal which particular qualified subset of attributes is
used by a communication partner. For instance, if U wants to be sure that its
communication partner posseses at least the attributes u1, u2 ∈ U , U does not
have to know which other attributes a communication partner has in addition to
u1 and u2. In this paper we do not offer a formalization of such a guarantee, but
in Section 4 will discuss our proposed protocol from this point of view. There, we
will also address the question of deniability for our protocol: to what extent it is
possible to provide convincing evidence to a third party about the involvement
of a particular U ∈ 2U in a protocol execution.

3 A protocol for attribute-based key establishment

For describing the suggested protocol, an attribute-based variant of signcryption
turns out to be helpful. As we are not aware of a discussion of this primitive
in the literature, in the next section we give a formalization, the pertinent se-
curity definitions and show how concrete instances can be obtained through
sequential composition of attribute-based encryption and attribute-based signa-
ture schemes.

Remark 3. In our protocol only uniformly at random chosen bitstrings are en-
crypted, and one could consider the use of an attribute-based variant of a sign-
cryption key encapsulation mechanism—possibly building on the discussion in
[15], where Li et al. consider an identity-based variant of such a primitive. In [11]
an attribute-based variant of key encapsulation is discussed by Fang et al., but
not much work seems to be available on connecting attribute-based cryptography
and key encapsulation mechanisms.
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3.1 Attribute-based signcryption

Our definition and security model for attribute-based signcryption is modeled
after the discussion of standard signcryption by An et al. in [1]. To formalize
attribute-based encryption and attribute-based signing, we build on the work by
Sahai and Waters [18] and Shahandashti and Safavi-Naini [19] respectively.

Definition 6 (Attribute-based encryption). An attribute-based encryp-
tion scheme is a tuple of polynomial time algorithms (Setup,Gen,Enc,Dec):

Setup is probabilistic and run by a trusted authority: on input the security pa-
rameter 1` and a universe of attributes U , a master secret key mk and public
system parameters pm are generated. The public parameters include a de-
scription of the message space M.

Gen is probabilistic and run by a trusted authority: on input the master secret
key mk and a set of attributes U belonging to a user, a secret key dkU for
these attributes is generated.

Enc is probabilistic and run by a user who wants to send a plaintext message m
to a user with a set of attributes in the access structure A: on input m ∈M
and A ⊆ 2U , this algorithm generates a ciphertext c.

Dec is a deterministic algorithm run by a user with a set of attributes U ⊆ U .
On input c and dkU , this algorithm outputs the underlying plaintext m, if
c is a valid encryption of m and U is contained in the access structure A
specified in the computation of c. Otherwise an error symbol ⊥ is returned.

For our purposes, where only uniformly at random chosen plaintexts are en-
crypted, a rather basic security guarantee will be sufficient:

Definition 7 (One-Wayness for attribute-based encryption). For a ppt
adversary A, denote by AdvOW-CPA

A the probability that A wins the game described
in Figure 1. We refer to an attribute-based encryption scheme as OW-CPA secure
in the selective access structure model, if AdvOW-CPA

A = AdvOW-CPA
A (`) is negligible

for all ppt adversaries A.

Example 1. For access structures describing qualified subsets through a thresh-
old, we can employ Sahai and Waters’ pairing-based construction in [18] to
achieve security in the sense of Definition 7.

A natural approach to derive an attribute-based signcryption scheme as needed
for our key establishment protocol, is to compose an OW-CPA secure attribute-
based encryption scheme with an existentially unforgeable attribute-based sig-
nature scheme:

Definition 8 (Attribute-based signature). An attribute-based signature
scheme is a tuple of polynomial time algorithms (Setup,Gen,Sig,Ver):

Setup is probabilistic and run by a trusted authority: on input the security pa-
rameter 1` and a universe of attributes U , a master secret key mk and public
system parameters pm are generated. The public parameters include a de-
scription of the message space M.
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Init phase Given the security parameter 1`, the adversary A outputs:
– a non-empty set U , the universe of attributes;
– a non-empty access structure A ⊆ 2U that it wants to be challenged upon.

Setup phase The challenger runs Setup and hands the public parameters to A.
Query phase 1 The adversary is allowed to ask (adaptively) queries for

– private decryption keys dkU for attribute sets U ⊆ U subject to the re-
striction U /∈ A.

Challenge phase The challenger picks a message m uniformly at random from
the message space and hands the resulting ciphertext Enc(m, A) to the adver-
sary A.1

Query phase 2 Identical to Phase 1.
Guess phase The adversary outputs a guess m′ for m and wins if and only if

m = m′.

1 We assume that all plaintext messages m ∈M have the same length.

Fig. 1. OW-CPA: one-wayness of an attribute-based encryption scheme in the selective
access structure model

Gen is probabilistic and run by a trusted authority: on input the master secret
key mk and a set of attributes U belonging to a user, a secret key skU for
these attributes is generated.

Sig is probabilistic and run by a user who wants to sign a message m with his
secret key skU : on input m ∈ M and skU , this algorithms generates a sig-
nature σ.

Ver is deterministic and run by a user who wants to verify if a signature has been
created by a user with a set of attributes in the verification access structure B:
on input a message m, a signature σ and an access structure B ⊆ 2U , this
algorithm outputs true if σ is a valid signature for m under skU for some
U ∈ B. Otherwise the algorithm outputs false.

Definition 9 (Existential unforgeability for attribute-based signing).
For a ppt adversary A, denote by AdvUF-CMAA

A the probability that A wins the
game described in Figure 2. An attribute-based signature scheme is secure in the
sense of UF-CMAA, if the advantage AdvUF-CMAA

A = AdvUF-CMAA
A (`) is negligible

for all ppt adversaries A.

Example 2. For access structures describing qualified subsets through a thresh-
old, we can employ Shahandashti and Safavi-Naini’s pairing-based construction
in [19] to achieve security in the sense of Definition 9.

Given the above terminology, the following definition of an attribute-based sign-
cryption scheme seems a natural one, and below we will argue that a generic way
to obtain such a signcryption scheme is provided by an attribute-based variant
of the encrypt-then-sign paradigm.

Definition 10 (Attribute-based signcryption). An attribute-based sign-
cryption scheme is a tuple (Setup,Gen,Signcrypt,Unsigncrypt) of polynomial time
algorithms:
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Init phase Given the security parameter 1`, the adversary A outputs:
– a non-empty set U , the universe of attributes.

Setup phase The challenger runs Setup and hands the public parameters to A.
Query phase The adversary is allowed to ask (adaptively) queries for:

– private keys for attribute sets U ;
– signatures of a signer with attribute set U on a message m.

Forgery phase The adversary outputs a tuple (µ, σ, A), where µ is a message and
A is an access structure. The adversary wins if and only if Ver(µ, σ, A) = true
and the following restrictions on the queries in the challenge phase hold:
– all attribute sets U asked in private key queries satisfy U /∈ A;
– all inputs of signature queries satisfy m 6= µ or U /∈ A.

Fig. 2. UF-CMAA security: unforgeability under chosen message and attribute attacks

Setup is probabilistic and run by a trusted authority: on input the security pa-
rameter 1` and a universe of attributes U , a master secret key mk and public
system parameters pm are generated. The public parameters include a de-
scription of the message space M.

Gen is probabilistic and run by a trusted authority: on input the master secret
key mk and a set of attributes U belonging to a user, a secret key akU for
these attributes is generated.

Signcrypt is probabilistic and run by a user who wants to send a plaintext mes-
sage m authenticated with his secret key akU for the set of attributes U to
a user with a set of attributes in the access structure A: on input m ∈ M,
akU and A ⊆ 2U , this algorithm generates a signcryption s.

Unsigncrypt is deterministic and run by a user with a set of attributes U ′ and
expecting a message that is authenticated with a set of attributes in the ver-
ification access structure B: on input s, akU ′ and B, this algorithm outputs
the underlying plaintext m, if s is a valid signcryption authenticated by some
U ∈ B and such that U ′ is contained in the access structure A specified in
the computation of s. Otherwise, an error symbol ⊥ is returned.

We impose the obvious correctness condition:

Unsigncrypt(Signcrypt(m,akU , A), akU ′ , B) = m

for all U ∈ B and U ′ ∈ A.

Similarly as for ordinary signcryption, we consider two security requirements for
attribute-based signcryption and formalize these requirements separately. The
first security requirement refers to confidentiality:

Definition 11 (One-wayness for attribute-based signcryption). For a
ppt adversary A, denote by AdvOWS-CPA

A the probability that A wins the game
described in Figure 3. An attribute-based signcryption scheme is OWS-CPA se-
cure in the selective access structure model, if AdvOWS-CPA

A = AdvOWS-CPA
A (`) is

negligible for all ppt adversaries A
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Init phase Given the security parameter 1`, the adversary A outputs:
– a non-empty set U , the universe of attributes;
– a non-empty access structure A ⊆ 2U and an attribute set U ′ ∈ 2U that it

wants to be challenged upon.
Setup phase The challenger runs Setup and hands the public parameters to A.
Query phase 1 The adversary is allowed to ask (adaptively) queries for

– private keys for attribute sets U ⊆ U subject to the restriction U /∈ A.
– signcryptions sm := Signcrypt(m, akU′ , A) with m being chosen uniformly

at random by the challenger. Both m and sm are returned to the adver-
sary.2

Challenge phase The challenger picks uniformly at random a plaintext mes-
sage m and signcrypts m using akU′ and A.2 The resulting signcryption
s := Signcrypt(m, akU′ , A) is handed to A.

Query phase 2 Identical to Query phase 1.
Guess phase The adversary outputs a guess m′ for the plaintext m underlying

the signcryption s and wins if and only if m = m′.

2 We assume that all plaintext messages m ∈M have the same length.

Fig. 3. OWS-CPA: one-wayness of an attribute-based signcryption scheme in the selec-
tive access structure model

Similarly, we can capture the desired authenticity guarantee of an attribute-
based signcryption scheme:

Definition 12 (Existential unforgeability for attribute-based signcryp-
tion). For a ppt adversary A, denote by AdvUFS-CMAA

A the probability that A wins
the game described in Figure 4. An attribute-based signcryption scheme is secure
in the sense of UFS-CMAA, if the advantage AdvUFS-CMAA

A = AdvUFS-CMAA
A (`) is

negligible for all ppt adversaries A.

Discussing the problem of dedicated constructions for attribute-based signcryp-
tion is outside the scope of this paper, but the following proposition gives a
generic way to obtain a signcryption scheme as used in our protocol through
a composition of suitable signature and encryption schemes. In particular, for
a threshold setting we can build on the schemes of Sahai/Waters [18] and
Shahandashti/Safavi-Naini [19].

Definition 13 (Attribute-based encrypt-then-sign).
Let E = (SetupE ,GenE ,Enc,Dec) be an attribute-based encryption scheme and
S = (SetupS ,GenS ,Sig,Ver) be an attribute-based signature scheme. Then we
define the encrypt-then-sign (EtS) signcryption scheme as follows:

Setup runs, on input the security parameter 1` and a universe of attributes U ,
both SetupE(1`,U) and SetupS(1`,U), resulting in two key pairs (mkE , pmE)
and (mkS , pmS). The returned master key is the pair mk := (mkE ,mkS)
and the public parameters are pm := (pmE , pmS).
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Init phase Given the security parameter 1`, the adversary A outputs:
– a non-empty set U , the universe of attributes.

Setup phase The challenger runs Setup and hands the public parameters to A.
Query phase The adversary is allowed to ask (adaptively) queries for:

– private keys for attribute sets U ;
– signcryptions of a signer with attribute set U on a message m with an

access structure D
Forgery phase The adversary outputs a tuple (µ, s, U ′, A), where µ is a message,

U ′ is a set of attributes, the secret key of which can be used to unsigncrypt
and A is a verification access structure. The adversary wins if and only if s is
a valid signcryption of µ that can be unsigncrypted with akU′ and A, and the
following restrictions on the queries in the challange phase hold:
– all attribute sets U asked in private key queries satisfy U /∈ A;
– all inputs of signcryption queries satisfy m 6= µ or U /∈ A.

Fig. 4. UFS-CMAA: existential unforgeability of an attribute-based signcryption
scheme

Gen runs, on input an attribute set U ∈ 2U , both GenE and GenS and combines
the resulting secret keys dkU and skU to the secret key akU := (dkU , skU )
for the attribute set U .

Signcrypt receives a message m, a secret key akU = (dkU , skU ) and an ac-
cess structure A as input. The returned value is Signcrypt(m,akU , A) :=
(c, V,Sig(c‖V, skU )) where c := Enc(m, A) and V ∈ A arbitrary.

Unsigncrypt receives a signcryption (c, V, σ), a secret key akU ′ = (dkU ′ , skU ′)
for an attribute set U ′ and a verification access structure B as input. The
returned value is

Unsigncrypt(m,akU ′ , B) :=
{

Dec(c, dkU ′) , if Ver(c‖V, σ, B) = true
⊥ , otherwise .

The following theorem says that EtS inherits security guarantees from the com-
prising component schemes.

Theorem 1. Let S be an attribute-based signature scheme that is secure in the
sense of UF-CMAA, and let E be an attribute-based encryption scheme that is
secure in the sense of OWS-CPA. Then EtS is secure in the sense of both OWS-
CMAA and OWS-CPA.

Proof. We prove the two security guarantees for EtS separately.

UF-CMAA security: Let A′ be a forger for the EtS signcryption scheme. We use
A′ to construct a forgerA for the signature scheme S such that AdvUF-CMAA

A =
AdvUFS-CMAA

A′ . The public parameters pm = (pmE , pmS) for A′ can be pro-
vided by A by using its own public parameters pmS and by running SetupE
to obtain pmE . Note that A also knows the master key mkE corresponding
to pmE . To reply to signcryption and key extraction queries, A can proceed
as follows.
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Private key queries To extract the secret key akU = (dkU , skU ) for an
attribute set U , A queries its own key extraction oracle to obtain skU

and runs GenE with input mkE and U to obtain a decryption key dkU .
Signcryption queries If A′ queries for a signcryption on a message m

with attribute set U and access structure D, A computes the ciphertext
c := Enc(m, D) and queries its signing oracle for a signature σ on c‖V
with attribute set U , where V ∈ D is chosen arbitrarily. Then (c, V, σ) is
a valid reply to the signcryption query of A′.

SupposeA′ produces a successful forgery (µ, (c, V, σ), U ′, A) for EtS, as speci-
fied in the UFS-CMAA game in Figure 4. ThenA outputs the tuple (c‖V, σ, A)
as forgery for the signature scheme S. We have to argue why this is indeed
a forgery meeting the requirements of the UF-CMAA game in Figure 2:
– By definition of EtS’s Unsigncrypt algorithm, we have Ver(c‖V, σ, A) =

true.
– Private key queries: as (µ, (c, V, σ), U ′, A) is a successful forgery for EtS,

all queried attribute sets U are such that U /∈ A.
– Signature queries: for a valid forgery, all signcryption queries (m,U, D)

of A′ satisfy m 6= µ or U /∈ A.
m 6= µ: suppose that A has submitted c‖V to its signing oracle earlier.

Then c = Enc(m, D) for some access structure D such that V ∈ D.
As Dec is deterministic, this implies Dec(c, dkV ) = m and c cannot
be a valid encryption of µ 6= m under an access structure containing
V . Consequently, A has never sent c‖V to its signing oracle.

U /∈ A: then the signature query (c‖V,U) satisfies U /∈ A, and A’s
forgery is valid.

Summarizing, we have AdvUF-CMAA
A = AdvUFS-CMAA

A′ as desired.
OWS-CPA security: Let A′ be an adversary in the OWS-CPA game for the EtS.

We use A′ to construct an adversary A winning the OW-CPA game for the
encryption scheme E with AdvOW-CPA

A′ = AdvOWS-CPA
A′ is non-negligible.

For this,A outputs the same set of attributes U and the same access structure
A as output byA′ in the init phase. The public parameters pm = (pmE , pmS)
for A′ can be provided by A by using its own public parameters pmE and by
running SetupS to obtain pmS . Note that A also knows the master key mkS
corresponding to pmS . To reply to signcryption and key extraction queries,
A can proceed as follows.
Private key queries To extract the secret key akU = (dkU , skU ) for an

attribute set U , A queries its own key extraction oracle to obtain dkU

and runs GenS with input mkS and U to obtain a signing key skU .
Signcryption queries Whenever A′ requests a signcryption with attribute

set U ′ and access structure A, A computes the ciphertext c := Enc(m, A)
with a uniformly at random chosen m, and in particular can return the
plaintext m to A′ as needed. The signcryption returned to A′ is obtained
as (c, V,Sig(c‖V, sk′U )) with V ∈ A arbitrary and U ′ being the identity
specified by A′ in the first part of the OWS-CPA game—A can compute
sk′U as skU ′ = GenS(mkS , U ′).
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In the challenge phase, A hands (c, V,Sig(c‖V, sk′U )) with V ∈ A arbitrary
to A′, where c is A’s OW-CPA challenge ciphertext. The value returned by A
is the plaintext returned by A′. Obviously A wins the OW-CPA game if and
only if A′ returns the correct plaintext underlying A’s OW-CPA challenge,
and we have

AdvOW-CPA
A = AdvOWS-CPA

A′ .

ut

3.2 A two-round protocol

Given an attribute-based signcryption scheme (Setup,Gen,Signcrypt,Unsigncrypt)
and a random oracle H(·), Figure 5 describes a two-round protocol for attribute-
based key establishment. To simplify readability, we do not explicitly mention
the instance number of protocol instances Πs

U and refer, e g., to the session key
simply as sidU (instead of sids

U ).

Round 1:
Computation Each user U chooses kU ∈ {0, 1}` and xU ∈ {1, . . . , ord(g)} at

random and computes yU := gxU . In addition, the initiator Uinit chooses
r ∈ {0, 1}` at random and computes c := Signcrypt(kUinit , akUinit , pidUinit

).
Broadcast Each U except Uinit broadcasts kU‖yU . The initiator Uinit broad-

casts s‖yUinit‖H(r)‖pidUinit
.

Round 2:
Computation Each user U unsigncrypts c using the secret key akU and

verification access structure pidU . If this yields the error symbol ⊥ or
pidUinit

* pidU or U 6∈ pidUinit
, then U aborts.

Otherwise kUinit := Unsigncrypt(c, akU , pidU ), and U orders the received
kU′ -values, including kUinit , lexicographically3. Thus, U can index the kU′s
as k0 < · · · < kn−1 and label users and y-values from Round 1 according to
ki as Ui and yi. To simplify notation, we assume w. l. o. g. that k0 = kUinit .
Taking indices mod n, each Ui computes the values tLi := H(yxi

i−1‖k0),

tRi := H(yxi
i+1‖k0) and Xi := tLi ⊕ tRi . The initiator U0 computes addition-

ally e := k0 ⊕ r ⊕ tR0 .
Broadcast Each Ui broadcasts (Xi, i) and U0 broadcasts additionally e.
Check Each Ui checks if X0⊕· · ·⊕Xn−1 = 0, obtains tR0 = tLi ⊕X0⊕

Ln−1
j=i Xj ,

computes r and checks if the commitment H(r) from Round 1 is correct.
If any check fails, the protocol is aborted.

Key derivation Each participant Ui computes the session key

skUi = H(r‖k0‖k1‖ · · · ‖kn−1‖pidU0
‖0)

and the session identifier sidUi = H(r‖k0‖k1‖ · · · ‖kn−1‖pidU0
‖1).

3If the ki-values are not pairwise different, U aborts the protocol.

Fig. 5. Attribute based group key establishment in two rounds
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It is worth noting that the computations performed by the protocol initia-
tor deviate slightly from those performed by the other parties. In particular, the
protocol initiator U0 is the only party running the Signcrypt algorithm—all other
protocol participants apply Unsigncrypt instead. The following result identifies
the protocol as a secure attribute-based key establishment—provided the under-
lying attribute-based signcryption scheme offers appropriate guarantees and the
Computational Diffie-Hellman (CDH) assumption holds.

Theorem 2. Suppose that the CDH assumption holds for the group generated by
g, H(·) is a random oracle, and the attribute-based signcryption scheme used in
Figure 5 is secure in the sense of OWS-CPA and UFS-CMAA. Then the protocol
in Figure 5 is a correct attribute-based key establishment that is secure in the
sense of Definition 4 and fulfills integrity in the sense of Definition 5.

Proof. Correctness is obvious, and we can restrict to showing security and in-
tegrity. For this, let qs and qro be polynomial upper bounds for the number of
the adversary A’s queries to the Send respectively the random oracle. We begin
by defining four events that occur throughout the proof, and we give negligible
upper bounds for the probabilities of these events to occur.

Collision is the event that the random oracle produces a collision. A Send query
causes at most 5 random oracle calls. Thus, the total number of random
oracle queries is bounded by 5qs + qro and the probability that a collision of
the random oracle occurs is

P (Collision) ≤ (5qs + qro)2

2`
,

which is negligible in `.
Decrypt is the event that the adversary A succeeds in recovering a random mes-

sage kUinit from a signcryption c with secret key akUinit and access structure
pidUinit

, without having queried Corrupt(U) for any U ∈ pidUinit
and with-

out having queried Reveal for the respective instance of Uinit. An adversary
A that can reach Decrypt can be used to construct an adversary C violat-
ing the OWS-CPA security of the signcryption scheme: C guesses the access
structure pidUinit

, the attribute set Uinit as well as the respective instance of
Uinit uniformly at random. As U has constant size, this guess is correct with
probability ≥ 1/p for some polynomial p = p(`). If any of the guessed values
is incorrect, then C aborts. In case of everything being guessed correctly,
pidUinit

and Uinit form the access structure and the set of attributes that C
has to specify in the Init phase of the OWS-CPA game. All of A’s oracle
queries can be simulated in the obvious way by C, and we obtain

AdvOWS-CPA
C ≥ 1

p
· P (Decrypt).

Thus, the event Decrypt occurs with negligible probability only.
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Forge is the event that A succeeds in forging a signcryption c of a message kUinit

for attribute set Uinit and access structure pidUinit
without having queried

Corrupt(Uinit) and where kUinit was not output by any of Uinit’s instances.
An adversary A that can reach Forge can be used for forging a signcryp-
tion: the tuple (kUinit , s, Uinit, {Uinit}) would constitute a valid forgery, since
s = Signcrypt(kUinit , akUinit , pidUinit

), so it can be unsigncrypted successfully
with with the secret key of Uinit and the verification access structure {Uinit}.
Moreover, there has not been any private key query of Uinit (no Corrupt(Uinit))
nor a signcryption query of (kUinit , Uinit, pidUinit

) (kUinit was not output by any
of Uinit’s instances). Thus, using A as a black box we obtain an attacker B de-
feating the existential unforgeability of the underlying signcryption scheme
with advantage

AdvUFS-CMAA
B ≥ P (Forge).

By assumption AdvUFS-CMAA
B is negligible, and we see that Forge occurs with

negligible probability only.
Repeat is the event that an uncorrupted participant chooses a nonce ki or r

that was previously used by an oracle of some party. There are at most qs

used instances that may have chosen a nonce ki or r, and thus the event
Repeat occurs with probability

P (Repeat) ≤ 4 · q2
s

2`
,

which again is negligible in `.
TestCorrupt is the event that a participant Ui of a Test session with fresh

instances has been corrupted, and Ui accepted the session key. According
to the definition of freshness, Ui was not corrupted yet, when sending its
Round 2 message (Xi, i) to the other protocol participants. Consequently,
Xi was, with overwhelming probability, computed without knowledge of tLi
and tRi —for computing the latter either the event Collision or Decrypt had to
occur. As a consequence the r-value r′ recovered by Ui satisfies H(r′) = H(r)
with negligible probability only. Therefore, with overwhelming probability,
Ui aborted the protocol without accepting the session key, and we recognize
P (TestCorrupt) as negligible.

Security. To prove security according to Definition 4, we use the usual game hop-
ping technique, letting the adversary A interact with a simulator. In Game 0,
the simulator offers the original protocol environment to A, but subsequently we
change the simulator’s behavior in several small steps without affecting A’s suc-
cess probability significantly. Keeping track of the changes between subsequent
games, in the last game we will be able to establish a negligible upper bound on
AdvA. We denote the advantange of A in Game i by AdvGame i

A .

Game 0: In this game, the simulator faithfully simulates all protocol partici-
pants’ instances for the adversary A, i. e., the adversary’s situation is the
same as in the real model:

AdvGame 0
A = AdvA.
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Game 1: This game is aborted if one of the events Forge, Collision, Repeat or
TestCorrupt occurs. Otherwise the game is identical with Game 0 and the
adversary cannot detect the difference. Thus, for adversary A’s advantage
we have

|AdvGame 1
A − AdvGame 0

A | ≤ P (Forge) + P (Collision) +
P (Repeat) + P (TestCorrupt).

Game 2: This game differs from Game 1 in the simulator’s response in Round 2.
If the simulator has to output the message of an instance Πsi

Ui
and none of

the participants Uj ∈ pidsi

Ui
is corrupted, then the simulator chooses random

values from {0, 1}` for tLi = tRi−1 and tRi = tLi+1 instead of querying the
random oracle. To keep consistency, the same values have to be used in
the neighbored instances subsequently. The adversary can only detect the
difference by querying the random oracle with yxi

i−1‖k0 = y
xi−1
i ‖k0.

An adversary A that distinguishes Game 1 and Game 2 can be used as
black box to solve a CDH instance: two instances Πsi

Ui
and Π

sj

Uj
are selected

by randomly choosing two different users Ui, Uj ∈ 2U plus two numbers
si, sj ∈ {1, . . . , qs}. Game 2 only differs from Game 1, if at least one session
is set up of uncorrupted users. To distinguish the games, the adversary has to
query the random oracle with at least one Diffie-Hellman key, established be-
tween neighbors in a session with uncorrupted participants. These randomly
chosen instances will be those neighbored participants with probability at
least 1/(2|U| · qs)2.
A given CDH instance (g, ga, gb) is then assigned to Πsi

Ui
and Π

sj

Uj
such that

these instances will use yi := ga respectively yj := gb in Round 1.
If at some point now Πsi

Ui
and Π

sj

Uj
do not qualify any longer to be neigh-

bored participants in a session with only uncorrupted users, the simulation
is aborted.
Then a random index z ∈ {1, . . . , qro} is chosen and the adversary’s z-th
query to the random oracle is taken for the answer to the CDH challenge.
The answer to the CDH challenge is correct if A distinguished the games
with the chosen instances and also the index z was guessed correctly:

|AdvGame 2
A − AdvGame 1

A | ≤ SuccCDH
(〈g〉,g) · qro ·

(
2|U| · qs

)2

,

where Succ(〈g〉,g) is an upper bound for the success probability of the above
algorithm to solve the CDH problem in group generated by g, using generator
g. In particular, under the CDH assumption and with U having constant size,
the right-hand side of this inequality is negligible in `.

Game 3: In this game the simulator changes the computation of the session key:
having received all messages of Round 2 for an instance Πsi

Ui
, the simulator

checks if all Uj ∈ pidsi

Ui
are uncorrupted and if Reveal has not been queried

with an instance Π
sj

Uj
∈ pidsi

Ui
. If this is the case the simulator chooses

a session key sksi

Ui
∈ {0, 1}` uniformly at random instead of querying the
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random oracle. For consistency, the simulator will assign the same key to
all partnered instances. To detect the difference to the previous game, the
adversary must query the random oracle for H(r‖k0‖ . . . ‖kn‖1).
About r only H(r) and e = k0 ⊕ r⊕ tR0 are known. Thus, the adversary can
only guess a random value for r and query the random oracle at most qro

times, or can get the value r if it can invert the signcryption c to get k0 and
can get tR0 . This results in:

|AdvGame 3
A − AdvGame 2

A | ≤ qro

2`
+ P (Decrypt)

All participants involved in the Test session are uncorrupted, and none the
instances involved in the Test query have been revaled. Therfore, those in-
stances are affected by the modification just introduced, i. e., they use ran-
dom session keys. Consequently AdvGame 3

A = 0.
Putting the probabilities together we recognize the adversary’s advantage in
the real model as negligible:

AdvA ≤ P (Forge) + P (Collision) + P (Repeat) +

SuccCDH
(G,g) · qro · (2U )2 · q2

s +
qro

2`
+ P (Decrypt) + P (TestCorrupt).

Integrity. Let Ui and Uj be any two honest principals whose instances Πsi
i

and Π
sj

Uj
accept (accsi

Ui
= accsi

Ui
= true) with a matching session identifier

sidsi

Ui
= sid

sj

Uj
.Then with overwhelming probability r‖k0‖ . . . ‖kn−1‖pidU0

is
identical for both users and therewith sksi

Ui
= sk

sj

Uj
. In particular, Πsi

Ui
and

Π
sj

Uj
have with overwhelming probability the same value pidU0

. As the tests in
Round 2 succeeded, we see that Ui ∈ pidU0

and Uj ∈ pidU0
. Moreover, we have

pidU0
⊆ pidUi

∩ pidUj
. Thus Ui ∈ pidUj

and Uj ∈ pidUi
with overwhelming

probability. ut

4 Further protocol properties

The protocol in the previous section has a number of characteristics, that seem
to be worth commenting. We do not formalize these properties here, and conse-
quently these comments should not be taken as provable guarantees, but rather
as issues that might deserve further (formal) exploration in future work:

Key agreement. The protocol is contributory in the sense that each party in-
fluences the value of the final session key by its input, and no proper subset of
protocol participants can enforce a particular predetermined session key: parties
U other than the initiator Uinit have to publish their contribution ki before learn-
ing the random value r, i. e., parties U can actually not fix any bit in the session
key. The initiator Uinit can mount a rushing attack, however: before fixing r, Uinit

knows all inputs to the key derivation. Because of the application of the random
oracle in the derivation of the session key, Uinit’s potential to manipulate the
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value of the session key is still rather limited and reduces to quering the random
oracle with different r-values. If a stronger guarantee is desired, the following
approach (see [16, 4]) seems worth being explored: in Round 1, users U 6= Uinit

broadcast H(ki) instead of ki—and these hash value then form the basis to fix
an ordering among protocol participants. The actual values k1, . . . , kn−1 would
then be included in the Round 2 messages and checked for consistency with the
Round 1 commitments.

Plausible deniability. Protocol transcripts generated by initiator Uinit alone are
indistinguishable from real protocol transcripts: even after revealing all secret
keys, including the master keys, Uinit cannot provide evidence of any other par-
ties’ active involvement in a protocol execution, as secret user keys akU with
U 6= Uinit are only used to recover values signcrypted by Uinit.

Privacy. As just noted, parties U 6= Uinit use their secret keys only for recovering
values signcrypted by the initiator Uinit. At no point in the protocol do those
parties have to make their attributes explicit; only the fact that U is contained
in the access structure pidUinit

used to create the signcryption in Round 1 has to
be revealed.

5 Conclusion

In this paper we discussed a notion of attribute-based key establishment and pro-
vided a two-round solution, building on an attribute-based signcryption scheme
offering a basic form of security. The discussion of attribute-based signcryption
might be of independent interest, and, as shown, such a signcryption scheme
can be derived from suitable attribute-based signature and encryption schemes,
using the encrypt-then-sign paradigm. We think that our discussion raises a
number of questions that deserve follow-up work—like the question of dedicated
constructions for attribute-based signcryption schemes or the use of a form of
attribute-based key-encapsulation with the proposed protocol.
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