Efficient Provable Data Possession for Hybrid Clouds

Yan Zhu'2, Huaixi Wang?, Zexing Hu!, Gail-Joon Ahn*, Hongxin Hu, Stephen S. Yau*
Institute of Computer Science and Technology, Peking University, Beijing 100871, China
2Key Laboratory of Network and Software Security Assurance (Peking University), Ministry of Education
3School of Mathematical Sciences, Peking University, Beijing 100871, China
4Information Assurance Center and School of Computing, Informatics, and Decision Systems
Engineering, Arizona State University, Tempe, AZ 85287, USA
{yan.zhu,wanghx,huzx}@pku.edu.cn, {gahn,hxhu,yau}@asu.edu

ABSTRACT

Provable data possession is a technique for ensuring the in-
tegrity of data in outsourcing storage service. In this paper,
we propose a cooperative provable data possession scheme
in hybrid clouds to support scalability of service and data
migration, in which we consider the existence of multiple
cloud service providers to cooperatively store and maintain
the clients’ data. Our experiments show that the verification
of our scheme requires a small, constant amount of overhead,
which minimizes communication complexity.

Categories and Subject Descriptors

H.3.2 [Information Storage and Retrieval|: Information
Storage; E.3 [Data]: Data Encryption

General Terms

Design, Performance, Security

Keywords
Storage Security, Provable Data Possession, Hybrid Clouds

1. INTRODUCTION

In cloud computing, one of the core design principles is
dynamic scalability, which guarantees cloud storage service
to handle growing amounts of application data in a flexi-
ble manner or to be readily enlarged. By integrating mul-
tiple private and public cloud services, hybrid clouds can
effectively provide dynamic scalability of service and data
migration. For example, a client might integrate the data
from multiple private or public providers into a backup or
archive file (see Figure 1), or a service might capture the
data from other services from private clouds, but the inter-
mediate data and results are stored in hybrid clouds [3].

Although Provable Data Possession (PDP) schemes evolved
around public clouds offer a publicly accessible remote inter-
face to check and manage the tremendous amount of data,
the majority of existing PDP schemes are incapable of satis-
fying such an inherent requirement of hybrid clouds in terms
of bandwidth and time. In order to address this problem, we
consider a hybrid cloud storage service involving three differ-
ent entities, as illustrated in Figure 1: the cloud client who
stores or uses data in the cloud; the cloud service provider

Copyright is held by the author/owner(s).
CCS 10, October 4-8, 2010, Chicago, lllinois, USA.
ACM 978-1-4503-0244-9/10/10.

(CSP) which has significant storage space and computation
resources to manage and provide storage services; and the
trusted third party (TTP) who stores the clients’ audit data
and offers the query services for their data.

Clients

@
W

Cloud Service
Providers (CSPs)

Public Cloud

Private
Cloud I

N
Hybrid Cloud \\\ B ;/:/Jkajﬁ}mﬂjzg/////
Data Flow

Trusted Third
Party (TTP)

Private
Cloud IT

Figure 1: Cloud data storage architecture for hybrid
clouds

In this architecture, we consider the existence of multi-
ple CSPs to cooperatively store and maintain the clients’
data, and a publicly verifiable PDP is used to verify the in-
tegrity and availability of their stored data in CSPs. The
clients are allowed to dynamically access and update their
data for various applications, and the verification process of
PDP is seamlessly performed for the clients in hybrid clouds.
Hence, it is a challenging problem to design a PDP scheme
for supporting dynamic scalability.

In this work, we focus on the construction of PDP scheme
for hybrid clouds, supporting privacy protection and dy-
namic scalability. We first provide an effective construction
of Cooperative Provable Data Possession (CPDP) using Ho-
momorphic Verifiable Responses (HVR) and Hash Index Hi-
erarchy (HIH). This construction uses homomorphic prop-
erty, such that the responses of the client’s challenge com-
puted from multiple CSPs can be combined into a single
response as the final result of hybrid clouds. By using this
mechanism, the clients can be convinced of data possession
without knowing what machines or in which geographical
locations their files reside. More importantly, a new hash in-
dex hierarchy is proposed for the clients to seamlessly store
and manage the resources in hybrid clouds. Our experimen-
tal results also validate the effectiveness of our construction.

2. COOPERATIVE PROVABLE DATA POS-
SESSION

In this section, we introduce the principles of our cooper-
ative provable data possession for hybrid clouds, including
the main technique, model, fragment structure, index hier-
archy, and the architecture to support our scheme.

2.1 Homomorphic Verifiable Response

A homomorphism is a map f : P — Q between two groups
such that f(g1 D g2) = f(g1) ® f(g2) for all g1, g2 € P, where
@ denotes the operation in P and ® denotes the operation
in Q. This notation was used to define a Homomorphic
Verifiable Tags (HVTs) in [2]: Given two values o; and o;
for two message m; and m;, anyone can combine them into
a value ¢’ corresponding to the sum of the message m; +m;.

When provable data possession is considered as a challenge-
response protocol, we also extend this notation to introduce
the concept of a Homomorphic Verifiable Responses (HVRs),
which is used to integrate multiple responses from the dif-
ferent CSPs in cooperative PDP scheme, as follows:

DEFINITION 1 ~ (HOMOMORPHIC VERIFIABLE RESPONSE).
A response is called homomorphic verifiable response in PDP
protocol, if given two responses 0; and 0; for two challenges
Qi and Q; from two CSPs, there exists an efficient algo-
rithm to combine them into a response 0 corresponding to
the sum of the challenges Q;|J @;.

2.2 Definition of CPDP Model

In order to prove the integrity of data stored in hybrid
clouds, we define a framework for Cooperative Provable Data
Possession (CPDP) as follows:

DEFINITION 2
able data possession scheme S’ is a collection of two algo-
rithms and an interactive proof system, S' = (K, T, P):

KeyGen(17): takes a security parameter k as input, and re-
turns a secret key sk or a public-secret keypair (pk, sk);

TagGen(sk, F,P): takes a secret key sk, a file F, and a
set of CSPs P = {Px}, and returns the triples ({,¢,0),
where ¢ is the secret of tags, ¥ = (u,H) is a set of ver-
ification parameters u and an index hierarchy H for F,
o = {o®}p.cp denotes a set of all tags, where o™ is
the tags of the fraction F® of F in Py; and

Proof(P,V): is a protocol for a proof of data possession
between CSPs P = {Pix} and a verifier V. At the end
of the protocol, V returns a bit {0|1} denoting a binary
decision for either false or true. It includes two cases:

o O pep P (F®)Y V(sk, () is a private proof, where

each Py takes a fraction of file F* and a set of all tags
o™ and V takes a secret key sk and the secret of tags
¢; and

. <ZPkeP Py (F(k), O'(k)), V)(pk,) is a public proof, where
each Py, takes a file F®) and a set of all tags o™, and
a public key pk and a set of public parameters 1 are the
common input between P and V.

For both cases, P(z) denotes the subject P holds the se-
cret x, and (P,V)(z) denotes both parties P and V share
a common data T in a protocol. ZPkeP denotes the co-
operative computing in Py € P.

(COOPERATIVE-PDP). A cooperative prov-

To realize the CPDP, a trivial way is to check the data
stored in each cloud one by one. However, it would cause sig-
nificant cost growth in terms of communication and compu-
tation overheads. It is obviously unreasonable to adopt such
a primitive approach that diminishes the advantages of cloud
storage: scaling arbitrarily up and down on-demand [1].

2.3 Fragment Structure of CPDP

We propose a fragment structure of CPDP scheme based
on the above-mentioned model as shown in Figure 2, which
has following characters: 1) a file is split into n X s sectors
and each block (s sectors) corresponds to a tag, so that the
storage of signature tags can be reduced with the order of
s; 2) the verifier can check the integrity of a file by ran-
dom sampling approach, which is a matter of the utmost
importance for large or huge files; and 3) this structure re-
lies on homomorphic properties to aggregate the data and
tags into a constant size response, which minimizes network
communication overheads.

1T

m: myp|mye| e

my: Mgy |Mgo| ==oc=

ms: mgq|mgq| eeee

® OR S o0 w o =
A
@M S 0O —~=F~DP O

my: My | My | coooe

Response

Figure 2: The fragment structure of CPDP model.

The above structure, considered as a common represen-
tation for some existing schemes [2, 4], can be converted to
MAC-based, ECC or RSA schemes. By using BLS signa-
tures and random oracle model, it is easy to design a practi-
cal CPDP scheme with the shortest homomorphic verifiable
responses for public verifiability. This structure also creates
favorable conditions for the architecture of CSPs.

2.4 Hash Index Hierarchy

An architecture for data storage in hybrid clouds is illus-
trated in Figure 3. This architecture is based on a hierarchi-
cal structure with three layers to represent the relationship
among all blocks for stored resources. Three layers can be
described as follows:

e First-Layer (Ezpress Layer): offers an abstract represen-
tation of the stored resources;

e Second-Layer (Service Layer): promptly offers and man-
ages cloud storage services; and

e Third-Layer (Storage Layer): directly realizes data stor-
age on many physical devices.

This architecture naturally accommodates the hierarchi-
cal representation of file systems. We make use of a simple
hierarchy to organize multiple CSP services, which involve
private clouds or public clouds, by shading the differences

between these clouds. In Figure 3, the resources in the Ex-
press Layer are split and stored into three CSPs in the Ser-
vice Layer. In turn, each CSP fragments and stores the
assigned data into the storage servers in the Storage Layer.
We distinguish different CSPs by different colors, and the
denotation of the Storage Layer is the same as in Figure 2.
Moreover, we follow the logical order of the data blocks to
organize the Storage Layer. This architecture could provide
some special functions for data storage and management,
e.g., there may exist an overlap among data blocks (as shown
in dashed line) and discontinuous blocks (as shown on a non-
continuous color).

Storage Layer Service Layer Express Layer

&V =H,(on")

-
7
D CSP1
-
b

,('ICn")

£ =H, (Fi)

f}m — i) D CSP2
V D CSP3

Figure 3: The architecture of CPDP model.

We employ this architecture to construct a new Hash In-
dex Hierarchy #H, which is used to replace the hash function
in original PDP schemes, as follows:

e Express layer: given s random {7;};—; and the file name
Fn, establishes ¢ = Hy: - (“Fn”) and makes it pub-

lic for verification but makes {7;};_; secret;

e Service layer: given the £ and the cloud name Cn, sets
2 « }
) = He (“On);

e Storage layer: given the f,(f), a block number ¢, and its
index record x; = “B;||Vi||R:”, holds 51(3,3 =H, (xi)-
’ k

By using this structure, it is obvious that our CPDP scheme
can also support dynamic data operations.

3. IMPLEMENTATION AND EXPERIMEN-
TAL RESULTS

We have implemented our PDP scheme and validated the
effect of dispersed secret data on private clouds and hybrid
clouds. The code was written in C++ and the experiments
were run on an Intel Core 2 processor with 2.16 GHz. All
cryptographic operations utilize the QT and bilinear cryp-
tographic library.

In our CPDP scheme, the client’s communication over-
head is not changed in contrast to common PDP scheme, and
the interaction among CSPs needs ¢ — 1 times constant-size
communication overheads, where ¢ is the number of CSPs in
hybrid clouds. Therefore, the total of communication over-
heads is not significantly increased. Next, we evaluated the

\ [Tageen Funcion

40 \
0

Computation Compenxity (s)

Computation Compenxity (s)
| —

S

K'\'\HHM

ey

0 10 2 k] L) 0 0 10 0 k) 4 0
The number of sectors neach block ‘The number of sectors in each block

{z) computaton costs for verfication protocol (b) computaton costs for TagGen funcion

Figure 4: The experiment results of the different s
for a 150K-Bytes file (p = 0.01 and P = 0.99).

performance of our CPDP scheme in terms of computational
overhead. For the sake of comparison, our experiments were
executed in the following scenario: a fixed-size file is used to
generate the tags and prove data possession under the dif-
ferent number of sectors s. For a 150K-Bytes file, the com-
putational overheads of the verification protocol are shown
in Figure 4(a) when the value of s is ranged from 1 to 50
and the size of sector is 20-Bytes. Moreover, there exists an
optimal value of s from 15 to 25. The computational over-
heads of the tag generation are also shown in Figure 4(b).
The results indicate that the overheads are reduced when
the values of s are increased. Hence, it is necessary to select
the optimal number of sectors in each block to minimize the
computation costs of clients and storage service providers.

4. CONCLUSIONS

In this paper, we addressed the construction of PDP scheme
for hybrid clouds. Based on homomorphic verifiable re-
sponses and hash index hierarchy, we proposed a coopera-
tive PDP scheme to support dynamic scalability on multiple
storage servers. Our experiments showed that our schemes
require a small, constant amount of overhead.

5. ACKNOWLEDGMENTS

The work of Y. Zhu, H. Wang, and Z. Hu was partially
supported by the National Development and Reform Com-
mission under project “a monitoring platform for web safe
browsing”. The work of G.-J. Ahn, H. Hu and S. S. Yau
was partially supported by the grants from National Science
Foundation.

6. REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. Above the clouds: A berkeley view of cloud
computing. Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley, Feb 2009.

[2] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L. Kissner,
Z. N. J. Peterson, and D. X. Song. Provable data possession at
untrusted stores. In ACM Conference on Computer and
Communications Security, pages 598—609, 2007.

[3] S. Y. Ko, I. Hoque, B. Cho, and I. Gupta. On availability of
intermediate data in cloud computations. In Proc. 12th Useniz
Workshop on Hot Topics in Operating Systems (HotOS XII),
2009.

[4] H. Shacham and B. Waters. Compact proofs of retrievability.
In ASTACRYPT, pages 90-107, 2008.

