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Abstract 

In secret sharing, the exact characterization of ideal access structures is a longstanding open 

problem. Brickell and Davenport (J. of Cryptology, 1991) proved that ideal access structures are 

induced by matroids. Subsequently, ideal access structures and access structures induced by 

matroids have attracted a lot of attention. Due to the difficulty of finding general results, the 

characterization of ideal access structures has been studied for several particular families of access 

structures. In all these families, all the matroids that are related to access structures in the family are 

representable and, then, the matroid-related access structures coincide with the ideal ones. 

In this paper, we study the characterization of representable matroids. By using the well known 

connection between ideal secret sharing and matroids and, in particular, the recent results on ideal 

multipartite access structures and the connection between multipartite matroids and discrete 

polymatroids, we obtain a characterization of a family of representable multipartite matroids, which 

implies a sufficient condition for an access structure to be ideal.  

By using this result and further introducing the reduced discrete polymatroids, we provide a 

complete characterization of quadripartite representable matroids, which was until now an open 

problem, and hence, all access structures related to quadripartite representable matroids are the ideal 

ones. By the way, using our results, we give a new and simple proof that all access structures related 

to unipartite, bipartite and tripartite matroids coincide with the ideal ones.  

Keywords: Cryptography, Ideal secret sharing schemes, Ideal access structures, Representable 

multipartite matroids, Discrete polymatroids. 



1  Introduction 

Secret-sharing schemes, which were introduced by Shamir [1] and Blakley [2] nearly 30 years ago, 

are nowadays used in many cryptographic protocols. In these schemes there is a finite set of participants, 

and a collection  of subsets of the participants (called the access structure). A secret-sharing scheme 

for  is a method by which a dealer distributes shares of a secret value to the participants such that (1) 

any subset in  can reconstruct the secret from its shares, and (2) any subset not in  cannot reveal 

any partial information about the secret in the information theoretic sense. Clearly, the access structure 

 must be monotone, that is, all supersets of a set in 

Γ

Γ

Γ Γ

Γ Γ  are also in Γ . 

Ito, Saito, and Nishizeki [3] proved that there exists a secret-sharing scheme for every monotone 

access structure. Their proof is constructive, but the obtained schemes are very inefficient: the ratio 

between the length in bits of the shares and that of the secret is exponential in the number of parties. 

Nevertheless, some access structures admit secret-sharing schemes with much shorter shares. A secret-

sharing scheme is called ideal if the shares of every participant are taken from the same domain as the 

secret. As proved in [4], this is the optimal size for the domain of the shares. The access structures 

which can be realized by ideal secret-sharing schemes are called ideal access structures. 

The exact characterization of ideal access structures is a longstanding open problem, which has 

interesting connections to combinatorics and information theory. The most important result towards 

giving such characterization is by Brickell and Davenport [5], who proved that every ideal access 

structure is induced by a matroid (that is, matroid-related), providing a necessary condition for an access 

structure to be ideal. A sufficient condition is obtained as a consequence of the linear construction of 

ideal secret-sharing schemes due to Brickell [6]. Namely, an access structure is ideal if it is induced by a 

matroid that is representable over some finite field. However, there is a gap between the necessary 

condition and the sufficient condition. Seymour [7] proved that the access structures induced by the 

Vamos matroid are not ideal. Other examples of non-ideal access structures induced by matroids have 

been presented by Matus [8]. Hence, the necessary condition above is not sufficient. Moreover, Simonis 

and Ashikmin [9] constructed ideal secret-sharing schemes for the access structures induced by the non-

Pappus matroid, which is not representable over any field. This means that the sufficient condition is not 

necessary. The results in [5] have been generalized in [10] by proving that, if all shares in a secret 

sharing scheme are shorter than 3/2 times the secret value, then its access structure is matroid-related. 

 2



Due to the difficulty of finding general results, the characterization of ideal access structures has 

been studied for several particular families of access structures: the access structures on sets of four [11] 

and five [12] participants, the access structures defined by graphs [13, 14, 15, 16, 17], the bipartite 

access structures [18], the access structures with three or four minimal qualified subsets [19], the access 

structures with intersection number equal to one [20], the access structures with rank three [21, 22], and 

the weighted threshold access structures [23]. In all these families, all the matroids that are related to 

access structures in the family are representable and, then, the matroid-related access structures coincide 

with the ideal ones. 

In addition, several authors studied this open problem for multipartite access structures since every 

access structure can be seen as a multipartite access structure. Multipartite access structure, informally, 

is that the set of participants can be divided into several parts in such a way that all participants in the 

same part play an equivalent role in the structure. Since we can always consider as many parts as 

participants, every access structure is multipartite (in the same way, every matroid is multipartite). More 

accurately, we can consider in any access structure the partition that is derived from a suitable 

equivalence relation on the set of participants.  

Multipartite access structures were first introduced by Shamir [1] in his seminal work, in which 

weighted threshold access structures were considered. Beimel, Tassa and Weinreb [23] presented a 

characterization of the ideal weighted threshold access structures that generalizes the partial results in 

[24, 18]. Another important result about weighted threshold access structures has been obtained recently 

by Beimel and Weinreb [25]. They prove that all such access structures admit secret sharing schemes in 

which the size of the shares is quasi-polynomial in the number of users. A complete characterization of 

the ideal bipartite access structures was given in [18], and related results were given independently in 

[26, 27]. Partial results on the characterization of the ideal tripartite access structures appeared in [28, 

29], and this question was solved in [30]. Another important result about a complete characterization of 

the ideal hierarchical access structures has been obtained recently by Farras and Padro [31]. They prove 

that every ideal hierarchical access structure is induced by a representable matroid. In every one of these 

families of multipartite access structures, all access structures are related to representable matroids, and 

hence, they are all ideal access structures. 

In this paper we continue the line of research of those previous works by studying the following 

question: which matroids are representable? Specifically, we are not restricting ourselves to a particular 
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family of access structures related to representable matroids, but we study the characterization of 

representable matroids. By using the well known connection between ideal secret sharing and matroids 

and, in particular, the recent results on ideal multipartite access structures and the connection between 

multipartite matroids and discrete polymatroids, we obtain a characterization of a family of 

representable multipartite matroids (since every matroid and every access structure are multipartite, this 

sufficient condition is a general result), which implies a sufficient condition for an access structure to be 

ideal. Further, using this result and introducing the reduced discrete polymatroids, we provide a 

complete characterization of quadripartite representable matroids, which was until now an open problem, 

and hence, all access structures related to quadripartite representable matroids are the ideal ones. By the 

way, using our results, we give a new and simple proof that all access structures related to unipartite, 

bipartite and tripartite matroids coincide with the ideal ones. More specifically, our results are the 

following: 

1. By using a group of inequalities related to the rank functions of the associated discrete 

polymatroids, a characterization of a family of representable multipartite matroids is present 

(that is, Theorem 3.2), and hence, all access structures related to this family of representable 

multipartite matroids are the ideal ones. 

2. Using Theorem 3.2, we give a new and simple proof that every unipartite, bipartite and tripartite 

discrete polymatroid is representable, which implies all access structures related to unipartite, 

bipartite and tripartite matroids coincide with the ideal ones. 

3. By using Theorem 3.2 and introducing the definition of -reduction, we obtain a complete 

characterization of quadripartite representable matroids (that is, Theorem 5.3), which was until 

now an open problem, and hence, all access structures related to quadripartite representable 

matroids are the ideal ones. 

D

2   Definitions and Preliminaries 

In this section we review some basic definitions and notations in [30] that will be used through the 

paper. The reader is referred to [33] for an introduction to secret sharing and to [34, 35] for general 

references on Matroid Theory. 
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A matroid  is formed by a finite set  together with a family ( , )=M Q I Q ( )⊆I P Q  

(  is the power set of the set .) such that ( )P Q Q

1. φ ∈I , and 

2. if 1I ∈ I  and 2 1I I⊆ , then 2I ∈ I , and 

3. if 1 2,I I ∈ I  and 1 2| | | |I I< , then there exists 2 1x I I∈ −  such that { }1 xI ∈∪ I . 

The set  is the ground set of the matroid  and the elements of Q M I  are called the independent 

sets of . The bases of the matroid are the maximally independent sets. All bases have the same 

number of elements, which is the rank of . 

M

M

Let  be a field. A matroid K ( , )=M Q I  is K -representable (or representable for short) if 

there exists a matrix M  over  whose columns are indexed by the elements of  such that a 

subset 

K Q

{ }1,..., kI i i= ⊆Q  is independent if and only if the corresponding columns of M  are 

independent. In this situation, we say that the matrix M  is a -representation of the matroid . K M

Let  be a finite field and let K ( , )=M Q I  be a -representable matroid. Let  be 

special participant called dealer.and 

K 0p ∈Q

{ }0P p= ∪Q . For every 1)(k n +×  matrix M  representing 

 over , let  be a vector space of finite dimention M K E dim E k=  over . For every K i∈Q , 

we define a surjective linear mapping: :i Eπ →K , and the -th column of i M  corresponds to the 

linear form iπ . In that situation, for every random choice of an element x E∈ , we can obtain 

( )i is xπ= ∈K� is the share of the participant i P∈  and 
0
( )ps xπ= ∈K  is the shared secret value. 

Hence, by the columns of M , we define an ideal secret sharing scheme with access structure 

, where 
0
(pΓ M ) { }{ }

0 0min ( ) : is a circuit of p A P A pΓ = ⊆ ∪M M . Therefore, the access 

structures induced by representable matroids are ideal. 

We write  for the power set of the set . An -partition ( )PP P m { }1,..., mP PΠ =  of a set  

is a disjoint family of m  nonempty subsets of  with 

P

P 1 ... mP P P= ∪ ∪ . Let  be a 

family of subsets of . For a permutation 

( )PΛ ⊆P

P σ  on , we define P { }( ) ( ) : ( )A A Pσ σΛ = ∈Λ ⊆P . A 

family of subsets  is said to be ( )PPΛ ⊆ Π -partite if ( )σ Λ = Λ  for every permutation σ  such 
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that ( )iP Piσ =  for every . We say that iP ∈Π Λ  is -partite if it is m Π -partite for some -

partition . These concepts can be applied to access structures and matroids. 

m

Π

For every integer , we consider the set 1m ≥ { }1,...,mJ m= . Let m
+Z  denote the set of vectors 

 with  for every ( )1,..., m
mu u u= ∈Z 0iu ≥ mi J∈ . For a partition { }1,..., mP PΠ =  of a set  

and for every 

P

A P⊆  and , we define mi J∈ ( ) | |i iA A PΠ = ∩ . Then the partition  defines a 

mapping  by considering 

Π

: ( ) mP +Π → ZP ( )1( ) ( ),..., ( )mA AΠ = Π Π A . If  is ( )PΛ ⊆P Π -

partite, then  if and only if . That is, A∈Λ ( ) ( )AΠ ∈Π Λ Λ  is completely determined by the 

partition  and the set of vectors Π ( ) m
+Π Λ ⊂ Z .  

Discrete polymatroids, a combinatorial object introduced by Herzog and Hibi [32], are closely 

related to multipartite matroids and, because of that, they play an important role in the characterization 

of ideal multipartite access structures. Before giving the definition of discrete polymatroid, we need to 

introduce some notation. If , we write , mu v +∈Z u v≤  if iu vi≤  for every , and we write 

 if  and 

mi J∈

u v< u v≤ u v≠ . The vector w u v= ∨  is defined by max( , )i iw u iv= . The modulus of 

a vector  is mu +∈Z 1| | mu u u= + ⋅⋅⋅ + . For every subset mX J⊆ , we write  

and  

| |( ) ( ) X
i i Xu X u ∈ += ∈Z

| ( ) | ii X
u X u

∈
=∑

A discrete polymatroid on the ground set  is a nonempty finite set of vectors mJ mD +⊂ Z  

satisfying: 

1. if  and  is such that u D∈ mv +∈Z v u≤ , then v D∈ , and 

2. for every pair of vectors  with | |,u v D∈ | |u v< , there exists w D∈  with . u w u v< ≤ ∨

The next proposition, which is easily proved from the axioms of the independent sets of a matroid, 

shows the relation between multipartite matroids and discrete polymatroids. 

Proposition 2.1. Let  be a partition of a set  and let Π Q ( )⊆I P Q  be a -partite family 

of subsets. Then 

Π

I  is the family of the independent sets of a Π -partite matroid  if 

and only if 

( , )=M Q I

( ) m
+Π ⊂ ZI  is a discrete polymatroid. 
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A basis of a discrete polymatroid  is a maximal element in , that is, a vector  such 

that there does not exist any  with 

D D u D∈

v D∈ u v< . Similarly to matroids, a discrete polymatroid is 

determined by its bases. Specifically, the following result is proved in [32, Theorem 2.3]. 

Proposition 2.2. A nonempty subset m
+⊂ ZB  is the family of bases of a discrete polymatroid if 

and only if it satisfies: 

1. all elements in  have the same modulus, and B

2. for every u  and  with , there exists ∈B v∈B iu v> i mj J∈  such that j ju v<  and 

, where  denotes the i -th vector of the canonical basis of . i ju e e− + ∈B ie mZ

The rank function of a discrete polymatroid  with ground set  is the function 

 defined by 

D mJ

: ( )mh J → ZP { }( ) max | ( ) |:h X u X u D= ∈ . The next proposition is a consequence of 

[32, Theorem 3.4]. 

Proposition 2.3. A function  is the rank function of a discrete polymatroid with 

ground set  if and only if it satisfies 

: ( )mh J → ZP

mJ

1. ( ) 0h φ = , and 

2.  is monotone increasing: if h mX Y J⊆ ⊆ , then ( ) ( )h X h Y≤ , and 

3.  is submodular: if h , mX Y J⊆ , then ( ) ( ) ( ) (h X Y h X Y h X h Y )+ ≤ +∪ ∩ . 

Moreover, a polymatroid  is completely determined by its rank function. Specifically, D

{ }:  | ( ) | ( ) for all m
mD u u X h X X J+= ∈ ≤ ⊆Z . 

Let  be a field, K E  a -vector space, and  subspaces of K 1,..., mV V E . It is not difficult to 

check that the mapping  defined by : ( )mh J → ZP ( ) dim( )ii Xh X V
∈

= ∑  is the rank function of a 

discrete polymatroid . In this situation, we say that  is -representable and the subspaces 

 are a -representation of . The next proposition is proved in [30, Theorem 7.1] 

mD +⊂ Z D K

1,..., mV V K D
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Proposition 2.4. Let  be a ( , )=M Q I Π -partite matroid and let ( )D = Π I  be its 

associated discrete polymatroid. If  is K -representable, then so is . In addition, if  is K -

representable, then  is representable over some finite extension of . 

M D D

M K

3  A Characterization of A Family of Representable Matroids 

In this section, by using a group of inequalities related to the rank functions of the associated 

discrete polymatroids, a characterization of a family of representable multipartite matroids is present, 

and hence, all access structures related to this family of representable multipartite matroids are the ideal 

ones.  

We firstly define the associated discrete polymatroids of this family of multipartite matroids as 

follow. 

Definition 3.1. Let  be a discrete polymatroid with ground set  and rank function 

. We say that  is a normalized discrete polymatroid if the rank function 

 of  is such that 

mD +⊂ Z mJ

: ( )mh J → ZP D

: ( )mh J → ZP D ( ) ( )mh X h J= , where mX J⊆  and | | .  3X ≥

It is not difficult to check that for all unipartite, bipartite and tripartite matroids, the associated 

discrete polymatroids are normalized ones. 

The main goal of this section is to obtain the following theorem, which is proved in the appendix. 

Theorem 3.2. Let  be a normalized discrete polymatroid with ground set  and rank 

function .  is -representable if and only if there exists a nonnegative integer set 

 such that for every 

mD +⊂ Z mJ

: ( )mh J → ZP D K

{ ( ) :  for all  and }mR r A A J A= ⊆ ≠ ∅ , , mi j k J∈ , 

{ }

( ) ({ })

m

A i
A J

r A h i
≠∅

⊆

=∑
∩

,    (3-1) 

{ , }

( ) ({ , })

m

A i j
A J

r A h i j
≠∅

⊆

=∑
∩

,    (3-2) 

{ , , }

( ) ({ , , }) ( )

m

m
A i j k
A J

r A h i j k h J
≠∅

⊆

≥ =∑
∩

,    (3-3) 
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where every element of R  is a nonnegative integer and 1 2| | ... m
m m mR C C C= + + + . 

As a consequence, from Proposition 2.4, Theorem 3.2 provides a characterization of a family of 

representable multipartite matroids, the associated discrete polymatroids of which are the normalized 

ones.  

The further importance of Theorem 3.2 is that it provides a sufficient condition for a multipartite 

access structure to be ideal. Namely, a multipartite access structure is ideal if it is of the form 

, where  is a 
0
(pΓ M ) ( , )=M Q I Π -partite matroid and ( )Π I  is the associated discrete 

polymatroid  which is a normalized one and there exists a nonnegative integer set 

 such that (3-1)-(3-3) are satisfied.  

D

{ ( ) :  for all  and }mR r A A J A= ⊆ ≠ ∅

In addition, the interest of Theorem 3.2 goes beyond its implications to secret sharing. The 

characterization of the representable discrete polymatroids was until now an open problem. By using 

Theorem 3.2, this problem will be smoothly solved if the representability of a discrete polymatroid can 

be characterized by the representability of a normalized discrete polymatroid. Therefore, Theorem 3.2 is 

an interesting new result about representability of matroids. 

4  Operations on Discrete Polymatroids 

In this section, by dealing with the rank function of a discrete polymatroid, we introduce the 

definitions on the -set of a discrete polymatroid and the reduced discrete polymatroid respectively, 

which will be very useful in the characterization of quadripartite representable matroids.  

HΔ

Definition 4.1. Let  be a discrete polymatroid with ground set  and rank function 

. We say that an integer set 

mD +⊂ Z mJ

: ( )mh J → ZP { ( ) :  for all  and }mH h A A J AΔ = Δ ⊆ ≠ ∅  defined by 

({ }) ( ) ( \{ })m mh i h J h J iΔ = − ,      

({ , }) ( ) ( \{ , }) ({ }) ({ })m mh i j h J h J i j h i h jΔ = − − Δ −Δ , 

{ , , }
({ , , }) ( ) ( \{ , , }) ( )m m

A i j k
A

h i j k h J h J i j k h A
⊂
≠∅

Δ = − − Δ∑ , 

…, 
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\{ }

( \{ }) ( ) ({ }) ( )
m

m m
A J j
A

h J j h J h j h A
⊂
≠∅

Δ = − − Δ∑ , and 

( ) ( ) ( )
m

m m
A J
A

h J h J h A
⊂
≠∅

Δ = − Δ∑ , 

is the -set of , where  and . HΔ D , , mi j k J∈ 1 2| | ... m
m mH C C CΔ = + + + m

In this situation, it is not difficult to check that 

{ }

({ }) ( )

m

A i
A J

h i h A
≠∅

⊆

= Δ∑
∩

, 

{ , }

({ , }) ( )

m

A i j
A J

h i j h A
≠∅

⊆

= Δ∑
∩

, 

…, 

( ) ( )
m

m
A J
A

h J h A
⊆
≠∅

= Δ∑ . 

Lemma 4.2. From Proposition 2.3 and Definition 4.1, observe that for all ,  , mi j J∈

({ }) ( ) ( { }) 0m mh i h J h J iΔ = − − ≥ ,  

. ({ , }) ( { }) ( { }) ( { , }) ( ) 0m m m mh i j h J i h J j h J i j h JΔ = − + − − − − ≥

These imply that for  all elements of 2m ≤ HΔ -set of a discrete polymatroid are bound to 

nonnegative integers, but for  one or more negative integers may be present. 3m ≥

Definition 4.3. Let  be a discrete polymatroid with ground set  and rank function 

. We say that a discrete polymatroid  with ground set  is the reduced discrete 

polymatroid of  if the rank function  of  is such that 

 for every 

mD +⊂ Z mJ

: ( )mh J → ZP rD mJ

D : ( )r mh J → ZP rD

( ) ( ) ( )r i X
h X h X h i

∈
= − Δ∑ mX J⊆ , where ( ) ( ) ( { })m mh i h J h J iΔ = − − . 

    It is not difficult to check that for every mj J∈ , { }( \ ) (r m r mh J j h J= )  

{ }( ) ( 1) (
m

m mi J
h J i m h J

∈
−= − −∑ ) , which is a important property of the reduced discrete 

polymatroids. In the appendix, the next proposition is proved. 
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Proposition 4.4. Let  be a discrete polymatroid with ground set  and rank function 

. Let  be the associated reduced discrete polymatroid with ground set  and 

rank function . If  is K -representable, then so is . In addition, if  is -

representable, then  is -representable. 

D mJ

: ( )mh J → ZP rD mJ

: ( )r mh J → ZP D rD rD K

D K
As a consequence, the representability of a discrete polymatroid can be completely characterized 

by the representability of the associated reduced discrete polymatroid.  

5  A Characterization of Quadripartite Representable Matroids 

In this section, by using the -set of discrete polymatroids and the associated reduced discrete 

polymatroids of quadripartite matroids, we obtain a complete characterization of quadripartite 

representable matroids, which was until now an open problem, and hence, all access structures related to 

quadripartite representable matroids are the ideal ones.  

HΔ

Since the associated discrete polymatroids are the normalized ones, by using Theorem 3.2, we 

firstly give the complete characterizations of unipartite, bipartite and tripartite representble matroids 

respectively. 

Example 5.1. Consider a discrete polymatroid  with ground set  and rank function 

. 

D mJ

: ( )mh J → ZP

For , from Lemma 4.2, all elements of 2m ≤ HΔ -set of  are bound to nonnegative integers. 

We can construct a nonnegative integer set 

D

{ ( ) :  for all  and }mR r A A J A= ⊆ ≠ ∅  such that 

R H= Δ . Hence, from Theorem 3.2,  is representable over some finite field. D
As a consequence, all unipartite and bipartite matroids are representable, then access structures 

induced by unipartite and bipartite matroids are ideal ones, which has been done in [18], and also in [30]. 

Example 5.2. (Following Example 5.1) 

For , 3m = { }3 1, 2,3J =  and  from Definition 4.1, the HΔ -set of  is 

 defined by 

D

3{ ( ) :  for all  and }H h A A J AΔ = Δ ⊆ ≠ ∅

3 3({ }) ( ) ( \{ })h i h J h J iΔ = − ,    (5-1) 
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3 3({ , }) ( ) ( \{ , }) ({ }) ({ })h i j h J h J i j h i h jΔ = − − Δ −Δ ,     (5-2) 

3

3 3( ) ( ) ( )
A J
A

h J h J h A
⊂
≠∅

Δ = − Δ∑ .      (5-3) 

From Lemma 4.2, it is easily seen that all elements of HΔ -set of  except  are 

nonnegative integers.  

D 3( )h JΔ

If , we can construct a nonnegative integer set 

 such that 

3( ) 0h JΔ ≥

3{ ( ) :  for all  and }R r A A J A= ⊆ ≠ ∅ R H= Δ . From Theorem 3.2,  is representable 

over some finite field. 

D

If , from Theorem 3.2,  is -representable if and only if there exists a 

nonnegative integer set  such that (3-1)-(3-3) are satisfied. 

We can suppose that there exist  and a nonnegative integer set 

 such that for every 

3( ) 0h JΔ < D K

3{ ( ) :  for all  and }R r A A J A= ⊆ ≠ ∅

3

≠ ∅

3'( ) ( )h J h J>

3{ ( ) :  for all  and }R r A A J A= ⊆ 3,i j J∈ , 

3

{ }

( ) ({ })
A i
A J

r A h i
≠∅

⊆

=∑
∩

,    (5-4) 

3

{ , }
( ) ({ , })

A i j
A J

r A h i j
≠∅

⊆

=∑
∩

,    (5-5) 

3

3( ) '( )
A
A J

r A h J
≠∅
⊆

=∑ .   (5-6) 

Together with (5-1)-(5-6), we obtain that for every 3,i j J∈ , 

3 3({ }) '( ) ( \{ }) 0r i h J h J i= − ≥ , 

3 3({ , }) ({ , }) ( ) '( ) 0r i j h i j h J h J= Δ + − ≥ , 

3 3 3 3( ) ( ) ( ) '( ) 0r J h J h J h J= Δ − + ≥ . 

The above inequalities can be merged into 3 3 3 3( ) ( ) '( ) ( ) ({ , })h J h J h J h J h i j− Δ ≤ ≤ + Δ  since from 

 and 3( ) 0h JΔ < 3( ) ({ , }) ({ }) ({ }) ({ , }) 0h J h i j h i h j h i jΔ + Δ = + − ≥ , we obtain that 
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3 3 3 3 3( \{ }) ( ) ( ) ( ) ( ) ({ , }h J i h J h J h J h J h i j≤ ≤ −Δ ≤ + Δ ) . Hence, the value range of  is 

, where . 

3'( )h J

3 3 3 3( ) ( ) '( ) ( ) min( ({ , }), ({ , }), ({ , }))h J h J h J h J h i j h i k h j k−Δ ≤ ≤ + Δ Δ Δ 3, ,i j k J∈

Namely, we can find a nonnegative integer set 3{ ( ) :  for all  and }R r A A J A= ⊆ ≠ ∅

4

 such 

that (5-1)-(5-3) are satisfied. From Theorem 3.2,  is representable over some finite field. D
As a consequence, all tripartite matroids are represntable and all access structures induced by 

tripartite matroids are ideal ones, which has been done in [30]. 

Following this line of research, in order to characterize quadripartite representable matroids by 

using Theorem 3.2, we first need to deal with every quadripartite matroid such that the representability 

of the associated discrete polymatroid can be characterized by the representability of a normalized 

discrete polymatroid, that is, 4( \{ }) ( )h J i h J=  for every 4i J∈ , which is exactly the property of 

the associated reduced discrete polymatroid.  

Hence, to characterize quadripartite representable matroids is equivalent to characterize the 

representable reduced discrete polymatroids with ground set , which are equally the normalized 

discrete polymatroids. From Theorem 3.2, we need to determine whether there exists a nonnegative 

integer set  such that (3-1)-(3-3) are satisfied, which is the 

main goal of this section. 

4J

4{ ( ) :  for all  and }R r A A J A= ⊆ ≠ ∅

In the next theorem, we give the complete characterization of representable quadripartite matroids, 

which is proved in the appendix.  

Theorem 5.3. A quadripartite matroid is representable if and only if for the associated reduced 

discrete polymatroid  there exist five nonnegative integers  

 and  such that for every 

rD 4 4 4'( \{ }), '( \{ }), '( \{ }),h J i h J j h J k

4'( \{ })h J g 4'( )h J 4, , ,i j k g J∈  the following inequalities are satisfied: 

1. , and 4 4 4 4 4( ) '( \{ }), '( \{ }), '( \{ }), '( \{ }) '( )rh J h J i h J j h J k h J g h J≤ ≤ 4

4

2. , and 4 4 4 4'( \{ }) '( \{ }) '( ) ( ) ({ , })rh J i h J j h J h J h i j+ − ≥ − Δ

3. , and 4 4 4 4 4'( \{ }) '( \{ }) '( \{ }) '( ) 2 ( ) ({ , , })rh J i h J j h J k h J h J h i j k+ + − ≤ + Δ

4. , 4 4 4 4 4 4'( \{ }) '( \{ }) '( \{ }) '( \{ }) '( ) 3 ( ) ( )rh J i h J j h J k h J g h J h J h J+ + + − ≥ − Δ
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where  and 4( ), ({ , }), ({ , , }rh J h i j h i j kΔ Δ ) 4( )h JΔ  are the values of the rank function and HΔ -set 

of  respectively. rD

According to Theorem 5.3, if a quadripartite matroid is representable, the values of 

  and  can be calculated, and then we can 

determine a nonnegative integer set 

4 4 4'( \{ }), '( \{ }), '( \{ }),h J i h J j h J k 4'( \{ })h J g 4'( )h J

4{ ( ) :  for all  and }R r A A J A= ⊆ ≠ ∅  such that (3-1)-(3-3) are 

satisfied, from which we can construct a -representation of the associated discrete polymatroid 

according to the proof of Theorem 3.2. 

K

Therefore, after all representable quadripartite matroids are characterized, all access structures 

related to quadripartite representable matroids are the ideal ones. 

We need to highlight that since there exist ideal access structures related to non-representable 

matroids, to characterize representable quadripartite matroids is not equivalent to characterize the ideal 

access structures related to quadripartite matroids. 

Example 5.4. The Vamos matroid ( , )=M Q I  is a known non-representable matroid, which is 

defined on { }1, 2,3, 4,5,6,7,8=Q  with bases all 4-sets except the five 4-sets which are: 

{ }1, 2,3, 4 ,{ }1, 2,5,6 ,{ }1, 2,7,8 ,{ }3, 4,5,6 ,{ }3, 4,7,8 .  

For the Vamos matroid , we consider a partition ( , )=M Q I { }1 2 3 4, , ,P P P PΠ =  of the 

ground set  with Q { } { } { } { }1 2 3 41, 2 , 3, 4 , 5,6, , 7,8P P P P= = = = , and then, the partition Π  

defines a mapping , from which we obtain the associated discrete polymatroid 4: ( ) +Π → ]P Q

( )D = Π I  with ground set { }4 1, 2,3, 4J = . The rank function  of 4: ( )h J →P Z ( )D = Π I  

are as following: 

({1}) ({2}) ({3}) ({4}) 2h h h h= = = = ，

{ } { } { } { } { }( 1, 2 ) ( 1,3 ) ( 1, 4 ) ( 2,3 ) ( 2, 4 ) 3h h h h h= = = = = ， { }( 3, 4 ) 4=h ，

{ } { } { } { }( 1, 2,3 ) ( 1, 2, 4 ) ( 1,3, 4 ) ( 2,3, 4 ) 4h h h h= = = = , 

{ }( 1, 2,3, 4 ) 4h = . 
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From Definition 3.1, the associated discrete polymatroid  of the Vamos matroid is a 

normalized discrete polymatroid. Namely, the associated reduced discrete polymatroid . All 

elements of the -set of  are calculated as follow:  

D

rD D=

HΔ rD

({1}) ({2}) ({3}) ({4}) 0h h h hΔ = Δ = Δ = Δ = ，

，({1,3}) ({1,4}) ({2,3}) ({2,4}) ({3,4}) 1h h h h hΔ = Δ = Δ = Δ = Δ = ({1,2}) 0hΔ = ，

，({1,2,3}) ({1,2,4}) 0h hΔ = Δ = ({1,3,4}) ({2,3,4}) 1h hΔ = Δ = − , 

({1,2,3,4}) 1hΔ = . 

According to Theorem 5.3, suppose that there exist five nonnegative integers 

  and  such that  4 4 4'( \{ }), '( \{ }), '( \{ }),h J i h J j h J k 4'( \{ })h J g 4'( )h J

1. , and 4 4 4 44 '( \{1}), '( \{2}), '( \{3}), '( \{4}) '(h J h J h J h J h J≤ ≤ 4 )

=

=

=

=

=

=

=

=

=

=

=

2. , and 4 4 4'( \{1}) '( \{2}) '( ) 4 ({1, 2}) 4h J h J h J h+ − ≥ − Δ

   , and 4 4 4'( \{1}) '( \{3}) '( ) 4 ({1,3}) 3h J h J h J h+ − ≥ − Δ

4 4 4'( \{1}) '( \{4}) '( ) 4 ({1, 4}) 3h J h J h J h+ − ≥ − Δ , and 

4 4 4'( \{2}) '( \{3}) '( ) 4 ({2,3}) 3h J h J h J h+ − ≥ − Δ , and 

   , and 4 4 4'( \{2}) '( \{4}) '( ) 4 ({2, 4}) 3h J h J h J h+ − ≥ − Δ

4 4 4'( \{3}) '( \{4}) '( ) 4 ({3, 4}) 3h J h J h J h+ − ≥ − Δ , and 

3. , and 4 4 4 4'( \{1}) '( \{2}) '( \{3}) '( ) 8 ({1, 2,3}) 8h J h J h J h J h+ + − ≤ + Δ

   , and 4 4 4 4'( \{1}) '( \{2}) '( \{4}) '( ) 8 ({1, 2, 4}) 8h J h J h J h J h+ + − ≤ + Δ

   , and 4 4 4 4'( \{1}) '( \{3}) '( \{4}) '( ) 8 ({1,3, 4}) 7h J h J h J h J h+ + − ≤ + Δ

   , and  4 4 4 4'( \{2}) '( \{3}) '( \{4}) '( ) 8 ({2,3, 4}) 7h J h J h J h J h+ + − ≤ + Δ

4. , 4 4 4 4 4 4'( \{1}) '( \{2}) '( \{3}) '( \{4}) '( ) 12 ( ) 11h J h J h J h J h J h J+ + + − ≥ − Δ

From the above inequalities, we obtain that 

4 4 4 4 4'( \{1}) '( \{2}) 2 '( \{3}) 2 '( \{4}) 2 '( ) 14h J h J h J h J h J+ + + − = , and 

4 4'( \{1}) '( \{2}) 8h J h J+ = , and 
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4 4'( \{3}) '( \{4}) '( ) 3h J h J h J4+ − = , and  

4'( ) 4h J = , and 

4 4'( \{3}) '( \{4}) 7h J h J+ = . 

Obviously,  is contradictory to the inequality  

. This is a contradiction. It implies that 

there does not exist five nonnegative integers   and 

 such that the above inequalities are satisfied. Therefore, the Vamos matroid is non-

representable over any field. 

4 4'( \{3}) '( \{4}) 7h J h J+ =

4 )

≠ ∅

4 4 4 44 '( \{1}), '( \{2}), '( \{3}), '( \{4}) '(h J h J h J h J h J≤ ≤

4 4 4'( \{ }), '( \{ }), '( \{ }),h J i h J j h J k 4'( \{ })h J g

4'( )h J

6 Conclusions 

In this paper, by introducing the normalized discrete polymatroids, we obtain a characterization of 

a family of representable multipartite matroids, which implies a sufficient condition for an access 

structure to be ideal. Further, using this result and introducing the reduced discrete polymatroids, we 

provide a complete characterization of quadripartite representable matroids, which was until now an 

open problem, and hence, all access structures related to quadripartite representable matroids are the 

ideal ones. By the way, using our results, we give a new and simple proof that all access structures 

related to unipartite, bipartite and tripartite matroids coincide with the ideal ones. Our results are 

potentially interesting to solve the open problem, that is, which matroids induce ideal access structures?  

Appendix 

Theorem 3.2. Let  be a normalized discrete polymatroid with ground set  and rank 

function .  is -representable if and only if there exists a nonnegative integer set 

 such that for every 

mD +⊂ Z mJ

: ( )mh J → ZP D K

{ ( ) :  for all  and }mR r A A J A= ⊆ , , mi j k J∈ , 
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{ }

( ) ({ })

m

A i
A J

r A h i
≠∅

⊆

=∑
∩

,    (3-1) 

{ , }

( ) ({ , })

m

A i j
A J

r A h i j
≠∅

⊆

=∑
∩

,    (3-2) 

{ , , }
( ) ({ , , }) ( )

m

m
A i j k
A J

r A h i j k h J
≠∅

⊆

≥ =∑
∩

,    (3-3) 

where every element of R  is a nonnegative integer and 1 2| | ... m
m m mR C C C= + + + . 

Proof: We begin by proving the necessary condition in the statement of Theorem 3.2. Suppose that 

 is -representable. Then there exists a -representation of  consisting of subspaces 

 of the -vector space 

D K K D

1,..., mV V K sE =K , where ( )ms h J= . It implies that for every mX J⊆ , 

. Consider a nonnegative integer set ( ) dim( )ii Xh X V
∈

= ∑ { ( ) :  for all  and }mR r A A J A= ⊆ ≠ ∅

)

 

defined by  

( ) dim( )
m

i
i J

m Vr J
∈

= ∩ , 

\{ }

( \{ }) dim( ) (
m

i
i J j

m mVr J j r J
∈

= −∩ , 

…, 

( ) dim( ) ( )

m

i
i A A X

X J

Vr A r X
∈ ⊂

⊆

= − ∑∩ , 

where mj J∈ , . Then we obtain that for every  and mA J A⊆ ≠ ∅ , , mi j k J∈ , 

{ }
( ) dim( ) ({ })

m

i
A i
A J

r A V h i
≠∅

⊆

= =∑
∩

,  

{ , }

( ) dim( ) ({ , })

m

i j
A i j
A J

r A V V h i j
≠∅

⊆

= + =∑
∩

, and 

{ , , }

( ) dim( ) ({ , , }) ( )

m

i j k m
A i j k
A J

r A V V V h i j k h J
≠∅

⊆

= + + = =∑
∩

. 
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Hence, there exists a nonnegative integer set { ( ) :  for all  and }mR r A A J A= ⊆ ≠ ∅  such that (3-

1)-(3-3) are satisfied. 

The proof for the sufficient condition in the theorem is much more involved. Assume now that 

there exists a nonnegative integer set { ( ) :  for all  and }mR r A A J A= ⊆ ≠ ∅  such that (3-1)-(3-3) 

are satisfied. Naturally, we obtain that for every , , , mi j k g J∈ , 

{ }

( ) ({ })

m

A i
A J

r A h i
≠∅

⊆

=∑
∩

,  

{ , }

( ) ({ , })

m

A i j
A J

r A h i j
≠∅

⊆

=∑
∩

,  

{ , , }

( ) ({ , , }) ( )

m

m
A i j k
A J

r A h i j k h J
≠∅

⊆

≥ =∑
∩

,    

          ,       (3-4)  
{ , , , }

( ) ({ , , , }) ( )

m

m
A i j k g
A J

r A h i j k g h J
≠∅

⊆

≥ =∑
∩

                           …,                      (…) 

                     ( ) ( )

m

m
A
A J

r A h J
≠∅
⊆

≥∑ .                (3-m)   

Let  and ( )ms h J= sE =K  be a -dimensional vector space over some finite field  with 

. Given a basis {

s K

| | ( )

m

A
A J

r A
≠∅
⊆

≥ ∑K� }1,..., sv v  of , consider the mapping E : E→v K�  defined by 

1
1

( ) s i
ii

x x v−
=

= ∑v . Observe that the vectors ( )xv  have Vandermonde coordinates with respect to the 

given basis of . This implies that every set of at most  vectors of the form E s ( )xv  is independent 

(this property is very important to the following proof).  

Consider  disjoint sets |t R= | { }1,..., ( ) :tS S x x⊆ ∈v K E⊂ ) with (| | (iS f i= 1 i t≤ ≤ ), 

where :{1,..., }f t → R  is a bijection which associates each  (1i i t≤ ≤ ) with an element of R . 
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From (3-m), we obtain that , where every set of at most  vectors in 

 are independent.  

1

| | ( )

m

t

i
i A

A J

S r A
= ≠∅

⊆

=∑ ∑ s≥

E

s

1,..., tS S

According to (3-1), we construct  subspaces  such that for every m 1,..., mV V ⊆ mj J∈ , jV  

is spanned by  respectively. In this situation, from (3-1) and (3-2), we obtain that for every 

, the dimensions  and di

| | ({ })i

i
S h j

S
=∑
∪

, mi j J∈ dim( ) ({ })iV h i= m( ) ({ , })i jV V h i j+ = . From (3-3)-(3-m), there 

hold that for  and | | 3A ≥ mA J⊆ , the dimensions dim( ) ( ) ( )j mj A
V h A h J

∈
= =∑  since every set 

of at most  vectors in  are independent. Hence, for all ( )ms h J= 1,..., tS S mA J⊆ , the dimensions 

 hold. These imply that  subspaces  of the vector space dim( ) ( )jj A
V h A

∈
=∑ m 1,..., mV V sE =K  

is a -representation of . Namely,  is representable over . K D D K

Proposition 4.4. Let  be a discrete polymatroid with ground set  and rank function 

. Let  be the associated reduced discrete polymatroid with ground set  and 

rank function . If  is K -representable, then so is . In addition, if  is -

representable, then  is -representable. 

D mJ

: ( )mh J → ZP rD mJ

: ( )r mh J → ZP D rD rD K

D K
Proof: We begin by proving the first claim in the statement of Proposition 4.1. Suppose that  is 

-representable. Then there exists a -representation of  consisting of subspaces  of 

the -vector space 

D

K K D 1,..., mV V

K sE =K , where ( )ms h J= . For every mi J∈ , consider two subspaces 

 such that  and ,i iU W E⊆ { }m
i jj J i

U V
∈ −

=∑ i iE U W= ⊕ . Since ( ) dim( )ms h J E= =  and 

{ } { }( ) dim(
m

m jj J i
h J i V

∈ −
− = ∑ ) , we deduce that ( ) dim( )ir i WΔ = . On the other hand,  

because 

i iW V⊆

i iE U V= +  and i iE U W= ⊕ . Consider two subspaces ,i i iR W V⊆  such that . 

Since 

i iV R W= ⊕ i

i iE U W= ⊕  and i iV R Wi= ⊕ , we obtain 

that , where dim( ) dim( ) dim( ) dim( )i i i ii X i X i X i X
V R W R

∈ ∈ ∈ ∈
= ⊕ = +∑ ∑ ∑ ∑ iW
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dim( ) ( )ii X
V h X

∈
=∑  and , and hence, dim( ) ( )ii X i X

W
∈ ∈

= Δ∑ ∑ r i dim( ) ( )i ri X
R h X

∈
=∑    

Therefore, the subspaces 1,... mR R  of the K -vector space '' sE =K  are a -representation of , 

where . 

K rD

' ( ) (
m

m i J
s h J r i

∈
= − Δ∑ )

The proof for the second claim in the theorem is similar to the first. Assume now that  is -

representable. Then there exists a -representation of  consisting of subspaces 

rD K

K rD 1,... mR R  of the 

-vector space K '' sE =K , where ' ( ) (
m

m i J
s h J r i

∈
= − Δ )∑ . Consider two subspaces 

', sE W E⊆ = K  such that 'E E W= ⊕ , where ( )ms h J= . Then . 

Consider the subspaces  such that 

dim( ) ( )
mi J

W r
∈

= Δ∑ i

1,... mW W W⊆ 1 ... mW W W= ⊕ ⊕ , where . Let 

. Since  and 

dim( ) ( )iW r= Δ i

ii iV R W= ⊕ 'E E W= ⊕ '
m

ii J
E R

∈
=∑ , we obtain that 

 and, hence, the subspaces  of the -

vector space 

dim( ) dim( ) dim( )i ii X i X i X
V R

∈ ∈ ∈
= +∑ ∑ ∑ iW 1,..., mV V K

sE =K  are a K -representation of , where D ( )ms h J= . 

As a consequence, the representable reduced discrete polymatroids can characterize the 

representable discrete polymatroids. 

Theorem 5.3. A quadripartite matroid is representable if and only if for the associated reduced 

discrete polymatroid  there exist five nonnegative integers  

 and  such that for every 

rD 4 4 4'( \{ }), '( \{ }), '( \{ }),h J i h J j h J k

4'( \{ })h J g 4'( )h J 4, , ,i j k g J∈  the following inequalities are satisfied: 

1. , and 4 4 4 4 4( ) '( \{ }), '( \{ }), '( \{ }), '( \{ }) '( )rh J h J i h J j h J k h J g h J≤ ≤ 4

4

)

2. , and 4 4 4 4'( \{ }) '( \{ }) '( ) ( ) ({ , })rh J i h J j h J h J h i j+ − ≥ − Δ

3. , and 4 4 4 4 4'( \{ }) '( \{ }) '( \{ }) '( ) 2 ( ) ({ , , })rh J i h J j h J k h J h J h i j k+ + − ≤ + Δ

4. , 4 4 4 4 4 4'( \{ }) '( \{ }) '( \{ }) '( \{ }) '( ) 3 ( ) ( )rh J i h J j h J k h J g h J h J h J+ + + − ≥ − Δ

where  and 4( ), ({ , }), ({ , , }rh J h i j h i j kΔ Δ 4( )h JΔ  are the values of the rank function and HΔ -set 

of  respectively. rD
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Proof: For , 4m = { }4 1, 2,3,4J = . According to Definition 4.3, the associated reduced discrete 

polymatroid  with rank function  is obtained. From Proposition 4.4, in order to 

determine the representability of , we just determine the representability of .  

rD : ( )r mh J → ZP

D rD

From the rank function  of , the : ( )r mh J → ZP rD HΔ -set of  is 

 defined by 

rD

4{ ( ) :  for all  and }H h A A J AΔ = Δ ⊆ ≠ ∅

   ,    (5-7) 4 4({ }) ( ) ( \{ }) 0r rh i h J h J iΔ = − =

    ,    (5-8) 4 4({ , }) ( ) ( \{ , }) ({ }) ({ })r rh i j h J h J i j h i h jΔ = − −Δ −Δ

    4 4
{ , , }

({ , , }) ( ) ( \{ , , }) ( )r r
A i j k
A

h i j k h J h J i j k h A
⊂
≠∅

Δ = − − Δ∑ ,    (5-9) 

    
4

4 4( ) ( ) ( )r
A J
A

h J h J h A
⊂
≠∅

Δ = − Δ∑ .    (5-10) 

From Lemma 4.2, it is easily seen that for all 4, ,i j k J∈ , all elements of -set of  except 

 and  are nonnegative integers.  

HΔ rD

({ , , })h i j kΔ 4( )h JΔ

If  and  for all ({ , , }) 0h i j kΔ ≥ 4( ) 0h JΔ ≥ 4, ,i j k J∈ , we can construct a nonnegative integer 

set  such that 4{ ( ) :  for all  and }R r A A J A= ⊆ ≠ ∅ R H= Δ . From Theorem 3.2,   is 

representable over some finite field. 

rD

If there exist one or more negative integers in the values of ({ , , })h i j kΔ  and  for all 

. From Theorem 3.2,  is -representable if and only if there exists a nonnegative 

integer set  such that (3-1)-(3-3) are satisfied. Suppose that 

there exist  for every 

4( )h JΔ

4, ,i j k J∈ rD K

4{ ( ) :  for all  and }R r A A J A= ⊆ ≠ ∅

'({ , , }) ({ , , })rh i j k h i j k≥ 4, ,i j k J∈ ,  and a nonnegative 

integer set  such that for every , 

4'( ) ( )rh J h J≥ 4

≠ ∅4{ ( ) :  for all  and }R r A A J A= ⊆ 4, ,i j k J∈

4

{ }
( ) ({ })r

A i
A J

r A h i
≠∅

⊆

=∑
∩

,    (5-11) 

4

{ , }
( ) ({ , })r

A i j
A J

r A h i j
≠∅

⊆

=∑
∩

,    (5-12) 
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4

{ , , }
( ) '({ , , })

A i j k
A J

r A h i j k
≠∅

⊆

=∑
∩

,    (5-13) 

4

4( ) '( )
A
A J

r A h J
≠∅
⊆

=∑ .    (5-14) 

Together with (5-7)-(5-14), we obtain that for every 4, , ,i j k g J∈ , 

4 4({ }) '( ) '( \{ }) 0r i h J h J i= − ≥ , 

4 4 4({ , }) '( \{ }) ( ) ({ , }) '( \{ }) '( ) 0rr i j h J j h J h i j h J i h J= − + Δ + − 4 ≥

0≥

≥

, 

4 4 4 4 4({ , , }) '( ) '( \{ }) '( \{ }) '( \{ }) 2 ( ) ({ , , })rr i j k h J h J i h J j h J k h J h i j k= − − − + + Δ , 

4 4 4 4 4 4 4 4( ) '( \{ }) '( \{ }) '( \{ }) 3 ( ) ( ) '( \{ }) '( ) 0rr J h J j h J k h J g h J h J h J i h J= + + − + Δ + − . 

To sum up, a nonnegative integer set 4{ ( ) :  for all  and }R r A A J A= ⊆ ≠ ∅

4

4

 can be found if 

there exist five nonnegative integers  and  

such that for every  the following inequalities are satisfied: 

4 4 4'( \{ }), '( \{ }), '( \{ }),h J i h J j h J k 4'( \{ })h J g 4'( )h J

4, , ,i j k g J∈

1. , and 4 4 4 40 '( \{ }), '( \{ }), '( \{ }), '( \{ }) '( )h J i h J j h J k h J g h J≤ ≤

2. , and 4 4 4 4'( \{ }) '( \{ }) '( ) ( ) ({ , })h J i h J j h J h J h i j+ − ≥ − Δ

3. , and 4 4 4 4 4'( \{ }) '( \{ }) '( \{ }) '( ) 2 ( ) ({ , , })h J i h J j h J k h J h J h i j k+ + − ≤ + Δ

4. . 4 4 4 4 4 4'( \{ }) '( \{ }) '( \{ }) '( \{ }) '( ) 3 ( ) ( )h J i h J j h J k h J g h J h J h J+ + + − ≥ − Δ
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