Throughput-Optimal Routing in Unreliable
Networks

Paul Bunn Rafail Ostrovsky

Abstract

We demonstrate the feasibility of throughput-efficient routing in a highly unreliable net-
work. Modeling a network as a graph with vertices representing nodes and edges representing
the links between them, we consider two forms of unreliability: unpredictable edge-failures, and
deliberate deviation from protocol specifications by corrupt nodes. The first form of unpre-
dictability represents networks with dynamic topology, whose links may be constantly going up
and down; while the second form represents malicious insiders attempting to disrupt communi-
cation by deliberately disobeying routing rules, by e.g. introducing junk messages or deleting or
altering messages. We present a robust routing protocol for end-to-end communication that is
simultaneously resilient to both forms of unreliability, achieving provably optimal throughput
performance. Our proof proceeds in three steps: 1) We use competitive-analysis to find a lower-
bound on the optimal throughput-rate of a routing protocol in networks susceptible to only
edge-failures (i.e. networks with no malicious nodes); 2) We prove a matching upper bound by
presenting a routing protocol that achieves this throughput rate (again in networks with no ma-
licious nodes); and 3) We modify the protocol to provide additional protection against malicious
nodes, and prove the modified protocol performs (asymptotically) as well as the original.

Keywords. Network Routing; Fault Localization; Multi-Party Computation in Presence of
Dishonest Majority; Communication Complexity; End-to-End Communication; Competitive
Analysis; Asynchronous Protocols

1 Introduction

With the immense range of applications and the multitude of networks encountered in prac-
tice, there has been an enormous effort to study routing in various settings. For the purpose of
developing network models in which routing protocols can be developed and formally analyzed,
networks are typically modelled as a graph with vertices representing nodes (processors, routers,
etc.) and edges representing the connections between them. Beyond this basic structure, additional
assumptions and restrictions are then made in attempt to capture various features that real-world
networks may display. In deciding which network model is best-suited to a particular application,
developers must make a choice with respect to each of the following considerations: 1) Synchronous
or Asynchronous; 2) Static or Dynamic Topology; 3) Global Control or Distributed/Local Control;
4) Connectivity/Liveness Assumptions; 5) Existence of Faulty /Malicious Nodes.

Notice that in each option above there is an inherent trade-off between generality /applicability
of the model verses optimal performance within the model. For instance, a protocol that assumes a
fixed network topology will likely out-perform a protocol designed for a dynamic topology setting,
but the former protocol may not work in networks subject to edge-failures. Similarly, a protocol that
protects against the existence of faulty or deliberately malicious nodes will likely be out-performed
in networks with no faulty behavior by a protocol that assumes all nodes act honestly.

From both a theoretical and a practical standpoint, it is important to understand how each
(combination) of the above listed factors affects routing performance. In this paper, we explore
the feasibility of end-to-end routing in highly unreliable networks, i.e. networks that simultaneously
consider all of the more general features: Asynchronous, Dynamic Topology, Local Control, no
Connectivity Assumptions, and the existence of deliberately Malicious Nodes. Admittedly, in this
“worst-case” model it is unlikely that any protocol will perform well, and one (or more) stronger
assumption(s) must be made to achieve a reasonable level of performance. However, understanding
behavior in the worst case, even with respect to the most basic task of end-to-end communication,
is important to determine how much (if any) the addition of each assumption improves optimal
protocol performance.

1.1 Previous Work

As mentioned above, development and analysis of routing protocols relies heavily on the choices
made for the network model. To date, all network models have guaranteed at least one (and
more commonly multiple) “reliability” assumption(s) with respect to the above list of five network
characteristics. In this section, we explore various combinations of assumptions that have been
made in recent work, highlighting positive and negative results with respect to each network model,
emphasizing clearly which assumptions are employed in each case. Since our work focuses on
theoretical results, for space considerations we do not discuss below the vast amount of research
and analysis of routing issues for specific network systems encountered in practice, e.g. the Internet.
Even still, the amount of research regarding network routing and analysis of routing protocols is
extensive, and as such we include only a sketch of the most related work, indicating how their
models differ from ours and providing references that offer more detailed descriptions.

END-TO-END COMMUNICATION: One of the most relevant research directions to our paper is
the notion of End-to-End communication in distributed networks, where two nodes (sender and
receiver) wish to communicate through a network. While there is a multitude of problems that
involve end-to-end communication (e.g. End-to-End Congestion Control, Path-Measurement, and
Admission Control), we discuss here work that consider networks whose only task is to facilitate
communication between sender and receiver. Some of these include a line of work developing the
Slide protocol (the starting point of our protocol): Afek and Gafni [2|, Awerbuch et al. [12], Afek
et al. [1], and Kushilevitz et al. [18]. The Slide protocol (and its variants) have been studied in a
variety of network settings, including multi-commodity flow (Awerbuch and Leighton [11]), networks
controlled by an online bursty adversary (Aiello et al. [4]), and networks that allow corruption of
nodes (Amir et al. [7]). However, prior to our work there was no version of the Slide protocol
that considered routing in the “worst case” network setting: only [7] considers networks in which
nodes are corruptible, but their network model assumes synchronous communication and demands
minimal connectivity guarantees.

FAauLT DETECTION AND LOCALIZATION PROTOCOLS: There have been a number of papers that
explore the possibility of corrupt nodes that deliberately disobey protocol specifications in order
to disrupt communication. In particular, there is a recent line of work that considers a network
consisting of a single path from the sender to the receiver, culminating in the recent work of Barak
et al. [13] (for further background on fault localization see references therein). In this model, the
adversary can corrupt any node (except the sender and receiver) in a dynamic and malicious manner.

Since corrupting any node on the path will sever the honest connection between sender and receiver,
the goal of a protocol in this model is not to guarantee that all messages sent are received. Instead,
the goal is to detect faults when they occur and to localize the fault to a single edge.

Goldberg et al. [17] show that a protocol’s ability to detect faults relies on the assumption that
One-Way Functions (OWF) exist, and Barak et al. [13] show that the (constant factor) overhead (in
terms of communication cost) incurred for utilizing cryptographic tools (such as MACs or Signature
Schemes) is mandatory for any fault-localization protocol. Awerbuch et al. [10] also explore routing
in the Byzantine setting, although they do not present a formal treatment of security, and indeed a
counter-example that challenges their protocol’s security is discussed in the appendix of [13].

Fault Detection and Localization protocols focus on very restrictive network models (typically
synchronous networks with fixed topology and some connectivity assumptions), and throughput-
performance is usually not considered when analyzing fault detection/localization protocols.

COoMPETITIVE ANALYSIS: Competitive Analysis was first introduced by Sleator and Tarjan [21]
as a mechanism for measuring the worst-case performance of a protocol, in terms of how badly the
given protocol may be out-performed by an off-line protocol that has access to perfect information.
Recall that a given protocol has competitive ratio 1/ (or is A-competitive) if an ideal off-line protocol
has advantage over the given protocol by at most a factor of A.

One place competitive analysis has been used to evaluate performance is the setting of distributed
algorithms in asynchronous shared memory computation, including the work of Ajtai et al. [6]. This
line of work has a different flavor than the problem considered in the present paper due to the
nature of the algorithm being analyzed (computation algorithm verses network routing protocol).
In particular, network topology is not a consideration in this line of work (and malicious deviation
of processors is not considered).

Competitive analysis is a useful tool for evaluating protocols in unreliable networks (e.g. asyn-
chronous networks and/or networks with no connectivity guarantees), as it provides best-possible
standards (since absolute performance guarantees may be impossible due to the lack of network
assumptions). For a thorough description of competitive analysis, see [14].

Max-FLow AND MuLTI-CoMMODITY FLow: The Max-flow and multi-commodity flow models
assume networks that are synchronous with connectivity/liveness guarantees and have incorrupt-
ible nodes (max-flow networks also typically have fixed topology and are global-control). There
has been a tremendous amount of work in these areas, see e.g. Leighton et al. [19] for a discussion
of the two models and a list of results, as well as Awerbuch and Leighton [11] who show optimal
throughput-competitive ratio for the network model in question.

ADMISSION CONTROL AND ROUTE SELECTION: The admission control/route selection model
differs from the multi-commodity flow model in that the goal of a protocol is not to meet the de-
mand of all ordered pairs of nodes (s,t), but rather the protocol must decide which requests it
can/should honor, and then designate a path for honored requests. There are numerous models
that are concerned with questions of admission control and route selection: The Asynchronous!
Transfer Model (see e.g. Awerbuch et al. [9]), Queuing Theory (see e.g. Borodin and Kleinberg [15]
and Andrews et al. [8]), Adversarial Queuing Theory (see e.g. Broder et al. [16] and Aiello et al.
[5]). For an extensive discussion about these research areas, see [20] and references therein.

"We emphasize that the definition of asynchronicity in ATM is different than the one considered in this paper. In
particular, “asynchronicity” in ATM literature is meant to emphasize the fact that the requests are not known ahead
of time, and thus protocols face the added challenge of handling new requests adaptively.

The admission control/route selection model assumes synchronous communication and incor-
ruptible nodes and makes connectivity/liveness guarantees. Among the other options (fixed or
dynamic topology, global or local control), each combination has been considered by various au-
thors, see the above reference for further details and results within each specific model.

1.2 Our Results

In this paper, we consider the feasibility of end-to-end routing in unreliable networks. We be-
gin by exploring optimal throughput performance in networks whose nodes are trustworthy, but
otherwise the network represents a “worst-case” network model. In particular, we use competitive
analysis to prove matching upper and lower bounds on throughput performance for end-to-end com-
munication in networks that are asynchronous, local-control, and have dynamic topology with no
connectivity guarantees.

Theorem 1 (Informal) The best competitive-ratio that any protocol can achieve in a distributed
asynchronous network with dynamic topology (and no connectivity assumptions) is 1/n (where n is
the number of nodes). In particular, given any protocol P, there exists an alternative protocol P’,
such that P will out-perform P by a factor of at least n.

Theorem 2 (Informal) There exists a protocol that achieves a competitive ratio of 1/n in a dis-
tributed asynchronous network with dynamic topology (and no connectivity assumptions).

Next, we move to networks where the nodes are susceptible to corruption and may deviate from the
specified protocol in any desired manner to disrupt communication as much as possible. Somewhat
surprisingly, we show that this increased level of unreliability does not affect optimal throughput
performance; indeed, we demonstrate a protocol that achieves 1/n competitive ratio, which matches
the lower-bound of Theorem 1.

Theorem 3 (Informal) Assuming one-way functions exist and Public-Key Infrastructure, there
exists a protocol with competitive ratio 1/n in a distributed asynchronous network with dynamic
topology (and no connectivity assumptions), even if an arbitrary subset of malicious nodes deliber-
ately disobey the protocol specifications in order to disrupt communication as much as possible.

In Section 2 we define formally the network model(s) and our mechanism for analyzing throughput
performance, then in Sections 3-5 we go through the ideas for Theorems 1-3 (respectively). Rigorous
proofs of all theorems can be found in the Appendix.

2 The Model

In this section, we describe formally the model in which we will be analyzing routing protocols.
We begin by modeling the network as a graph G with n vertices (or nodes). Two of these nodes are
designated as the sender S and receiver R, and the sender has a stream of messages {mi,mo,...}
that it wishes to transmit through the network to the receiver.

Asynchronous communication networks vary from synchronous networks in that the transmission
time across an edge in the network is not fixed (even along the same edge, from one message
transmission to the next). Since there is no common global clock or mechanism to synchronize
events, an asynchronous network is often said to be “message driven,” in that the actions of the
nodes in the network occurs exactly (and only) when they have just sent/received a message.

Asynchronous networks are commonly modelled by introducing a scheduling adversary that con-
trols the edges of the network as follows. Informally, we focus on a single edge F(u,v), and then
a “round” consists of allowing the edge to deliver a message in both directions.? To model unpre-
dictable delivery times across each edge, we have each node u decide on the next message to send
to v immediately after receiving a message from v, and this message is then sent to the adversary
who stores the message until the next time the adversary activates edge F(u,v).

Formally, we define a round to consist of a single edge E(u,v) in the network chosen by the
adversary in which two sequential events occur: la) Among the packets from u to v that the
adversary is storing, it will choose one (in any manner it likes) and deliver it to v; 1b) Similarly, the
adversary chooses one of the packets it is storing from v to u and delivers it to u; 2a) After seeing
the delivered packet, u sends requests of the form (u,v, m) = (sending node, target node, message)
to the adversary, which will be stored by the adversary and may be delivered the next time F(u,v)
is made a round; 2b) Similarly for v. If e.g. u does not have a packet he wishes to send v in step
(2a), then u can choose to send nothing here. Similarly, the adversary does not send anything to v
in step (1la) if he is not storing a message from u to v during round F(u,v).

Modelling asynchronicity in this manner captures the intuition that a node has no idea how
long a message “sent” to an adjacent node will take to arrive, and this definition also captures the
“worst-case” asynchronicity, in that a (potentially deliberately malicious) adversary controls the
scheduling of rounds/edges.

For ease of discussion, we assume that all edges in the network have a fixed bandwidth /capacity,
and that this quantity is the same for all edges in the network. We emphasize that this assumption
does not restrict the validity of our claims in a more general model allowing varying bandwidths,
but is only made for ease of exposition.

Aside from obeying the above specified rules, we place no restriction on the scheduling adversary.
In other words, it may honor whatever edges it likes (this models the fact our network makes no
connectivity assumptions), wait indefinitely long between honoring the same edge twice (modeling
both the dynamic and asynchronous features of our network), and do anything else it likes (so long as
it respects steps 1) and 2) above each time it honors an edge) in attempt to hinder the performance
of a routing protocol.

In Section 5, our model will also allow a polynomially bounded node-controlling adversary to
corrupt the nodes in the network. The node-controlling adversary is malicious, meaning that he
can take complete control over the nodes he corrupts, and can therefore force them to deviate from
any protocol in whatever manner he likes. We further assume that the adversary is dynamic, which
means that he can corrupt nodes at any stage of the protocol, deciding which nodes to corrupt
based on what he has observed thus far. We do not impose any “access-structure” limitations on
the adversary. That is, the adversary may corrupt any nodes it likes (although if the sender and/or
receiver is corrupt, secure routing between them is impossible). Because integrity of the messages
received by the receiver is now a concern (as corrupt nodes can delete and/or modify messages), we
will say a routing protocol is secure if the receiver eventually gets all of the messages sent by the
sender, in order and without duplication or modification.

’The demand that the adversary deliver messages in both directions when honoring an edge E(u,v) does not
restrict the power of the adversary. To generalize to the case where the adversary can deliver messages in only one
direction, one could simply define an edge to be “down” until at least one message has been able to travel in each
direction. Since competitive analysis can be used to show that acknowledgements of some kind are requisite to achieve
finite competitive-ratio, it is natural to define a round in such a way so as to allow communication in both directions.

The separation of the adversaries into two distinct entities is solely for conceptual reasons.
Note that the scheduling adversary cannot be controlled or eliminated: edges themselves are not
inherently “good” or “bad,” so identifying an unresponsive edge does not allow us to forever refuse
the protocol to utilize this edge. By contrast, our protocol will limit the amount of influence the
node-controlling adversary has in the network. Specifically, we will show that if a node deviates
from the protocol in a sufficiently destructive manner (in a well-defined sense), then our protocol
will be able to identify it as corrupted in a timely fashion. Once a corrupt node has been identified,
it will be eliminated from the network by excluding it from all future communication.

Note that our network model is on-line and distributed, in that we do not assume that the nodes
have access to any information (including future knowledge of the adversary’s schedule) aside from
the packets they receive during a round they are a part of. Also, we insist that nodes have bounded
memory which is at least (n?).3

The goal of this paper is to analyze the performance of routing protocols in a network model that
is: on-line, distributed, asynchronous, dynamic with no connectivity assumptions, and susceptible
to misbehaving nodes. Our mechanism for evaluating protocols will be to measure their throughput,
a notion we can now define formally in the context of rounds and the scheduling adversary. In
particular, let ffl : N — N be a function that measures, for a given protocol P and adversary A, the
number of packets that the receiver has received as a function of the number of rounds that have
passed. Note that in this paper, we will consider only deterministic protocols, so f;;‘ is well-defined.
The function fﬁ formalizes our notion of throughput.

As mentioned in the Introduction, we utilize competitive analysis to gauge the performance (with
respect to throughput) of a given protocol against all possible competing protocols. In particular, for
any fixed adversary A, we may consider the ideal “off-line” protocol P’ which has perfect information:
knowledge of all future decisions of the scheduling adversary, as well as knowledge of which nodes
are/will become corrupt. That is, for any fixed round z, there exists an ideal off-line protocol
P'(A, z) such that f(z) is maximal. We demand that the ideal protocol P’ never utilizes corrupt
nodes, once they have been corrupted (this restriction is not only reasonable, it is necessary, as it
can easily be shown that allowing P’ to utilize corrupt nodes will result in every on-line protocol
having competitive ratio).

Definition 2.1. We say that a protocol P has competitive ratio 1/\ (respectively is A-competitive)
if there exists a constant k£ and function g(n,C) (C is the memory bound per node) such that for
all possible adversaries A and for all z € N:*

fp(e) < (k- A) - fp(z) + g(n,0) (1)

We assume that there is a Public-Key Infrastructure (PKI) that allows digital signatures. In
particular, before the protocol begins we choose a security parameter [sufficiently large and run a
key generation algorithm for a digital signature scheme, producing n = |G| (secret key, verification
key) pairs (sky, vky). As output to the key generation, each processor u € G is given its own private
signing key sk, and a list of all n signature verification keys vk, for all nodes v € G. In particular,
this allows the sender and receiver to sign messages to each other that cannot be forged (except
with negligible probability in the security parameter) by any other node in the system.

3For simplicity, we assume that all nodes have the same memory bound, although our argument can be readily
extended to handle the more general case.

“Typically, A is a function of the number of nodes in the network n, and Definition 2.1 implicity assumes the
minimal value of A for which (1) holds.

3 Optimal Competitive Ratio in Unrestricted Networks

Due to space constraints and the complexity of the argument, we will only be able to sketch the
proof of Theorem 1 in this section. At a high level, the idea is to describe an adversary that schedules
edges based on the given protocol’s actions such that the packets of the protocol get “spread out”
among the nodes of the network. Meanwhile, with knowledge of the adversary’s schedule, an offline
protocol can choose to only move packets along edges leading to the receiver. A short description
is below; the full proof can be found in Appendix A.

The network model assumes that nodes have bounded memory, so let C' denote the maximal
number of packets that any node can store at any time. We will show that for any deterministic
protocol P, there exists an adversary A, a protocol P’ and a sequence of strictly positive integers
{m1,mq, ...} such that for any a > 0, by round = = > ; m;C:"

aC aC

f7“§1/($) =aC and f7“§‘($) < -2 = — (2)

from which we conclude that the competitive ratio of P is at best 1/n.

We begin by describing the adversary, i.e. a schedule (or order) of edges that will be honored. The
schedule will proceed in cycles, with the i*" cycle lasting m;C rounds. Let the height of a node refer
to the number of packets currently stored by that node. For the first C' rounds, the adversary finds
the internal node A; with the largest height (ties are broken arbitrarily), and honors edge F(S, A7)
for C rounds (here S denotes the Sender). The protocol then proceeds inductively, starting with
j:2and;1\1:A1:

1. The adversary finds node Aj, where A; is the node in the network closest in height (but
smaller) to Aj_. If there is no such node, set A; to the Receiver R.

~

2. The adversary honors edge E(A;_1,A;) for C rounds

3. The adversary sets Ej to be whichever node (//l\j,l or A;) has fewer packets after the C' rounds

~

of edge E(Aj_1,A;) has just passed.

The above three steps are continued until the end of the C' rounds for which A; = R.

Notice a few features of the adversarial strategy: 1) The Sender’s ability to insert packets is
hindered by the fact the adversary is choosing to honor edge E(S,N) for the node N with the
smallest capacity to store more packets; 2) By selecting in Step 2 the node storing fewer packets,
the adversary is attempting to minimize the number of packets that make progress towards the
Receiver; indeed 3) Among all nodes in the network, the node N that is currently storing the fewest
packets will be the one connected to the Receiver in the final C' rounds of the cycle. Also, it is clear
that an off-line protocol P’ with knowledge of all future rounds will be able to deliver C' packets
every cycle. Since a cycle consists of C % m rounds for some positive integer m, we can generate a
sequence of positive integers {m;} coming from the i** cycle, yielding the first equality of (2), so it
remains to prove the second bound in (2).

Fix any on-line protocol P we wish to analyze. If we could demonstrate that P delivers at
most C'/(n — 2) packets per cycle, then (2) would be immediate. Unfortunately, one can imagine
e.g. the state of the network at the beginning of some cycle being such that all internal nodes are
storing the maximum C' allowed packets. In this case, P will be able to deliver C' packets this cycle.
Therefore, we instead need to argue that if P ever reaches a state where it is able to deliver more

than C'/(n — 2) packets in some cycle (e.g. all nodes are full), then it must be that P has delivered
fewer than an average of C'/(n — 2) packets per cycle in the past.

With this counter-example in mind, we define a potential function ¥*, which intuitively measures
the ability of P to deliver packets in the o cycle. We will show that whenever P delivers more than
C/(n — 2) packets, the difference ¥ — U+l will be positive and “sufficiently large.” Conversely,
any time WO > U we will show that necessarily P delivered “significantly fewer” than C'/(n — 2)
packets in the a'* cycle.

Formally, at the start of any cycle «, label the internal nodes as {Ny,..., N,_2} in descending
order in terms of how full their buffers are at the start of a. Let H{* denote the number of packets
that node N;* is storing at the outset of «, and then define:

\Ifa:g(%)n_z-_Qmax (0,Hf‘—(n—z'—2)n€2> (3)

i=1

Let Z® denote the number of packets the Receiver receives in the a? cycle. Our main technical
result for this section is then:

Lemma 3.1. For all o € N:

7C
Za \Ija+1 o \Ija <
+(S ——
Proof. See the proof of Lemma A.12 in the Appendix.

With Lemma 3.1 in hand, we obtain the second inequality of (2) as an immediate corollary:

Lemma 3.2. For any o € N and z = (n — 2)aC:

7aC
Alx) <
FAG) < 1 (5)
Proof. Consider the string of inequalities:
TaC TaC
7P < (U — 9Py) = ol getl <
=222 3 (g - @) = G S ©

Bl BLla
where the last inequality follows from the fact that We*! > 0 and W' = 0 (the latter is true since
at the outset of the protocol, all nodes are not storing any packets).

4 Optimal On-line Local Control Protocol

In this section we present an on-line protocol that enjoys competitive ratio 1/n. The protocol
is a basic implementation of the “Slide” protocol (or gravitational-flow), which was first introduced
by Afek, Gafni, and Rosén [3|, and further developed in a series of work [1] and [18]. We chose to
analyze the performance of this protocol in our “unrestricted” network model because its inherent
message-driven protocol is well-suited for the asynchronous network, and it has also been shown
to out-perform more naive candidates for asynchronous routing protocols (e.g. broadcast) when
stronger network assumptions are made [7].

Because the Slide protocol has nodes make routing decisions based on their current height (how
many packets they are currently storing), it will be easier to work in a simplified model for asyn-
chronicity over the one presented in Section 2. In particular, for the remainder of this section, we
assume a semi-asynchronous model, defined as follows:

1" The adversary does not maintain a buffer of requests of packets from nodes and must instead
satisfy them immediately as specified in 3’ below

2" The adversary proceeds in the same manner as before, by selecting an edge E(u,v) to honor
according to the same guidelines as in Section 2

3’ During a round E(u,v), the adversary first “awakens” u and v to alert them they are a part of
the current round. Nodes v and v may now submit their request, consisting only of a packet
plus control information, to the adversary who must directly deliver the packet p to v during
this round (similarly the packet p’ that v submitted is delivered to w).

Comparing this to the fully asynchronous model defined in Section 2, the difference is that here the
packets that v and v deliver to each other, with their height information included, are current; in
the model of Section 2, the packets and height information delivered in some round E(u,v) were
actually set the previous time FE(u,v) was honored. This slightly complicates things for routing
protocols in the fully asynchronous model, as the nodes are forced to make routing decisions based
on outdated information.

It turns out that proving our protocol enjoys a certain competitive-ratio in the semi-asynchronous
setting is the hard part, and it is not difficult to extend the proof to work in the fully asynchronous
setting. Indeed, all of the major ideas come from considering only the semi-asynchronous setting.
In the next subsection we describe our protocol in the semi-asynchronous setting, and then sketch a
proof that it enjoys competitive-ratio 1/n. The formal details of the proof are presented in Appendix
B, and a description of the protocol extended to the fully asynchronous setting, together with formal
proofs that it has the same competitive ratio, are provided in Appendix C.

4.1 Description of the Protocol

There are numerous instantiations of the Slide protocol that vary slightly between one another,
but the basic principle is always the same. Due to space constraints, we will not provide a de-
tailed description of the protocol, but refer the reader to [3] for the original protocol, and [1], [18],
and [7] for various modifications. Below, we present a basic implementation of the Slide protocol,
and then go on to prove that the basic Slide protocol achieves competitive ratio 1/n in the re-
stricted semi-asynchronous model of 1’ — 3’ described above. Somewhat surprisingly, even though
the Slide protocol has been in existence for over a decade, no throughput competitive analysis for
the asynchronous (or even semi-asynchronous) model has ever been performed.

The network model assumes that nodes have bounded memory, so let C' denote the maximal
number of packets that any node can store at any time. Also, we will assume C'/n € N and in
particular that C/n > 2 (the former assumption is not necessary but will make the exposition
easier; the latter is necessary for the Slide protocol to work). Within the context of the semi-
asynchronous network model (1’ — 3’ above), we describe the request that a node u will make to
the adversary when it is “awakened,” and also how this node u will respond to the packet it receives
from v:

1. If u is the Sender, then w finds the next packet p; € {p1,p2,...} that has not yet been deleted (see
la below), and forms the packet to send to the adversary: p := (p;,C + % —1). Meanwhile, when u
receives (in the same round) the packet (p;, h):

(a) If h < C, then u deletes packet p; from his input stream {pi1,p2,...} (and ignores the received
packet p;)
(b) If h > C, then u keeps p; (and ignores the received packet p;)

2. If w is the Receiver, then u forms the packet to send p := (L, %) Meanwhile, when u receives a

packet of form (p;, h), if p; # L, u stores/outputs p; as a packet successfully received.

3. If u is an internal node (not Sender or Receiver) and u currently has height H, then u finds the last®
packet p; that it has received, and sets the packet to send to the adversary: p := (p;, H) (if H = 0,
then set p; = L). Meanwhile, when u receives (in the same round) a packet of form (p;, h):

(a) If H > h+ C/n, then v will delete p; (and ignore the packet p;)
(b) If H < h—C/n, then u will keep p;, and also store p; (as the most recent packet received)
(c) If |[H — h| < C/n, then v will keep p; and ignore packet p;

Notice that rules 1-3 essentially state that internal nodes will always accept packets from the
Sender (if they have room), always send packets to the Receiver (if they have any to send), and will
transfer a packet to a neighboring internal node if and only if they are currently storing at least
C'/n more packets than that neighbor.

4.2 Competitive Analysis of Slide in the Semi-Asynchronous Model

Due to space constraints, we provide here only a very brief sketch of the proof that the above
described Slide protocol enjoys competitive ratio 1/n. The full proof can be found in Appendix B.
Recall that we wish to show that there exists a constant k& and function g(n,C') such that for
any round z and against any adversary A (see (1)):
f(x) < (kn) - ff(z) + g(n,C) (7)
Above (and through the remainder of this section), P will denote the Slide protocol, and for fixed
choice of adversary A and round z, P’'(A, z) will denote the ideal off-line protocol (since we will be
fixing 2 and A, we will usually write simply P’). We will show that (7) will be true for all rounds z
and all adversaries A for k = 4 and g(n,C) = 4n%C. We proceed by fixing an arbitrary adversary
A and round z € N, and showing that for these (arbitrary) choices, (7) will be satisfied. Let Y’
(resp. ZP') denote the packets that have been inserted (resp. received) by the Sender (resp. the
Receiver) for protocol P’ as of round z (define Y7 and Z% analogously). Notice that f7:(z), the
left-hand-side of (7), is equal to |Z”'| (we will occasionally write Z”" when we really mean |Z7'|;
the meaning will be clear from context). We split Z%" into two disjoint subsets ZP = Zf/ U Zépl,
which we now describe.
We can view the adversary A as simply a schedule (or order) of edges that the adversary
will honor. We will imagine a virtual world, in which the two protocols (Slide and the ideal off-line
protocol) are run simultaneously in the same network. Define ZZ) " to be the subset of Z”’ consisting

of packets p’ for which there exists at least one round FE(u,v) such that both p’ and some packet
p € YP were both transferred this round.5 Set zJ" = 2P\ ZF".

Lemma 4.1. |Z]'| < n|ZP|+n2C

Proof Sketch. Since every packet in Zf " travelled at the same time as a packet transfer in P, we
can bound |ZT '| by the number of packet transfers in P. Since any fixed packet drops in height
at least C'/n each time it is transferred, the total number of packet transfers is at most n|Y”|.

Finally, since the maximal number of packets that can be stored in all internal buffers is nC, we
have |[Y7| < |ZF| +nC.]

"The Slide protocol typically utilizes FILO storage buffers, and then uses error-correcting codes to compensate
the packets that get “stuck” in a node’s storage.
SNote that we make no condition that the two packets traveled in the same direction.

Lemma 4.2. |2} < 2n|YP| < 2n|ZP| + 2n%C

Proof Sketch. Consider a fixed packet p’ € Z%) ', When this packet was first inserted by P’, say
into some node u’s buffer, since P did not insert a packet in this round (by definition of ZJ "), we
have that u’s buffer must have been full (rule 1(a)). Meanwhile, when the receiver received p’ from
some node v, since P did not transfer a packet this round, it must have been that v had an empty
buffer during this round. Thus, p’ travelled from a node with a completely full buffer to one with
a completely empty buffer. In Appendix B we show how to use this fact to bound |Z} '| by the
number of packet transfers in P, which can then be bounded by 2n|Y”| as in Lemma 4.1. [|

5 Protocol Secure Against Malicious Adversary

We now move to the network setting that allows both unreliable edges controlled by the schedul-
ing adversary and unreliable nodes corrupted by the node-controlling adversary (see Section 2 for a
formal discussion of the network model and these two adversaries). Below is a high-level description
of the protocol and a statement of the main result. Pseudo-code of the protocol, as well as rigorous
proofs of security and throughput performance, can be found in Appendix D.

5.1 High Level Description

Our strategy in developing a protocol that routes effectively in this highly unreliable network
setting will be to start with the Slide+ protocol, which has optimal competitive ratio in terms
of throughput, and add elements from cryptography to provide extra security against the node-
controlling adversary. Specifically, we will modify the Slide+ protocol by using digital signatures in
the following two ways:

1. The sender signs every packet, so that honest nodes do not waste resources on modified or
junk packets, and so that packets the receiver gets are unmolested

2. Communication between nodes will be signed by each node. This information will then be
used later by the sender (if there has been malicious activity) to hold nodes accountable for
their actions, and ultimately eliminate corrupt nodes

The routing rules for each internal node are the same as in the Slide+ protocol, except that whenever
a node u sends a packet to a neighbor v, there will be four parts to this communication:

(a) The packet itself, i.e. one of the packets from the sender intended for the receiver

(b) The current height of u, i.e. how many packets u is currently storing

(c) A signature on the communication that u has had so far with v, to be described shortly
(d) Signatures from other nodes that the sender has requested, to be described shortly

The first two parts of each communication are identical to the Slide+ protocol, so it remains to
discuss the second two items, which are used for the identification of corrupt nodes. Note that the
second two items each consist of a signature on some quantity; for this reason we will require that
the bandwidth of each edge is large enough to allow for simultaneous transmission of two signatures
(plus the packet itself).” The signature that u includes on his communications with v for Item (c)
above pertains to the following four items:

"This assumption on bandwidth is not unreasonable: for a signature scheme with security parameter k, each
signature requires only O(k) bits. Also, the requirement that bandwidth is large enough to allow two signatures is
made for convenience of exposition; our protocol can be modified to handle the case of smaller bandwidth, although
this is not pursued here.

10

Sig. 1. The total number of packets u has sent to v so far

Sig. 2. The total number of times the previous packet p that was exchanged between them

has crossed the edge E(u,v) (in general, the same packet may cross the same edge multiple

times)

Sig. 3. The cumulative difference in v and v’s heights, measured from each time v and v

exchanged a packet

Sig. 4. An index representing how many times E(u,v) has been honored, to serve as a

time-stamp on the above three items
It remains to explain Item (d) from above, for which it will be useful to first describe from a high-
level how our protocol handles malicious activity by corrupt nodes. We first note that if either the
sender or receiver is corrupted by the node-controlling adversary, then secure routing is impossible
(indeed it is not clear what is even meant by “secure routing” in this case). We will therefore assume
that the sender and receiver are incorruptible, and they will be responsible for regulation of the
network (e.g. identifying and eliminating corrupt nodes). Also, because our definition of security
(see Section 2) requires that the receiver gets all of the packets sent by the sender, it is no longer
enough to simply measure throughput in terms of number of packets received (as was done for
the Slide and Slide+ protocols above). Instead, we will use error-correction and first expand the
messages into codewords so that the receiver can reconstruct each message if he has a constant
fraction of the codeword packets. See e.g. [7] for a specific description of how this can be done.
We note that because the definition of throughput only cares about asymptotic performance (i.e.
constants are absorbed in the k that appears in Definition 1), the use of error-correction will not
affect the throughput of our protocol.

From a high-level, the protocol attempts to transfer one message (codeword), consisting of O(nC)
bits, at a time. The sender will continue inserting packets corresponding to the same codeword until
one of the following occurs:

S1 The sender gets a message from the receiver indicating he could decode the current codeword

F2 The sender gets a message from the receiver indicating inconsistencies in height differences

F3 The sender has inserted all packets corresponding to the current codeword

F4 The sender gets a message from the receiver indicating the receiver got the same packet twice

F5 The sender is able to identify a corrupt node
In the case of S1, the message/codeword was delivered successfully, and the sender will begin inserting
packets corresponding to the next message/codeword. In the case of F5, the sender will eliminate the
identified node (i.e. alert all nodes in the network to never trust or utilize the corrupt node again),
and begin anew transmitting packets corresponding to the current codeword. The other three cases
all correspond to failed attempts to transfer the current message/codeword due to corrupt nodes
disobeying protocol rules, and in each case the sender will use the signed information from Item (c)
above to identify a corrupt node.

In cases F2-F4, the sender will begin anew transmitting packets corresponding to the current
codeword. Before nodes are allowed to participate in transferring the codeword packets, they must
first learn that the last transmission failed, the reason for failure (F2-F4), and the sender must
receive all of the signatures the node was storing from its neighbors (i.e. all signed information from
Item (c) above). Note that the network itself is the only medium of communication available for
relaying the signatures a node is storing to the sender, and hence part of the bandwidth of each
edge (and part of the storage capacity of each node) is devoted to returning these pieces of signed
information to the sender (this is Item (d) from the above list). The specific rules regarding storing

11

and transferring other nodes’ signatures back to the sender can be found in the pseudo-code in
Appendix D.

Until the sender has received all of a node’s information corresponding to a failed transmission,

that node will remain on the blacklist. That is, no honest node u will transfer any codeword
packets to another node v until w obtains verification from the sender that the sender has received
all signatures from v. In Appendix D, we prove rigorously our main theorem:

Theorem 3. If at any time P’ has received ©(xn) messages, then P has received Q((x — n?))
messages. Thus, if the number of messages x € (n?), then our protocol has competitive ratio 1/n.

References

[1]

2]
3]

[4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

Y. Afek, B. Awerbuch, E. Gafni, Y. Mansour, A. Rosen, N. Shavit. “ Slide- The Key to Poly. End-to-End
Communication.” J. of Algorithms 22, pp. 158-186. 1997.

Y. Afek, E. Gafni “End-to-End Communication in Unreliable Networks.” PODC, pp. 1988.

Y. Afek, E. Gafni, A. Rosén. “The Slide Mechanism with Applications in Dynamic Networks.” Proc.
11th ACM Symp. on Principles of Dist. Comp., pp. 35-46. 1992.

W. Aiello, E. Kushilevitz, R. Ostrovsky, and A. Rosén. “Adaptive Packet Routing For Bursty Adversarial
Traffic.” J. Comput. Syst. Sci. 60(3): 482-509. 2000.

W. Aiello, R. Ostrovsky, E. Kushilevitz, and A. Rosén. “Dynamic Routing on Networks with Fixed-Size
Buffers.” Proc. 14th ACM-SIAM Symp. on Discrete Algorithms, pp. 771-780. 2003.

M. Ajtai, J. Aspnes, C. Dwork, and O. Waarts. “A Theory of Competitive Analysis for Distributed
Algorithms.” Proc. 35th IEEE Symp. on Foundations of Computer Science, pp. 32-40. 1994.

Y. Amir, P. Bunn, and R. Ostrovsky. “Authenticated Adversarial Routing.” 6th Theory of Crypt. Conf.,
pp. 163-182. 2009.

M. Andrews, B. Awerbuch, A. Fernandez, J. Kleinberg, T. Leighton, and Z. Liu. “Universal Stabil-
ity Results for Greedy Contention-Resolution Protocols.” Proc. 37th IEEE Symp. on Foundations of
Computer Science, pp. 380-389. 1996.

B. Awerbuch, Y. Azar, and S. Plotkin. “Throughput-Competitive On-Line Routing.” Proc. 8/th IEEE
Symp. on Foundations of Computer Science, pp. 401-411. 1993.

B. Awerbuch, D. Holmer, C. Nina-Rotaru, and H. Rubens. “An On-Demand Secure Routing Protocol
Resilient to Byzantine Failures.” Proc. of 2002 Workshop on Wireless Security, pp. 21-30. 2002.

B. Awerbuch and T. Leighton. “Improved Approximation Algorithms for the Multi-Commodity Flow
Problem and Local Competitive Routing in Dynamic Networks.” Proc. 26th ACM Symp. on Theory of
Computing, pp. 487-496. 1994.

B. Awerbuch, Y Mansour, N Shavit “End-to-End Communication With Polynomial Overhead.” Proc.
of the 80th IEEE Symp. on Foundations of Computer Science, FOCS. 1989.

B. Barak, S. Goldberg, and D. Xiao. “Protocols and Lower Bounds for Failure Localization in the
Internet.” Proc. of Advances in Crypt., 27" EUROCRYPT, Springer LNCS 4965, pp. 341-360. 2008.

A. Borodin and R. El-Yaniv. “Online Computation and Competitive Analysis.” Camb. Univ Press. 1998.

12

[15] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. Williamson. “Adversarial Queuing Theory.”
Proc. 28th ACM Symp. on Theory of Computing, pp. 376-385. 1996.

[16] A. Broder, A. Frieze, and E. Upfal. “A General Approach to Dynamic Packet Routing with Bounded
Buffers.” Proc. 37th IEEE Symp. on Foundations of Computer Science, pp. 890-399. 1996.

[17] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford. “Path-Quality Monitoring in the Presence
of Adversaries.” ACM SIGMETRICS Vol. 36, pp. 193-204. June 2008.

[18] E. Kushilevitz, R. Ostrovsky, and A. Rosén. “Log-Space Polynomial End-to-End Communication.”
SIAM Journal of Computing 27(6): 1581-1549. 1998.

[19] T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardos, and S. Tragoudas. “Fast Approximation
Algorithms for Multicommodity Flow Problem.” Proc. 23rd ACM STOC, pp. 101-111. 1991.

[20] S. Plotkin. “Competitive Routing of Virtual Circuits in ATM Networks.” IEEE J. on Selected Areas in
Communications, Vol. 13, No. 6, pp. 1128-1136. 1995.

[21] D. Sleator and R. Tarjan. “Amortized Efficiency of List Update and Paging Rules.” Commun. ACM,
Vol. 28, No. 2, pp. 202-208. 1985.

Appendix

A Formal Proof of Throughput Bound

In this section, we go through the rigorous details of the proof of Theorem 1, which was sketched
in Section 3. We will use the same notation introduced there for the remainder of this section. In
particular, recall that there is some fixed protocol P that we wish to analyze, and we are considering
a scheduling adversary A that proceeds in cycles.

We begin with a reduction of the given protocol P to a virtual protocol P’, which will be operating
with respect to a different scheduling adversary A’ than P. The schedule of edges honored by A’
will be (in general) different than those honored by A, but A’ will also proceed in cycles. For any
cycle ain P"’s world, define ¥'® and Z’* analogous to ¥* and Z“ that were defined for P in Section
3. We emphasize that the two worlds of P and P’ are different, and we are not attempting to apply
competitive analysis to these two protocols. Rather, the property that P’ will satisfy is:

VaeN: U*=U° and Z*=2" (8)

Then given that (8) holds for all cycles «, if we can show for all a (subject to A”’s schedule):

Z/a + (\Il/aJrl o \If/a) < — (9)
n—2
then the equivalent statement will be true for P, which is Lemma 3.1 in Section 3, and thus the
proof will be complete.

We now explain the alternate scheduling adversary A’, which will be defined in terms of any
arbitrary protocol attempting to route in a network controlled by A’. As mentioned above, the

schedule of A’ will proceed in cycles, each of which will last (n — 1)C rounds. At the beginning of

13

any cycle o, A’ labels the internal nodes by {N{, N§',...,N® ,}, so that for all 1 < i < n — 3,
node N;* is storing more packets than N | at the outset of cycle a (note that the labels/indices of
the internal nodes will change every cycle). For the first C' rounds of the cycle, the adversary will
honor edge E(S, N1) (here S denotes the Sender). We describe the remaining rounds in this cycle
inductively (starting below for i = 1, and N = N®):

1. The adversary honors edge E(N?, 1) for C rounds

7

2. After the first (i + 1)C rounds of cycle a have passed (i.e. edge E(NO‘ N7y) has just been

honored C' times), let N+1 € {Nf, 41} denote the node storing fewer packets than the
other.

Steps 1-2 are repeated through i = n — 3, so that E(N2 5, N ,) has just completed, and N , has

n—

been defined. Then for the last C' rounds of cycle «, the adversary honors edge (N % R)

n—

Lemma A.1. Given protocol P routing in a network controlled by A (whose schedule was described
in Section 8), there exists a protocol P' competing against A, such that with respect to each protocol’s
own cycle, (8) is valid.

Proof. Since we are considering only deterministic protocols, we can define what P’ will do in any
round based on what P is doing. We will actually demonstrate something slightly stronger than
(8), that is:

Induction Hypothesis. Up to permutation of the internal nodes, the heights of each
of the internal nodes in both worlds is the same at the start/end of any cycle, as is the
number of packets delivered in any cycle.

We proceed by induction on the cycle. In particular, fix some cycle «, and assume that the induction
hypothesis is true for all cycles 5 < . In the first C rounds of « in P’s world, A opens edge F(S, A1),
where A; is the internal node currently storing the most packets. Similarly, in the first C' rounds,
A’ opens edge E(S, A}), where A} is the internal node currently storing the most packets in P"’s
world. By the induction hypothesis, although the labels of node A; verses A} may be different, the
node that label represents will have the same height in the two worlds, and we define P’ to do the
same thing that P does in these first C rounds.

Let As denote the node for which the adversary A will honor edge E(A;, Ag) for the next C
rounds, and similarly for A} with respect to .A’. Note that by the induction hypothesis together
with the definition of P’ (so far) for the first C' rounds of cycle «, we have that the height of A;
equals the height of A}, and similarly the heights of As and A} match. Now define P’ to do in
the C rounds E(A}, A}) whatever P does in the C rounds E(Aj, A3).® Thus, after 2C rounds have
passed, the two networks are still identical (up to permutation of the nodes).

Let ;12 denote the node among {A;, A2} that is storing fewer packets after the C' rounds of

E(A1,As). Now in P’s world, the adversary will search for the node Az with height closest to (but
smaller than) Ay, and the adversary A will next honor edge E(Aj,, A3) for C rounds. Notice that, if
e.g. P had As transfer all its packets to Ay during the C rounds of E(A;, As), it is possible that Ag

8In order to preserve Fact 1 below, we demand that after the C rounds of E(A}, Ab), A} is storing fewer packets
than A. Therefore, if this is not the case for E(A1, A2), then define P’ to end in a symmetric state as P, i.e. so that
the pair of nodes (A1, A2) have the same height as the pair of nodes (A}, A5), but in the latter pair, necessarily A}
is storing at least as many packets as A5 after the C rounds of E(A}, A5).

14

is not the node that had the third highest height at the start of cycle a (indeed, its even possible
that A3 = R)

By the induction hypothesis, there is some node A} (i > 3) in P"’s world such that at the start
of a, the height of A3 equals the height of A} (if A3 = R, then i =n — 1, i.e. set A} = R). Notice
that in contrast to P’s world, the schedule of A" will necessarily go through every internal node at
least once. Indeed, for any 2 < m < n — 2, the node in P"’s world that started cycle o as the m*
fullest node will necessarily be a part of rounds mC' through (m + 1)C' — 1. Therefore, for each
3 < m < i, dictate that during rounds mC' through (m + 1)C' — 1, protocol P’ will have the two
nodes swap final states. In particular, for any 3 < m < i, if H denotes the height of A/, at the
start of cycle o, then we dictate that P’ transfers enough packets from A, to A _; during the C
rounds of E(A], _,, Al) such that the height of A/ _, at the end of the C' rounds is equal to H,,.
In this manner, it is clear that by the time the virtual world of P’ reaches the end of iC cycles
(recall that i is defined so that the height of A3 equals the height of A}), the state of the networks
in the two worlds will be identical (up to permutation of the nodes). Furthermore, during the next
C rounds of each cycle, the adversaries A and A" will honor an edge between two nodes (E(Az, A3)
verses E(A]_,, Al)) such that at the moment the C rounds start, the height of Ay equals A}, and
the height of A3 equals A]. Therefore, this process may be repeated iteratively through the end of
the cycle in each respective world, and it is clear that the induction hypothesis will remain valid by
the end of cycle a. [|

For the remainder of the section, we will seek to prove (9) for the protocol P’. To simplify
notation, it will be convenient to define m = n — 2. At the outset of every cycle a, we label the
internal (i.e. excluding the Sender and Receiver) nodes { Ny, N§',..., NS}, such that if ¢ < j, then
node N{* is storing more (or an equal number of) packets at the start of cycle a than N3, For all
a,let Ni* = S and N | = R. For any 1 <7 < n — 2, let H denote the height the node had at
the outset of . We emphasize that while the heights of nodes may change through the course of
cycle o, the labeling { N/} and the quantities {H;*} will remain fixed throughout the cycle. Indeed,
the following fact implies that the labeling of nodes is independent of « (and in fact is fixed for all
time):

Fact 1. Foralla e Nand all 1 <¢ <m: N> = NiO‘Jr]L

Fact 2. For any cycle o, node Nj is a part of 2C' rounds of the cycle: first for C' rounds
with E(N;_1, N;), and then for C rounds with F(N;, N;11)

These facts, along with the following observations, all follow from the definition/construction of P’
in the proof of Lemma A.1 above. To fix notation, for each 0 < i < m let A denote the number
of packets sent from A; to A;y; during the C rounds E(N;, Nij;1) of cycle a. Note that A may be
negative if the net packet flow during E(N;, N;;1) was towards Nj.

Lemma A.2. For any cycle a and for any 1 <i < m:

A+ HY —HPY
2
2) AY < HX' — HY, (11)

1) A® <

15

Proof. Statement 1 follows from the two facts above as follows. Note that after the C' rounds
E(N;j_1, N;) but before the next C' rounds, node N; will have height A | + H®*. Now by definition
of protocol P’, at the end of the C rounds of E(N;, Nj;1), N will have a greater (or equal) number
of packets than N ;. In particular, since there are A | + H{* + H? | total packets between the
two nodes at the start of the C' rounds E(N{*, Ni}), it must be that at the end of these C rounds,
N;* is storing at least half of these. Since the number of packets stored by N after the C' rounds
of E(N{*, N\) is given by A$ | + H* — A, Statement 1 follows.

Also, again since protocol P’ specifies that N must have more (or an equal number of) packets
as N7\, immediately after the C rounds of E(N;*, N), and by Fact 2 the height of N;* will not
change through the remainder of cycle «, Statement 2 follows. [|

Statement 1 above immediately implies the following, which we state separately for later use:
Corollary A.3. For any cycle a and for any 1 <i < m:

4o < A% |+ HY —min (HZ |, %(m —i—1))

! 2

We are interested in the potential function:
m m—1
1 C
v = ;_1 <§) - max (O, HY — (m — Z)E> (12)
For each 1 < i < m, define:

50— { 1 if the 274 term of the max statement in (12) dominates (13)

‘ 0 otherwise

Also, for any pair of indices 1 <1 < j < m, define:

(Pt gy, o = zj: (%)ﬂm [max <0, HH — (m — k;)9> — max <0, HY — (m — k)9>] (14)

‘ m m
k=i

Claim A.4. For any index 1 <i <m and any cycle a:
H{ = HY + AY | — A? (15)

Proof. Notice N/ = N& (Fact 1) and N; is a part of exactly 2C rounds for the a'® cycle (Fact 2).
In the first C rounds, H; changes by A$* ;, and in the second C rounds it changes by —A$. Since
N; began the cycle with height H{*, we have that its height at the start of the (« + 1) cycle will
be H + AY | — AX.]

It will be convenient to introduce the following notation:

Definition A.5. For any 1 <4 < m and any cycle «, define:

v{¥ := max (O, H} — (m — z)€> and wj' = min <0, H} — (m — 2)9> (16)

m m

16

Claim A.6. For any index 1 < i <m and any cycle a:

1
1) If 62T =1, then: (P*F - W), = T (AX | — AY +w%)

1
2) If 62T =0, then: (¥H - W), = =t (17)

Proof. If 2T = 1, then consider the equalities:

27; [max <0, et — (m — n%) — max (o,H;” —(m — ni)]

= omt [(AZ 1 =AY+ HY)— (m z)m max <0,Hi (m z)m>}

(‘Il/aJrl o \Ijloz)m —

1 AY | — AY 0 ifHZQZ(m_)%
=1 0+ e (Hp = 209 i Hp < (m -) S
1
= g (AT — AT +of)

where the second equality is from Claim A .4 together with the assumption that §2T! = 1. Otherwise,
if 91 =0, then Statement 2 is immediate.]

Lemma A.7. For any pair of indices 1 < i < j < m for which 5,2‘“ =1 for every i <k < j?°

A I w Aoy (j-it1) '

rat1 gt J k i1,V Hj1

(Wi + Gt = D g® S gt g At HD) - 2ty +Z om- L
k=i k=i+1

Proof. This follows via an inductive argument on j — ¢ together with Lemma A.2 and Claim A.6:

BAsSeE CASE: j =i+ 1: First consider the right-hand-side of the inequality of Lemma A.7 with
j=1+1

A1 2 Hivo
RHS A.7 = =i + gmoir (Ai-1 + H;) —
Aiq 1 Hiio
= gm—i t gmoi (A1 + Hi) -
A4 1

= om—i—1 + om— Z(H HH'Q) (18)

mei

mei

9Unless explicity written otherwise, assume all superscripts are o, which we have suppressed for notational con-
venience.

17

Meanwhile, for 7 = i + 1, the left-hand-side of the inequality of Lemma A.7 is:

A i+1 w
_ la+1 / i+1 k
LHS A7 = (W —0'); i1 + om—i—2 E om—F

k=i
ta+1 g lo ta+1 /o Ai+1 A Wk
= (W) A+ (Ui g3 Z om—F

k=i
1 1 A‘+1 i+1 Wi
= g (i1 = Ai o) + oo (A = A+ win) + s — > T
k=i
1 1
= gmoimt Airt + 5y (Ai + Aia)
1
< gnmi (Ai + Hist = Higa) + (Ai + Ain1))
1 1
= W(Ai—l + Hz'+1 - Hi+2) + WAZ
1
< gy (Aim1 + Hipy = Higo) + o (Aier + Hi — Higa)
Ai_ 1
= 1 + (Hz — HZ'+2) (]_9)

2m7i71 om—i

where the third equality is due to Claim A.6, the first inequality is Statement 1 of Lemma A.2
(applied to A;11), and the second inequality is Statement 1 of Lemma A.2 (applied to A4;). Notice
(18) matches (19), as required.

18

INDUCTION STEP: Consider the string of inequalities:

A,] Wi A, J Wik
(wretlgrey, - 4 Qm_;_l — Z ek = (Wrotlogroy, + (Wt ure), o+ Wz—l - Z ST
k=i k=i
A — A A; J—
= om—i meifl + om—i (A + HZJrl)

J+1
2m J+1 + Z om— k—|—2
—=i+2
Ai 1— Az Az j — 1+ 1

g ;m—i + 2m—i—1 + 2m—i (AZ + HZ-I—I)

Ai+ Hip Hjq '
T 9om—i om—j+1 +Z om— k;+2
k=i+2

A1 — A A; j—1+1
< - : -
— am—i 2m—z—1 2m—z+1

(Ai1 + Hi+ Hiy1)

A+ Hipq Hjq '
T om—i 9m—j+1 T Z om— k+2
—=i+2
j—i—1
2m7i+1

Al j—i+1
~ gm—i + om—it1 (Aie1 + Hi) +

(Hit1)+

i—1

2 Hiq Hjq < (j— k)

om—i+1 (Hit1) — om—i 9m—j+1 Z om—k+2 Hy,
k=i+2

Ai—l j —1+1]+1 1
= om—i + om—i+1 (Ai_l + HZ) om—j+1 +Z om— k;—l—2
k=i+i

where the first inequality is by the induction hypothesis together with Claim A.6 and the second
inequality is by Statement 1 of Lemma A.2. [|

Lemma A.8. For any pair of indices 1 <1i < i+ 1< j <m for which 5;‘“ =1 but 5,‘3‘“ =0 for
every i < k < j:'0

A N w A H; H; - H
la+1 lay j—1 k { i+1 J k
(‘II v a)”rl’]*l + om—j Z om—k < om—i—1 + om—i om—j+1 + Z om—k+1
k=i+1 k=i+1

Proof. This follows via an inductive argument on j — ¢ together with Lemma A .2:

BAse CASE: j — ¢ = 2: Looking at the right-hand-side of the inequality of Lemma A.8 for j = i+ 2:

A; H; 4 Hiio Hiy
RHS A8 = gm—i—1 T gm—i gm—i-1 T gm—i
_ Ai+ Hijp1 — Hiyo

meifl

(20)

00n the right-hand side of the inequality of Lemma A.7, all superscripts are o, which we have suppressed for
notational convenience.

19

Meanwhile, looking at the left-hand-side of the inequality of Lemma A.8 for j =i + 2:

Ait1 Wit1
LHS A8 = (W — W) i + 5oy — gy
A
- om—i—2
A =+ H+1 H'+2
— 27:7, i—1 : ’ (21)

where the second equality is from Claim A.6 (since (5?‘_:11 = 0) and the inequality is Statement 1 of
Lemma A.2. Notice (20) matches (21), as required.

INDUCTION STEP: Consider the string of inequalities:

(‘I’/a+1 \Ijla)erIJ 1+2m —J = (‘IﬂaH ‘I’/a)z+1 i+1 +(‘I’/a+1 \Iﬂa)wzj 1+2m -J
k= z+1 k= z+1
i—1
A1 Hio H; d Hy,
= 9om—i—2 " om—i—1 9m—j+1 Z om—k+1
k:i+2
A; Hipyn
< om—i—1 om—i 2m]+1 + Z om— k:+1
k=i+1

where the first inequality is by the induction hypothesis together with Claim A.6 and the last

inequality is by Statement 1 of Lemma A.2. [|
Lemma A.9. For any cycle o and any index 1 <i<m—1, if 50‘+1 =1, 520:31 =0, and 5?‘_:51 =1,
then:
A S ow A 1 C
la+1 ! i+1 k 7
(T = W) i1t + om—i—2 kz;l om—k = om—i—1 ' om—i—1 (22)
=3
Proof. Consider:
A i+l A
ra+1 oy |] i+1 k _ i+1
(e A T R om—i—2 Z om—k — gm—i—2
k=i+1
< Ait Hiv1 — Higo
om—i—1
A; 1 C

< ogm—i—1 om—i—1 E
where the first equality is Statement 2 of Lemma A.6, the first inequality is Statement 1 of A.2, and
the last inequality follows from the fact that 5?:11*0 and 5;?21*1 implies that H;jy1 — Hiq4o < % []

Lemma A.10. For any cycle o and any index 1 <i <m—2, if 50‘+1 0, 0% =1, and 625! =0,

i+1 i+2
then:
A 1+1 w A 1 C
la+1 / i+1 k 1
(W = W) i1 + om—i—2 k§i+:1 om—k = om—i—1 " om—i—1) (23)

20

Proof. Consider:

A; ow A; A;
ra+1 / i+1 k o) i+1
(‘II R a)i+1,i+1 + om—i—2 - Z om—k — om—i-1 om—i—1
k=it+1
1
_ A+ HX - HE,
— 2m—i—1
A; 1 C

< om—i—1 " om—i—1 ,,
where the first equality is Statement 1 of Lemma A.6, the first inequality is Statement 2 of A.2,
and the last inequality follows from the fact that (5?“ =0, 6%t = 1, and 6%%! = 0 implies that

T i+1 i+2

«

Hiy —Hi, o 1 ¢ u
om—i—1 — 9gm—i—1 "

Claim A.11. For any cycle o, we have:
Z 4 (W — W) < AR (24)

Proof. Since (H2' — (m —m)£) = HEFL > 0, we have that the second term of min(0, HE —
(m — m)%) always dominates, and hence for all cycles, 6% = 1. Therefore, applying Claim A.6
(for i = m):

(W W), = AZ AL+ 0
<A - A
=A% -2 (25)

where the inequality follows since w{® < 0 for all cycles o and nodes 7, and the last equality is
because N, is the node that will be connected to the Receiver in the last C' rounds of «, so by
definition A%, = Z°. [

We are now ready to prove the main result of this section, namely that (9) is satisfied for all
cycles a:

Lemma A.12. For all cycles a, the following is always true:

Z/a 4 (‘l,/a-i-l o \I//a) < 7€’
m

Proof. Fix cycle a, and consider the string of bits {07"!}™m,:

O+, o84, 0 6 (26)
By Claim A.11, we have:
79 4+ ‘I,/aJrl o ‘I,/a =7% 4 (\IJ/O‘Jrl o ‘Il/a)l,m < (‘I,/aJrl o \Ijla)l,mfl 4 A%,1 (27)

We now use Lemmas A.7, A8, A.9, and A.10 on the appropriate indices (based on the form of
{62+11), which yields:'!

1We combine these lemmas by starting at the far right index i = m — 1, and working our way down through
smaller indices by using the appropriate lemma. Notice that the first term on the RHS of the inequality of each
lemma is exactly the term needed on the LHS of the next lemma.

21

1. For the smallest index ¢ such that 5?“ =1, we have leading term:

Ai
. 2
s (28)
2. For any indices (i, j) falling under Lemma A.7, we have contributions:
o -1 . .
j—i+1 (J—k+1)(m—1q)
G A+ H) +) 2 (29)

k=i+1

3. For any indices (i, j) falling under Lemma A.8, we have contribution:
J

m—1
P = (30)

k=i

4. For any indices (i, j) falling under Lemma A.9 or A.10, we have contribution:

1 C

=i, (31)

Notice that in terms of the contributions from (29), (4;,-1 + H;) < W by Statement 2 of

Lemma A.2 together with the fact that 5?‘_+11 = 0 implies Hf‘fll < W The theorem now
follows immediately from the facts:

1. Forany 1 <i < j < oo, ik Zkllk:
2. For any 1 <i < j < oo, fc” gzkl%:
. i k(k—1) k(k—1)
3. Forany 1 <1 < j < o0, fcz(Qk <>y (2 =4 =

The remainder of the proof that the optimal competitive ratio is 1/n was presented in Section 3.

B Rigorous Proof of Competitive Ratio of Slide

The high-level ideas of the proof of Theorem 2 were sketched in Section 4.2, and we encourage
the reader to re-read that section before proceeding here. In this Section, we begin by providing in
Section B.1 a deeper explanation of the proof than was provided in Section 4.2, but still does not
go into the details of the proofs. Then in Sections B.2-B.5 we rigorously prove all the lemmas and
theorems.

22

B.1 Motivation and Definitions

In what follows, unless stated otherwise, all notation is as defined in Section 4.2. Recall from
Section 4.2 that we wish to construct two potential functions. The first one, denoted by ¢,/, will be
associated to every packet p’ € Z;) " However, ¢,y will not be exactly as defined in Section 4.2, so
we provide now the motivation to explain how ¢,/ is actually defined, and why we need to slightly
change what it represents.

Our first attempt employed in Section 4.2 was to define ¢, to be the height, with respect to
P, of the node in which p’ was currently being stored. We state once-and-for-all that when
referencing the height of a node, we will mean its height with respect to the Slide
protocol P. As noted in Section 4.2, if we define ¢, this way, then for every p’ € ZQP/, @, will be
initially set to C' (when P’ first inserts p’), and ¢,y will be zero when p’ is delivered to the Receiver.
Thus, there is a net change of —C to ¢,y from the time of insertion by the Sender to the time of
reception by the Receiver. The goal was then to define a second overall network potential function
®, which increases by C' every time P transfers a packet, and such that any time ¢,/ changes for
any p/ € ZF ", the cumulative changes of Zp, ez ¥r' will be mimicked by ®. Since ® increases by C
when there is a packet transfer in P, one (good) way to think of this approach is that for each drop
in ¢, , we would like to find a packet transfer in P that can be “charged,” i.e. this packet transfer
“allowed” ¢, to decrease.

Unfortunately, with the simplistic definition of ¢, equal to the height of the node it is currently
stored in, we encounter a problem. To clarify the problem, as well as to set notation, at the very
beginning of each round z, we will label the internal nodes (i.e. not the Sender or Receiver) as:
{NT,N3,..., N _,}, where the labeling respects heights, so that at the start of the round z, N7 ,
is storing at least as many packets as N{ (ties are broken arbitrarily). Letting H? denote the height
of N7 at the start of = (i.e. the number of packets N7 is storing with respect to P), we may restate
the criterion for labeling nodes at the start of each round by writing: HY < Hy <-.- < H? ,. Note
that nodes may change labels from one round to the next, i.e. we may have N;* # Nf“. When the
round is unimportant, we will suppress the superscript x. Let S denote the Sender and R denote
the Receiver.

We may now explain why the simplistic definition of ¢, above will not be adequate. Define
Q= %, and consider the following two scenarios that may be present at the start of some round
x:

Scenario 1: H, >, =C H, 3=C ... H3=C Hy=C H;=(n-3)Q
Scenario 2: H, s =(n—-3)Q H, 3=n—-4)Q ... H3=2Q Hy=Q H; =0

In Scenario 1, consider a packet p’ € Zf, that begins round x in node Ny, so that ¢,y = (n — 3)Q.
Notice that if the adversary honors the edge E(N7, R), the Slide protocol will transfer a packet to
the Receiver (Rules 2 and 3a of Section 4.1). Now by definition of being in the set ZJ", in order for
p' to be delivered to the Receiver via node'? Ny, node N must have height zero when the adversary
honors edge E(N1, R). Therefore, there must be exactly (n — 3)Q transfers in P (to drain Nj)
before p’ can be delivered to R via Ni. Thus, loosely speaking, we can “charge” the resulting drop
in ¢, from (n —3)Q to 0 to these (n — 3)Q transfers in P.

120f course there is no reason to assume that p’ must be transferred to R via Ny, but for the sake of the example,
we imagine this is the case.

23

Now instead imagine we are in Scenario 2, and again fix a packet p’ € Z7J " such that Op =
(n — 3)Q at the start of round x, so p’ € N,_2. In this case, notice that p’ has a way to reach
R without any packets being transferred in P. In particular, the adversary could honor edge
E(Np—2,Ny,_3) in round z, and then E(N,_3,N,_4) in round z + 1, and so forth. Since the
difference in heights between adjacent nodes is less than C'/n, the Slide protocol will not transfer
any packets during these rounds. Meanwhile, protocol P’ may dictate that p’ is transferred each
of these rounds, all the way to the Receiver. Thus, in this scenario, ¢,» was able to decrease from
(n — 3)Q to zero without any packets being transferred in P. Because we are trying to associate
drops in ¢, to packet transfers in P, this is problematic.

Notice that the problem in Scenario 2 is that there exists a “bridge” between N,_o and R. That
is, even though N,,_o has a relatively large height, there is still a way for packets p’ € Z%)/ that
are in N, _o to reach R without P being able to transfer any packets. In contrast, in Scenario 1,
p' € Ny will also have ¢,y = (n — 3)Q, but now there must be (n — 3)Q transfers in P before p’ can
reach R (again, since p’ € Z;D " requires that p is never transferred at the same time as a packet in
P). In summary, one might say that even though node Nj in Scenario 1 has the same height as
node N,_s from Scenario 2, these two nodes have different “effectual” heights.

Considering the above two Scenarios, we were encouraged to modify our definition of ¢,/ as
follows:

- For node N;, define the node’s effectual height:!3 H, := max(0, H; — (i — 1)%)

- For any p’ € Z;), that is currently in [V;, define its potential: ¢, := H;

This is almost the actual definition we eventually make for ¢, but we will need to first “smooth-out”
this definition. To motivate the need to smooth the definition, consider the following events, which
represent the only ways that ¢,/ can change (based on the new definition of ¢,):

Case 1. p' is transferred from N; to N; in some round E(N;, N;)

Case 2. p' € N; when N; changes height due to a packet transfer in P, but this packet transfer
does not cause a re-indexing of nodes

Case 3. p’ is in some node N; when a packet transfer in P causes N; to change index to N
(i.e. this node moves from the " fullest node to the ;% fullest node)

Since we are only concerned with p’ € Zép ', we note that whenever ¢ changes as by 1) above,
necessarily P did not transfer a packet this round. In particular, this means that |[H; — H;| < C/n.
In order to control changes to ¢,/ that are a result of Case 1, we would therefore like for H; ~ H j
whenever H; ~ H;. Although the definition of effectual height ﬁz above almost captures this, there
is necessarily a “jump” of C/n between the values fIZ and H j. This is one of the reasons we will
want to “smooth-out” the definition of .

Changes to ¢,y that come from Case 2 above are okay, since in such cases ¢,y will change by
one, and this can be “charged” to the fact that there has been a packet transfer in P. Lastly, notice
that ¢,s can only change as in Case 3 above if there are two nodes at the outset of some round z, N;
and N;y1, such that a packet transfer during round x causes them to switch places (e.g. before the
transfer, H; = H;;1, and then Nj; receives a packet in round x). Because there has been a packet

13The “maximum” is added to prevent the effectual height of a node from being negative.

24

transfer in P, we can “charge” some of the changes in ¢, to this packet transfer, but again the fact
that there will be a “jump” of C/n to changes in ¢ will encourage a “smoothing” of the definition
of ¢.

This leads to the notion of a family of nodes. In particular, we will partition the internal nodes
into families. Intuitively, two nodes will be in the same family if they are relatively close to each
other in height (or more generally, if there is a “bridge” connecting them, as in Scenario 2 above).
Then within each family, we will distribute the cumulative effectual height of the nodes in that family
evenly among all nodes in the family. Formally, for a family of nodes'* F = {N;, Niy1,...,N;},
define the cumulative effectual height Hz of the family F by:

j j

~ ~ C

Hy := ZHk = Zmax <0, Hy — (k- 1)5>
k=i

k=i

For any p' € ZJ" such that p’ is currently in some node of family F, we will define ¢, to be the
average effectual height of the family, i.e.:
o f]}—
A

Of course, H # may not divide evenly among the nodes in the family F, and then to force ¢, € N,
we will distribute the excess weight (the remainder) to the nodes with higher indices. Based on this
definition of ¢,/, note that if p’ transfers between two nodes of the same family, ¢,/ can change by
at most one.

We re-visit the three ways ¢,» may change, explaining in each case how we can find a packet
transfer in P to “charge” for the change in ¢,. In terms of changes to ¢, resulting from Case
1 above, we recall that necessarily |H; — H;| < C/n. We show in Lemma B.12 that anytime
|H; — Hj| < C/n, N; and N; are necessarily in the same family, in which case our definition of ¢
now guarantees that ¢, can change by at most one when p’ is transferred between nodes. Changes
to ¢, due to Case 2 will be at most one (since the cumulative effectual height of the family will
change by at most one, and this change will be distributed among nodes in the family), and we can
“charge” such changes to the packet transfer in P that caused Case 2 to occur. Finally, for Case 3,
if p’ € N; when N;’s index changes but N; remains in the same family, then since ¢ is distributed
evenly among nodes in the family, the change in index will be irrelevant (i.e. this will not cause
¢y to change). On the other hand, we will show that whenever a node N; switches families as a
result of a packet transfer in P, the average effectual height of its new family will differ by at most
one from the average effectual height of its old family. Thus, in this case the change in ¢, is also
bounded by one, and we can “charge” this change to the packet transfer that caused families to
re-align.

Defining how to partition nodes into families so that the families behave the way we want (e.g.
so that: 1) nodes with height within C'/n of each other are in the same family; 2) Families can only
re-align during a round in which P transfers a packet; and 3) When families re-align, the average
effectual height of any node before and after the re-alignment differs by at most one) requires a
little thought, and it is done precisely in the following section. Once we have the formal definition
of a family, we would like to formalize the notion of “charging a change in ¢,/ to a packet transfer in

14We will show in the next section that nodes within the same family will always have adjacent indices.

25

P.” Namely, as mentioned in Section 4.2, we define a second network potential ® that will increase
by C every time there is a packet transfer in P, and that will also mirror the cumulative changes of
¢y for each p’ € Zép ", In order to prove ® is always positive, we will distribute the total network
potential between the families:

=05 +---+ 25 (32)
and then show in Lemma B.17 that within each family F:
or > 0. (33)

The careful definition of families and the precise definition of the potential ¢ and the network
potential @ is presented below in Section B.2. The main lemma and proof of the fact that at all
times ® > 0 can be found in Section B.5.

B.2 Formal Definition of “Family” and Potential of a Packet (y,/)

We begin by defining formally the notion of a family introduced in the previous section. Note
that families will in general re-align during a round when there is a packet transfer in P, so we use
the notation F7 to denote some family F that was in existence at the start of round x. Recall that
at the start of each round z, the internal nodes are indexed according to their heights with respect
to P: {Ni,Na,...,N,_o}, so that H; < H; if i < j (ties are broken arbitrarily). Also recall from
the previous section the definition of the effectual height fNIZ of node N;:

H; := max <0, H;— (i — 1)%) (34)

At the start of each round, we will partition the internal nodes into families inductively (starting
from the emptiest nodes), so that the average effectual height of each family is minimized. In
particular:

Definition B.1. At the start of round z, internal nodes will be partitioned into families {F}"} as
follows. Starting at ¢ =1 and ko = 0O:
F1 Find index k;i—1 < k; <n — 2 such that the following quantity is minimal:
o _
> A (35)
Jj=k@—1)+1
(ki — ki-1)
In case there are multiple values for k; that achieve the same minimum, define k; to be the
largest of all possibilities. Then define'® family F¥ = {N,f(iil)ﬂ, s N T
F2 Seti =1+ 1 and repeat Step F1 until all internal nodes are in some family.

F3 The Sender and Receiver will form their own, separate, families. Denote the Sender’s family
by Fp, and the Receiver’s family by Fo.'6

'5When the round x is unimportant, we will suppress the superscript in our notation.

The only reason we place the Sender and Receiver in a family at all is to make the terminology easier in the
lemmas that follow. In particular, the notation we use for the Sender’s family ensures that it will have a higher index
than all other nodes (there will be a gap between the index of the largest indexed family of internal nodes and the
Sender’s family, which is unimportant), and conversely the Receiver’s family will have a smaller index than all other
nodes.

26

Definition B.2. The cumulative effectual height Hr of a family F is the sum of the effectual heights
of each of the nodes in the family. The average effectual height (Hx) of a family is the cumulative
effectual height divided by the size of the family. Succinctly, if F := {N;, Nj11,...,N;}:

J

; _ _

~ ~ - H H

Hr =Y H, and (Hr) = ﬁ = kz b (36)
k=i j—i+1

Notice that by construction (see Rules F1 and F2), families are created so that the average
effectual height of (the lowest indexed) families is minimized.

With the formal definition of families in hand, we are ready to formally define the first kind of
potential, ¢. Recall that this potential will be associated to packets p’ € Z;)/, and if p’ € N; € F at
the start of some round, then ¢, will (roughly) represent the average effectual height (HF). More
precisely, we will ascribe to each node N; € F a potential ¢; equal to the average effectual height,
except that the potential for some nodes in the family will be one bigger to account for the case

that \HT]T ¢ 7Z. Formally:

Definition B.3. Let 7 = {N;, Nij;11,...,N;}. Then the potential ¢ of a node N € F will be
either (Hr) or (Hr) + 1. More precisely, writing:

Hy = ()|« |F] + (37)
Then define subsets of F:
F = {NZ, NZ‘+1, ce aNj—r} and .7:+ = {Nj—r—f—la ce ,Nj} (38)

Then for nodes Nj, € F*t, define ¢ = [(Hzr)| + 1. For nodes Ny, € F~, define ¢ = |(Hz)].
Finally, if p’ € Z}" and p/ is currently being stored in Ny, then define the potential ¢ to be the
potential of Ni, i.e. @y = @.

One immediate consequence of the above definition that we will need later is:

Lemma B.4. At the beginning of any round x and for any family F*, the sum of the potentials for
the nodes in F equals the cumulative effectual height of the family:

> on = Hr (39)
NeF
Definition B.5. The network potential ® is an integer satisfying the following properties:
1. ® begins the protocol equal to zero.

2. ® increases by 4C every time a packet is transferred in protocol P

3. For any packet p' € ZJ " any time ¢,y changes, ® changes by the same amount.

27

B.3 Preliminary Lemmas

In this section, we state and prove the basic properties that follow from the definitions of the
previous section.

Lemma B.6. At all times, all families consist of nodes with adjacent indices. In particular, if at
the start of any round x there are l families, then there exist indices k1 < ko < --- < kj_1 such that:

flI{Nl,...,Nkl}, fQZ{Nlirl,...,NkQ}, ey j:l:{Nkl,lJrl’---aNn—Q} (40)
Proof. This follows immediately from the rules regarding the construction of families (see F1 and
F2 in the previous section). [|

Lemma B.7. Fiz some round x and some pair of nodes N;* and N5 for i < j. Then:
1. If H > H® — C/n, then H > H?.

2. If H? < H? — (j —i)C/n and H; > 0, then HF < HY.
Proof. Consider the following string of inequalities:
H; — H = max(0, H; — (1 — 1)C'/n) — max
>max(0,H; — (i — 1)) ,(H;+C/n)—(j —1)C/n)
>max(yHi — (i —1)C/n) — max(0, (H; + C/n) — ((i + 1) — 1)C/n)
0 —(i—1)C/n) —max(0,(H; — (i — 1)C/n)

Hj— (G —1)C/n)

This proves Statement 1. For Statement 2, if H; = 0, then it is immediate. Otherwise, consider the
inequalities:
H; — Hy = H; — (j — 1)C/n — (H; — (i — 1)C/n)

=H;-H;i+((i—1)—(—1)C/n

> —9)C/n+(i—3j)C/n

=0 [|
We state a trivial observation regarding fractions of positive numbers that will be useful in proving
the lemmas below.
Observation 1. For any positive numbers a,b,c,d € N:

a a o atc
1.§<§ = <<

aulo
alo

a_ ¢ a _ atc _ ¢
2 =4 ™ b= brd — d

Lemma B.8. Let x be any round, and suppose that at the outset of the round there is some family
FE ={N;i,Nit1,...,N;}. Then the following statements are all true at the outset of round x:

Sk Ha = > s Hm
Firl = R 2 T
i N
Zm:j—i—le
k—j

1) Foranyi <k <j:

2) Foranyj <k<n-—-2: (Hf) <

3) (Hz,) < (Hr,.,)

28

Proof. The fact that Eg’j.fgm > EZ”:J.’“jkl I follows immediately from Observation 1 together with
the rules regarding the construction of families (see Rule F1 from the previous section), and in
particular the fact that indices are found by minimizing (35). Statement 1 now follows from Ob-
servation 1. Statement 2 also follows immediately from Rule F1 and Observation 1, and Statement

3 follows immediately from Statement 2. [|

Statement 3 of Lemma B.8 can be immediately extended:

Corollary B.9. Let x be any round, and suppose that at the outset of the round there are | families.
Then: ~ N ~
(Hp) < (Hp,) < <(Hg)

Lemma B.10. Let x be any round, and suppose that at the outset of the round there is some family
F& ={Ni,Nit1,...,N;}. Then:

sk < (Hy,) (a1)

Foranyl1 <k<i:

Proof. Since k < i, necessarily Ny, is in some family Fj with index 8 < a. Then:

S Hom ~ ~ ~
=T S Hr) < (Hr) < - < ({Hrl) < (Hr), (42)
where the first inequality is from Statement 1 of Lemma B.8 and the other inequalities are from
Corollary B.9. n

Lemma B.11. If at the start of some round x we have that ﬁfﬂ < ﬁf, then Nj and Nji1 are in
the same family at the start of round x.

Proof. Suppose for the sake of contradiction that they are not in the same family at the start of
round z. Let % denote N;’s family at the start of the round. By Lemma B.6 and the fact that j
and j+ 1 are adjacent indices, we must have that F* = {N;, Nj41,...,N;} for some ¢ < j. The key
observation is that:

i1 _ Hj Hj1 _ Hin+H; _ Hj

]l

<= = J 43
1 — 1 1 2 -1 (43)
If i = j, then (43) contradicts Statement 2 of Lemma B.8 (set k = 5+ 1). If i < j, then define:
j—1
A:=)"H and B:i=j-i (44)
I=i
Then by Lemma B.8:
Hi, H; A Hi+Hj+A Hj+A =
< —=< — < =(H 4
1 =158 7 Br2 = Bpy1 o) (45)
which contradicts Statement 1 of Lemma B.S. [|

Lemma B.12. If at the outset of any round x, we have that |H — HY| < C/n for any pair of nodes

N;" and N7, then necessarily the nodes are in the same family at the start of round x.

29

Proof. Suppose for the sake of contradiction that there exists some round x and some pair of nodes
N7 and N for which [HY — Hf| < C/n, but these nodes are in different families. Since families
consist of adjacent indices (Lemma B.6) and nodes are indexed according to their heights at the
start of the round, we may assume without loss of generality that ¢ and j are adjacent (i.e. that
j =1i+1). By definition of indexing, we must have H; < H;1, which combined with the hypothesis
of the lemma implies that H;1; — C/n < H;. But then fNIZ > ﬁi+1 by Lemma B.7, and then N7
and N}, | in different families contradicts Lemma B.11. [

B.4 Lemmas Regarding the Re-structuring of Families

In this section, we discuss all possible changes between how families are arranged at the beginning
of one round and the next.

Lemma B.13. Families can only re-align during rounds E(Ny, Np) during which there is a packet
transfer in P from N, to Np.

Proof. This is immediate from the rules regarding constructing families, since the values of {I:TZ}
(34) can only change if there is a packet transfer in P, and thus the analysis in Rule F1 (35) will
not change if there has been no packet transfer in P. [|

Lemma B.14. Suppose that in some round x = E(N,, Ny), the Slide protocol transfers a packet from
Ny to Ny. Let Fo, :={Ne,...,Nq,...,N¢} denote N,’s family at the start of round x (e < a < f),
and Fg := {N¢,..., Ny, ..., Ny} denote Ny’s family'" at the start of x (c < b < d). The following
describes all possible changes to the way families are organized between the start of round x and the
nezt round:

CASE 1: H, AND H, DO NOT CHANGE. Then the families at the start of round x + 1 are
identical the arrangement of families at the start of x.

CASE 2: H, DOES NOT CHANGE, AND Hj INCREASES BY ONE. Then:

(a) Families Fs to the left of Fg (i.e. 6 <) do not change

(b) For any node N,, with b < m < d, N, will be in the same family as Ny at the start of
round + 1

(¢) For any node N,, with d < m, letting Fj, denote Ny,’s family at the start of round z,
one of the following happens:

i. Fj; does not change

i. Every node in F}; is in the same family as Ny at the start of v + 1

CASE 3: H, DECREASES BY ONE, AND Hj DOES NOT CHANGE. Then:

(a) Families Fs to the right of Fo (i.e. § > a) do not change

1"Note that necessarily 8 < «, as if both N, and N, are internal nodes, then Rule 3 of the Slide protocol (together
with the definition of how nodes are indexed) guarantees that b < a, and then 8 < « by Lemma B.6. If N, is the
Sender and/or N, is the Receiver, then § < a comes from our choice to denote the Sender’s family by F, and the
Receiver’s family by Fo (see Rule F3 regarding the formation of families).

30

(b) For any node N, with e < m < a, Ny, will be in the same family as N, at the start of
round x + 1

(¢) For any node N,, with m < e, letting F,. denote Ny,’s family at the start of round x,
one of the following happens:

i. Fj; does not change

i. Every node in F is in the same family as N, at the start of x +1

CASE 4: H, DECREASES BY ONE, AND Hj INCREASES BY ONE. Then:

(a) Families F5 to the right of Fo (i.e. § > a) and to the left of Fz (i.e. § < () do not
change

(b) For any node N, with e < m < a, Ny, will be in the same family as N, at the start of
round x + 1
(¢) For any node N,, with b < m < d, N, will be in the same family as Ny at the start of
round + 1
(d) For any node N, with d < m < e, letting F;, denote Np,’s family at the start of round
x, one of the following happens:
i. F,; does not change
i. Every node in F; is in the same family as N, at the start of x +1
wi. Every node in F; is in the same family as Ny at the start of x + 1
w. Bvery node in F; is in the same family as No AND Ny, at the start of x + 1

Proof. That the four cases stated in the lemma cover all possibilities is immediate from the definition
of effective height H (see Definition (34)). Case 1 follows immediately from the rules F1-F2 for
forming families (see Definition B.1) since the effective heights have not changed. We go through
each of the other cases, and prove each Statement.

Suppose that we are in Case 2, so that ﬁa does not change, and ﬁb increases by one. For § < 3,
consider a family Fs5 := {N;,..., N;}, and for the sake of contradiction, suppose that F5 changes in
some way from the start of round = to the start of round x + 1. Without loss of generality, we will
suppose that § < (§ is the minimal index for which Fs changes.

Case A: F;s Splits. In other words, IV; and N; are not in the same family at the start of round
x+1. Let F**1 .= {N;,..., Ni} denote N;’s new family at the start of x + 1, where k < j by
assumption.'® Notice that for all i < m < j, the effective height fIm will not change between
the start of z and x + 1 (since j < b < a). Therefore:

) _ . . _
D1 Hi < > Hy = (o) < k1 Hi
j—k T k—i+1 Fu j—k

(46)

where the first inequality is Statement 1 of Lemma B.8 and the last inequality is Statement 2
of Lemma B.8. Clearly (46) is impossible, yielding the desired contradiction.

18Necessarily N; is the smallest-indexed node in F, by our choice of minimality for §.

31

Case B: F5 Grows. In other words, at the start of round x + 1 there is some family Frtl =
{Ni,...,Ni} for k > j. If k < b, then for all i < m < k, the effective height H,, will not
change between the start of x and « + 1, so:

o K ~ L
g:iHl < Zl:jJrIHI < {:iHl
J—i+1 k—j — j—i+1l

(47)

where the first inequality is Statement 2 of Lemma B.8 and the second inequality is Statement
1 of Lemma B.8. Clearly (47) is impossible, yielding the desired contradiction. On the other
hand, if £ > b, then for all i < m < k and m # b, the effective height H,, will not change
between the start of x and x + 1, but the effective height H,, increases by one from the start
of z and x + 1. Therefore (using superscripts only when necessary to specify the round):

P~ k ~ k o4l -
1 H < Zl:j+1Hf - Zz:jJrlﬂzgC < 1 Hi
j—it1 k—j k—j o j—it+1

(48)

where the first inequality is Statement 2 of Lemma B.8 and the last inequality is Statement 1
of Lemma B.8. Clearly (48) is impossible, yielding the desired contradiction.

This proves Statement (a) of Case 2. For Statement (b), fix index m € [b,d] (Statement (b) is
trivially true for m = b, so assume b < m < d). For the sake of contradiction, suppose that NV, is
not in the same family as Ny at the start of z + 1. Let fg“ = {Ni,..., Ny, ..., N;} denote Np’s
new family at the start of x 4+ 1, so by assumption j < m < d, and also ¢ < i by Statement (a) of
Case 2. Notice that I?g” +1= I;TI;”H, but that for all other ¢ <1 < m, ffl does not change from the
start of x and x + 1. If i = ¢ (using superscripts only when necessary to specify the round):

Zl:j-i-l H, < {:c Hlx g:c Hlirl < Zl:j+1 H (49)
d—j ~ j—c+1 j—c+1 d—j

where the first inequality is Statement 1 of Lemma B.8 and the last inequality is Statement 2 of
Lemma B.8. Clearly (49) is impossible, yielding the desired contradiction. If on the other hand
¢ < i, then (using superscripts only when necessary to specify the round):

d [J gz
2i=j1 Hi < 2=t -

= H T
i—j S g—er1 -)
L~
< ;:CHlx
- i—c
i—1 Tra+1
_ YAt
1—c
~ i grtl
< Hz :7127/ L
(H 1) i+l
d ~
_i1H
< ZZC;JJrl. 7 (50)
—J

where the first and second inequalities are both Statement 1 of Lemma B.8, the fourth inequality
is Lemma B.10, and the last inequality is Statement 2 of Lemma B.8. Clearly (50) is impossible,
yielding the desired contradiction.

32

This proves Statement (b) of Case 2. It remains to prove Statement (c). Fix some m > d, and
let Y = {Nw,..., Nm,..., Ny} denote Ny,’s family at the start of z. We prove Statement (c) via
the following two subclaims:

Subclaim 1. F,, does not Split. In other words, N,, and N, will be in the same family at the
start of round x + 1.

Proof. Suppose not. Let FZt! = {N; ..., Ny,...,N;} denote N,’s family at the start of
round z + 1, so ¢ < i < w < j < y (where the first inequality is due to Statement (a)). Notice
that for every ¢ < [< y, the only possible effective height f]l that can possibly change in
round z is for [= b, in which case ﬁlf +1= I;Tbxﬂ. If i = w, then (using superscripts only
when necessary to specify the round):

g:w Hl < I=j+1 Hl < g:w Hl (51)
jow+1 y=Jj T j-wl

where the first inequality is Statement 2 of Lemma B.8 and the second is Statement 1 of
Lemma B.8. Clearly, (51) is impossible, yielding the desired contradiction. If on the other
hand i < w, then (using superscripts only when necessary to specify the round):

‘Z:w Hl < ;UZZ Hlx + Z‘l]:w Hlx < Zl:j+1 Hl < ‘Z:w Hl
j—w+1 = j—i+1 - y—j T j-w+l

(52)

where the second inequality is Statement 2 of Lemma B.8, the third is Statement 1 of Lemma
B.8, and the first comes from:

77 1 Fpo+1 i 77 -1 Fraz+1 77
g:w Hl < Z}U:z ‘E{lgC = g:w Hl < Z’lwzz ‘E{lgC + Z?:w Hf
j—w+1 — w—1 j—w+1 — j—i+1

, (53)

where the first inequality is Statement 1 of Lemma B.8. Clearly, (52) is impossible, yielding
the desired contradiction.

Subclaim 2. If F,, gets larger, then necessarily Ny will be in the same family as Ny, and N,
at the start of round x + 1.

Proof. Suppose not. Let FZt! = {N;, ..., Ny,...,N;} denote N,’s family at the start of
round z+ 1,50 b < i <w <y <j. Notice that for every ¢ <[<y, since b < i, the effective
height H; does not change. If ¢ = w, then since we are assuming F,, grows, we have j > y,
and:

Z?:w ﬁl < Zg:y—kl H, < Z?:wﬁl
y—w+1 j—y T y—w+1

(54)

where the first inequality is Statement 2 of Lemma B.8 and the second is Statement 1 of
Lemma B.8. Clearly, (54) is impossible, yielding the desired contradiction. If on the other
hand ¢ < w and j > y, then:

— = ~] ~
S H S H o Yy Hi
w—i y—w+l i—y

: (55)

33

where the first inequality is from Lemma B.10, and the second is from Statement 1 of Lemma
B.8. But then (55) implies:

-1 77 - J 7
Yt Hit YL HE 2=y B

y—t+1 j—y (56)
which contradicts Statement 1 of Lemma B.8. Finally, if i < w and j =y, then:
S H X, ’ (57)
w—1 y—w+1
which contradicts Statement 1 of Lemma B.8.
Cases 3 and 4 follow analogous arguments. |

B.5 Statement and Proof of Fact that Slide has Competitive Ratio 1/n

Lemma B.15. Suppose at the start of round x, there exists nodes {Nf,Nf_H,...,Nf} such that
Hf =.-- = HY. Then under any permutation of the indices o : {i,i+1,....5 = {i,a+1,...,7},
we have that:

j j J
> HP = max(0, Hf — (k—1)C/n) =Y max(0, H:y, — (k — 1)C/n) (58)
A ; k=i

In particular, the value for Zizz fNI]f will not change if we re-index the nodes {Nj,...,N;} in any
arbitrary manner.

Proof. This is immediate from the hypothesis that HY = Hf, | = --- = HY. [|

Lemma B.16. Suppose that in some round x, N, transfers a packet to Ny in the Slide protocol. Let
Fp denote Ny’s family and F, denote N,’s family. Then either there is exactly one node Ny € Fa
such that oy increases by one, or N does not change for every N € Fg. Similarly, either there is
exactly one node Ny € Fy, such that @, decreases by one, or oy does not change for every N € F,.
No other node N € G will have v change as a result of this packet transfer.

Proof. If Ny’s effectual height H,, does not increase as a result of the packet transfer (e.g. the ‘0’ in
the maximum statement of (34) dominates), then F3’s cumulative effectual height does not change,
and as a result, the potential ¢ of all nodes in F3 remains unchanged. If on the other hand B’s
effectual height does increase, then this will raise the cumulative effectual height H 75 by one, and
this will be absorbed by some node in F~. A similar argument works with respect to N, in Fg.
The last statement of the lemma follows from Lemma B.4. [|

We are now ready to prove the main lemma that will allow us to argue that the Slide protocol
has competitive ratio 1/n. To fix notation, for any internal node N, let Hﬁl denote the number of
packets p’ € ZJ " that N is currently storing. Recall the definition of ® (see Definition B.5); we will
distribute the overall potential ® between all the families, and show that with the rules regarding
changes in ®, the potential of a family is always positive. Namely:

34

Lemma B.17. For every round x and for all families F that are present at the start of x:

® > max| Y C-HY, > HY| =0 (59)
].'

NeF— NeF+

Proof. We prove this based on induction on the round x. The lemma is clearly true at the outset of
the protocol, when ® = & = 0, and all nodes are in the same family, since all nodes have height
zero. Suppose that at the start of round z = E(N,, Np), (59) is satisfied. We show that no matter
what happens in round z, (59) will remain satisfied at the start of round = + 1.

Case 1: Neither P nor P’ transfer a packet. In this case, families will not change (Lemma B.13), and

no packets in ZJ " move, so there will be no changes to either side of (59).

Case 2: P’ transfers a packet during z, but P does not. If the packet p’ transferred by P’ is in Z},

then neither side of (59) will change. So suppose p’ € Z%y. Note that in Case 1, N, and NV, are in
the same family, call it F (Since Slide does not transfer a packet, we have |H, — Hy| < C/n, and
see Lemma B.12).

e If N, and N, are in F7, then ¢, = ¢, 50 ¢,y does not change. In particular, neither side of
(59) changes in this case. The same is true if N, and N, are both in F~

o If N, € F" and N, € F, then the change on the left-hand side of (59) is-1 (since Ag, = —1),
which matches the change on the right-hand side of (59) (since HgJ " increases by one, and
H f " decreases by one). If instead N, € F~ and N, € F*, then similar reasoning shows that
the change of both sides of (59) is +1.

Case 3: P transfers a packet from N, to IV, in round x. Notice that this case is not concerned with

whether or not P’ also transfers a packet, as such a packet would necessarily be in Zf / (by definition),
and hence this packet movement in P’ will not affect either side of (59). Also, without loss of
generality IV, is the sending node and Nj is the receiving node. By Lemma B.14, there are 4 cases
we must consider:

Case 3A: H;, and H, do not change. Then by Lemma B.14, there will be no re-structuring of families
between rounds x and x + 1. Consequently, if 3 denotes N;’s family and F, denotes N,’s family
(possible oo = [3), then for all other families, (59) will remain valid. Also, ¢n does not change for
any N € Fg (similarly for N € F,) since ﬁb and ﬁa do not change. Therefore, the right-hand side
of (59) also will not change for 73 and F,, and the only change in the left-hand side comes from
the increase of 4C to ® (see Rule 2 of Definition B.5), which can be divided arbitrarily among the
families {F}, and this will only help (59).

Case 3B: I;Tb increases by one, but ﬁa does not change. Let Fg = {Nc,..., Ny, ..., Ng} for some ¢ <
b < d. By Lemma B.14, there exist integers r, s > 0 and indices {ki,...,k.} and {ly,...,ls} such

35

that c< k1 < <k <b<d<l; < - <ls and:
Families at the start of x Families at the start of x
Fs={N¢...,Np,...,Ng} fﬂZ{NC7~~~7Nk1—1}
f,@—l—l :{Nd+17°°°7N11—1} {,@-ﬁ-l:{Nklu"'ung—l}
.7:;@+2 :{Nlla"'alefl} fﬁ+2 :{NkQ,...,N]%,l}
f,@—l—s = {leflw .. 7le—1} {,@4—7’—1 = {Nkrflu .. '7Nkr—1}
fﬁJﬂ« — {Nkr’- .o ,lefl}

and no other families change.

By Lemma B.16, there is only one node N € .7:5_ for which ¢y increases by one as a result
of the packet transfer. Although Fj will change in the manner described by the table above, by
Lemma B.4, the number of nodes N € G with oy = L<ﬁfB>J (respectively on = L<ﬁfB>J) will not
change (aside from the single node N’ for which ¢x/ increases by one, as guaranteed by Lemma
B.16), although the specific nodes in F* and F~ may vary. A simple computation ensures that the
right-hand side of (59) changes in the exact same way as the left-hand side of (59) whenever any
two nodes in F swap places (in ™ and F~). Therefore, we may assume without loss of generality
that there is exactly one node N’ € .7-"5 for which ¢p- increases by one as a result of the packet
transfer, and for all other nodes N € G, ¢n does not change between the start of x and = + 1.

For each 0 <¢ <r and 0 < j < s, define the following quantities:

Families at the start of | Families at the start of
Xi= ZNG]?EM(C - Hﬁ,) Xj = ZNG}'E_H(C - H]\Jf,)
Yi = Yyers, AN = ZNG}'*'H HY (60)
= |75 = | F5l
“Fﬁﬂ‘ - |‘7:ﬂ+z|
Also define F, = fﬁw U Fg, and:
p= > (C-HY) wv= > HY a=|F and B=|F| (61)
NeF; NeF;F
By the induction hypothesis, we have that at the start of round z:
Z@fmﬁZ(AjIgy”) (62

In addition to the above potential, we also have that ® increases by 4C' as a result of the packet
transfer in Slide. Meanwhile, the goal is to show that at the start of round x + 1:

A X + BY;
o~ > _— 63
s, =) (255 @
Putting all these facts together, we want to show that:
A X + B;Y; " (A X; + BY;
4C 1) > —_— 64
+Z< A, + B, >—z; A+ B (64)

36

We demonstrate in the remainder of the proof how to show (64) is satisfied.
First look at the term ¢ = r for the right-hand side of (64):

A+ B, Ay + B,
L B-145, Bi)w+HG + 35, Y))
A, + B,
_a—l—l B qP u ' .Aj 6—1 P! : ' Bj
3 a) Bi— [A,
+On %%m+wm+&0

As(B+38Bj) — Bs(a+ 3 Aj)
|...+(ys_Xs)< (-As+Bs)(Ar+Br))

a+1 ° A; 61 ° B;
C —(C - HE, X; J — HE, -
<Ct gl N))+JZ; A8 Tars” T N)+JZ;%AJ,+BJ,

We have used above that (by Lemmas B.8 and Corollary B.9):

a_ _ Ay e A - I+a+ A+ -+ A (65)
a+p A+ B As +Bs ~a+B+375_ (A +Bj)
Meanwhile, we look at the left-hand side of (64) for the j = 0 term:
AoXo + Bodo (o4 3755 0 A)(n+ 3100 X
Ao + By Ao + By
L B2 0 Bi) (v + 35 i)
Ao + By
r—1 -
() () - 1r T
a+p a+ Ao + By
r—1
A X; + BY;
2 AT B (66)
=0
where we have used for the inequality above:
A A A 1 o A
A 0 < L <. < L < +Q+ZZO (67)
Ao+By Ao+Bo A+ B A1+ Bror a+ B+ (A + By

with the inequalities following from Lemma B.8 and Corollary B.9. Putting this all together, we

have that:
A X + B;Y; " (A X; + BY;
40 7 > 1<\ g 1 lq
+Z< A+ B,);(A+ B;)

which is (64).
The other cases are proven similarly. [|

37

We state as an immediate consequence the lemma we needed in the discussion of Section 4:

Lemma B.18. At all times:

1ZF'| < 2nY? < 2n|ZF| + 2n%C (68)

C Competitive Analysis of the Slide+ Protocol

C.1 Description of Slide+

Recall that we model an asynchronous network via a scheduling adversary that maintains a buffer
of requests of the form (u,v,p), which is a request from node wu to send packet p to node v. The
scheduling adversary proceeds in a sequence of honored edges (called rounds), whereby we will mean
the following when we talk about an edge E(u,v) being honored by the adversary:

STEP 1. From its buffer of requests, the adversary selects one request of form (u,v,p) and
delivers p to v, and also selects one request of form (v,u,p’) and delivers p’ to u. If there are
no requests (u,v,p) (resp. (v,u,p’)), then the adversary sets p (resp. p’) to L.

STEP 2. Node u (resp. v) sends new requests to the adversary of form (u,v,p) (resp. (v, u,p’)).

Note that the two above-mentioned actions take place sequentially, so that the requests queued
to the adversary in Step 2 can depend on the packets received in Step 1, but requests formulated
during Step 2 of some round E(u,v) will not be delivered until edge E(u,v) is honored again (at
the earliest). Since nodes in the network only send/receive packets when they are at one end of an
edge currently being honored, nodes will not do anything except when they are a part of an honored
edge. Thus, in describing Slide+, we need only describe what a node u will do when it is part of an
honored edge F(u,v). Recall that C' denotes the size of each node’s memory!?, and for simplicity
we will assume that C'/n € N, and also for Slide+, we will require C' > 8n?.

Slide+ Protocol Description.

During honored edge E(u,v), let (v,u, (pih’)) denote the message that u receives from v in Step
1 of the round (via the scheduling adversary). Also, u has recorded the request (u,v, (p,h)) that
it made during Step 2 of the previous round in which E(u,v) was honored; note that v will be
receiving this message during Step 1 of the current round.

1. If w is the Sender, then:

(a) If h < C, then u deletes packet p from his input stream {pi,ps,...} (and ignores the
received packet p’), and then proceeds to Step (c).

(b) If B’ > C, then u keeps p (and ignores the received packet p’), and proceeds to Step (c).

(c) The Sender finds the next packet p; € {p1,p2,...} that has not been deleted and is not
currently an outstanding request already sent to the adversary, and sends the request
(u, v, (pi, € + % + n)) to the adversary. Also, u will update the fact that the current
message request sent to v is (u,v, (p;, C + % +n)).

YFor simplicity, we assume that all nodes have the same memory bound, although our argument can be readily
extended to handle the more general case.

38

2. If u is the Receiver, then u sends the request (u,v, (L, %C —2n+1)) to the adversary. Mean-
while, if p’ # L, then u stores/outputs p’ as a packet successfully received.

3. If w is any internal node, then:

(a) If h > W' +(C/n+2n), then u will ignore p/, delete p and the “ghost packet associated to
p” (see Step 3d below), and slide down any packets/ghost packets to fill any gaps created.
Also, v will update his height h = h — 1, and proceed to Step 3d below.

(b) If h < W' — (C/n + 2n), then u will keep p, and also store p’ in the stack location that u
had been storing the “ghost packet” for p (see Step 3d below), deleting the ghost packet
in the process. Also, u will update his height h = h 4+ 1, and proceed to Step 3d below.

(c) If |h — W'| < C/n + 2n, then u will ignore packet p’ and keep p, but delete the “ghost
packet” associated to p, and then proceed to Step 3d.

(d) Node u will search its stack for the highest packet p” (not including ghost packets) that
it has not already committed in an outstanding request to the adversary. It then sends
the request (u,v, (p”,h)) to the adversary. Additionally, u will create a “ghost packet
associated to the packet/request p”” that it has just sent the adversary. This “ghost
packet” will assume the first un-filled spot in u’s memory stack. Finally, u will update
the fact that the current message request sent to v is (u, v, (p”, h)).

In the following section, we will prove that the above routing rules are compatible with memory
requirements (e.g. that Steps 3b and 3d do not require a node to store more than C' (ghost) packets),
as well as prove that Slide+ enjoys competitive ratio 1/n.

C.2 Analysis of Slide+

Before providing the full details of the proof that Slide+ enjoys competitive ratio 1/n, we will
provide a brief high-level description of how the proof works. First, notice that the main technical
challenge in moving from the semi-asynchronous model of Section 4 to the fully asynchronous model
is that nodes can no longer make routing decisions based on current information. Indeed, the current
state of a node may change drastically from the time it makes a request in Step 2 of some round
E(u,v) and the time the request is finally sent by the adversary in Step 1 of the next round in
which E(u,v) is honored. Since the Slide protocol uses the current height of a node to make routing
decisions, the fact that the height of a node may change substantially between the time a packet
request is made and the time the receiving node receives the packet is an issue that must be resolved.

The above described protocol handles this issue by allotting “ghost packets” in Step 3d (this
will ensure there is always room to store a packet sent from an honest neighbor), as well as having
nodes make routing decisions based on old height considerations. In particular, Steps 1-3 above
dictate what u should do based on the height that v and v had during the last time E(u,v) was
honored. Therefore, although this information may have become outdated since the last time u and
v communicated with each other, at least the decisions will be made consistently, both in the sense
that the heights being compared are synchronized (i.e. they are from the same time as each other,
although possible now out-dated), and in the sense that the nodes will know what the other will
do in terms of whether or not it will keep the packet just sent/received. This last fact is crucial to
prevent packet deletion and duplication from occurring.

The proof will follow the main structure of the proof provided for the semi-asynchronous Slide
protocol, with one additional category to account for packet transferring decisions that were based

39

on significantly outdated height information.

Theorem C.1. The Slide+ protocol achieves competitive ratio 1/n in any distributed, asynchronous,
bounded memory network with dynamic topology (and no minimal connectivity assumptions). More
specifically, for any adversary/off-line protocol pair (A,P’), if P denotes the Slide+ protocol, C
denotes the capacity (memory bound) of each node, and ZF (resp. ZF') denotes the number of
packets received by protocol P (resp. P') as of round x, then for all rounds x:

ZP" < 8nz” + sn*C (69)

Proof. Fix any adversary/off-line protocol pair (A, P’), and let P denote the Slide+ protocol and
ZP and ZF" as in the statement of the theorem. Motivated by the proof in the semi-asynchronous
setting, we imagine a virtual world in which the two protocols are run simultaneously in the same
network. We split Z7 " into the following three subsets (we will henceforth suppress the index
referencing the round z):

1. ZzF " consists of packets p’ € ZP" for which there exists at least one round E(u,v) such that
both p’ was transferred by P’ and some packet p was transferred by P.20

2. 227? " consists of packets p’ € ZP" that were never transferred alongside a packet in P as in
1 above, and such that every time p’ was transferred between two nodes u and v during a
round F(u,v), the heights H and h that were used by u and v in determining whether to
store/delete the packets delivered by the adversary during Step 1 of E(u,v) (see protocol
description above) were each within n of the current heights of u and v.

3. 2 = 77"\ (ZT" v Z}").

Clearly, |Z7'| = |ZF'| + |2’ 4+ | Z]’|, and hence the theorem follows from Lemmas C.3, C.4, and
C.5 below. m

We will need the following trivial observation, which follows immediately from the description
of the Slide+ protocol in Section C.1.

Observation 2. At all times, an internal node u has at most n ghost packets and at most n
outstanding requests (one for each of its edges v).

Proof. Rules 1(c) and 3(d) only allow a node to submit a single request for each round the node
is part of an honored edge, and this request is then delivered by the adversary in Step 1 of the
next round in which the edge is honored. Also, Rules 3(a-c) guarantee that the ghost packet
corresponding to the current honored edge will be deleted before another one is created in Rule
3(d).]

In order to bound |ZF '|, we will need to bound the number of times any packet p can be
transferred by the Slide+ protocol. In the asynchronous Slide protocol of Section 4, we showed that
any packet p could be transferred at most 2n times, as during every packet transfer in Slide, the
packet must drop in height by at least C'/n — 1. At first glance, it might seem that we cannot make
the same argument in the fully asynchronous setting since the Slide+ protocol is making routing

2ONote that we make no condition that the two packets traveled in the same direction.

40

decisions based on (potentially) outdated height information. However, the introduction of “ghost
packets” will allow us to retain this quality. Indeed, the purpose of utilizing ghost packets is to
anticipate future packet transfers and reserve spots in a node’s memory stack at the appropriate
height, allowing us to argue that even if nodes nodes are using out-dated height information, packets
will still “low downhill” from Sender to Receiver. This is captured in the following lemma.

Lemma C.2. Let Y,F denote the the set of packets inserted by P as of round x. Also let T denote
the set of packet transfers that have occurred in P as of round x. Then any packet in the Slide+
protocol is transferred at most 2n times.?t In particular, |TL| < 2n|Y,]| < 2n(|ZF| + nC).

Proof. We show that anytime a packet is transferred in the Slide4 protocol, the packet’s height in
the new buffer is necessarily at least C/n — 4n lower than its height in the old buffer. Since packets
only move within buffers when they are received or sent (or when they slide down as in 3(a)), and
since?? 2n(C/n —4n) > C, the lemma will follow. Fix a packet p, and consider a round z = E(u, v)
in which p is transferred from u to v. In particular, it must have been that the previous round
2’ < z in which E(u,v) was honored, u sent some request of form (u,v, (p,h)) to the adversary in
Step 2. Notice that when u selected p to form a part of its request as in 3(d), since u had height
h and u has at most n — 1 packets already committed as an outstanding request (Observation 2),
p must have height at least h — n in u’s buffer. Meanwhile, let (v,u, (p’,h")) denote the request
that v sent to the adversary in Step 2 of round z’. Notice that in 3(d), v reserved a position in its
buffer (the “ghost packet”), into which p will be inserted when it is received in round z. Since the
ghost packet is assigned the topmost unoccupied (by packet or ghost packet) position in v’s buffer,
we have that p will have height no bigger than h’ + n. Therefore, p will drop in height by at least
(h—n)— (b +n) = h—h' —2n when it is transferred from u to v. Since the criterion for accepting
a new packet (see 3(d)) demands that h — h’ > C/n — 2n, we have that p will necessarily drop in
height by at least C'/n — 4n when it is transferred.]

Notice that Lemma C.2 is valid regardless of how long a request (u,v,(p,h)) has been queued
in the adversary’s buffer, and also of how u and v’s stacks may have changed in the meantime. We
are now ready to state and prove the first requisite bound:

Lemma C.3. |Z]'| < 2n|ZP| + 2n2C
Proof. By definition, |ZF'| < |T"|, and the latter is bounded by 2n|Z”|+2n2C by Lemma C.2. =
Lemma C.4. |Z]'| < 2n|ZP| + 2n2C

Proof. This bound follows the same reasoning as the proof of Lemma B.18. Suppose that packet
p e Zép " is transferred by P’ from w to v in round z. By definition of Zép ', Slide+ did not transfer
a packet, and thus (with the notation as in Rule 3(d) for Slide+) |h — h'| < C/n — 2n. Also by
definition of ZJ ', we have that v’s height in round z is within n of 7/, and u’s height in round
x is within n of h. Consequently, u’s height in round = must be within C/n of v’s height. Then
if we define families the same way as in the proof for the semi-synchronous Slide protocol (see
Section B), by Lemma B.12, v and v must be in the same family at the start of x. Indeed, all
the lemmas and proofs of Section B will remain valid??, and hence Lemma B.18, which states that
|ZT'| < 2n|ZP| + 2nC, remains valid.]

21 This matches the bound for the semi-asynchronous Slide protocol of Section 4.
22For Slide4, we have demanded that C' > 8n?.
23The only necessary modification is to consider the present definition of Z2 " instead of the one used in Section B

41

Lemma C.5. |Z]'| < 4n|ZP| + 4n2C

Proof. Fix a packet p’ € Z?Z),. By definition of Zgy, there exists some round z,; = E(u,v) in which
p’ was transferred from u to v, where either u’s height or v’s height has changed by at least n since
the previous round z/, < x in which E(u,v) was honored. Let S, C TP denote n of these packet
transfers, where each packet transfer in S,y corresponds to a packet sent (or received) by u (or v),
and took place between x;, and x, .
Observation. For any packet transfer in Slide+, there are at most 2n packets p’ € ZJ " for
which the packet transfer appears in Sy .

Proof. Consider any round 2’ = E(u,v) in which a packet is transferred from u to v by Slide+,
and refer to this specific packet transfer as ¢,,. Then for each edge of v and each edge of v
and for any p’ € ZI', there can be at most one round xy > & for which t,r € Spy. After all,
once a given edge of u or v, say for example E(u,w), transfers a packet p’ € Zf " in round
z,y > o', the heights of both u and w are updated, and there can never be another p” € ZJ /
and later round xp» > x, such that z, = E(u,w) and t,y € Sp». Therefore, ¢,/ can appear
in at most 2n sets of form S,.

Since |S,| = n for each p’ € ZJ', we have that:

Y 1Syl =nlzf (70)

7)/
p'EZ]

Now since for any given packet transfer ¢, € T there can be at most 2n different values of p’ € Zf /
such that ¢, € S, we have that:

n| 2]
U S|z 5, (71)
p'eZY
But Up,ezgplspl - TVP7 SO:
P12 (0, Syl > 25 (72)
= p,ezg)/ p/ = 2
In particular, |Z?7))’\ < 2|TP| < 4nZP + 4nC, where the second inequality is Lemma C.2.]

D Pseudo-Code and Proofs for Protocol Secure Against
Malicious Adversary

D.1 Pseudo-Code

In this section we present pseudo-code for implementing our protocol that is secure against
a coordinated attack of the edge-scheduling and node-controlling adversaries. Formal proofs of
security, referring to line numbers of the pseudo-code of the following four figures, are in the next
section.

42

Variable and Notation Definitions ## Each of the below variables are transmission dependent
C = Capacity of each (internal) node’s buffer (i.e. number of codeword packets a node can store)
B = Capacity of each node to hold extraneous (broadcast) information
D = % = Number of packets per codeword EN = List of Eliminated nodes
Y = Set of packets inserted by sender Z = Set of packets received by receiver
P,,» = Net no. of p’s to cross E(u,v) [pl, , = Net no. p crossed E(u,v)

u,o = Net decrease in potential as a result of packet transfers from u to v

« = Total potential drop caused by packet transfers across all edges adjacent to u

» = Ghost packet associated to packet p (See Figure Internal Node Create Next Request)

« = Height of u’s buffer; i.e. the number of codeword packets u is currently storing

BB, = u’s Broadcast Buffer BL, = u’s version of the Blacklist

DB, = Sender’s Data Buffer, used to store status report parcels that will help eliminate corrupt nodes

Qe

Figure 1: Definition of Variables

Routing Rules for Node u € G

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Input:
(v,u, (p, H'), (g1, ¢3), (¢, o(a))) ## Received From v (via A)
(u,v, (p, H), (q1,q2), (o, o (x))) #4 Previous request sent to v (via A)
DO:
Process the parcel ¢ as in Process Parcel below
Ifa=d, o(d) is valid, and v ¢ (EN, U BL,)
If u = s and Ready(v) is TRUE and H' < C": #4 Insert Packet
Delete p from input stream {p1,p2,...}
Increase @, , by the amount indicated by «
Increase Ps v, [p]s,v, and |Y| by one
Else If uw = r and Ready(v) is TRUE and p’ # L: #4# Receive Packet
Store/output p’ as a packet successfully received
Increase @, , by the amount indicated by «
Decrease P, and [p]-,» by one and increase |Z| by one
Else If u # r, s and Ready(v) is TRUE and H > H' + (C/n — 2n): ## Send Packet
Delete p and G, and Slide #+t Slide down (ghost) packets to fill gaps
Increase ®,,,, and ®, by the amount indicated by «
Increase P, and [p]r. by one, and set H, = H, — 1
Else If u # r, s and Ready(v) is TRUE and H < H' — (C'/n — 2n): ## Receive Packet
Store p’ in location occupied by G,
Increase ®,,, and ¢, by the amount indicated by «
Decrease P, and [p]u,» by one and set H, = H, + 1
Send to A the returned value of Create Next Request

Figure 2: Routing Rules

43

Process Parcel for Internal Nodes and Receiver u

01 Input:

02 (q1,q2) #4+ Received From v (via .A)

03 DO:

04 Store g5 in BB, ## qh = Dy for some w. Replace old value, provided new value is larger
05 Add ¢; to BBy, ## Also mark edge E(u,v) as having transmitted this information

06 If g1 = Qr

07 Clear outgoing, incoming, BL,, and BB, (except status report parcels)

08 Else If g = w ¢ EN, denotes a node to eliminate
09 Add ¢} to EN,

10 Else If ¢i = w denotes a node to blacklist

11 Add ¢} to BL,

12 If w = u, Sign and Add n — 1 status report parcels to BB,
13 #+# Find reason u was blacklisted from SoT. For each v € G:
14 ## if case F2, add ®u,v, if case F3, add Pu,v, if case (F4,p), add [p'], ,

15 If u =7 and ¢ indicates T — 1 failed due to F2:
16 For each v € G, add ®,, to BB,

Process Parcel for Sender

17 Input:

18 ¢} #+# Received From v (via A)
19 DO:

20 Add ¢} to DB,

21 If ¢f is the last missing status report parcel for some w € BL;
22 Remove w from BLs, and add fact w ¢ BL to BB,

Figure 3: Rules For Processing Broadcast Information

D.2 High-Level Proofs Ideas for Competitive Analysis of Throughput

In this section, we sketch the proof that our protocol is n-competitive, leaving the rigorous
details to the next subsection. As was done for analysis of Slide and Slide+, we use competitive
analysis to evaluate the throughput performance of our routing protocol. To this end, let (A, P’)
denote an adversary/off-line protocol pair for which we compare our routing protocol P.

Theorem D.1. If at any time P’ has received ©(zn) messages, then P has received Q((x — n?))
messages. Thus, if the number of messages x € Q(n?), then our protocol has competitive ratio 1/n,
which 1s optimal.

Proof. This follows as an immediate corollary to Lemmas D.3 and D.4 below. [|

Lemma D.2. If a transmission fails as in F2-F4, as soon as the sender receives all of the signed
commumnications between all nodes, he will necessarily be able to identify a corrupt node.

Proof. Intuitively, a transmission fails as in case F2 when a corrupt node is transferring packets
against transfer rules (e.g. from smaller heights to larger heights, or when a corrupt node is dupli-
cating packets). Both of these can be detected by looking at the node’s communication with each
of its (honest) neighbors, who have recorded the height differences caused by each packet trans-
fer. If a transmission ends as in case F2, the sender will look for a node whose cumulative height
drop is negative; this information is available through the Sig. 3 signed communications (see above
section).

44

When a transmission fails as in case F3, this means that there is a corrupt node that is deleting
packets. The sender can identify such a node v when he has received each of the signed communica-
tions (Sig. 1) from each of u’s (honest) neighbors. Finally, transmission failure as in case F4 means
there is a corrupt node that has duplicated some packet p. The sender can identify such a node u
when he has received each of the signed communications (Sig. 2, corresponding to the packet p)
from each of u’s (honest) neighbors.

This lemma is proved rigorously in Appendix D.5. [|

Lemma D.3. After a corrupt node has been eliminated (or at the outset of the protocol) and before
the next corrupt node is eliminated, there can be at most n — 1 failed transmissions before the next
node can be eliminated. In particular, there are at most n’ failed transmissions.

Proof. The intuition for the proof is that the blacklist forces corrupt nodes to return their signed
communication to the sender if they want to further disrupt future transmissions. Then use Lemma
D.2 above to show that with the signed communication, the sender can identify a corrupt node. A
rigorous proof is provided in Appendix D.4. [|

Lemma D.4. For every message/codeword transmission, by the time the transmission ends as a
result of S1 or F2-F5, we have that the ideal offline protocol P’ has received at most O(n>C) packets.

We will need the following definition for the proof:

Definition D.5. A round t = E(u,v) of a transmission is wasted if u and v are honest nodes, and
they were not allowed to transfer a packet because one (or both) of them was on the blacklist.

Proof Sketch of Lemma D.4. Let C’ denote the number of packets per codeword.?* The structure
of the proof will be to show that if P’ has received 3nC"’ packets as of some round t, then necessarily
S1 or F2-F5 has occurred. To do this, we follow the proof of the competitive ratio for Slide and
Slide+ and imagine a virtual world in which P and P’ are run simultaneously. Let Z”' denote
the packets delivered to the receiver by P’ and let Z?Z) " denote the subset of packets that travelled
between two nodes during a wasted round. Define Z7 " to be the subset of Z7\ zr " consisting
of packets p’ for which there exists at least one round F(u,v) such that both p’ and some packet
p € YP were both transferred this round.?® Set 2} = ZF'\ (zF' U z]"). Also, let TF denote
the number of packet transfers in P between two honest nodes as of round t. We begin with the
following observation, which is analogous to the corresponding statements for Slide and Slide+ (see
e.g. Lemmas 4.1 and 4.2), and is proved in Appendix D.4:

Observation. |Z]'| < TF, |ZzF'| < TP, and |Z]'| <n*+ 203

Notice that since T only takes into account packet transfers between honest nodes, we have that
TP < Y? %« C/(C/n) = nYP, since every packet starts at height at most C' and drops in height
by at least = C'/n every time it is transferred. Therefore, the above observation together with the
assumption that 3nC’ packets have been received by P’ say:

3nC' = |27 =27 | + |28 | + 12| < 21T +nt + 20 = 17 > an2C? (73)

24C" = AnC is a constant multiple of n times the buffer-size C' (the constant A depends on the error-correction
rate).
Z5Note that we make no condition that the two packets traveled in the same direction.

45

where in the last inequality we have used ¢’ > n? 4+ 2n? and ¢’ = AnC'. Since each packet transfer
corresponds to a height difference of at least C'/n between the honest nodes exchanging the packet,
(73) implies that honest nodes will have recorded a cumulative height difference of An?C?, which is
precisely the condition for a transmission ending as in case F2. See Appendix D.3 for details. [|

D.3 Proof of Lemma D.4

In this section, we prove the following lemma (which is a formal restatement of Lemma D.4).
Before stating and proving this lemma, it will be convenient to introduce new terminology and fix
notation:

Definition D.6. We will say a node N € G participated in transmission T if there was at least one
round in the transmission for which w was not on the (sender’s) blacklist. The sender’s variable
that keeps track of nodes participating in transmission T will be called the participating list for
transmission T, denoted by pr (updated at the end of failed transmissions on line 30 of Figure 4).

Also, we will refer to specific line numbers for the pseudo-code via (X.YY), where X refers to
the Figure number, and Y'Y refers to the line number. Finally, let D denote the number of packets
per codeword, and note that:

nC
D= —
A’

where A is the error-rate of the error-correcting code.

(74)

Lemma D.7. In any transmission T, |Z-17~)/| < 3nD. If the transmission was successful (i.e. r sent
EoT parcel “S1” on 4.14-15 and 4.20), then |ZF| > (1 — \)D = O(nC).

We will prove Lemma D.7 via a sequence of Lemmas. First, recall from Section 5 the reasons a
transmission may fail:

S1, F2, F4 Sender receives End of Transmission (EoT) parcel from the receiver (4.25, 4.28)
F3 Sender has inserted D packets since the end of T;—; (4.28)
F5 Sender receives enough information to eliminate a new corrupt node (4.22)

In order to prove Lemma D.7, we will show that if there is a transmission in which the ideal off-
line protocol P’ has received at least 3nD packets, then necessarily the sender had received the
EoT parcel from R indicating “F2,” a contradiction (the transmission should have ended). In other
words, we show that if a transmission does not end as on (4.22) or (4.28), then necessarily the
transmission will end as on (4.25) before P’ is able to receive more than 3nD packets.

Lemma D.8. If the receiver forms any FoT parcel in round t of some transmission and P’ has
mserted Z = Zf/ packets at this point, then the sender will necessarily receive EoT before P’ is able
to receive n?C + nC more packets.

Proof. We will show that there can be at most n?C packet insertions by P’ before the EoT parcel
necessarily has reached the sender, from which the lemma follows since there can be at most nC
packets in the buffers of the honest nodes at round t. Thus, the lemma follows immediately from
Lemma D.15 in Appendix D.4. [|

46

By the above lemma, it remains to show that if at any time t we have that |ZF'| > 3nD —
n?C — nC, then necessarily R will enter lines 16-17 of Figure 4. First, we will split Z”" into three
disjoint subsets ZP" = ZF" U ZF" U ZF’, which were described in Section 5, but are now restated in
terms of the pseudo-code.

Definition D.9. We will say a round t = E(u,v) of a transmission is wasted if u and v are honest
nodes, and Ready(u) returned false for v or Ready(v) returned false for u (see lines 2.15, 2.17, and
4.41-43).

Intuitively, a round is wasted if two honest nodes would have transferred a packet (based on
their relative heights), but they were not allowed to because they had not yet transmitted requisite
broadcast information across E(u,v), or because one was on the other’s blacklist.

We can view the scheduling adversary A as simply a schedule (or order) of edges that the
adversary will honor. We will imagine a virtual world, in which P and P’ are run simultaneously.
Let Z?Z) " denote the set of packets in Z” that travelled between two nodes during a wasted round.
Define?® ZF " to be the subset of Z"' \ Z?Z) ' consisting of packets p’ for which there exists at least
one round E(u,v) such that both p’ and some packet p € Y were both transferred this round.?”
Set 2§ = ZP'\ (ZF U ZF"). Also, let T denote the number of packet transfers in P between two
honest nodes (as on lines 15-22 of Figure 2) as of round t.

Lemma D.10. For any round t: \Zﬁ\ <TF and \Zf;\ <TP
Proof. These are Lemmas D.16 and D.17 in Appendix D.4. [|

For each packet p’ € Z7J ", we can find the first wasted round ty in which p’ was transferred
between two nodes. Define W := {t[p’ € ZT'}. Clearly, we have:

1251 =W (75)
Lemma D.11. For any transmission: |[W| < n* 4 2n3
Proof. This is re-stated in Appendix D.4. [|
Lemma D.12. |Z7'| <277 +n* 4 2n3
Proof. Follows immediately from Lemmas D.16, D.17, and D.11, and (75).]

Notice that although every packet transfer in P will cause a drop in potential, it may take some
time before a node’s cumulative potential drop for the current transmission reaches the receiver,
since only one node’s potential is transferred across an edge during a given round (4.08). In order
to account for this, we will utilize the following notation. For any honest node u, let U, C ZP
denote the set of packets that have reached R (in P’) and travelled through u at some point en
route to R. Let Uy, o C U, denote the subset consisting of the (at most) n® packets that left u (for
the last time) latest (chronologically), and let U, 1 = U, \ Uy 2. If Uy, 1 # 0, let t,, denote the latest
round such that some p’ € U, 1 last left u (otherwise set t,, = 0).

Lemma D.13. For any honest node u, R’s stored value for ®, is at least as current as t,.

26If we wish to emphasize the round, we will write Zf;
2"Note that we make no condition that the two packets traveled in the same direction.

47

Proof. This is re-stated and proved in Appendix D.4. [|

We are finally ready to put all the pieces together to prove Lemma D.7.

Proof of Lemma D.7. Suppose for the sake of contradiction that there is some transmission for
which |Z”'| = 3nD and the transmission has not yet ended. By Lemma D.17, we have that if t
denotes the round when |Z%'| = 3n.D — (n?C + nC), then as of round t:

Y @, <CD (76)

ueG

where ®,, denotes the value of this variable stored by R as of round t. Meanwhile, by Lemma D.12,
we have that:
T > (1/2)(12F| = n* — 2n%) (77)

Since packet transfers in P correspond to a potential drop of at least C'/n, even if we ignore
contributions to potential drop from the transfers of each of the (up to) n® packets in Uy,2 for each
u, by Lemma D.13 the receiver has recorded as of round t:

(C/n)(
Y > (0/n)1/2)((12F] — nt) — nt - 2n®)
> (C/n)(1/2)((3nD — n?C — nC) — 2n* — 2n?)
> (C/n)(1/2)(3nD — nD)

=CD (78)

where on the second line from ZF " we have subtracted out the up to n? packets in Uy,2 for each
u, and for the third time we used that nD > n(n + 1)(2n? + C) (since C > 8n?, A < 1/2, and
D = %) This contradicts (76), completing the proof.]

D.4 Miscellaneous Lemmas and Proofs

We restate and prove the lemmas used in the previous subsections. The first is a formal re-
statement of Lemma D.3.

Lemma D.14. After a corrupt node has been eliminated (or at the outset of the protocol) and before
the next corrupt node is eliminated, there can be at most n—1 failed transmissions {T1,...,T,} before
there is necessarily some index 1 < 1 < n such that the sender has the complete status report from
every node on pr,.

Proof. We first state a simple observation:

Observation. If w € pr, then the sender is not missing any status report parcel for w for
any transmission prior to transmission T. In other words, there is no transmission T < T such
that w was blacklisted at the end of T (as in Sender Create Next Request), and the sender is
still missing status report information from w at the end of T.

48

Proof. Nodes are added to the blacklist whenever they were participating in a transmission
that failed (see as in Sender Create Next Request). Nodes are removed from the blacklist
whenever the sender receives all of the status report information he requested of them (3.21-
22), or when a node is eliminated (4.22-24), in which case the sender no longer needs status
reports from nodes for old failed transmissions®® (and in particular, this case falls outside the
hypotheses of the Lemma). Since pr is defined as non-blacklisted nodes, the fact that w € pr
implies that w was not on the sender’s blacklist at the end of T (but before BLy is created
on 4.30). Also, notice that (4.30) guarantees that all nodes not already on the sender’s
blacklist will be put on the blacklist if the transmission fails. Therefore, in the case that w
has not been blacklisted since the last node was eliminated, then there have not been any
failed transmissions, and hence the sender is not missing any status reports. Otherwise, let
T’ < T denote the last time w was put on the blacklist, as on (4.30). In order for w to be put
on pr on line (4.30) of transmission T, it must have been removed from the blacklist at some
point between T’ and the end of T. In this case, the remarks at the start of the proof of this
observation indicate the sender is not missing any status reports from w. O

Suppose now for the sake of contradiction that we have reached the end of transmission T,,, which
marks the n'® transmission {Ty, ..., T,} such that for each of these n failed transmissions, the sender
does not have the complete status report from at least one of the nodes that participated in the
transmission. Define the set S to be the set of nodes that were necessarily not on pr,, and initialize
this set to be empty.

Since the sender is missing some node’s complete status report that participated in Ty, there is
some node w; € pr, from which the sender is still missing a status report parcel corresponding to
Ty by the end of transmission T,,_1. Notice by the observation above that w; will not be on pp for
any Ty < T/ < T,,_1, so put wy into the set S. Now looking at Ty, there must be some node w9 € pr,
from which the sender is still missing a status report parcel from Ty by the end of transmission T,,_1.
Notice that we # wy since wy ¢ pr,, and also that wy ¢ pr, , (both facts follow from the above
observation), so put wsy into S. Continue in this manner, until we have found the (n — 1) distinct
node that was put into § due to information the sender was still missing by the end of T,_;. But
then |S| = n — 1, which implies that all nodes, except for the sender, are not on pr,.

We reach a contradiction by showing that transmission T can not be a failed transmission (unless
a corrupt node can be immediately identified). Recall that there are 3 ways a transmission can fail:
1) F2, i.e. R has stored value) - ®, > CD; 2) F3, sender has inserted D packets; 3) F4, R
has received a duplicated packet p. However, each of these cases is impossible, since no node is on
the participating list pr,, and hence no (honest) node should have transferred a packet (pr, = 0
implies that all nodes except S are on the blacklist), as line 41f of Figure 4 will fail for all honest
nodes. Therefore, no honest nodes will transfer any codeword packets during T, so the sender has
not inserted any packets and the receiver has not received any packets, and any node u that reports
a non-zero value for ®,, is necessarily corrupt. [|

We are now ready to prove Theorem D.1, reserving the proof of Lemma D.19 to the next section.

28The sender already received enough information to eliminate a node. Even though it is possible that other nodes
acted maliciously and caused one of the failed transmissions, it is also possible that the node just eliminated caused
all of the failed transmissions. Therefore, the protocol does not spend further resources attempting to detect another
corrupt node, but rather starts anew with a reduced network (the eliminated node no longer legally participates),
and will address future failed transmissions as they arise.

49

Proof of Theorem D.1. By Lemma D.7, for every successful transmission we have %|Zf/\ < 8nC' ~
(1 = \)D = |ZF|, so it remains to show that there are at most n? failed transmissions. By Lemma
D.14, by the end of at most n — 1 failed transmissions, there will be at least one failed transmission
T such that the sender will have all status report parcels from every node on pr. Then by Lemma
D.19, the sender can eliminate a corrupt node. At this point, lines (4.22-24) essentially call for
the protocol to start over, wiping clear all buffers except for the eliminated nodes buffer, which will
now contain the identity of a newly eliminated node. The transmission of the latest codeword not
yet transmitted then resumes, and the argument can be applied to the new network, consisting of
n — 1 nodes. Since the node-controlling adversary can corrupt at most n — 2 nodes (the sender and
receiver are incorruptible), this can happen at most n — 2 times, yielding the bound of n? for the
maximum number of failed transmissions. [|

Lemma D.15. V1 < i <mn, if P’ has inserted (i -nC) packets since round t, then either the sender
has received the EoT parcel, or there are at least i distinct (honest) nodes that have received EoT.

Proof. (Induction on 7). The subclaim is clearly true for ¢ = 1, since R knows EoT as soon as it
creates it in round t. Assume the subclaim is true for i — 1, and we aim to show it will then be true
for 4. If the sender has received EoT after P’ inserts inC' packets (after t), then done. Otherwise,
let S;_1 = {u1,...,u;_1} denote the set of (honest) nodes that had EoT as of the (i —1)nC*" packet
inserted after t by P’. Now during the next nC insertions by P’, since nC' exceeds the capacity of
the honest nodes, one of the last nC packets (say p’) just inserted necessarily reached the receiver.
Let u; denote the first (with respect to time, not with respect to the index ordering within S;_1)
node in §;_1 travelled to en route from S to R (that such a node exists is immediate since s ¢ S;_1
but 7 € S;_1). Let v denote the node that passed p’ to u;. Then in the round when p’ was passed
from v to u;, u; necessarily?” sent v EoT (see lines 02-03 of Figure 4), i nodes will know EoT, as
required. [|

Lemma D.16. For any round t:
1z <1F (79)

Proof. This follows immediately from the definition of Zf ,; together with the fact that P’ is restricted
to transferring packets between honest nodes. [|

The following lemma follows directly from Lemma 4.2:

Lemma D.17. For any round t:
25, <17 (80)

Proof. This is Lemma 4.2 of [BO| together with Lemma B.17 of [BO|. Note that even though
the network setting of [BO| assumes no malicious activity, the proof remains valid because P’ is
restricted to the honest nodes of G. In particular, we may restrict our graph G (which consists
of honest and corrupt nodes) to G’ (consisting of only honest nodes), and follow the lemmas and
proofs leading to Lemma B.17 on the subgraph G’. Since Zépl excludes Zf/ (the packets of ZP' that
travelled during a wasted round), the analysis leading to Lemma B.17 remains valid. [|

29D’ is restricted to the sub-graph of G consisting of honest nodes, so there is no danger that v or u; will disobey
protocol rules.

20

Lemma D.11. For any transmission:
W] < n* + 203 (81)

Proof. By investigating line 41 of Figure 4, there are 5 reasons a round may be wasted. By Lemma
D.18 below, we need only consider lines 41c, 41d, 41e, and 41f. We bound the number of wasted
rounds for each of these, noting that each edge will only transmit a broadcast parcel across it once:

1. Since there are only 2n parcels total comprising the SoT broadcast and EoT parcel and less
than n?/2 edges, lines 41c-d can cause at most n3 wasted rounds.

2. A node can only be removed from the blacklist once per transmission. Since there are n nodes
that may need to be removed from the blacklist, and less than n?/2 edges, line 41e can cause
at most n? wasted rounds.

3. We will split wasted rounds caused by 41f into two categories. In the first category, the node
that is blacklisted has not yet passed all of its status report parcels across the relevant edge.
Since each node’s status report consists of n — 1 parcels, and each edge will only transmit a
status report parcel once, this first category can cause up to (n — 1)n(n?/2) < n*/2 rounds.
In the second category, the blacklisted node has already passed all of its status report parcels
across the relevant edge. To bound the number of wasted rounds caused by this second
category, we focus on a single such wasted round t = E(u,v) caused by packet p’ € Z:.Z)'.
Without loss of generality we may assume that the round was wasted because v was on u’s
blacklist, and since we are in the second category, u already has all of v’s status report parcels.

Subclaim. v was on BLg when p’ was inserted.

Proof. If v ¢ BLs; when p’ was inserted, then S must have received all of v’s status
report parcels and removed v from BLg (3.22). Therefore, the broadcast parcel that
indicates that v should be removed from the blacklist is put into the sender’s broadcast
buffer when it removes v from BL; (2.38-39). Let w denote the first node that p’ travels
to en route from S to u such that w does not know that v should be removed from the
blacklist, and let t’ denote the round that w received p’. Note that t’ < t. Also, since
w received p’ from a node that knew v should be removed from the blacklist, round t’
must have been wasted (2.41e), which contradicts minimality of t.

Thus, for fixed p' € Z7 " corresponding to wasted round E(uy,vy), we have that v,y was on
BLg when p’ was inserted (subclaim above) and u,, had all of v,’s status report parcels before
the start of round E(u,, vy). Therefore, for each p’ € z7 " let wyy denote the first node that p’
travelled to that had v,/’s complete status report when it received p’. Since w, # s (otherwise
vy ¢ BLg when p' is inserted), we have that the node that sent p’ to wy (in say round t,/)
must not have known v,/’s complete status report. Since t,, was not a wasted round, w,
must have sent a status report parcel (not necessarily corresponding to v,/) during round t,.

Therefore, for every p’ € Z:.Z) l, we can associate a round in which a status report parcel was
sent across an edge. Since there are less than n? total status reports and n?/2 edges, this
category of 41f can cause at most n*/2 wasted rounds.

Adding contributions from 41c-41f, we obtain the lemma. [|

ol

Lemma D.18. For any p’ € Zgj/, the corresponding first wasted round t,, € VW was wasted as a
result of line 41c, 41d, }1e, or }1f (see Figure 4).

Proof. Fix any t,y € W, and for notation, let t,; = t = E(u,v), and without loss of generality,
assume p’ passed from u to v in this round. We will show that necessarily u has the full SoT
broadcast at the start of t, from which the lemma follows. Suppose for the sake of contradiction
that u did not have the full SoT broadcast at the start of t. Let to denote the round in which p’
was inserted by the sender (in protocol P’). Let w denote the first node that p’ visited en route
from S to u such that w did not have the complete SoT broadcast, and let w’ denote the node that
sent p’ to w in round t’. By choice of w, we have that w’ knew the complete SoT broadcast when
it received p’, and hence it had the complete broadcast by t’ (when p’ was sent to w). But then
line 41c should have been true, so round t’ must have been wasted. Since clearly t' < t, we have
the required contradiction. []

Lemma D.13. For any honest node u, R’s stored value for ®,, is at least as current as t,.

Proof. We prove the following statement, from which the lemma follows immediately:

For any node u and for any 1 < i < n, if in? of the n3 packets in U, > have reached R, then
either R has stored a value for ®,, that is at least as recent as t,,, or at least 7 distinct (honest)
nodes have stored values for ®, that are at least as recent as t,,.

We prove the statement via induction on ¢. For ¢ = 1, there is nothing to show, as clearly w itself has
a current value stored for ®,. Let t;_; denote the round in which the (i — 1)n? packet in Uy 2 last
left u, and let t; denote the round in which the in? packet of Uy 2 last left u, so t, < t;—1 < t;. If
as of t; the receiver has a stored value for ®,, that is at least as recent as t,,, then done. Otherwise,
the induction hypothesis guarantees that there exists some set F;—1 = {v1,...,v;—1} C G of honest
nodes that, as of round t;_1, have a stored value of ®, that is at least as recent as t,. Let S,
denote the n? packets in Uy,2 that left v between t;_; and t;.

Claim. There exists (at least) one pair of honest nodes (v;,v) € Fi—1 X G\ Fij—1 such that
at least n packets in S, were transferred across E(v;,vi) at some point after they left v and
before they reached R.

Proof. Notice that each of the n? packets in S, had not left u for the last time as of round
ti—1. For each p’ € S,, we may therefore find the first node v, such that vy € F; 1 had a
value for ®,, at least as current as round t,,, but the node that v,y passed p’ to did not (since
P’ is restricted to honest nodes, necessarily v, is honest). Finding v, for each p’ € S and
using an averaging argument, there is (at least) one honest node v € F;_1 such that n packets
in S left from v to a node not in F;_1. Since the assignment of values ®,, to the parcel ¢» are
made in a round-robin fashion (see line 08 of Figure 4), v sent his value for ®,, to some node
w ¢ F;—1 during one of these n transfers, thus growing the family of nodes who have a stored
value for @, (at least as current as t,) by one.]

D.5 Proof of Lemma D.2

In this section, we aim to prove the following lemma, which is a restatement of Lemma D.2, and
which states that the sender will be able to eliminate a corrupt node if he has the complete status
reports from every node that participated in some failed transmission T.

22

Lemma D.19. Suppose transmission T failed and at some later time (after transmission T but
before any additional nodes have been eliminated) the sender has received all of the status report
parcels from all nodes on pr. Then the sender can eliminate a corrupt node.

Recall that there are three ways a transmission can fail:

F2. The sender receives EoT parcel indicating “F2”
F3. The sender inserted D packets
F4. The sender receives EoT parcel indicating “(F4,p’)”

We will see that case F2 roughly corresponds to packet duplication, since the nodes are reporting
a cumulative potential drop greater than is possible based on the packet insertions by the sender.
Case F3 roughly corresponds to packet deletion, since the D packets the sender inserted do not
reach the receiver (otherwise the receiver could have decoded by Fact 1), and case F4 corresponds
to a mixed adversarial strategy of packet deletions and duplications. We treat each case separately
in Lemmas D.20, D.21 and D.22 below, thus proving Lemma D.19:

Proof of Lemma D.19. The theorem is proven for each case below in Lemmas D.20, D.21 and D.22.
|

We declare once-and-for-all that at any time, G will refer to nodes still a part of the network,
i.e. nodes that have not been eliminated by the sender.

Handling Failures as in F2: Packet Duplication
The goal of this section will be to prove the following theorem.

Lemma D.20. Suppose transmission T failed and falls under case F2, and at some later time (after
transmission T but before any additional nodes have been eliminated) the sender has received all of
the status report parcels from all nodes on pr. Then the sender can eliminate a corrupt node.

Proof. The idea of the proof is as follows. Case F2 of transmission failure roughly corresponds to
packet duplication: there is anode w € G who is jamming the network either by outputting duplicate
packets or disobeying transfer rules (e.g. by transferring a packet from a node with small height to
a node with large height). This means that w will be responsible for illegal increases in potential.
Using the status reports for case F2, which include nodes’ signatures on changes of potential due to
packet transfers, we will catch w by looking for a node who caused a greater increase in potential
than is possible if it had been acting honestly.

More specifically, Case F2 means that R had stored potential values such that:) . ®, > CD.
Since we are not in Case F3, the sender did not insert D packets. Since each packet insertion can
cause an increase in potential of at most C, the total (valid) increase of potential for the transmission
is at most C'D, which is less than the claimed potential drop »_, ., ®, of the internal nodes. In
particular, there is an extra potential drop in the network that cannot be accounted for by packet
insertions; i.e. there is a node creating duplicated packets or lying about height information when
transferring packets. The formal details of how the signed status reports {®,,} can be used by the
sender to identify a corrupt node can be found in the proof of Theorem 10.6 of |7].]

Handling Failures as in F3: Packet Deletion

The goal of this section will be to prove the following theorem.

23

Lemma D.21. Suppose transmission T failed and falls under case F3, and at some later time (after
transmission T but before any additional nodes have been eliminated) the sender has received all of
the status report parcels from all nodes on pr. Then the sender can eliminate a corrupt node.

Proof. Case F3 of transmission failure roughly corresponds to packet deletion: the sender has in-
serted D packets, and yet the receiver has gotten less than D — nC' of them (otherwise, R could
decode by Fact 1, and the transmission would not have failed). Since the total capacity of the net-
work is only nC', there is (at least) one node w € G who is deleting packets (or storing more than C'
packets, which an honest node would not do). Using the status reports for case F3, which include
nodes’ signatures on P, , (the net number of packets that have passed across each adjacent edge),
we will catch w by looking for a node who input more packets than it output, and this difference
is greater than the buffer capacity of the node. The formal details of how the signed status reports
{P,} can be used by the sender to identify a corrupt node can be found in the proof of Theorem
10.11 of [7]. [

Handling Failures as in F4: Packet Duplication + Deletion

The goal of this section will be to prove the following theorem.

Lemma D.22. Suppose transmission T failed and falls under case F4, and at some later time (after
transmission T but before any additional nodes have been eliminated) the sender has received all of
the status report parcels from all nodes on pr. Then the sender can eliminate a corrupt node.

Proof. Case F4 of transmission failure roughly corresponds to packet duplication and packet dele-
tion: clearly packet duplication has occurred since R has received a duplicated packet p (which
would not happen if all nodes were acting honestly), but the transmission did not fail due to Case
F2, and so likely the adversary is deleting packets as he duplicates them so that signatures on po-
tential cannot catch him. We will use the status reports for case F4, which include nodes’ signatures
on [p|, , (the net number of times p has crossed each adjacent edge), to find a corrupt node w by
lookiné for a node who output p more times than it input p. The formal details of how the signed
status reports [p], ,} can be used by the sender to identify a corrupt node can be found in the proof
of Theorem 10.12 of [7].]

o4

Internal Node Create Next Request for E(u,v)

01 DO:

02 Set g1 to be a parcel from BB, not yet transferred across F(u,v), chosen according to priority:

03 1) EoT parcel; 2) SoT parcels; 3) Node to remove from BL; 4) Status report parcel of a node on BL,
04 If g1 # EoT or SoT parcel and v ¢ (EN, U BL,) ## Okay to send/receive p’s with v

05 Set new p #+# Look in stack to find highest p not already sent as a request to .A

06 Set new G, #+ Reserve the highest non-committed spot of stack

07 Elsesetp=_1

08 Set new g2 #+ Chosen from u’s (current) values of ®,, in round-robin fashion

09 Set o= (Py,v, [p/]uyu , Puv) #+4 p' is packet transferred across E(u,v) the previous round E(u,v) was honored
10 Return (u,v, (p, H), (q1,q2), (o, 0(v))) #4+ Also remember this request for next time E(u, v) is honored
Receiver Create Next Request for E(r,v)

11 DO:

12 If rec’d duplicate #+# The packet p’ just received had already been received by R

13 Form EoT: ¢1 = (“F4”, p’)

14 ElseIf |Z|=(1—-A)D ## R now has enough packets to decode codeword

15 Form EoT: ¢ = “S1”

16 ElselIf) .,®w>CD #+# Too much potential drop: packet duplication has occurred

17 Form EoT: ¢1 = “F2”

18 Else set g1 as for Internal Nodes

19 Set p,q2 = 1, and set « as for Internal Nodes

20 Return (r,v, (L, ;f), (q1, L), (o, 0())) ## Also remember this request for next time F(u,v) is honored

Sender Create Next Request for E(s,v)

21 DO:

22 If S can eliminate a node w #++ Status report parcel just rec’d allows S to identify corrupt node
23 Add w to ENs, clear BBs and DB, (including BLs but not EN), refill Outgoing buffer

24 Set Q111 = (|ENJ,0,0,0)

25 Else If S received EoT = “S1” ## R was able to decode codeword

26 Refill Outgoing Buffer

27 Set Qry1 = (JEN|, |Br|, F,0) #%# F denotes no. failed trans’s since prev. node eliminated

28 Else If |Y| = D or S received EoT = “F2” or (“F4”, p) ## Failed Transmission due to mal. activity
29 Refill Outgoing Buffer

30 Vw ¢ (BLs UEN,): Add w to pr and then add w to BL,

31 If EoT = (“F47, p'), set Q141 = (|EN]|, |Bzl, F,p’)

32 Else If |Y| = D, set Qi1 = (|[EN|, |Bt|, F, 1)

33 Else If EoT = “F2”, set Q141 = (|JEN]|, |B1|, F,2)

34 If transmission just ended ## Le. line 22, 25, or 28 was true

35 Set SoT to be the following 2n parcels, and add to BBs:

36 1) Qr41; 2) ENg; 3) BLs; 4) Reason the prev. n — 1 trans’s failed: (“F2”, “F3”, or (“F4”,p’))

37 Set new p #+# Look in stack to find highest p not already sent as a request to A

38 Set new gi: Choose parcel not yet transferred across F(s,v) by priority:

39 1) SoT parcel; 2) a node w to remove from BL; 3) L

40 Return (s,v, (p, C+%—1), (q1, L), (e, 0())) ## Also remember this request for next time F(u,v) is honored

Ready(v) #4# Called from node u
u does not have (Qr,T) in BB, OR
u has (Qr, T) with Qr = (|JEN|, |Br|, F, %), but has not yet rec’d |EN| parcels as in line 200b,

F parcels as in line 200c, or |Br| parcels as in line 200d OR

41 If ¢ wu has rec’d the complete SoT broadcast, but every parcel hasn’t yet passed across E(u,v) OR
u has EoT € BB,, but this has not passed across E(u,v) yet OR
u knows some node w to remove from BL, but hasn’t yet passed this fact across F(u,v) OR
worveE BL,

42 Return False
43 Else: Return True

Figure 4: Rules For Finding Codeword Packet and Broadcast Parcel to Send

29

