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Abstract. The game-based approach to security proofs in cryptography is a widely-used methodology
for writing proofs rigorously. However a unifying language for writing games is still missing. In this paper
we show how CSLR, a probabilistic lambda-calculus with a type system that guarantees that computa-
tions are probabilistic polynomial time, can be equipped with a notion of game indistinguishability. This
allows us to define cryptographic constructions, effective adversaries, security notions, computational
assumptions, game transformations, and game-based security proofs in the unified framework provided
by CSLR. Our code for cryptographic constructions is close to implementation in the sense that we
do not assume primitive uniform distributions but use a realistic algorithm to approximate them. We
illustrate our calculus on cryptographic constructions for public-key encryption and pseudorandom bit
generation.
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1 Introduction

Cryptographic constructions are fundamental components for information security. A cryptographic
construction must come with a security proof. But those proofs can be subtle and tedious, and thus
not easy to check. Bellare and Rogaway even claim in [9] that:

“Many proofs in cryptography have become essentially unverifiable. Our field may be ap-
proaching a crisis of rigor.”

With Shoup [27], they advocate game-based proofs as a remedy. This is a methodology for writing
security proofs that makes them easier to read and check. In this approach, a security property
is modeled as a probabilistic program implementing a game to be solved by the adversary. The
adversary itself is modeled as an external probabilistic procedure interfaced with the game. Proving
security amounts to proving that any adversary has at most a negligible advantage over a random
player. An adversary is assumed to be efficient i.e., it is modeled as a probabilistic polynomial-time
(for short, PPT) function.

However a unifying language for writing games is still missing. In this paper we show how
Computational SLR [29] (for short, CSLR), a probabilistic lambda-calculus with a type system
that guarantees that computations are probabilistic polynomial time, can be equipped with a
notion of game indistinguishability. This allows us to define cryptographic constructions, effective
adversaries, security notions, computational assumptions, game transformations, and game-based
security proofs in the unified framework provided by CSLR.

Related work. Nowak has given a formal account of the game-based approach, and formalized
it in the proof assistant Coq [24, 25]. He follows Shoup by modeling games directly as probability
distributions, without going through a programming language. With this approach, he can machine-
check game transformations, but not the complexity bound on the adversary. Previously, Corin and
den Hartog had proposed a probabilistic Hoare logic in [10] to formalize game-based proofs but they
suffer from the same limitation. This issue is addressed in [3] where the authors mention that their



implementation includes tactics that can help establishing that a program is PPT. Their approach
is direct in the sense that polynomial-time computation is characterized by explicitly counting the
number of computation steps. Backes et al. [2] are also working on a similar approach with the
addition of higher-order aimed at reasoning about oracles.

The above approaches are limited to the verification of cryptographic algorithms, and cannot
deal with their implementations. This issue has been tackled by Affeldt et al. in [1] where, by
adding a new kind of game transformation (so-called implementation steps), game-based security
proofs can be conducted directly on implementations in assembly language. They have applied
their approach to the verification of an implementation in assembly language of a pseudorandom
bit generator (PRBG). However they do not address the issue of uniform distributions. Indeed,
because computers are based on binary digits, the cardinal of the support of a uniform distribution
has to be a power of 2. Even at a theoretical level, probabilistic Turing machines used in the
definition of PPT choose random numbers only among sets of cardinal a power of 2 [14]. In the case
of another cardinal, the uniform distribution can only either be approximated or rely on code that
might not terminate, although it will terminate with a probability equal to 1 [18]. With arbitrary
random choices, one can define more distributions than those allowed by the definition of PPT.
This raises a fundamental concern that is usually overlooked by cryptographers.

Mitchell et al. have proposed a process calculus with bounded replications and messages to
guarantee that those processes are computable in polynomial time [22]. Messages can be terms
of OSLR — SLR with a random oracle [21]. Their calculus aim at being general enough to deal
with cryptographic protocols, whereas we aim at a simpler calculus able to deal with cryptographic
constructions. Blanchet and Pointcheval have implemented CryptoVerif, a semi-automatic tool for
making game-based security proofs, also based on a process calculus. Courant et al. have proposed a
specialized Hoare logic for analyzing generic asymmetric encryption schemes in the random oracle
model [11]. In our work, we do not want to restrict ourselves to generic schemes. Impagliazzo
and Kapron have proposed two logics for reasoning about cryptographic constructions [19]. The
first one is based on a non-standard arithmetic model, which, they prove, captures probabilistic
polynomial-time computations. The second one is built on top of the first one, with rules justifying
computational indistinguishability. More recently Zhang has developed a logic for computational
indistinguishability on top of Hofmann’s SLR [29].

Contributions.  We propose to use CSLR [29] to conduct game-based security proofs. Because
the only basic type in CSLR is the type for bits, our code for cryptographic constructions is closer
to implementation than the code in related work: in particular, we address the issue of uniform
distributions by using an algorithm that approximates them.

CSLR does not allow superpolynomial-time computations (i.e., computations that are not
bounded above by any polynomial) nor arbitrary uniform choices. Although this restriction makes
sense for the cryptographic constructions and the adversary, the game-based approach to crypto-
graphic proofs does not preclude the possibility of introducing games that perform superpolynomial-
time computations or that use arbitrary uniform distributions. They are just idealized constructions
that are used to defined security notions but are not meant to make their way into implementa-
tions. We thus extend CSLR into CSLR+ that allows for superpolynomial-time computations and
arbitrary uniform choices. However the cryptographic constructions and the adversary will be con-
strained to be terms of CSLR.

We propose a notion of game indistinguishability. Although, it is not stronger than the notion of
computational indistinguishability of [29], it is simpler to prove and well-suited for formalizing game-



based security proofs. We indeed show that this notion allows to easily model security definitions
and computational assumptions. Moreover we show that computational indistinguishability implies
game indistinguishability, so that we can reuse as it is the equational proof system of [29]. We
illustrate the usability of our approach by: proving formally in our proof system for CSLR that an
implementation in CSLR. of the public-key encryption scheme ElGamal is semantically secure; and
by formalizing the pseudorandom bit generator of Blum, Blum and Shub with the related security
definition and computational assumption.

Compared with [2] and [3], our approach has the advantage that it can automatically prove (by
type inference [16]) that a program is PPT [17].
Outline. We introduce CSLR in Section 2, and use it in Section 3 to define cryptographic
constructions. We also discuss in Section 3 the problem of approximating uniform sampling from
sets of arbitrary size using just fair coin tosses. In Section 4, we introduce the notion of game
indistinguishability that we use to define security notions (using higher-order) and game transfor-
mations. We deal with the example of ElGamal in Section 5. In Section 6, we extend CSLR with
superpolynomial-time primitives and arbitrary uniform choices to be used in intermediate games,
and we illustrate this extension on the pseudorandom bit generator of Blum, Blum and Shub.
Finally, we conclude in Section 7.

2 Computational SLR

Bellantoni and Cook have proposed to replace the model of Turing machines by their safe recur-
sion scheme which defines exactly functions that are computable in polynomial time on a Turing-
machine [4]. This is an intrinsic, purely syntactic mechanism: variables are divided into safe variables
and normal variables, and safe variables must be instantiated by values that are computed using
only safe variables; recursion must take place on normal variables and intermediate recursion results
are never sent to normal variables. When higher-order recursors are concerned, it is also required
that step functions must be linear, i.e., intermediate recursive results can be used only once in each
step. Thanks to those syntactic restrictions, exponential-time computations are avoided. This is an
elegant approach in the sense that polynomial-time computation is characterized without explicitly
counting the number of computation steps.

Hofmann later developed a functional language called SLR to implement safe recursion [16,
17]. It provides a complete characterization through typing of the complexity class of probabilistic
polynomial-time computations. He introduces a type system with modality to distinguish between
normal variables and safe variables, and linearity to distinguish between normal functions and
linear functions. He proves that well-typed functions of a proper type are exactly polynomial-
time computable functions. Moreover there is a type-inference algorithm that can automatically
determine the type of any expression [16]. Mitchell et al. have extended SLR by adding a random
bit oracle to simulate the oracle tape in probabilistic Turing-machines [21].

More recently, Zhang has introduced CSLR, a non-polymorphic version of SLR extended with
probabilistic computations and a primitive notion of bitstrings [29]. His use of monadic types [23],
allows for an explicit distinction in CSLR between probabilistic and purely deterministic functions.
It was not possible with the extension by Mitchell et al. [21]. We recall below the definition of CSLR
and its main property.

Types. Types are defined by:

7,7, u=Bits|tx 7 |Or—>7|r—=7|17—7|Tr



Bits is the base type for bitstrings. The monadic types TT capture probabilistic computations
that produce a result of type 7. All other types are from Hofmann’s SLR [17]. 7 x 7" are cartesian
product types. There are three kinds of functions: (07 — 7’/ are types for modal functions with
no restriction on the use of their argument; 7 — 7’ are types for non-modal functions where the
argument must be a safe value; 7 — 7/ are types for linear functions where the argument can
only be used once. Note that linear types are not necessary when we do not have higher-order
recursors, which are themselves not necessary for characterizing PTIME computations but can
ease and simplify the programming of certain functions (such as defining the Blum-Blum-Shub
pseudorandom bit generator in Section 3).

SLR also have a sub-typing relation <: between types. In particular, the sub-typing relation
between the three kinds of functions is: 7 — 7/ <: 7 — 7/ <: Or — 7/. We also have Bits —
T <: Bits —o 7, stating that bitstrings can be duplicated without violating linearity. The subtyping
relation is inherited from CSLR, with an additional rule saying that the constructor T preserves
sub-typing [29].

Expressions. Expressions of CSLR are defined by the following grammar:

e1,e2,... u= x |nil | By | B; | case, | rec, | Az.e | eje2
| (e1,e2) | projie | projye | rand | return(e) | bind x «— e; in ey

By and B; are two constants for constructing bitstrings: if u is a bitstring, Bou (respectively, Bju) is
the new bitstring with a bit 0 (respectively, 1) added at the left end of u. case, is the constant for
case distinction: case,(n, (e, fo, f1)) tests the bitstring n and returns e if n is an empty bitstring,
fo(n) if the first bit of n is 0 and fi(n) if the first bit of n is 1. rec, is the constant for recursion
on bitstrings: rec,(e, f,n) returns e if n is empty, and f(n,rec,(e, f,n’)) otherwise, where n’ is
the part of the bitstring n with its first bit cut off. rand returns a random bit 0 or 1, each with
the probability 3. return(e) is the trivial (deterministic) computation which returns e with prob-
ability 1. bind x < e; in es is the sequential computation which first computes the probabilistic
computation e, binds its result to the variable z, then computes es. All other expressions are from
Hoffman’s SLR [17].

To ease the reading of CSLR terms, we shall use some syntactic sugar and abbreviations in the
rest of the paper:

— A_.e represents Az .e when x does not occur as a free variable in e;

— & e1; eo represents the probabilistic sequential computation bind x < e; in eo;

— x < ey; eg represents the deterministic sequential (call-by-value) computation (Az.es)es;

— if e then e; else ey represents a simple case distinction case(e, (€2, A_.ea, A_.e1)), which tests
the first bit of e: if it is 1 then e is executed, otherwise es is executed;

— when a program F' is defined recursively by An.rec;(e1, e2,n), we often write the definition as:

F\n.if n £ nil then e; else ea(n, F(tail(n))),

where = and tail are respectively the equality test between two bitstrings and the function that
remove the left-most bit from a bitstring. These functions can be defined in CSLR [29].

Type system. Typing assertions of expressions are of the form I" ¢ : 7, where I is a typing
context that assigns types and aspects (inherited from Hofmann’s system) to variables. Intuitively,
an aspect specifies how the variable can be used in the program. For instance, a linear aspect forces



that the variable can be used only once. A typing context is typically written as a list of bindings
1M TL, ., Ty 2% Ty, Where aq, . . . a, are aspects. The type system for CSLR can be found in [29].
Operational semantics. We can define a reduction system for the computational SLR, and
prove that every closed term has a canonical form. In particular, the canonical form of type Bits is:

b ::=mnil | Bob | B1b.

If u is a closed term of type Bits, we write |u| for its length. We define the length of a bitstring on
its canonical form b:
|nil| =0, IB;b| =1b]+1 (i=0,1).

If e is a closed program of type TBits and all possible results of e are of the same length, we write
le| for the length of its result bitstrings.

The language deals with bitstrings, but in many discussions of cryptography, it will be more
convenient to see them as integers. We write b for the integer value of the bitstring b.
Denotational semantics. The denotational semantics of CSLR is defined based on a set-
theoretic model [29]. We write B for the set of bitstrings, with a special element e denoting the
empty bitstring. To interpret the probabilistic computations, we adopt the probabilistic monad
defined in [26]: if A is set, we write D4 : A — [0, 1] for the set of probability mass functions over
A. The original monad in [26] is defined using measures instead of mass functions, and is of type
(24 — [0, 00]) — [0, 00], where 24 denotes the set of all subsets of A, so that it can also represent
computing probabilities over infinite data structure, not just discrete probabilities. But for the sake
of simplicity, in this paper as well as in [29] we work on mass functions instead of measures. Note
that the monad is not the one defined in [21], which is used to keep track of the bits read from the
oracle tape rather than reasoning about probabilities.

When d is a mass function of D4 and a € A, we also write Pr[d ~» a] for the probability d(a). If
there are finitely many elements in d € Dy, we can write d as {(a1,p1), ..., (an,pn)}, where a; € A
and p; = d(a;). When we restrict ourselves to finite distributions, our monad becomes identical to
the one used in [24, 25].

With this monad, every computation type T7 in CSLR will be interpreted as D], where [7] is
the interpretation of 7. Expressions are interpreted within an environment which maps every free
variable to an element of the corresponding type. In particular, the two computational constructions
are interpreted as:

[return(e)], = {([e],,1)}
[[x S e 62]]p: M. Y ey Teal o (0) X Tea],(v))
where 7 is the type of z (or T7 is the type of e;). Interpretation of other types and expressions is

given in [29].
The main property of CSLR [21,29] is:

Theorem 1. The set-theoretic interpretations of closed terms of type [IBits — TBits in CSLR
define exactly functions that can be computed by a probabilistic Turing machine in polynomial time.

This theorem implies that CSLR is expressive enough to model an adversary and to implement
cryptographic constructions, as they both are probabilistic polynomial-time functions. We remark
that adversaries can return values of types other than Bits (e.g., tuples of bitstrings), but we can



always define adversaries as a PPT function of type [IBits — TBits by adopting some encoding of
different types of values into bitstrings, so the theorem still applies. The same is true in case of
functions with multiple arguments: we can uncurrify them and then adopt some encoding so that
the theorem still applies.

An example of PPT function. The random bitstring generation is defined as follows:

rs < an.if (n = nil) then return(nil)

else b < rand; u < rs(tail(n)); return(beu)

where e denotes the concatenation operation of bitstrings, which can be programmed and typed in
CSLR [29]. rs receives a bitstring and returns a uniformly random bitstring of the same length. It
can be checked that - rs : [IBits — TBits.

3 Cryptographic constructions in CSLR

Uniform distributions are ubiquitous in cryptography. However modern computers are based on
binary digits, and thus in implementations the cardinal of the support of a uniform distribution
has to be a power of 2. In case of a different cardinal, such a distribution can be approximated by
repeatedly selecting a random value in a larger distribution whose cardinal is a power of 2, until
one obtain a value in the desired range or reach the maximal number of allowed attempts (timeout,
which determines the precision of the approximation). In the latter case a default value is returned.
We implement this pseudo-uniform sampling in CSLR as follows:

zrand < An . \t.if t < nil then return(0/")

else v < rs(n); if v > n then zrand(n, tail(t))
else return(v)

The program takes two arguments: the sampling range (represented by the value 1) and the timeout
(represented by [t]). The test > can be programmed in CSLR. The timeout is represented by the
length of the bitstring ¢ for the sake of simplicity and readability of the program, but an alternative
representation of using t as the timeout is certainly acceptable.

The program zrand uses u = 2118271 ag the cardinal of the larger distribution and makes
samplings in this distribution. The probability that one sampling falls outside the desired range

= -
is “, thus probability that |t| consecutive attempts fail is (%) . zrand will return 0/"| as the

default value after |t| consecutive failures, so the probability that a value smaller than n but other

. 1 (am)l e : 1+(-1)(22)
than 01" is returned is ——+——, and the probability that 0"l is returned is —

Similarly, a finite group can be encoded in CSLR and multiplication and group exponentiation
can be programmed (as implied by Theorem 1). In the sequel, we shall write Z; (¢ a bitstring)
for the set of binaries (of the equal length of ¢) of {0,1,...,¢— 1}, and Zg for the truly uniform
distribution from Z,.

The public-key encryption scheme ElGamal. Let G be a finite cyclic group of order ¢
(depending on the security parameter ) and v € G be a generator. The ElGamal encryption
scheme [13] can be implemented in CSLR by the following programs:

— Key generation:

KG ™ \p.z & zrand(q,n); return(7®, )



KG is of type OBits — T(Bits x Bits).
— Encryption:

Enc ™ AN Apk.dm.y & zrand(q,n); return(~Y, pk? «m)

Enc is of type OBits — Bits — Bits — T(Bits x Bits).

— Decryption:
def

Dec = \nj. Ask . Ac.proj,(c) * (proj,(c)*)~!
Dec is of type OBits — Bits — Bits — Bits, which does not involve monadic type because
decryption is deterministic.

Note that when encoding cryptographic constructions in CSLR, we put the security parameter n
explicitly as the argument of the programs. However, as we work on bitstrings in CSLR, the security
parameter in traditional cryptographic contexts actually corresponds to |n| here. In the case of
FElGamal encryption, the group order g will be determined by 5. Particularly, for the encryption
scheme to be semantically secure, we must choose a suitable group such that the DDH assumption
holds, and its order will be necessarily exponential in |n|. There are efficient algorithms which
computes a suitable DDH group given 7, hence can be programmed in CSLR [8].

In the implementation of KG and Enc, the security parameter 7 is used directly as the timeout
of zrand. A more general implementation would instantiate the timeout by a polynomial of |n],
i.e., zrand(q,p(n)) where p is a well-typed SLR function of type OBits — Bits. The choice of p
will affect the final distribution of the program and consequently the advantage of adversaries in
security games or experiments, but that remains negligible. It is possible to use CSLR to deal with
exact security and the exact timeout with p is necessary in that case. In this paper, we use the
specific timeout for the sake of clarity.

The Blum-Blum-Shub pseudorandom bit generator. The BBS generator defined in [7] is
a deterministic function and can be programmed in CSLR as follows:

BBS M. . As . bbsrec(n, 1, s>mod n)

where bbsrec is defined recursively as

bbsrec déf)\n M. Az.if | =nil thennil else parity(x)ebbsrec(n, tail(l), z2mod n).

where n is determined by the security parameter n. BBS is a well typed SLR-function of type
OBits — Bits — Bits — Bits, with the second argument being the length of the resulted pseudo-
random bitstring and the third argument being the seed.

4 Game indistinguishability

In game-based proofs, an adversary involved in a game can be an arbitrary probabilistic polynomial-
time program, hence it can be encoded as a CSLR program of type [IBits — T7, where the security
parameter will bound its running time, and 7 is the type of messages returned by the adversary.
In CSLR, a game is a closed higher-order CSLR function of type [Bits — (OBits — T7) — TBits
that returns one bit.



Definition 1 (Game indistinguishability). Two CSLR games g1 and g2 are game indistin-
guishable (written as g1 =~ g2) if for every term A such that b A : OBits — T, and every positive
polynomial P, there exists some N € N such that for all bitstring n with |n| > N,

1
P(nl)

We introduce the notion of game indistinguishability typically for representing game transfor-
mations in game-based security proofs. A more general notion of computational indistinguishability
in cryptography has been defined in the original CSLR system [29].

Definition 2 (Computational indistinguishability [29]). Two CSLR terms fi1 and fa, both
of type OBits — 7, are computationally indistinguishable (written as f1 ~ f2) if for every closed
CSLR term A of type OBits — 7 — TBits and every positive polynomial P, there exists some N € N
such that for all bitstring n with |n| > N

|Pr[[A(n, fi(n))] ~ €] — Pr[[A(n, f2(n))] ~ €| < ﬁ
where € denotes the empty bitstring.

This definition is a reformulation of Definition 3.2.2 of [14] in CSLR. In particular, a CSLR term
of type [IBits — T7 defines a so-called probabilistic ensemble.

Intuitively, the difference between the two notions of indistinguishability is that, computational
indistinguishability allows for any arbitrary use of the compared terms by the adversary, while the
game indistinguishability provides more control over the adversary as it is usual in game-based
security definitions. Hence, game indistinguishability is no stronger than computational indistin-
guishability as proved in the following proposition. This is why we can sometimes use the CSLR
proof system, which is designed for proving computational indistinguishability, for proving game
indistinguishability.

[Pr([g1(n, A)] ~ 1] = Prllg2(n, A)] ~ 1]] <

Proposition 1. Computational indistinguishability implies game indistinguishability.

Proof. Let g; and g2 be two arbitrary games of type OBits — (OBits — T7) — TBits. For every
adversary A of type [IBits — T7, construct the following adversary A':

A Ag. b g(A);

if b =1 then return(nil) else return(0).

Clearly, Pr[[A'(n,¢:(n))] = nil] = Pr[[gi(n, A)] = 1], and because g; and go are computationally
indistinguishable, Pr[[A'(n, g1(n))] = nil] — Pr[[A'(n, g2(n))] = nil] is negligible. a

We will also use the program equivalence defined in [29]. Roughly speaking, two terms e; and ez
are equivalent (written e; = eg) if they have the same denotational semantics in any environment.
Our further development in CSLR also relies on the following lemma about zrand:

Lemma 1. Let g be a CSLR bitstring. The probabilistic ensemble [\n . zrand(q,n)] and the ensem-
ble of truly uniform distributions Zg are computationally indistinguishable, i.e., for every closed
CSLR term A of type OBits — 7 — TBits and every positive polynomial P, there exists some
N € N such that for all bitstring n with |n| > N

1
P(|nl)”

|Pr([A(n, zrand (q.n))] ~ € — Pr{[Am)](Z]) ~ €| <



Proof. We show that the two ensembles are statistically close:

1
: - Zuca, |Prllerand(q )] ~ o] ~ Pr(z} o]
L (|14 @G-y 1] ‘1—6 1)
2 (’ q ( ) q q
g—1
= — ’6
q

=\ [n]

is negligible with respect to ||, where e = (%) and u = 218271 We can then conclude because

statistical closeness implies computational indistinguishability (cf. Section 3.2.2 of [14]). O

4.1 Security notions

Security notions can be defined in term of game indistinguishability. We show how to use it to
define some common security notions in cryptography.
Semantic security. An public-key encryption scheme (KG, Enc, Dec) is said to be semantically
secure [15] if:
A AA. (pk, sk) < KG(1):;
(m(): mau, A/) & A("%Pk)a
$

b ? rand; ~ An.AA.rand
C— Enc(% mbvpk);
V& Ae);
return(b’ = b)

where A and A’ are functions of respective types OBits — 7, — T (7, X T, X (7 — TBits)) and
T. — TBits. Note that 7, 7. and 7, are the respective types of public keys, cipher-texts and plain-
texts, which can be tuples of bitstrings that are distinguished in the language. Roughly speaking,
it means that any adversary A playing the semantic security game (left-side game) cannot do
significantly better than a random player (right-side game). The semantic security game is to be
read as follows: A pair (pk, sk) of public and secret keys is generated; the public key pk is passed to
the adversary A which returns two messages m, mo and a function A’, which can be seen as the
continuation of the adversary A and contains necessary information that A has already obtained;
one of the messages my, is selected at random and encrypted with the public key pk; the obtained
cipher-text c is then passed to the function A’, which returns its guess b’ for the selected message;
the result of the game is whether the adversary is right or not.

Left-bit unpredictability. = An SLR-function F' is left-bit unpredictable if:

M AA s & zrand(q,n); u— F(n,s);

s ) ~ An.AA.rand (1)
b— A(n,tail(u)); return(b = head(u))

where A is of type [Bits — Bits — Bits. Roughly speaking, it means that any adversary A playing
the unpredictability game (left-side game) cannot do significantly better than a random player
(right-side game). The left-bit unpredictability game is to be read as follows: a seed s is selected at
random in a set of cardinal ¢; the function F' is then used to compute a pseudorandom sequence
of bits u of size I(|g|) > |g| where [ is a polynomial; the sequence v minus its first bit is passed to



the adversary A which returns its guess b for the first bit; the result of the game is whether the
adversary is right or not. It was proved by Yao in [28] that left-bit unpredictability is equivalent to
passing all polynomial-time statistical tests.

A notion of next-bit unpredictability was defined in [29], but it is based on the sampling from
bitstrings of a given length. We can generalize this notion and obtain another notion of left-bit
unpredictability, which we shall refer to as strong left-bit unpredictability because it implies the
game-based notion of left-bit unpredictability (1). An SLR-function F' is strongly left-bit unpre-
dictable if

M. s < zrand(q,n); .5 = zrand (g, 1);

return(F(n,s))

~

b rand;
return(betail(F(n,s)))

Proposition 2. Strong left-bit unpredictability implies left-bit unpredictability.

Proof. The proof can be done using the CSLR proof system. See Figure 1 for details. O

An.AA. s & zrand(q,n); uw<— F(n,s); b & A(n, tail(u)); return(b < head(u))

$ .
=M. A u & [ s = zrand(q,n); ;b & A(n, tail(v)); return(b = head(u))
return(F(n,s))

(By rules AX-BIND-3 and AX-BIND-1 of [29])

s & zrand(q,1); ,
SRUIPV SRR V. ;b & A(n, tail(u)); return(b = head(u))
return(b’ etail(F(n, s)))
(By strong left-bit unpredictability)

=M. ML s & zrand(q,n); V' & rand; u — b etail(F(n,s)); b & A(n, tail (v));
return(b < head (u))
(By rules AX-BIND-3 and AX-BIND-1 of [29])
=M. M.V & rand; s & zrand(q,n); u «— b’ etail(F(n,s)); b & A(n, tail (u));

return(b < b')
(By rules AX-BIND-3 of [29])

= An.)\A. rand
(By Lemma 2)

Fig. 1. Proof of Proposition 2

4.2 Game transformations

Game transformation will consist in rewriting modulo the game indistinguishability relation or the
computational indistinguishability. In particular, we will reuse as it is the equational proof system
of [29] for game transformations.

We will also need some intermediate lemmas. Those lemmas state basic game transformations
used in almost all game-based proofs. The first one states that an expression e which does not
depend on a random bit b cannot guess this bit b.
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Lemma 2. If I' - e : TBits and, for all definable p € [I'], the domain of the distribution [[e]]p is
{0,1}, then

$ 8 ?
b < rand; = < e; return(x = b) = rand

where z,b ¢ dom(I).

Proof. We denote by ¢’ the program on the left-hand side. For every definable p € I, [[e/]]p _
{(Oap0)7 (Lpl)}, where

Prlle], # 0]+ 5 - Pr{le], # 1] =

Prfle], = 0]+ 5 - Pr{le], = 1] =

po = Pr{[rand], # [e] ] =

N~ N =
N~ N =

p1 = Pr[[rand], = [€] ] =
hence e’ = rand. O

The second lemma allows for a simplification when the semantics of a subexpression is a per-
mutation.

Lemma 3. Let f, f' be two closed CSLR terms of type OBits — Bits such that [f] is a permutation
over B, and, for every bitstring q, [f'] is a permutation over {[f](v) | v € Zq}. It holds that

M.z < zrand(q,n); return(fz) =~ \.z < zrand(q,n); return(f'(fz))

Proof. Let e, ea denote the two programs on the left-hand and right-hand side respectively. Then
for a given bitstring 7, [e;](n) are two distributions over bitstrings, and dom([e2])(n)) = {[f](v) |
v € Zg} = dom([e1](n)) since [f'] is a permutation over dom([e;](n)). For every CSLR adversary
A of type OBits — TBits — TBits, define two new adversaries

A My dw . A(n, @ < w; return(fz))

As def An.dw . A(n, x &, return(f'(fx))).

Clearly, both A; and Ay are well-typed CSLR adversaries, and [A(n, e;(n))] = [Ai(n, zrand(q,n))]
(i =1,2). According to Lemma 1,

ei = [Pr[[Ai(y. zrand(q,n))] ~ ¢ — Pr[[Ai(n)](25) ~ ]|

(i = 1,2) are negligible. Also, by Lemma 3.1 of [25], [[Al(n)]](Zg) = [[Ag(n)]](Zg) as [f'] is a
permutation. Hence,

[Pr[[A(n, e1n)] ~ € — Pr[[A(n, ean)] ~ €|
=[Pr[[Ai(n, zrand(q,n))] ~ €] — Pr[[A; (n)]]()Zi) ~ e

—(Pr[[Ax(n, zrand(q,n))] ~ € — Pr[[Aa(n)](Z§) ~ €])|
<&y +e2

is still negligible. a
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5 Applications

5.1 Computational assumptions

Computational assumptions can be defined in CSLR too. As in the case of defining El-Gamal
encryption scheme in CSLR, we have to replace all occurrences of uniform distributions by calls to
the function zrand.

Decisional Diffie-Hellman assumption. Let ¢ be a bitstring depending on the security
parameter 7, G be a finite cyclic group of order ¢ and v € G be a generator. The Decisional
Diffie-Hellman (DDH) assumption [12] states that, roughly speaking, no efficient algorithm can
distinguish between triples of the form (y*,7Y,~+*¥) and (v*,7¥,~v*) where x, y and z are random
number such that 0 < z,y,z < ¢°. DDH cannot be written directly in CSLR because it involves
arbitrary uniform distributions. Instead we write the following assumption that we call DDH-Bits:

DDHBL ~ DDHBR

where

DDHBL % An.x & zrand(q,n); y & zrand(q,n); return(y*, Y, y™)

DDHBR ™ An.x & zrand(q,n); y & zrand(q,n); z & zrand(q,n); return(y*, 7Y, ~*)
Proposition 3. DDH-bits holds when the DDH assumption holds.

Proof. Let e1, ey denote the two programs on the left-hand and right-hand side respectively. Then
for a given bitstring 7, [e;](n) are two distributions over bitstrings, and dom([e2](n)) = {[f](v) |
v € Zg} = dom([e1](n)) since [f] is a permutation over dom([e;](n)). For every CSLR adversary
A of type [OBits — TBits — TBits, define two new adversaries

A A Aw. A(n, z < w; return(fz))

A © o dw. A(p,x & w; return(f'(fx))).

Clearly, both A; and Ay are well-typed CSLR adversaries, and [A(n, e;(n))] = [A:i(n, zrand(q,n))]
(i = 1,2). According to Lemma 1,

e; = |Pr[[A;(n, zrand(q,n))] ~ € — Pr[[A:(n)](Z5) ~ €]

(i = 1,2) are negligible. Also, by Lemma 3.1 of [25], [Ai(n)](Z5) = [A2(n)](Z5) as [f] is a
permutation. Hence,

IPr[[A(n, e1n)] ~ €] — Pr[[A(n, e2n)] ~ €|
=|Pr[[A1(n, zrand(q,1))] ~ €] — Pr[[A1(n)](ZE) ~ ]

—(Pr[[Az(n, zrand(q,n))] ~ €] — Pr[[A2(n)](Z5) ~ €])|
<e1+e2

is still negligible. O

3 We do not assume that g is prime. However most groups in which DDH is believed to be true have prime order [8].
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5.2 Semantic security of El-Gamal encryption scheme

In this section, we illustrate our proof system by proving the semantic security of El-Gamal encryp-
tion scheme in Fig. 2. The proof follows the same structure as the one in [24], but here the type
system of CSLR guarantees that the adversary is probabilistic polynomial-time. This was not dealt
with in [24]. Moreover here all transformations are purely syntactic (thus allowing the immediate
prospect of being implemented in a tool), while in [24] they were done at the semantics level.

Note that by using Lemma 3, we assume that the adversary A will not send any junk mes-
sages, i.e., bitstrings that are not elements of the group G,. This is considered as a trivial case in
cryptography proofs because the El-Gamal encryption procedure will automatically reject the junk
messages. But in practice, in more complex crypto-systems, this may not be trivial at all. In our
proof system, we can also consider the case where adversaries may send junk messages. It suffices to
provide the corresponding code in the program Enc which tests the validity of incoming messages,
and we can still prove semantic security in the CSLR, proof system. Another possibility would be
to use a richer type system to reject adversaries returning junk.

6 Extending CSLR

The discussion in the previous sections was limited to the setting of CSLR with bitstrings. In
particular, it does not allow superpolynomial-time computations nor arbitrary uniform sampling.
Although these restrictions make sense for the cryptographic constructions and the adversary, the
game-based approach to cryptographic proofs does not preclude the possibility of introducing games
that perform superpolynomial-time computations or that use arbitrary uniform distributions. They

are just idealized constructions that are used to define security notions but are not meant to make
their way into implementations.

In this section, we extend CSLR into CSLR+ so that we can manipulate games with superpolynomial-

time computations and arbitrary uniform choices.

6.1 CSLR+

CSLR+ extends CSLR with a uniform sampling primitive sample of type Bits — TBits and con-
stants for primitive (and possibly superpolynomial-time) computations. sample receives a bitstring
as argument and returns uniformly a random bitstring of the same length whose integer value is
strictly smaller than that of the argument. For instance, the distribution produced by sample(101)
is [sample(101)] = {(000,1),...,(100, $)}. We can program a sampling from an arbitrary finite
set (of CSLR definable elements, usually just bitstrings in cryptography) using sample, assuming
that there is an index function over the set, but we shall omit the implementation details and write
z & A; for assigning to x a uniformly sampled value from set A.

The type system of CSLR+ is extended with only the proper rules for sample and constants.
Note that the type of sample is Bits —o TBits so that it can accept arguments that are defined
using linear resources. In fact, in CSLR+ we do not care any more about the complexity class that
can be characterized using the type system* — CSLR+ is the language for describing games, not
adversaries.

4 One might expect that the complexity class characterized by CSLR+ is PPT, where X is the smallest complexity
class in which additional constants can be defined, but the exact relation between CSLR+ and the complexity

classes remains to be clarified — the addition of the primitive sample alone allows for defining more distributions
than in PPT.
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A AA. (pk, sk) < KG(n); (mo,ma, A') & A(n, pk);
b <& rang; ¢ & Enc(n,pk, mp); b & A'(e);
return(b < b')

$ xizmnd( ) n 3
= An. M. (pk, sk) < G5 (mo,ma, A') < A(n, pk);

return(y®, x)
$
b< rand; ¢ & y — zrand(q, 1); Db E A (e);
return(yY, pk¥ * my)
return(b < b')
(Inline of definition of KG and Enc)
= .z & zrand(q,n); y & zrand(q,n); b & rand;
(mo,ma, A') & Al 7*); V& A (Y, (7)Y % m);
return(b < b')
(By the equivalence rules AX-BIND-3 and AX-BIND-1 in [29])
=An.2A.v & DDHBL(n); b & rang; {mo, m1, A”) & A(n,proj,(v));
b & A'(proj,(v), projs(v) + ms);
return(b = ')
(Inline of DDHBL)
~ AN A & DDHBR(7); b & rang; {mo, m1,A") & A(n,proj, (v));
$ . .
b < A'(proj,(v),proj,(v) * my);
return(b = b’)
(By DDH-Bits assumption and SUB)
= 0A.z & zrand(q,n); y & zrand(q,n); z & zrand(q,n); b & rand;
(mo,ma, A') & A(n,77); b S A (77,77 5 m);
return(b < b')
(Inline of DDHBR)
=\ M. & erand(q,n); y & zrand(q,n); b= rand; (mo,m1, A) & A, 7");
3
U’i z «— zrand(q,n); : b’iA/(’yy,’Ul);
return(y”® * mp)
return(b < b')
(By the equivalence rules AX-BIND-3 and AX-BIND-1 in [29])
~ M. M. x & 2rand(q,n); y < zrand(q,n); b= rand; (mo,m1, A) & A y");
$
o i 2 — z‘mnd(q,n); ; b i Al(’yy,l)/);
return(y?)
return(b = )
(By Lemma 3 as (_* mp) is a permutation over the group when my, is also from the group)
=M. )AD & rand; T & zrand(q,m); y & zrand(q,n); z & zrand(q,n);
(mo,ma, A) & A, ) B & A, 7);
return(b = ')
(By the equivalence rules AX-BIND-3 and AX-BIND-1 in [29])

= A\n.\A.rand
(By Lemma 2)

Fig. 2. Proof of semantic security of ElGamal

14




The definitions of computational indistinguishability and game indistinguishability are almost

the same as before, except that we are now considering distributions that are produced by CSLR+
programs:
Definition 3 (Game indistinguishability in CSLR+). Two closed CSLR+ programs g1 and
g2, both of type OBits — (OBits — T7) — TBits, are game indistinguishable (written as g1 ~4 g2)
if for every closed CSLR term A of type [IBits — T, and every positive polynomial P, there exists
some N € N such that for all bitstring n with |n| > N,

Pr[[g1(n, A)] = 1] — Pr([g2(n, A)] = 1]| < P(Tm)

Definition 4 (Comput. indistinguishability in CSLR+). Two CSLR+ terms f1 and fa2, both
of type OBits — 7, are computationally indistinguishable (written as f1 ~4 fa) if for every closed
CSLR term A of type UBits — 7 — TBits and every positive polynomial P, there exists some N € N
such that for all bitstring n with |n| > N

[Pr([ A, f1(n)] = € = Pr[[A(n, f2(n)] = €]| <

where € denotes the empty bitstring.

1
P(|nl)

CSLR+ inherits most of the equational proof system of CSLR. All the rules for program equiva-
lence in CSLR can be used directly in CSLR+. No extra rules are needed for the primitive sample,
but we can add rules for constants if necessary. The four rules for proving computational indistin-
guishability remain the same as in CSLR (Figure 3) except that in the rule SUB, a new premise
enforces that the substitution context (the term e) must be definable in CSLR, i.e., a program that
does not contain sample or any CSLR+ constant. The soundness of the system still holds and the
proof just goes as for CSLR [29]. In particular, the proof for the rule SUB contains a construction
of a new adversary with the context, which remains a CSLR term (i.e., a PPT adversary) thanks
to the new premise enforcing that the context must be definable in CSLR.

Fe:OBits—7(:=1,2) e =4 e

EQUIV
€1 X4 e2

Fe; :OBits—> 7 (i =1,2,3) e1 ~4e2 ex~ye3

TRANS-INDIST

e1 >4 e3
x:" Bits,y :" 7Fe: 7 eisdefinable in CSLR Fe; : OBits — 7 (i = 1,2) e; ~1 e2
Xo eler(2)/5] =+ Az elea(@)/4]

x:" Bits,n :" Bitsk e: 7 An.e[u/z] is numerical for all bitstring u
Az . e[i(z)/n] ~4+ Az .e[Bii(x)/n] for all canonical polynomial i such that |i| < |p|

SUB

H-IND

Az .e[nil/n] ~4 Ax.e[p(z)/n]

Fig. 3. Rules for computational indistinguishability in CSLR+

Note that the rule H-IND is not used throughout this paper, but it is an important rule repre-
senting the hybrid proof technique that is frequently used in cryptography. Interested readers can
find more detailed explanation and examples in [29].
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6.2 Applications

This extension of CSLR+ allows us to express directly DDH in the formalism and thus does not
require to go through the non-standard computational assumption introduced in Section 5. We can
reproduce almost as such the proof of semantic security for ElGamal given in [24]. The difference
is that now we can check automatically that the adversary built in the proof is PPT, and all
transformations are purely syntactic.

We can also reproduce the proof of unpredictability for the pseudorandom bit generator of
Blum, Blum and Shub given in [25]. The proof requires a test for quadratic residuosity which is a
superpolynomial-time computation — it can be introduced into CSLR+ as a constant. Moreover
this proof is based on the Quadratic Residuosity Assumption that uses arbitrary uniform choices.
Quadratic Residuosity Assumption. Let n be a positive number and Z,, be the set of integers
modulo n. The multiplicative group of Z,, is written Z;, and consists of the subset of integers modulo
n which are coprime with n. An integer z € Z; is a quadratic residue modulo n iff there exists
ay € Z% such that y> = 2 (mod n). Such a y is called a square root of  modulo n. We write
Z} (+1) for the subset of integers in Z} with Jacobi symbol equal to 1. The quadratic residuosity
problem is the following: given an odd composite integer n, decide whether or not an x € Z* (+1) is
a quadratic residue modulo n. The quadratic residuosity assumption (QRA) states that the above
problem is intractable when n is the product of two distinct odd primes [20]. We reformulate the
assumption in CSLR+:

A AA Lz & Z5(+1); b & A(n,n,x); return(b a8 gr(z)) ~4+ An.MA.rand

where A must be definable in CSLR of type OBits — Bits — Bits — TBits, gr(x) is the quadratic
residuosity test of the element = of Z; in our encoding, and n is an expression that depends on the
security parameter 7.

Blum-Blum-Shub. CSLR+ is expressive enough to encode the proof of [25] that BBS is left-bit
unpredictable: for every positive integer I,

)\ﬁ.)\A.SiZ;; u <« BBS(n,l+1,s);

. _ ) ~4+ An.AA.rand
b A(n,q,tail(u)); return(b = head(u))

where A4 is must be definable in CSLR, of type [Bits — Bits — Bits — TBits.

7 Conclusions

We have shown how Zhang’s CSLR can be equipped with a notion of game indistinguishability.
The system allows us to define cryptographic constructions, effective adversaries, security notions,
computational assumptions, game transformations, and game-based security proofs in the unified
framework provided by CSLR. We have illustrated our calculus by formalizing the proof of semantic
security for a binary implementation of the public-key encryption scheme ElGamal.

CSLR pushes users to write binary encodings of cryptographic constructions, which are close
to their computer implementations, but the programming overhead is probably heavy for peo-
ple who want to check their cryptographic proofs in the mathematical setting only. Also, the
lack of superpolynomial-time computation power limits the application of CSLR in cryptography.
We have thus introduced CSLR+ — an extension of CSLR with arbitrary uniform sampling and
superpolynomial-time constants, and formalized the pseudorandom bit generator of Blum, Blum
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and Shub with the related security definition and computational assumption. CSLR+ keeps the
feature of characterizing PPT adversaries through typing in CSLR but allows users to write se-
curity games using a richer language, which is closer to the mathematical language and reduces
the programming overhead. As a future work, it might be interesting to allow arbitrary types in
CSLR+ because intermediate games might be easier to write without having to encode everything
into bitstrings.

The most immediate direction for future work is to consider more complex examples. We could
also consider an implementation of El-Gamal that would use BBS as a source for pseudorandom bits.
Another possible direction would be to implement CSLR and CSLR+ (possibly in a proof assistant)
and develop a library of reusable security definitions, assumptions and game transformations. This
would help dealing with complex examples.

The notion of oracle is frequently used in cryptography and it is sometimes necessary for defining
security notions. For instance, with symmetric keys, an encryption oracle allows the attacker to
encrypt messages without knowing the key. The higher-order nature of CSLR makes it easy to
define such oracles. As an example, we can define the notion of IND-CPA (indistinguishability
under chosen plain-text attack) using encryption oracles: an encryption scheme (KG, Enc, Dec) is
said to be IND-CPA secure if

A AA. (pk, sk) <& KG(n); b < rand;
O —X(mg,m1). Ene(n,my,pk);
b & Ay, pk, O);
return(b = b)

~ A .AA.rand

This is a CSLR reformulation of the definition from [5] (adapted for asymmetric encryption): the
game first generates a pair of public and secret keys and a challenge bit b, then sets up a left-right
encryption oracle which, upon receiving a pair of messages, will encrypt one of them (according
to the challenge bit) using the public key and return the encrypted cipher-text; the public key is
passed to the adversary, who is allowed to query the encryption oracle; in CSLR the oracle can
be encoded as a function and passed to the adversary as an argument, just as the public key; the
adversary then outputs its guess on the challenge b.

The exact relation between these different definitions of security notions remains to be clarified.
It would be interesting to investigate how much CSLR can help dealing with oracles.
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