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Abstract

The main results of this work are new public-key encryption schemes that, under the
quadratic residuosity (QR) assumption (or Paillier’s decisional composite residuosity (DCR)
assumption), achieve key-dependent message security as well as high resilience to secret key
leakage and high resilience to the presence of auxiliary input information.

In particular, under what we call the subgroup indistinguishability assumption, of which the
QR and DCR are special cases, we can construct a scheme that has:

• Key-dependent message (circular) security. Achieves security even when encrypting
affine functions of its own secret key (in fact, w.r.t. affine “key-cycles” of predefined length).
Our scheme also meets the requirements for extending key-dependent message security to
broader classes of functions beyond affine functions using previous techniques of [BGK,
ePrint09] or [BHHI, Eurocrypt10].

• Leakage resiliency. Remains secure even if any adversarial low-entropy (efficiently com-
putable) function of the secret key is given to the adversary. A proper selection of param-
eters allows for a “leakage rate” of (1− o(1)) of the length of the secret key.

• Auxiliary-input security. Remains secure even if any sufficiently hard to invert (effi-
ciently computable) function of the secret key is given to the adversary.

Our scheme is the first to achieve key-dependent security and auxiliary-input security based
on the DCR and QR assumptions. Previous schemes that achieved these properties relied either
on the DDH or LWE assumptions. The proposed scheme is also the first to achieve leakage
resiliency for leakage rate (1 − o(1)) of the secret key length, under the QR assumption. We
note that leakage resilient schemes under the DCR and the QR assumptions, for the restricted
case of composite modulus product of safe primes, were implied by the work of [NS, Crypto09],
using hash proof systems. However, under the QR assumption, known constructions of hash
proof systems only yield a leakage rate of o(1) of the secret key length.
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1 Introduction

The “classical” definition of semantic secure public-key encryption by Goldwasser and Micali [GM84],
requires that an efficient attacker with access to the public encryption-key must not be able to find
two messages such that it can distinguish a random encryption of one from a random encryption of
the other. Numerous candidate public-key encryption schemes that meet this definition have been
presented over the years, both under specific hardness assumptions (like the hardness of factoring)
and under general assumptions (such as the existence of injective one-way trapdoor functions).

This notion of security, however (as well as other commonly accepted ones), does not capture
certain situations that may occur in the “real world”:

• Functions of the secret decryption-key can be encrypted and sent (note that semantic security
only guarantees security with respect to messages which an efficient attacker can find).

• Information about the secret key may leak.

• The same secret key may be used in more than one application, or more generally the attacker
can somehow obtain the value of a hard-to-invert function of the secret key.

In recent years, extensive research effort has been invested in providing encryption schemes
which are provably secure even in the above settings. Such schemes are said to achieve key-dependent
message (KDM) security, leakage-resilience, and auxiliary-input security in correspondence to the
above real world settings. To date, we know of: (1) Candidate schemes which are KDM secure
under the decisional Diffie-Hellman (DDH) and under the learning with errors (LWE) assumptions;
(2) Candidate schemes that are resilient to key leakage of rate (1 − o(1)) (relative to the length
of the secret key), under the LWE assumption and under the DDH assumption. In addition,
candidate scheme achieving some leakage resilience under a general assumption: the existence of
universal hash-proof systems, with a leakage rate depending on the hash proof system being used;
(3) Candidate schemes that are auxiliary input secure under the DDH assumption and under the
LWE assumption.

In this work, we present an encryption scheme that achieves all of the above security notions
simultaneously and is based on a class of assumptions that we call subgroup indistinguishability
assumptions. Specifically, this class includes the quadratic residuosity (QR) and the decisional
composite residuosity (DCR) assumptions, both of which are related to the problem of factoring
large numbers. In addition, our schemes have the following interesting property: the secret key
consists of a randomly chosen binary vector independent of the group at hand. The instantiation of
our scheme under QR enjoys the same useful properties for protocol design as the original [GM84]
scheme, including re-randomization of ciphertexts and support of the XOR homomorphic operation
over the {0, 1} message space, with the added benefit of leakage resilience.

To best describe our results, we first, in Section 1.1, describe in detail the background for the
new work, including the relevant security notions and previous results. Second, in Section 1.2, we
describe in detail the new results and encryption schemes. Then, in Section 1.3, we describe the
new techniques. Section 1.4 discusses some additional related works and Section 1.5 contains the
paper organization.
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1.1 Background

Key-dependent messages. The shortcoming of the standard security definition in the case where
the plaintext to be encrypted depends on the secret key was already noticed in [GM84]. It was
later observed that this situation is not so unlikely and may sometimes even be desirable [CL01,
ABHS05, LC03]. Black, Rogoway and Shrimpton [BRS02] formally defined KDM-security: the
attacker can obtain encryptions of (efficient) functions of its choosing, taken from some specified
class of functions F , applied to the secret key. The requirement is that the attacker cannot tell if
all of its queries are answered by encryptions of some constant symbol 0, instead of the requested
values. This definition is extended to the case of many (say n) users that can encrypt each others’
secret keys: the attacker queries now contain a function to be applied to all secret keys, and an
identity of the user whose public key should be used to encrypt. This latter case is referred to as
KDM(n)-security while the single-user case is called KDM(1)-security.

Boneh, Halevi, Hamburg and Ostrovsky [BHHO08] constructed a public key encryption scheme
that is KDM(n) secure w.r.t. all affine functions,1 under the decisional Diffie-Hellman (DDH) as-
sumption, for any polynomial n. This first result was followed by the work of Applebaum, Cash,
Peikert and Sahai [ACPS09] who proved that a variation of Regev’s scheme [Reg05] is also KDM
secure w.r.t. all affine functions, under the learning with errors (LWE) assumption.

More recent works by Brakerski, Goldwasser and Kalai [BGK09] and by Barak, Haitner,
Hofheinz and Ishai [BHHI09] presented each general and different techniques to extend KDM-
security to richer classes of functions. In [BGK09], the notion of entropy-κ KDM-security is in-
troduced. A scheme is entropy-κ KDM-secure if it remains KDM-secure even if the secret key is
sampled from a high-entropy distribution, rather than a uniform one. They show that an entropy-
κ KDM-secure scheme implies a scheme that is KDM-secure w.r.t. roughly any pre-defined set of
functions of polynomial cardinality. In [BHHI09], the notion of targeted public-key encryption is
introduced. A targeted encryption scheme can be thought of as a combination of oblivious transfer
and encryption: it is possible to encrypt in such a way that the ciphertext is decryptable only if a
certain bit of the secret key takes a predefined value. They show that a targeted encryption scheme
implies a KDM-secure scheme w.r.t. all functions computable by circuits of some predefined (poly-
nomial) size. These two results achieve incomparable performance. While in the former, the public
key and ciphertext lengths depend on the size of the function class (but not on its complexity) and
are independent of the number of users n, in the latter the public key size does not depend on the
function class, but the ciphertext length is linear in the product of n times the complexity of the
functions.
Leakage resiliency. The work on cold boot attacks by Halderman et al. [HSH+08], gave rise to the
notion of public-key encryption resilient to (bounded) memory leakage attacks, presented by Akavia,
Goldwasser and Vaikuntanathan [AGV09] and further explored by Naor and Segev [NS09]. In their
definition, security holds even if the attacker gets some information of its choosing (depending on
the value of the public key) on the scheme’s secret key, so long as the total amount of information
leaked does not exceed an a-priori information theoretic bound. More formally, the attacker can
request and receive f(sk) for a length-restricted function f .2 [AGV09, NS09] presented public-key
encryption schemes that are resilient to leakage of even a 1 − o(1) fraction of the secret key (we

1More precisely “affine in the exponent”: the secret key is a vector of group elements g1, . . . , g` and the scheme is
secure w.r.t. functions of the form h ·∏ gai

i .
2To be more precise, the requirement is that the min-entropy of the secret sk drops by at most a bounded amount,

given f(sk).
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call this the “leakage rate”). In particular, [AGV09] showed how this can be achieved under the
LWE assumption, while [NS09] showed that this can be achieved under the DDH (or d-linear)
assumption. It is further shown in [NS09] that some leakage resilience can be achieved using any
universal hash proof system (defined in [CS02]), where the leakage rate depends on the parameters
of the hash proof system. This implies secure schemes under the the QR and DCR assumptions
as well. However, using the known hash proof systems, the leakage rate achievable under the QR
assumption was only o(1) — much less than the desired 1− o(1). Based on the DCR assumption,
a leakage rate of (1− o(1)) was achievable [NS09, CS02, DJ01].
Auxiliary input. Dodis, Kalai and Lovett [DKL09] and Dodis, Goldwasser, Kalai, Peikert and
Vaikuntanathan [DGK+10] considered the case where the leakage is not restricted information
theoretically, but rather computationally. In the public key setting, the attacker is allowed to
access any information on the secret key, with the following computational restriction: as long as
recovering the secret key sk from said information f(pk, sk), for f of the attackers choosing, is
computationally hard to a sufficient extent (see discussion of several formalizations in [DGK+10]).
This notion of security was termed security in the presence of auxiliary input (or auxiliary-input
security, for short). Public-key auxiliary-input secure encryption schemes under the DDH and LWE
assumptions were recently presented in [DGK+10].

1.2 New Results

Let us define a generalized class of assumptions called subgroup indistinguishability (SG) assump-
tions. A subgroup indistinguishability problem is defined by a group GU (“the universe group”)
which is a direct product of two groups GU = GM×GL (interpreted as “the group of messages” and
“the language group”) whose orders, denoted by M, L respectively, are relatively prime and where
GM is a cyclic group. Essentially, the subgroup indistinguishability assumption is that a random
element of the universe GU is computationally indistinguishable from a random element in GL. In
other words, the language GL is hard on average in the universe GU . The precise definition is a
little more involved, see Section 3 for details.

Two special cases of the subgroup indistinguishability assumptions are the quadratic residu-
osity (QR) assumption on Blum integers and Paillier’s decisional composite residuosity (DCR)
assumption. This is easily seen for QR as follows. Let integer N = p · q, where p, q are random
primes of equal bit-length, Z∗N = {x ∈ ZN : gcd(x, N) = 1}, JN denote the group of Jacobi symbol
(+1) elements of Z∗N , and QRN = {x2 : x ∈ Z∗N} denote its subgroup of quadratic residues. The
quadratic residuosity (QR) assumption is then, that the uniform distributions over JN and QRN

are computationally indistinguishable. Taking N to be a Blum integer where p, q = 3 (mod 4)
(otherwise the orders of GL,GM we define next will not be relatively prime) and setting GU = JN ,
GL = QRN (which is of odd order), and GM = {±1} (which is cyclic and has order 2), the QR
assumption falls immediately into the criteria of subgroup indistinguishability assumptions.

We are now ready to describe the new encryption scheme for a given subgroup problem (GU ,GM ,GL)
where h is a generator for GM . In general, we view the plaintext message space as the elements
hm ∈ GM (sometimes the exponent m itself can be viewed as the message). For the case of QR,
the plaintext message space is GM = {±1}.

A word on the choice of parameters is in order. All parameters are measured as a function of the
security parameter k. As customary, in the QR and DCR cases, think of the security parameter
as the size of the modulus N (i.e. k = dlog Ne). We let ` denote a parameter whose value is
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polynomially related to k,3 selected in accordance to the desired properties of the scheme (KDM
security, amount of leakage resilience etc.).

The Encryption Scheme for Subgroup Problem (GU ,GM ,GL) with Parameter `:

• Key generation. Set the secret key to a random binary vector s = (s1, . . . , s`) of length `. Set
the public key to be the tuple (g1, . . . , g`, g0) where g1, . . . , g` are uniformly chosen elements
of GL and g0 =

∏
g−si
i . (For the QR assumption, the public key thus consists of ` random

squares, followed by a product of a random subset of them, selected by the secret key s).

• Encryption. On input message hm,4 sample a uniform integer r from a large enough domain
and output the ciphertext (gr

1, . . . , g
r
` , h

m · gr
0). (For the QR assumption case, encryption is

of single bits {±1}, and the ciphertext is the tuple of squares in the public key, raised to a
random power, where the last one is multiplied by the plaintext message.)

• Decryption. On ciphertext (c1, . . . , c`, c0), compute hm = c0 ·
∏

csi
i . (For the case of QR,

m = c0 ·
∏

csi
i .) In general, recoverability of the exponent m depends on whether taking

discrete logs in base h of hm is easy.

We remark that the basic structure of our construction is strikingly similar to [BHHO08], where
the public key also contains ` independent “random” elements and an additional element that is
statistically close to uniform, but in fact is a combination of the previous ones. The difference and
challenge is in how to prove security. This challenge is due to the fact that the subgroup indis-
tinguishability assumptions seem inherently different from the DDH assumption. In the latter, for
cyclic group G where DDH is assumed, the assumption implies that the distribution (g1, g2, g

r
1, g

r
2) is

computationally indistinguishable from (g1, g2, g
′
1, g

′
2) giving complete re-randomization (a similar

property follows for LWE). Such re-randomization does not follow nor is it necessarily true from
subgroup indistinguishability. Rather, we will have to use the weaker guarantee that (g1, g2, g

r
1, g

r
2)

is indistinguishable from (g1, g2, h
r′ · gr

1, h
r′′ · gr

2), giving only “masking” of the message bits.
Similarly to the scheme of [BHHO08], our scheme is lacking in efficiency. This is most noticeable

in our QR-based scheme, where the encryption of one bit requires a ciphertext containing ` + 1
group elements, each of size roughly the security parameter k. The situation is somewhat better
when relying on DCR: there each such ciphertext encrypts Ω(k) bits. Improved efficiency can
be achieved by using the same values g1, . . . , g` with many vectors s, however this makes KDM
security hold only with respect to a less natural function class (this is similar to the more efficient
LWE based scheme of [ACPS09]) and significantly reduces leakage resiliency. Coming up with more
efficient KDM secure or leakage resilient schemes remains an interesting open problem.

We prove the following properties for the new encryption scheme.

Property 1: KDM-Security

First, we prove that the scheme is KDM(1)-secure w.r.t. affine functions of the secret key. To
show this for QR case, we show that for any affine function specified by a0, . . . , a`, the encryption
of (−1)a0+

∑
i aisi is indistinguishable from the encryption of (−1)0. For the general case, it is

more natural to view KDM(1) with respect to the affine functions “in the exponent”: for any
3More precisely, ` is a polynomial function `(k).
4Recall that h is a generator of GM , which is a part of the description of GU .
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h0, h1, . . . , h` ∈ GM where hi = hai , for the generator h, we show that an encryption of h0 ·
∏

hsi
i =

ha0+
∑

i aisi is indistinguishable from an encryption of h0.
Second, we prove that for any polynomial value of n, the above encryption scheme satisfies

KDM(n) security, if ` is larger than, roughly, n log L. We note thus that the public key size and
ciphertext size grow with n to achieve provable KDM(n) security. Interestingly, in the works of
[BHHO08, ACPS09], ` did not need to grow with n. This seems difficult to achieve without the
complete “re-randomization” property discussed above which does follow from the DDH and LWE
assumptions, but not from ours.

Finally, we can also show that our scheme can be used to obtain KDM security for larger
classes of functions than affine function: The scheme is entropy-κ KDM-secure (for proper values
of `), as required in [BGK09] and therefore implies a scheme that is secure w.r.t. functions of the
form a0 +

∑
i aifi(sk) for (roughly) any set of polynomially-many efficiently computable functions

{f1, . . . , f`}. Our scheme also implies a targeted encryption scheme, as required in [BHHI09], and
therefore implies that for any polynomial bound p, there is a scheme that is secure w.r.t. all functions
computable by size-p circuits.

Property 2: Improved Key-Leakage Resiliency

We prove that the new scheme is resilient to any leakage of a (1− o(1)) fraction of the bits of the
secret key. Stated differently, if one specifies in advance the amount of leakage λ (a polynomial in
the security parameter) to be tolerated, we can choose ` to obtain a scheme that is secure against
a leakage of λ bits. The growth of ` is additive in λ (i.e. ` = `0 + λ) and therefore we can select
the value of ` to obtain schemes that are resilient to leakage of a (1− (`0/`)) = (1− o(1)) fraction
of the secret key.

We emphasize that while schemes with the above guarantees were known under LWE [AGV09]
or DDH [NS09], and even (implicitly) under DCR [NS09, CS02], this was not the case under QR.
Previous results with regards to QR-based leakage resiliency [NS09, CS02] could only approach a
leakage rate of 1/k = o(1) (recall that k is the security parameter, or the bit-length of the modulus
N), compared to (1− o(1)) in our scheme.

In addition, previous constructions of QR and DCR based hash proof systems required that the
modulus used N = p · q is such that p, q are safe primes. We do not impose this restriction. In the
QR case we only require that p, q = 3 (mod 4) (i.e. N is a Blum integer) and in the DCR case we
only require that p, q have the same bit-length.

Property 3: Auxiliary Input Security

We prove that our schemes remain secure when the attacker has access to additional information
on the secret key sk, in the form of fpk(sk), where fpk is a polynomial time function (which may
depend on the public key) that is evaluated on the secret key sk. First, we consider the case where
f is such that the transition (fpk(sk), pk) → sk is computationally hard. Namely, that retrieving
the secret key sk given the public key pk and the auxiliary information fpk(sk), is sufficiently hard.
This notion was termed weak auxiliary-input security in [DGK+10]. In turn, [DGK+10] show how
to leverage weak auxiliary-input security to achieve security when the requirement on f is weaker:
now, only the transition fpk(sk) → sk needs to be hard. The latter is called auxiliary-input security.

We conclude that for all δ > 0, we can select the value of ` such that the scheme is auxiliary-
input secure relative to any function that is hard to invert (in polynomial time) with probability
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2−`δ
. We note that the input to the function is the secret key – a length ` binary string, and

therefore we measure hardness as a function of ` (and not of the security parameter k).

1.3 Our Techniques

The circular security, leakage resiliency and auxiliary-input security properties of our scheme are
proved using a new technical tool introduced in this work: the interactive vector game. This proof
technique can also provide an alternative proof for the KDM(1)-security, leakage resiliency and
auxiliary-input security of (known) public-key encryption schemes based on DDH and LWE, thus
providing an alternative, more generic proof for some of the results of [BHHO08, ACPS09, NS09,
DGK+10].5

This suggests an alternative explanation to the folklore belief that the three notions are related:
that it is the proof technique that is related in fact. Namely, the proof techniques for each property
can be generalized to interactive vector games which, in turn, imply the other properties.

We proceed to overview the proofs of security for the various properties of our scheme. Again,
let us consider the groups GU = GM ×GL with h being a generator for GM , such that the subgroup
indistinguishability assumption holds.

To best explain the ideas of the proof, let us consider, as a first step, a simple semantically
secure encryption scheme (which is a generalization of the Goldwasser-Micali scheme [GM82]). An
encryption of 0 is a random element g ∈ GL and an encryption of 1 is h · g (in the QR case, the
encryption of (+1) is a random quadratic residue and the encryption of (−1) is a random quadratic
non-residue). The two distributions are clearly indistinguishable (consider the indistinguishable
experiment where g is uniform in GU ). In order to decrypt, one needs some “trapdoor information”
that would enable to distinguish between elements in GL and GU (such as the factorization of the
modulus N in the QR (and DCR) case).

The first modification of this simple idea was to fix g and put it in the public key, and set the
ciphertext for hm to hm · gr for r large enough. Note that the sender does not know the order of
GU : Indeed, in the QR case, knowing the order of the group JN , which is ϕ(N)

2 , enables to factor
N . For the QR case, this modification still amounts to encrypting (+1) by a random square, and
(−1) by a random non-square.

The second modification does away with the need of the secret key owner to distinguish between
elements in GL and GU (e.g. with the need to know the factorization of N in the QR case),
by replacing the “trapdoor information” with a secret key that is a uniform binary vector s =
(s1, . . . , s`). Holding the secret key will not enable us to solve subgroup indistinguishability, but
will enable us to decrypt as in [BHHO08]. We take a set of random elements g1, . . . , g` ∈ GL and
define g0 =

∏
g−si
i . If ` is large enough, then the leftover hash lemma implies that g0 is almost

uniform. As the ciphertext is (gr
1, . . . , g

r
` , h

m · gr
0), one can recover hm using s. Recovering m itself

is also possible if the discrete logarithm problem in GM is easy, as is the case in the QR scenario.
The crux of the idea in proving security is as following. First, we note that the distribution

of g0 is close to uniform in GL, even given g1, . . . , g` (by the leftover hash lemma). Recall that
in a DDH-based proof, we could claim that ((g1, . . . , g`, g0), (gr

1, . . . , g
r
` , g

r
0)) is computationally

indistinguishable from ((g1, . . . , g`, g0), (g′1, . . . , g
′
`, g

′
0)) (where g′i are uniform). However, based on

subgroup indistinguishability, a different method is required: Consider replacing g0 with g′0 =

5In this work, the interactive vector game is defined only for our subgroup indistinguishability assumptions, but
it easily extends to other assumptions.
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h · g0, the distribution ((g1, . . . , g`, g0), (gr
1, . . . , g

r
` , g

r
0)) is computationally indistinguishable from

((g1, . . . , g`, h · g0), (gr
1, . . . , g

r
` , h

r · gr
0)) under the subgroup indistinguishability assumption. The

crucial observation now is that since the orders of GM and GL are relatively prime, then in fact
g′r0 = hr′ · gr

0, where r′ is independent of r. Combined with the fact that GM is cyclic, we get that
((g1, . . . , g`, g0), (gr

1, . . . , g
r
` , g

r
0)) is indistinguishable from ((g1, . . . , g`, h · g0), (gr

1 . . . gr
` , h

′ · gr
0)), for a

random h′ ∈ GM . Semantic security now follows.
To address the issues of circular security, leakage resiliency and auxiliary-input, we generalize

the idea presented above, and prove that the distribution ((g1, . . . , g`), (ha1 · gr
1, . . . , h

a` · gr
` )) is

indistinguishable from ((g1, . . . , g`), (gr
1, . . . , g

r
` )). We provide an interactive variant of this claim,

which we call an interactive `-vector game, where the values of a1, . . . , a` ∈ Z are selected by the
distinguisher and can depend on (g1, . . . , g`), and show that the above is hard even in such case.
The interactive vector game will be employed in the proofs of all properties of the scheme.

For key-dependent message security, we consider the ciphertext (gr
0, g

r
1, . . . , h · gr

i , . . . , g
r
` ). This

ciphertext will be decrypted to hsi and in fact can be shown (using an interactive vector game)
to be computationally indistinguishable from a legal encryption of hsi . Key-dependent message
security follows from this fact.

Proving KDM(n)-security for our scheme is more complex. To illustrate this, we contrast it with
the ideas in the proof of [BHHO08]. They used homomorphism and re-randomization to achieve
KDM(n)-security: Their scheme is shown to have homomorphic properties that enable to “shift”
public keys and ciphertexts that are relative to a certain secret key, into ones that are relative to
another secret key. In order to apply these “shifts”, one only needs to know the relation between
the original and final keys (and not the keys themselves). In addition, their scheme is shown to
have re-randomization properties that enable to take a public key (or ciphertext) and produce
an independent public key (or ciphertext) that corresponds to the same secret key (and message,
in the ciphertext case). These two properties enable simulating the KDM(n)-security game using
only one “real” secret key, fabricating the n required keys and ciphertexts using homomorphism
and re-randomization. In [ACPS09], similar ideas are employed, but the re-randomization can be
viewed as implicit in the assumption (the ability to generate independently looking vectors that
are in fact linearly related).

Our scheme can be shown to have such homomorphic properties, but it doesn’t enjoy as strong
re-randomizability as required to use the above techniques. As an example, consider a public key
pk = (g0, g1, . . . , g`) corresponding to a secret key sk = (s1, . . . , s`), i.e. g0 =

∏
g−si
i . Let j ∈ [`] and

consider p̂k = (ĝ0, ĝ1, . . . , ĝ`) defined as follows: for all i 6∈ {j, 0}, set ĝi = gi; for j, set ĝj = g−1
j ;

and finally set ĝ0 = gj ·g0 = ĝ
−(1−sj)
j ·∏i6=j ĝ−si

i . We get that p̂k is a properly distributed public key
corresponding to the secret key ŝk = sk ⊕ ej (sk XORed with the jth unit binary string). Namely,
we were able to “shift” a public key to correspond to another (related) secret key, without knowing
the original key. However, the joint distribution of pk, p̂k is easily distinguishable from that of two
independent public keys. What we lack is the ability to re-randomize p̂k so that it is distributed
as a public key for ŝk which is independent of the original pk.

Intuitively, this shortcoming requires us to use more “real randomness”. Our proof simulates
the KDM(n)-security game using only one “real” secret key, as in the idea presented above. This
secret key is used to fabricate n secret and public keys. However, when we want to apply the
leftover hash lemma to claim that the g0 components of all n fabricated public keys are close to
uniform, we need the one real secret key to have sufficient entropy. This requires a secret key whose
size is linear in n. These ideas, combined with the ones used to prove KDM(1) security, give our
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final proof.
The property of entropy-κ KDM-security requires that the scheme remains secure even when

the secret key is sampled from a high-entropy (but not necessarily uniform) distribution. This is
shown to hold using the leftover hash lemma, since

∏
gsi
i is a 2-universal hash function. A targeted

encryption scheme is obtained similarly to the other constructions in [BHHI09], by using the fact
that we can “fabricate” ciphertexts that correspond to affine functions of the secret key without
knowing the secret key itself.

Leakage resiliency and auxiliary-input security are proven by an almost identical argument:
consider a case where we replace the ciphertext (hm · gr

0, g
r
1, . . . , g

r
` ) with a computationally indis-

tinguishable one: (h−
∑

σisi · hm · gr
0, h

σ1 · gr
1, . . . , h

σ` · gr
` ), where σi ∈ ZM are uniform. Computa-

tional indistinguishability (even for a known secret key) follows from the interactive vector game
mentioned above. For leakage-resilience, the leftover hash lemma implies that so long as there is
sufficient entropy in s after the leakage,

∑
σisi will be close to uniform and will “mask” the value

of m. For auxiliary input we use the generalized Goldreich-Levin theorem of [DGK+10] to show
that

∑
σisi is close to uniform in the presence of a function of s that is hard to invert, even given

the public key. Thus obtaining weak auxiliary-input security. In the QR case, the inner product is
over Z2 and therefore we can use the “standard” Goldreich-Levin theorem [GL89], which implies
better parameters. We use leveraging (as used in [DGK+10]) to obtain the full result.

1.4 Other Related Work

Cramer and Shoup [CS02] presented the notion of hash proof systems, which are similar to subgroup
indistinguishability assumptions. Their implementations from QR and DCR also do not require
the factorization of N in order to decrypt. However they use the discrete logarithm of (their analog
to) the gi’s as a secret key for the system. Our scheme can be seen as taking another step towards
“stripping” the secret key of all structure: in our scheme, it is just a uniform sequence of bits
(resulting in a weaker form of a hash proof system that is “universal on average”).

Hemenway and Ostrovsky [HO09] show how to construct lossy trapdoor functions (see [PW08]
for definition) from the QR and DCR assumptions (among other assumptions). Similar ideas
can be used in a straightforward manner to construct lossy trapdoor functions from subgroup
indistinguishability assumptions with special properties.

1.5 Paper Organization

Preliminaries and definitions are presented in Section 2. The definition of subgroup indistinguisha-
bility assumptions and instantiations from QR and DCR appear in Section 3.

In the interest of clarity and to simplify our presentation, the body of the paper only discusses
the construction based on the QR assumption. Some of the proofs are omitted from this part. The
general case, for any subgroup indistinguishability assumption, is presented and analyzed in detail
in the appendix.

Our QR-based encryption scheme is presented in Section 4, followed, in Section 5, by introduc-
tion of the interactive vector game: a central technical tool to be used for the analysis throughout
the paper. KDM-security is discussed in Section 6, leakage-resilience in Section 7 and auxiliary-
input security in Section 8.

In Appendix A we present a variant of [DGK+10, Theorem 1], together with a proof, for the sake
of completeness. Appendix B contains the general presentation of our construction from subgroup
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indistinguishability assumptions, together with the full proofs.

2 Preliminaries

We denote scalars in plain lowercase (x ∈ {0, 1}) and vectors in bold lowercase (x ∈ {0, 1}n). The
ith coordinate of x is denoted xi. The vector inner product of x,y is denoted by 〈x,y〉 and is
defined to be

∑
xi · yi. The vector ei is the ith unit vector.

For any K ∈ N, we denote [K] = {1, . . . ,K}. We let ZK denote the ring Z/KZ and let Z∗K
denote the group of units in ZK . Euler’s totient function is denoted by ϕ(·).

Arithmetic operations are always performed in Z but can sometimes also be interpreted as
being performed over ZK , for some value K ∈ N. Specifically, if h is an element of order K in a
multiplicative group, then hx = h(x mod K), so operations “in the exponent of h” can be interpreted
as operations over ZK . We usually write (mod K) to indicate that an operation is performed over
ZK , but we sometimes omit this when K is clear from the context.

For vectors g,h ∈ Gn, where G is a multiplicative commutative group, we denote by gr the
vector whose ith coordinate is gr

i . We denote by h ·g the vector whose ith coordinate is hi · gi. Note
that this does not denote an inner product. For a group element g ∈ G and a vector x ∈ Z, we let
gx denote the vector whose ith coordinate is gxi .

Let X be a probability distribution over a domain S, we write x
$← X to indicate that x is

sampled from the distribution X. The uniform distribution over a set S is denoted U(S). We use
x

$← S as abbreviation for x
$← U(S). For any function f with domain S we let f(X) denote the

random variable (or corresponding distribution) obtained by sampling x
$← X and outputting f(x).

The min-entropy of a (discrete) random variable X is H∞(X) = minx∈S{− log Pr[X = x]}.
We write negl(k) to denote an arbitrary negligible function, i.e. one that vanishes faster than

the inverse of any polynomial.
The statistical distance between two distributions X, Y (or random variables with those distribu-

tions) over a common domain S is maxA⊆S |Pr[X ∈ A]− Pr[Y ∈ A]|. Two ensembles X = {Xk}k,
Y = {Yk}k are ε = ε(k)-close if for all k, the distance between Xk and Yk is at most ε(k) and are
statistically indistinguishable if ε(k) = negl(k). An ensemble X = {Xk}k over domains S = {Sk}k

is ε = ε(k)-uniform in S if it is ε-close to the uniform ensemble over S (we sometimes omit S when
it is clear from the context). X = {Xk}k, Y = {Yk}k are computationally indistinguishable if every
poly(k)-time adversary A has negligible distinguishing advantage:

DistX,Y Adv[A] = |Pr[A(Xk) = 1]− Pr[A(Yk) = 1]| = negl(k) .

We often abbreviate and write DistAdv[A] when X, Y are clear from the context.

2.1 KDM Security

A public-key encryption scheme E = (G, E, D) is defined by its key generation, encryption and
decryption algorithms. The key generation algorithm G takes as input the unary vector 1k, where k
is called the security parameter of the scheme. All other parameters of the scheme are parameterized
by k. We let S = {Sk} denote the space of secret keys and M = {Mk} denote the message space of
the encryption scheme. We refer the reader to [Gol04] for a formal definition of encryption schemes
and their security.
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In the scenario of key-dependent messages, we wish to model the case where functions of the
secret key can be encrypted, and require that the resulting ciphertexts are indistinguishable from
encryptions of 0. We want our definition to apply also for the case of “key cycles” where a function
of one user’s secret key is encrypted by another’s public key and vice versa. The most inclusive
definition, therefore, is parameterized by the number of users n and allows encrypting a function
of the entire vector of n secret keys under any of the corresponding public keys (this is sometimes
referred to as “clique security”). An additional parameter to be considered is the set of functions
of the secret key that we allow to encrypt. We use the definition presented in [BHHO08].

Formally, let E = (G,E,D) be a public key encryption scheme, n > 0 be an integer, S = {Sk}
be the space of secret keys, and let F = {Fk} be a class of functions such that Fk ⊆ Sn

k →Mk.
We define the KDM(n) game, w.r.t. the function class F , played between a challenger and an

adversary as follows.

Initialize. The challenger selects b
$← {0, 1} and generates, for all i ∈ [n], key pairs (ski, pki)

$←
G(1k). The challenger then sends {pki}i∈[n] to the adversary.
Query. The adversary makes queries of the form (i, f) ∈ [n]× Fk. For each query, the challenger
computes y ← f(sk1, . . . , skn) and sends the following ciphertext to the adversary.

c ←
{

Epki
(y) if b = 0

Epki
(0) if b = 1.

Finish. The adversary outputs a guess b′ ∈ {0, 1}.
The scheme E is KDM(n) secure if any polynomial time adversary A has negligible advantage:

KDM(n)Adv[A] =
∣∣Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]

∣∣ = negl(k) .

We sometime denote KDM(n)
F to indicate the function class in discussion.

2.2 Leakage Resilient Encryption

In the scenario of key-leakage resiliency, we wish to model the case where some (adversarially
selected restricted amount of) information about the secret key is revealed to the attacker. We
require that even in the presence of this additional information, the security of the scheme remains
intact. The definition below is essentially adopted from [NS09].

Let E = (G, E, D) be a public key encryption scheme with key-space S = {Sk} and message
space M = {Mk}. We define the λ-leakage game, for the non-negative parameter λ = λ(k), played
between a challenger and an adversary as follows.

Initialize. The challenger selects b
$← {0, 1} and generates a key-pair (sk, pk) $← G(1k). The

challenger sends pk to the adversary.
Leakage. The adversary sends an efficiently computable function f : Sk → {0, 1}λ to the chal-
lenger. The challenger computes f(sk) and returns this value to the adversary.
Challenge. The adversary sends m0,m1 ∈ Mk to the challenger. The challenger computes
y ← Epk(mb) and sends y to the adversary.
Finish. The adversary outputs a guess b′ ∈ {0, 1}.

The scheme E is λ-leakage secure if for any polynomial time adversary A it holds that

LeakλAdv[A] =
∣∣Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]

∣∣ = negl(k) .
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We note that the definition can be extended to the case of chosen ciphertext attacks (see [NS09]),
in this work we only consider the case of chosen plaintext attacks described above.

2.3 Auxiliary-Input Resilient Encryption

The scenario of auxiliary-input resiliency is quite similar to that of key-leakage resiliency described
in Section 2.2. As in the previous case, we model a scenario where the attacker can access additional
information about the secret key. In this case, however, the restriction on the amount of information
is computational rather than information theoretic. The definition is adopted (and slightly adapted)
from [DGK+10].

Let E = (G, E, D) be a public key encryption scheme with secret-key space S = {Sk}, public key
space P = {Pk} and message space M = {Mk}. For any family of functions f = {fk : S × P →
{0, 1}∗}, we define the inverting advantage and weak inverting advantage of an adversary A as
follows.

InvfAdv[A] = Pr
(sk,pk)←G(1k)

[A(1k, fk(sk, pk)) = sk] ,

Invweak
f Adv[A] = Pr

(sk,pk)←G(1k)
[A(1k, pk, fk(sk, pk)) = sk] .

The public parameters of the scheme are an additional implicit argument to both f and A (in both
definitions). Let ` denote the length of the binary representation of the secret key. A polynomial
time computable function f is ε = ε(`)-hard to invert (resp. ε-weakly hard to invert)6 if for any
polynomial time A it holds that InvfAdv[A] ≤ ε (resp. Invweak

f Adv[A] ≤ ε). We stress that the
notion of “hard to invert functions” is weaker than the standard notion of one-way functions since
we require the recovery of the original secret key (and not of just any pre-image). Thus a function
that is not one-way can still be hard to invert.

For any efficiently computable function family f , we consider the f -auxiliary input game, played
between a challenger and an adversary as follows.

Initialize. The challenger selects b
$← {0, 1} and generates a key-pair (sk, pk) $← G(1k). The

challenger sends pk to the adversary.
Auxiliary input. The challenger computes z ← fk(sk, pk) and sends z to the adversary.
Challenge. The adversary sends m0,m1 ∈ Mk to the challenger. The challenger computes
y ← Epk(mb) and sends y to the adversary.
Finish. The adversary outputs a guess b′ ∈ {0, 1}.

The scheme E is ε-auxiliary input secure (Auxε-secure) if for any ε-uninvertible f and for any
polynomial time A it holds that

AuxfAdv[A] =
∣∣Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]

∣∣ = negl(k) .

E is ε-weakly auxiliary-input secure (Auxweak
ε -secure) if the above holds for any ε-weakly uninvertible

function f .

2.4 Technical Tools

We use the following simple lemma.
6Note that we measure the hardness of f relative to its input length ` and not the security parameter k.
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Lemma 2.1. Let T,N ∈ N and let x
$← [T ], then x (mod N) is (N/T )-uniform in ZN .

Proof. Define d = (T mod N), then conditioned on the event x ∈ [T − d], it holds that (x mod N)
is uniform in ZN . Therefore (x mod N) is (d/T ) ≤ (N/T )-uniform.

2.4.1 Simplified Leftover Hash Lemma and Applications

We use the following lemma which is an immediate corollary of the leftover hash lemma and
explicitly appears in [BHHO08, Lemma 2].

Lemma 2.2. Let H be a 2-universal hash family from a set X to a set Y . Then the distribution
(h, h(x)) where h

$← H, x
$← X is

√
|Y |
4|X| -uniform in H × Y .

We also require the following consequence.

Lemma 2.3. Let H be a 2-universal hash family from a set X to a set Y . Let f : X → Z be
some function. Then the distribution (h, h(x), f(x)) where h

$← H, x
$← X is

√
|Y |·|Z|
4|X| -close to

(h, y, f(x)), for y
$← Y .

Proof. For all z ∈ Z, denote Xz = {x ∈ X : f(x) = z} and pz = |Xz| / |X|. Then by Lemma 2.2,

(h, h(x), f(x)) conditioned on f(x) = z is
√

|Y |
4|Xz | -close to (h, y, f(x)) conditioned on f(x) = z.

Averaging over all z ∈ Z, we get that the distance between (h, h(x), f(x)) and (h, y, f(x)) is at
most

∑

z∈Z

(
pz ·

√
|Y |

4 |Xz|

)
=

√
|Y |

4 |X| ·
∑

z∈Z

√
pz ≤

√
|Y | |Z|
4 |X| .

The result follows.

We often use a families of 2-universal hash functions of the form presented below.

Lemma 2.4. Let G be any finite commutative group and let ` ∈ N. Then the set of functions
H = {hg1,...,g`

: {0, 1}` → G}g1,...,g`∈G where hg1,...,g`
(x) =

∏
i∈[`] g

xi
i , is 2-universal.

Note that the group G needs not be cyclic.

Proof. Consider x 6= y and assume w.l.o.g that x1 6= y1. Then for g1, . . . , g`
$← G it holds that

gx1−y1
1 is uniformly distributed in G and the result follows.

2.4.2 The Goldreich-Levin Theorem

The Goldreich-Levin hard core predicate is stated in the following theorem.

Theorem 2.5 ([GL89]). Let f : {0, 1}n → {0, 1}∗ be any (possibly randomized) function and let A
be such that ∣∣∣ Pr

x,r
$←{0,1}n

[A(f(x), r, 〈r,x〉) = 1]− Pr
x,r

$←{0,1}n,

u
$←{0,1}

[A(f(x), r, u) = 1]
∣∣∣ ≥ ε ,

then there exists BA that runs in time poly(n, 1/ε) such that

Pr[BA(f(x)) = x] ≥ Ω(ε3/n) .
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3 Subgroup Indistinguishability Assumptions

We present the class of subgroup indistinguishability assumptions in Section 3.1 and then discuss
instantiations under the QR and DCR assumptions in Section 3.2.

3.1 Definition of a Subgroup Indistinguishability (SG) Problem

Let GU be a finite commutative multiplicative group, such that GU is a direct product of two
groups: GU = GM × GL (interpreted as the “message group” and the “language group”), where
GM is cyclic of order M , GL is of order L (and is not necessarily cyclic) and GU is of order M · L
(we abuse notation and use M, L to index the groups and to denote their orders). We require
that gcd(M, L) = 1. Let h be a generator for GM such that h is efficiently computable from the
description of GU . We require that there exists an efficient algorithm OPGU

to perform group
operations in GU , and also that there exist efficient sampling algorithms SGM

, SGL
that sample a

random element from GM , GL respectively. We further require that an upper bound T ≥ M · L is
known.

We stress that as always, all groups described above are in fact families of groups, indexed by
the security parameter k. To be more precise, there exists a polynomial time randomized algorithm
that given the security parameter 1k, outputs IGU

= (OPGU
, SGM

, SGL
, h, T ). We refer to IGU

as
an instance of GU .

For any adversary A we denote the subgroup distinguishing advantage of A by

SGAdv[A] =
∣∣∣ Pr

x
$←GU

[A(1k, x)]− Pr
x

$←GL

[A(1k, x)]
∣∣∣ .

That is, the advantage A has in distinguishing between GU and GL. The subgroup indistinguisha-
bility (SG) assumption is that for any polynomial A it holds that for a properly sampled instance
IGU

, we have SGAdv[A] = negl(k) (note that in such case it must be that 1/L = negl(k)). In other
words, thinking of GL ⊆ GU as a language, the assumption is that this language is hard on average.
We define an additional flavor of the assumption by

SG′Adv[A] =
∣∣∣ Pr

x
$←GL

[A(1k, h · x)]− Pr
x

$←GL

[A(1k, x)]
∣∣∣ .

It follows immediately that for any adversary A there exists an adversary B such that SG′Adv[A] ≤
2 · SGAdv[B].

3.2 Instantiations

We instantiate the SG assumption based on the QR and DCR assumptions.
For both instantiations we consider a modulus N defined as follows. For security parameter k,

we sample a random RSA number N ∈ N: this is a number of the form N = pq where p, q are
random k-bit odd primes.

We note that our instantiations work even when the modulus N is such that QRN is not cyclic.

3.2.1 Instantiation Under the QR Assumption with Any Blum Integer

Consider a modulus N as described above. We use JN to denote the set of elements in Z∗N with
Jacobi symbol 1, we use QRN to denote the set of quadratic residues (squares) modulo N . Slightly
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abusing notation JN ,QRN also denote the respective groups with the multiplication operation
modulo N . The groups JN ,QRN have orders ϕ(N)

2 , ϕ(N)
4 respectively and we denote N ′ = ϕ(N)

4 .
We require that N is a Blum integer, namely that p, q = 3 (mod 4). In such case it holds that
gcd(2, N ′) = 1 and (−1) ∈ JN \QRN .

The quadratic residuosity (QR) assumption is that for a properly generated N , the distribu-
tions U(JN ) and U(QRN ) are computationally indistinguishable.7 This leads to the immediate
instantiation of the SG assumption by setting GU = JN , GM = {±1}, GL = QRN , h = (−1),
T = N ≥ 2N ′.

3.2.2 Instantiation Under the DCR Assumption

The decisional composite residuosity (DCR) assumption, introduced by Paillier [Pai99], states that
for a properly generated RSA number N , it is hard to distinguish between a random element in
Z∗N2 and a random element in the subgroup of N th-residues {xN : x ∈ Z∗N2}. The group Z∗N2 can
be written as a product of the group generated by 1+N (which has order N) and the group of N th

residues (which has order ϕ(N)). This implies that setting GU = Z∗N2 , GL = {xN : x ∈ Z∗N2} and
GM = {(1+N)i : i ∈ [N ]} provides an instantiation of the SG assumption, setting h = (1+N) and
T = N2. It is left to check that indeed gcd(N, ϕ(N)) = 1. This follows since p, q are odd primes of
equal length: assume w.l.o.g that p/2 < q < p, then the largest prime divisor of ϕ(N) = (p−1)(q−1)
has size at most (p− 1)/2 < p, q and the claim follows.8

4 Description of the Encryption Scheme

In the interest of clarity, we only present the QR-based scheme here. The general case is presented
in Appendix B.1. The scheme E [`] is defined below.
Parameters. The scheme is parameterized by ` ∈ N which is polynomial in the security parameter.
The exact value of ` is determined based on the specific properties we require from the scheme.

The message space of E [`] is M = {0, 1}, i.e. this is a bit-by-bit encryption scheme.
Key generation. The key generator first samples a Blum integer N . We note that the same value
of N can be used by all users. Furthermore we stress that no entity needs to know the factorization
of N . Therefore we often refer to N as a public parameter of the scheme and assume that it is
implicitly known to all users.

The key generator also samples s $← {0, 1}` and sets sk = s. It then samples g $← QR`
N and

sets g0 = (
∏

i∈[`] g
si
i )−1. The public key is set to be pk = (g0,g) (with N as an additional implicit

public parameter).
Encryption. On inputs a public key pk = (g0,g) and a message m ∈ {0, 1}, the encryption

7The QR assumption usually refers to random RSA numbers, which are not necessarily Blum integers. However,
since Blum integers have constant density among RSA numbers, the flavor we use is implied.

8If greater efficiency is desired, we can use a generalized form of the assumption, presented in [DJ01]. Let d ≥ 1
be a parameter that is polynomial in the security parameter and consider the group GU = Z∗Nd+1 . Then GU can be
written as a product GU = GM × GL where GM is cyclic and has order M = Nd and generator h = (N + 1). The

group GL is the group {xNd

: x ∈ Z∗Nd+1} which is isomorphic to Z∗N . Clearly gcd(Nd, ϕ(N)) = 1 and we can use the
bound T = Nd+1 ≥ Nd · ϕ(N).

It is proven in [DJ01] that under the DCR assumption, the subgroup indistinguishability problem defined by the
above groups is hard for any polynomial d. Specifically, taking d = 1 gives Paillier’s original assumption.
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algorithm runs as follows: it samples r
$← [N2],9 and computes c = gr and c0 = (−1)m · gr

0. It
outputs a ciphertext (c0, c).
Decryption. On inputs a secret key sk = s and a ciphertext (c0, c), the decryption algorithm
computes (−1)m = c0 ·

∏
i∈[`] c

si
i and outputs m.

The completeness of the scheme follows immediately by definition.

5 The Interactive Vector Game

We define the interactive `-vector game played between a challenger and an adversary. We only
present the QR-based game and refer the reader to the general definition in Appendix B.2.

Initialize. The challenger samples b
$← {0, 1} and also generates a Blum integer N and a vector

g $← QR`
N . It sends N and g to the adversary.

Query. The adversary adaptively makes queries, where each query is a vector a ∈ {0, 1}`. For
each query a, the challenger samples r

$← [N2] and returns (−1)a · gr if b = 0 and gr if b = 1.
Finish. The adversary outputs a guess b′ ∈ {0, 1}.

The advantage of an adversary A in the game is defined to be

IV`Adv[A] =
∣∣Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]

∣∣ .

Under the QR assumption, no poly(k)-time adversary (where k is the security parameter) can
obtain a non-negligible advantage in the game, as formally stated below.

Lemma 5.1. Let A be an adversary for the interactive `-vector game that makes at most t queries,
then there exists an adversary B for QR such that

IV`Adv[A] ≤ 4t` ·QRAdv[B] + 2t`/N .

Proof. A standard hybrid argument implies the existence of A1 which is an adversary for a 1-round
game (t = 1 in our notation) such that IV`Adv[A] ≤ t · IV`Adv[A1].

We consider a series of hybrids (experiments). For each hybrid Hi, we let Pr[Hi] denote the
probability that the experiment “succeeds” (an event we define below).

Hybrid H0. In this experiment, we flip a coin b
$← {0, 1} and also sample i

$← [`]. We simulate
the 1-round game with A1 where the challenger answers a query a with (gr

1, . . . , g
r
i−1, (−1)b·ai ·

gr
i , (−1)ai+1 · gr

i+1, . . . , (−1)a` · gr
` ). The experiment succeeds if b′ = b.

A standard argument shows that

IV`Adv[A1]
2`

=
∣∣∣∣Pr[H0]− 1

2

∣∣∣∣ .

Hybrid H1. In this hybrid we replace gi (which is a uniform square) with (−gi). We get that
there exists B such that |Pr[H1]− Pr[H0]| ≤ 2 ·QRAdv[B].

9A more natural choice is to sample r
$← [|JN |], but since |JN | = 2N ′ = ϕ(N)

2
is hard to compute, we cannot

sample from this distribution directly. However, since r is used as an exponent of a group element, it is sufficient
that (r mod 2N ′) is uniform in Z2N′ , and this is achieved by sampling r from a much larger domain.

We further remark that, as pointed out to us by Adi Shamir, we could alternatively use r
$← [(N − 1)/2], since

U([(N − 1)/2]) and U([ϕ(N)/2]) are statistically indistinguishable.
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We note that in this hybrid the adversary’s query is answered with (gr
1, . . . , g

r
i−1, (−1)b·ai ·

(−gi)r, (−1)ai+1 · gr
i+1, . . . , (−1)a` · gr

` ).

Hybrid H2. In this hybrid the only change is that now r
$← Z2N ′ (recall that N ′ = ϕ(N)

4 ) rather
than U([N2]). By Lemma 2.1 it follows that |Pr[H2]− Pr[H1]| ≤ 1/N . We note that while N ′ is
not explicitly known to any entity, the argument here is statistical and there is no requirement that
this hybrid is efficiently simulated.

We denote r1 = (r mod 2) and r2 = (r mod N ′). Since N ′ is odd, the Chinese Remainder
Theorem implies that r1, r2 are uniform in Z2,ZN ′ respectively and are independent. The answer
to the query in this scenario is therefore

(gr
1, . . . , g

r
i−1, (−1)b·ai · (−gi)r, (−1)ai+1 · gr

i+1, . . . , (−1)a` · gr
` ) =

(gr2
1 , . . . , gr2

i−1, (−1)b·ai+r1 · gr2
i , (−1)ai+1 · gr2

i+1, . . . , (−1)a` · gr2
` ) .

However since r1 is a uniform bit, the answer is independent of b. It follows that Pr[H2] = 1
2 .

It follows that IV`Adv[A1] ≤ 4` ·QRAdv[B] + 2`/N , and the result follows.

6 KDM Security

In this section, we discuss the KDM-security related properties of our scheme. We only discuss
our QR-based encryption scheme in this section, in the interest of clarity. We prove the KDM(1)-
security of E [`], for ` ≥ log N + ω(log k), in Section 6.1. Then, in Section 6.2, we state and prove
that for ` ≥ n · log N + ω(log k), E [`] is also KDM(n)-secure. Finally, extensions beyond affine
functions are stated without proof in Section 6.3.

A presentation and analysis of the general case, including all relevant proofs, is provided in
Appendix B.3.

Throughout this section we define Faff to be the class of affine functions over Z2, namely the
class of all functions of the form fa0,a(x) = a0 +

∑
aixi, where ai, xi ∈ Z2, and arithmetics are also

over Z2.

6.1 KDM(1)-Security

The intuition behind the KDM(1)-security of E [`] is as follows. Consider a public key (g0 =∏
g−si
i ,g) that corresponds to a secret key s, and a function fa0,a ∈ Faff. The encryption of

fa0,a(s) = (−1)a0+
∑

aisi is

(c0, c) = ((−1)a0+
∑

aisi · gr
0,g

r) = ((−1)a0 ·
∏

((−1)ai · gr
i )
−si ,gr) .

We notice that if s, a0,a are known, then c0 is completely determined by c = gr. Therefore, if we
replace gr with (−1)a · gr (an indistinguishable vector, even given the public key, by an interactive
vector game), we see that (c0, c) is indistinguishable from (c′0, c

′) = ((−1)a0 · gr
0, (−1)a · gr), even

when the secret key and the message are known. Applying the same argument again, taking into
account that g0 is close to uniform, implies that (c′0, c

′) is computationally indistinguishable from
(gr

0,g
r), which is an encryption of 0. A formal statement and analysis follow.
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Theorem 6.1. Let A be a KDM(1)
Faff

-adversary for E [`] that makes at most t queries, then there
exists an adversary B such that

KDM(1)
Faff

Adv[A] ≤ 4t(2` + 1) ·QRAdv[B] +
√

N · 2−` + O(t`/N) .

The theorem implies that taking ` = log N + ω(log k) is sufficient to obtain KDM(1)-security.

Proof. The proof proceeds by a series of hybrids.
Hybrid H0. This hybrid is identical to the KDM(1) game with b = 0. By definition PrH0 [b

′ = 1] =
Pr[b′ = 1|b = 0].
Hybrid H1. In this hybrid, we change the way the challenger answers the adversary’s queries.
Recall that in hybrid H0, the query fa0,a ∈ Faff was answered by (c0, c) = ((−1)a0+

∑
aisi · gr

0,g
r).

In hybrid H1, it will be answered by (c0, c) = ((−1)a0 · gr
0, (−1)a · gr).

We prove that
∣∣∣∣Pr
H1

[b′ = 1]− Pr
H0

[b′ = 1]
∣∣∣∣ ≤ IV`Adv[A′] ≤ 4t` ·QRAdv[B1] + O(t`/N) ,

for some A′,B1, even when s is fixed and known.
To see this, we notice that in both hybrids c0 = (−1)a0 ·∏i∈[`]((−1)ai ·c−1

i )si and g0 =
∏

i∈[`] g
−si
i .

Therefore an adversary A′ for the interactive `-vector game can simulate A, sampling s on its own
and using g to generate g0 and “translate” the challenger answers. Applying Lemma 5.1, the result
follows.
Hybrid H2. In this hybrid, we change the distribution of g0, which will now be sampled from

U(QRN ). By Lemma 2.4 combined with Lemma 2.2, (g0,g) is
√

N ′
2`+2 ≤

√
N

2`+2 -uniform. Thus

∣∣∣∣Pr
H2

[b′ = 1]− Pr
H1

[b′ = 1]
∣∣∣∣ ≤

√
N

2`+2
.

Hybrid H3. In this hybrid, we again change the way the challenger answers queries. Now instead of
answering (c0, c) = ((−1)a0 ·gr

0, (−1)a ·gr)), the challenger answers (c0, c) = (gr
0,g

r). The difference
between H2 and H3 is now a t-query interactive (` + 1)-vector game and thus by Lemma 5.1,

∣∣∣∣Pr
H3

[b′ = 1]− Pr
H2

[b′ = 1]
∣∣∣∣ ≤ 4t(` + 1) ·QRAdv[B2] + O(t`/N) ,

for some B2.
Hybrid H4. We now revert the distribution of g0 back to the original

∏
i∈[`] g

−si
i . Similarly to H2,

we have ∣∣∣∣Pr
H4

[b′ = 1]− Pr
H3

[b′ = 1]
∣∣∣∣ ≤

√
N

2`+2
.

However, hybrid H4 is identical to the KDM(1) game with b = 1, as all queries are answered
by encryptions of 0: PrH4 [b

′ = 1] = Pr[b′ = 1|b = 1]. Summing the terms above, the result follows
(where B is, say, a weighted average between B1 and B2).
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6.2 KDM(n)-Security

A formal statement and proof for the QR case follows. For the statement and proof in the general
case, see Appendix B.3.3.

Theorem 6.2. Let A be a KDM(n)
Faff

-adversary for E [`] that makes at most t queries, then there
exists an adversary B such that

KDM(n)
Faff

Adv[A] ≤ 4nt(2` + 1) ·QRAdv[B] + (N · 2−`/n)n/2 + O(nt`/N) .

The theorem implies that taking ` = n · log N + ω(log k) is sufficient for KDM(n)-security.

Proof. Let us first introduce the notation used in the proof: We now consider functions in Faff that
are applied to a concatenated vector of n secret keys. We will denote such functions by fa0,a1,...,an ,
where a0 ∈ {0, 1} and ai ∈ {0, 1}`, and such that for all x1, . . . ,xn ∈ {0, 1}` the function is defined
by

fa0,a1,...,an(x1, . . . ,xn) = a0 +
∑

j∈[n],i∈[`]

aj,i · xj,i .

All arithmetic operations are over Z2.
The proof follows the outline of the proof of Theorem 6.1 with slight modifications to the

hybrids.
Hybrid H0. This hybrid is identical to the KDM(n) game with b = 0. Let {ski = si}i∈[n] denote the
generated secret keys and {pki = (g0,i,gi)}i∈[n] denote the public keys produced by the challenger.
By definition PrH0 [b

′ = 1] = Pr[b′ = 1|b = 0].
Hybrid H1. We change the way the challenger answers the adversary’s queries. For each query
((a0, {aj}j∈[n]), i) made by A, the challenger does as follows.

Define yi,j = si ⊕ sj (the binary XOR operation). Given {yi,j}i,j , the challenger finds (a′0,a
′)

such that fa′0,a′(si) = fa0,{aj}j∈[n]
(s1, . . . , sn). This is possible to do without knowing the values

of the {si}, only {yi,j}: Consider the element sj,i′ (the i′th element of sj). We know that sj,i′ =
si,i′ ⊕ (yi,j)i′ . Therefore we know that if (yi,j)i′ = 0 then sj,i′ = si,i′ and if (yi,j)i′ = 1 then
sj,i′ = 1− si,i′ . We can thus replace the aj,i′ · sj,i′ element in the description of the function f with
either aj,i′ ·si,i′ or aj,i′ ·(1−si,i′), depending on the (known) value of (yi,j)i′ . Doing this one variable
at a time, results in an affine function of only si. We again stress that we only used {yi,j}i,j for
this transformation.

The challenger in this hybrid answers with (c0, c) = ((−1)a′0 ·gr
0,i, (−1)a

′ ·gr
i ) instead of (c0, c) =

((−1)a′0+
∑

j∈[`] a′j ·si,j · gr
0,i,g

r
i ).

It holds that
∣∣∣∣Pr
H1

[b′ = 1]− Pr
H0

[b′ = 1]
∣∣∣∣ ≤ 4nt` ·QRAdv[B1] + O(nt`/N) ,

since, as in the proof of Theorem 6.1, the difference between the hybrids can be viewed as a t-round
interactive (n`)-vector game, considering (g1, . . . ,gn) as the first message, and now the simulated
adversary only needs a part of the answer for each query (the one that is respective to the user i
for which the query was made).
Hybrid H2. Following the proof outline of Theorem 6.1, we change the distributions of g0,i for all
i ∈ [n], to U(QRN ). The challenger still needs to know {yi,j}i,j∈[n] in order to answer the queries
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so we need to prove that even fixing {yi,j}i,j∈[n], hybrid H2 is close to H1. Intuitively speaking,
this will require us to “extract” n uniform elements of QRN out of a single s (because once one of
them is specified, all others are determined by the values of yi,j). Therefore, for security to hold,
we have to require that ` is proportional to n.

We now wish to apply Lemma 2.2 to claim that the hybrids are statistically close. To do that,
we consider the following family of hash functions (defined for a fixed value of {yi,j})

zg1,...,gn(s1) =
(∏

g
s1,i

1,i ,
∏

g
s1,i⊕(y1,2)i

2,i , . . . ,
∏

g
s1,i⊕(y1,n)i

n,i

)
.

This family is 2-universal (by a similar argument to Lemma 2.4, using the fact that the vectors gi

are independent). The output describes the distribution of g0,i in the case where all yi,j are known,
but s1 is not. We can now apply Lemma 2.2 respective to this family and conclude that

∣∣∣∣Pr
H2

[b′ = 1]− Pr
H1

[b′ = 1]
∣∣∣∣ ≤

√
(N ′)n

2`+2
≤

√
Nn

2`+2
=

1
2
· (N · 2−`/n)n/2 .

Hybrid H3. Note that at this point the public keys are distributed uniformly and independently
of yi,j ’s. We again change the way the challenger answers queries, along the lines of the proof of
Theorem 6.1. Instead of answering with (c0, c) = ((−1)a′0 · gr

0,i, (−1)a
′ · gr

i ), the challenger now
answers with (c0, c) = (gr

0,i,g
r
i ). This can be viewed as a t-round interactive n(` + 1)-vector game

(similarly to the previous hybrid) and thus
∣∣∣∣Pr
H3

[b′ = 1]− Pr
H2

[b′ = 1]
∣∣∣∣ ≤ 4nt(` + 1) ·QRAdv[B2] + O(nt`/N) .

Hybrid H4. We revert the distributions of the g0,i’s to the original one. As in hybrid H2 we have
|PrH4 [b

′ = 1]− PrH3 [b
′ = 1]| ≤ 1

2 · (N · 2−`/n)n/2.
Hybrid H4 is identical to the KDM(n) game with b = 1 as all queries are answered by encryptions

of 0 and the claim follows.

6.3 Beyond Affine Functions

Two building blocks have been suggested in [BGK09, BHHI09] to obtain KDM-security w.r.t. a
larger class of functions. Our scheme has the properties required to apply both constructions,
yielding the following corollaries.

The first corollary is derived using [BGK09, Theorem 1.1]. A set of functions H = {h1, . . . , h` :
hi : {0, 1}κ → {0, 1}} is entropy preserving if the function f(x) = (h1(x)‖ · · · ‖h`(x)) is injective
(the operator ‖ represents string concatenation).

Corollary 6.3. Consider E [`] and let κ be polynomial in the security parameter such that κ ≥
log N + ω(log k). Then for any entropy preserving set H = {h1, . . . , h` : hi ∈ {0, 1}κ → {0, 1}}
of efficiently computable functions, with polynomial cardinality (in the security parameter), there
exists a KDM(1)-secure scheme under the QR-assumption w.r.t. the class of functions

F =
{

f(x) = a0 +
∑

aihi(x) : (a0,a) ∈ Z2 × Z`
2

}
.

The second corollary is derived using [BHHI09, Theorem 4.1].
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Corollary 6.4. Based on the QR assumption, for any polynomial p there exists a KDM(1)-secure
encryption scheme w.r.t. all functions computable by circuits of size p(k) (where k is the security
parameter).

These results can be generalized to any SG assumption. For the generalized statements and
proofs, see Appendix B.3.4.

7 Leakage Resiliency

We prove that the scheme E [`] (our QR based scheme) is resilient to a leakage of up of λ =
`− log N − ω(log k) bits. This implies that taking ` = ω(log N), achieves (1− o(1)) leakage rate.

Intuitively, to prove leakage resiliency, we consider the case where instead of outputting the
challenge ciphertext ((−1)m · gr

0,g
r), we output ((−1)m · (−1)

∑
σisi · gr

0, (−1)σ · gr), for a random
vector σ

$← Z`
2. The views of the adversary in the two cases are indistinguishable (by an interactive

vector game).10 Using the leftover hash lemma, so long as s has sufficient min-entropy, even given
g0 and the leakage, then

∑
σisi is close to uniform. In other words, the ciphertexts generated by

our scheme are computationally indistinguishable from ones that contain a strong extractor (whose
seed is the aforementioned σ), applied to the secret key. This guarantees leakage resiliency.11 The
result in the QR case is formally stated and proven below. The general result is stated and proven
in Appendix B.4.

Theorem 7.1. Let A be a λ-leakage adversary for E [`]. Then there exists an adversary B such
that

LeakλAdv[A] ≤ 8` ·QRAdv[B] +
√

N · 2λ−` + O(`/N) .

Proof. We prove by a series of hybrids (experiment). Each experiment defines a binary random
variable (one can think of a value of 1 as a “success” in the experiment).

Hybrid H0. This hybrid describes the following experiment: a challenger flips a coin b
$← {0, 1}

and simulates the λ-leakage game with A. It returns 1 if and only if b′ = b, where b′ is the value
returned by A. By definition

∣∣∣ Pr[H0 = 1]− 1
2

∣∣∣ =
LeakλAdv[A]

2
.

Hybrid H1. We change the encryption algorithm. In this hybrid, we encrypt the message mb

by first computing c = gr and then using s to produce c0 = (−1)mb ·∏i∈[`] c
−si
i . The ciphertext

distribution does not change and hence Pr[H1 = 1] = Pr[H0 = 1].

Hybrid H2. Again we change the encryption. This time the challenger samples σ
$← {0, 1}` and

uses c = (−1)σ · gr instead of c = gr. Note that the difference between H1 and H2 is exactly a
1-round interactive `-vector game and thus by Lemma 5.1, there exists an adversary B such that

|Pr[H2 = 1]− Pr[H1 = 1]| ≤ 4` ·QRAdv[B] + O(`/N) .

10Of course the latter ciphertext can only be generated using the secret key, but the indistinguishability holds even
when the secret key is known.

11In the spirit of [NS09], we can say that our scheme defines a new hash proof system that is universal with high
probability over illegal ciphertexts, a property which is sufficient for leakage resiliency.
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Hybrid H3. We notice that in H2, the distribution of c0 is

c0 = (−1)mb ·
∏

i∈[`]

(−1)si·σi ·
( ∏

i∈[`]

g−si
i

)r
= (−1)mb+

∑
si·σi ·

( ∏

i∈[`]

g−si
i

)r
.

In hybrid H3 we change this distribution. The challenger samples u
$← {0, 1} and sets

c0 = (−1)mb+u ·
( ∏

i∈[`]

g−si
i

)r
.

To analyze this hybrid, we recall that
∏

i∈[`] g
−si
i ∈ QRN and use Lemma 2.4 and Lemma 2.3

to conclude that even for a given g it holds that (σ,
∑

siσi,
∏

i∈[`] g
−si
i , f(s)) is 1

2 ·
√

N · 2λ−`-close
to (σ, u,

∏
i∈[`] g

−si
i , f(s)). It follows that

|Pr[H3 = 1]− Pr[H2 = 1]| ≤ 1
2
·
√

N · 2λ−` .

Hybrid H4. We further change c0 and now set it to be

c0 = (−1)u ·
( ∏

i∈[`]

g−si
i

)r
.

Since u is uniform, it is distributed identically to mb + u (note that the arithmetics here are over
Z2) and thus Pr[H4 = 1] = Pr[H3 = 1]. In H4, however, the ciphertext distribution is independent
of b. Therefore Pr[H4 = 1] = 1

2 . Combining all of the above, the result follows.

8 Auxiliary-Input Resiliency

As in previous work, we start by proving weak auxiliary-input security in Lemma 8.1 below and
then derive general auxiliary-input security for sub-exponentially hard functions in Corollary 8.2.
The complete proofs for the general case appear in Appendix B.5.

Lemma 8.1. Let ε(`) and f be such that ε is negligible and f is ε-weakly uninvertible function
(more precisely, family of functions). Let A be an f-auxiliary input adversary for E [`]. Then there
exists an adversary B such that

Auxweak
f Adv[A] ≤ 8` ·QRAdv[B] + O(`/N) + negl(k) .

We note that the above may seem confusing since it appears to imply auxiliary-input security,
and thus also semantic security, regardless of the value of `. However, we recall that if ` is too small,
then we may be able to retrieve s from pk without the presence of any auxiliary input. Therefore
the value of ` must be large enough in order for f to be weakly uninvertible.

We only provide a proof sketch of Lemma 8.1, for a full proof (for the general case) see
Lemma B.10 in Appendix B.5.

Proof sketch. The proof is almost identical to that of Theorem 7.1. The only difference is that now
we argue that |Pr[H3 = 1]− Pr[H2 = 1]| = negl(k) by applying Theorem 2.5 (the Goldreich-Levin
theorem) to the uninvertible function f ′(s) = (g,

∏
g−si
i , f(s)).
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An immediate corollary (see [DGK+10, Lemma 4]) enables us to state that E [`] is (ε/N)-auxiliary
input secure for any negligible ε, this is because the only part of the public key that depends on
the secret key is g0, whose value can be “guessed” with probability 1/N . For a formal proof, see
Corollary B.11 in Appendix B.5. Note that in order for (negl(k)/N)-hard to invert functions to
even exist, it must be that ` ≥ log N + ω(log k), since any function of ` input bits is trivially
invertible with probability at least 2−`.

We can derive the following corollary (for proof, see Corollary B.12 in Appendix B.5).

Corollary 8.2. Assuming that a subgroup indistinguishability assumption holds, then for any con-
stant δ > 0 there exists a 2−`δ

-auxiliary input resilient encryption scheme.
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A A Generalized Goldreich-Levin Theorem

We use a generalized version of Theorem 2.5, essentially adopted from [DGK+10, Theorem 1] and
slightly adapted (see explanation below).

Theorem A.1 (adapted from [DGK+10, Theorem 1]). Let f : {0, 1}n → {0, 1}∗ be any (possibly
randomized) function, let K ∈ N, K > 1 and let A be such that

∣∣∣Pr[A(f(x), r, 〈r,x〉) = 1]− Pr[A(f(x), r, u) = 1]
∣∣∣ ≥ ε ,

where x $← {0, 1}n, r $← Zn
K , u

$← ZK and the inner product is over ZK , then there exists BA that
runs in time poly(n, 1/ε) such that

Pr[BA(f(x)) = x] ≥ ε

8 ·K1+log(8n/ε2)
.

Furthermore, B only needs to sample uniformly in ZK and to add two elements in ZK and does not
use any other property of ZK .

This theorem is different from [DGK+10, Theorem 1] in a few points. We allow K to take any
value (so long as operations over ZK are efficient), while they restricted their attention to prime
K. This has a technical effect in the proof since the original proof assumed (implicitly) that it
was easy to find a polynomial set of elements {ρi} ⊆ ZK such that for all i 6= j, (ρi − ρj) ∈ Z∗K
(namely, is a unit in the ring ZK). This is easy to achieve in the of prime K, but for a general
K whose factorization (and perhaps even its exact value) is unknown, this is not necessarily the
case. Therefore in our proof we only use the trivial set {0, 1}, which implies worse parameters.
Specifically the power of K in the success probability of the invertor, which is the dominant factor,
is logarithmic in our statement but constant (specifically, 2) in theirs. We remark that if ZK is
such that finding a non-unit is computationally hard (one example is ZN for an RSA number N),
then similar parameters to [DGK+10, Theorem 1] can be achieved, using the same techniques.

An additional change is that we only allow f : {0, 1}n → {0, 1}∗ while their theorem applies
to f : Hn → {0, 1}∗, for any set H ⊆ ZK of polynomial cardinality. This change is partly to
simplify the proof (since we only use the theorem for binary f) and partly because for a non-prime
K, the requirement we need to impose on H and the affect on the parameters seem to make this
even-more-general version not useful.

The formal proof follows.

Proof. Given an algorithm A as stated in the theorem, it holds that

Pr
x

[∣∣∣∣Pr
r

[A(f(x), r, 〈r,x〉) = 1]− Pr
r,u

[A(f(x), r, u) = 1]
∣∣∣∣ > ε/2

]
≥ ε/2 .

Our reduction BA will succeed with sufficiently high probability for y = f(x) for which

Pr
r

[A(f(x), r, 〈r,x〉) = 1]− Pr
r,u

[A(f(x), r, u) = 1] > ε/2 .

Note that we removed the absolute value, which incurs a factor of 1/2 in the final success probability.
From now on, condition on this event.
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The reduction BA, on an input y = f(x), runs as follows. Define m = 8n/ε2 and let c = 1 +
blog mc. Sample z1, . . . , zc

$← Zn
K and g1, . . . , gc

$← ZK . With probability 1/Kc ≥ 1/K1+log(8n/ε2)

it holds that for all j ∈ [c], 〈zj ,x〉 = gj . From now on, condition on this event as well.
For all ρ ∈ {0, 1}c \ {0}, define rρ =

∑
j∈[c] ρj · zj and hρ =

∑
j∈[c] ρj · gj . Then {rρ} are

uniformly distributed, pairwise independent (this is where we use the fact that ±1 are units in ZK)
and it holds that 〈rρ,x〉 = hρ.

Next, it samples τρ
$← ZK for all ρ and computes, for all i ∈ [n] and ρ ∈ {0, 1}c \ {0},

si,ρ = A(y, rρ + τρ · ei, hρ + τρ)−A(y, rρ + τρ · ei, hρ) ,

it then computes si = Eρ[si,ρ] =
∑

ρ si,ρ

2c−1 (i.e. we consider the uniform distribution over all values of
ρ) and if si ≥ 0, it sets xi = 1, otherwise it sets xi = 0.

To analyze, we notice that si,ρ is distributed like A(f(x), r, 〈r,x〉) − A(f(x), r, u) if xi = 1
and like A(f(x), r, u) − A(f(x), r, 〈r,x〉) if xi = 0. Thus, for any fixed value of ρ, Erρ [si,ρ] ≥ ε/2
if xi = 1 and Erρ [si,ρ] ≤ −ε/2 if xi = 0. Since {si,ρ}ρ are pairwise independent, we can apply
Chebishev’s inequality and get that with probability at least 1/(m · (ε/2)2) ≥ 1/(2n) it holds that
si is within ε/2 of its expected value, in which case xi is computed correctly. Applying the union
bound over all i, we have that x is computed correctly with probability 1/2.

Combining all of the terms above, the result follows.

B Constructions and Proofs for General Subgroup Indistinguisha-
bility Assumptions

B.1 Description of the Encryption Scheme

The scheme E [GU , `], which is a generalization of E [`] presented in Section 4, is defined as follows.
Parameters. The scheme is parameterized by a group GU , as described in Section 3. Namely, a
probabilistic algorithm that given the security parameter 1k, produces an instance IGU

of GU .
An additional parameter is the value ` that is polynomial in the security parameter but its

exact value is determined based on the specific application. The message space for the encryption
scheme is M = GM .
Key generation. The key generator first samples an instance IGU

of subgroup indistinguishability.
As in our QR-based scheme, the same instance can be used by all users and this it is sometimes
treated as an implicit public parameter. It samples s $← {0, 1}` and sets sk = s.12 It then samples
g $← GL

` and sets g0 = (
∏

i∈[`] g
si
i )−1. The public key is set to be pk = (g0,g), with the instance

IGU
as an additional implicit public parameter.

Encryption. On inputs a public key pk = (g0,g) and a message m ∈ GM , the encryption algorithm
runs as follows: it samples r

$← [T 2] and computes c = gr and c0 = m · gr
0. It outputs a ciphertext

(c0, c).
Decryption. On inputs a secret key sk = s and a ciphertext (c0, c), the decryption algorithm
computes m = c0 ·

∏
i∈[`] c

si
i .

The completeness of the scheme in this case follows by definition as well.
12An alternative representation of the secret key can be to set sk = hs and extract s via discrete logarithm

(which is easy since si ∈ {0, 1}) during the decoding process. This alternative representation will lead to a different
representation of the class of functions for which we get KDM security. See Section B.3.1 for more details.
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B.2 The Interactive Vector Game

The interactive `-vector game, for a general SG assumption, is defined as follows (see Section 5 for
an explicit presentation of the QR case).

Initialize. Let GU be as defined in Section 3.1. The challenger samples b
$← {0, 1} and also

generates an instance IGU
and a vector g $← GL

`. It sends IGU
and g to the adversary.

Query. The adversary adaptively makes queries where each query is a vector a ∈ GM
`. For each

query a, the challenger samples r
$← [T 2] and returns a(1−b) · gr. Namely, if b = 0 it returns a · gr

and if b = 1 it returns gr.
Finish. The adversary outputs a guess b′ ∈ {0, 1}.

The advantage of an adversary A in the game is defined to be

IV`Adv[A] =
∣∣Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]

∣∣ .

We show that under the SG assumption, no polynomial time adversary can obtain a non-
negligible advantage in the game.

Lemma B.1. Let A be an adversary for the interactive `-vector game that makes at most t queries,
then there exists an adversary B for SG such that

IV`Adv[A] ≤ 4t` · SGAdv[B] + 2t`/T .

Proof. A standard hybrid argument implies the existence of A1, which is an adversary for a 1-round
game (t = 1 in our notation) such that IV`Adv[A] ≤ t · IV`Adv[A1].

We consider the following hybrids (experiments). For each hybrid Hi, we let Pr[Hi] denote the
probability that the experiment “succeeds” (an event we define below).

Hybrid H0. In this experiment, we flip a coin b
$← {0, 1} and also sample i

$← [`]. We simulate
the 1-round game with A1, where the challenger answers a query a ∈ GM

` with (gr
1, . . . , g

r
i−1, a

b
i ·

gr
i , ai+1 · gr

i+1, . . . , a` · gr
` ). The experiment succeeds if b′ = b.

A standard argument shows that

IV`Adv[A1]
2`

=
∣∣∣∣Pr[H0]− 1

2

∣∣∣∣ .

Hybrid H1. In this hybrid we replace gi (which is uniform in GL) with h · gi. We get that there
exists B′,B such that |Pr[H1]− Pr[H0]| ≤ SG′Adv[B′] ≤ 2 · SGAdv[B].

We note that in this hybrid the adversary’s query is answered with (gr
1, . . . , g

r
i−1, a

b
i ·(h·gi)r, ai+1 ·

gr
i+1, . . . , a` · gr

` ).

Hybrid H2. In this hybrid the only change is that now r
$← ZM ·L rather than U([T 2]). By

Lemma 2.1 it follows that |Pr[H2]− Pr[H1]| ≤ 1/T .
We denote r1 = (r mod M) and r2 = (r mod L). By the Chinese Remainder Theorem it holds

that r1, r2 are uniform in ZM ,ZL respectively and are independent. The answer to the query in
this scenario is therefore

(gr
1, . . . , g

r
i−1, a

b
i · (h · gi)r, ai+1 · gr

i+1, . . . , a` · gr
` ) = (gr2

1 , . . . , gr2
i−1, a

b
i ·hr1 · gr2

i , ai+1 · gr2
i+1, . . . , a` · gr2

` ) .

However since hr1 is uniform in the cyclic group GM then ab
i · hr1 is also uniform and is inde-

pendent of b. It follows that Pr[H2] = 1
2 .

It follows that IV`Adv[A1] ≤ 4` · SGAdv[B] + 2`/T , and the result follows.
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B.3 KDM Security

In this section, we state and prove the KDM-related properties of our general scheme E [GU , `]. We
start by defining the class Faff of affine functions over GM in Section B.3.1. Then, in Section B.3.2
we show that for ` ≥ log L + ω(log k), E [GU , `] is KDM(1)

Faff
-secure. We proceed, in Section B.3.3,

to show that for ` ≥ n log L + ω(log k), it holds that E [GU , `] is KDM(n)
Faff

-secure. Section B.3.4
explains how to extend the KDM results of the preceding sections beyond affine functions, by using
either the techniques of [BGK09] or those of [BHHI09]. This section contains the general versions
and full proofs of the statements in Section 6.

B.3.1 The Class of Affine Functions

Recall that GM is a cyclic group of order M with generator h. The class of affine functions over
GM is the class of affine functions over ZM “in the exponent”. If the discrete logarithm problem
in h is easy, then the two are computationally equivalent. A formal definition follows.

The class Faff, for input dimension `, is the set of functions Faff = {fα,β : Z`
M → GM}β∈GM ,α∈GM

`

where fα,β(x) = β ·∏i∈[`] α
xi
i . The function fα,β is represented by (α, β).

In Section B.3.3 we consider affine functions for input dimension n · `, in which case we will
“break” α into n parts and present Faff = {fα1,...,αn,β : (Z`

M )n → GM}β∈GM ,αi∈GM
` where

fα1,...,αn,β(x1, . . . ,xn) = β ·∏i∈[n],j∈[`] α
xi,j

i,j .
We remark that [BHHO08] gave a “dual” definition of this function class. In their formulation,

the secret key of the encryption scheme is hs and the decryption algorithm needs to recover s as
a first step. A description of an affine function using their formulation contains a vector a ∈ ZM

such that ha corresponds to α in our formulation. Our proofs (as well as theirs) work using both
definitions, we chose to work with the above for aesthetic reasons.13

B.3.2 KDM(1)-Security

We can now prove KDM(1)-security for E [GU , `]. The high level idea is the same as in the QR-based
scheme as described in Section 6.1.

Theorem B.2. Let A be a KDM(1)
Faff

-adversary for E [GU , `] that makes at most t queries, then
there exists an adversary B such that

KDM(1)
Faff

Adv[A] ≤ 4t(2` + 1) · SGAdv[B] +
√

L · 2−` + O(t`/T ) .

The theorem implies that taking ` = log L + ω(log k) is sufficient to obtain KDM(1)-security.

Proof. The proof proceeds by a series of hybrids.
Hybrid H0. This hybrid is identical to the KDM(1) game with b = 0. By definition PrH0 [b

′ = 1] =
Pr[b′ = 1|b = 0].
Hybrid H1. In this hybrid, we change the way the challenger answers the adversary’s queries.
Recall that in hybrid H0, the query (α, β) ∈ Faff was answered by (c0, c) = (β ·∏i∈[`] α

si
i · gr

0,g
r).

In hybrid H1, it will be answered by (c0, c) = (β · gr
0, α · gr).

13We further remark that the if the group GM is not efficiently recognizable, we may also require that the description
of a function contains the logarithms of α, β relative to h, in order to guarantee that the adversary doesn’t “illegally”
query a function outside of the prescribed class.
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We prove that
∣∣∣∣Pr
H1

[b′ = 1]− Pr
H0

[b′ = 1]
∣∣∣∣ ≤ IV`Adv[A′] ≤ 4t` · SGAdv[B1] + O(t`/T ) ,

for some A′,B1, even when s is fixed and known.
To see this, we notice that in both hybrids c0 = β · ∏i∈[`](αi · c−1

i )si and g0 =
∏

i∈[`] g
−si
i .

Therefore an adversary A′ for the interactive `-vector game can simulate A, sampling s on its own
and using g to generate g0 and “translate” the challenger answers. Applying Lemma B.1, the result
follows.
Hybrid H2. In this hybrid, we change the distribution of g0, which will now be sampled from
U(GL). By Lemma 2.4 combined with Lemma 2.2, (g0,g) is

√
L

2`+2 -uniform. Thus

∣∣∣∣Pr
H2

[b′ = 1]− Pr
H1

[b′ = 1]
∣∣∣∣ ≤

√
L

2`+2
.

Hybrid H3. In this hybrid, we again change the way the challenger answers queries. Now instead
of answering (c0, c) = (β · gr

0, α · gr), the challenger answers (c0, c) = (gr
0,g

r). The difference
between H2 and H3 is now a t-query interactive (` + 1)-vector game and thus by Lemma B.1,

∣∣∣∣Pr
H3

[b′ = 1]− Pr
H2

[b′ = 1]
∣∣∣∣ ≤ 4t(` + 1) · SGAdv[B2] + O(t`/T ) ,

for some B2.
Hybrid H4. We now revert the distribution of g0 back to the original

∏
i∈[`] g

−si
i . Similarly to H2,

we have ∣∣∣∣Pr
H4

[b′ = 1]− Pr
H3

[b′ = 1]
∣∣∣∣ ≤

√
L

2`+2
.

However, hybrid H4 is identical to the KDM(1) game with b = 1 as all queries are answered by
encryptions of 0: PrH4 [b

′ = 1] = Pr[b′ = 1|b = 1]. Summing the terms above, the result follows
(where B is, say, a weighted average between B1 and B2).

B.3.3 KDM(n)-Security

We go on to prove KDM(n)-security for our scheme. Unlike the schemes of [BHHO08, ACPS09],
we do not achieve a single scheme that is secure w.r.t. any polynomial n. We do, however, prove
that increasing the value of ` enables supporting more users. The result is stated in the following
lemma.

Theorem B.3. Let A be a KDM(n)
Faff

-adversary for E [GU , `] that makes at most t queries, then
there exists an adversary B such that

KDM(n)
Faff

Adv[A] ≤ 4nt(2` + 1) · SGAdv[B] + (L · 2−`/n)n/2 + O(nt`/T ) .

The theorem implies that taking ` = n log L + ω(log k) is sufficient for KDM(n)-security.
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Proof. The proof follows the outline of the proof of Theorem B.2 with slight modifications to the
hybrids.
Hybrid H0. This hybrid is identical to the KDM(n) game with b = 0. Let {ski = si}i∈[n] denote the
generated secret keys and {pki = (g0,i,gi)}i∈[n] denote the public keys produced by the challenger.
By definition PrH0 [b

′ = 1] = Pr[b′ = 1|b = 0].
Hybrid H1. We change the way the challenger answers the adversary’s queries. For each query
(({αj}j∈[n], β), i) made by A, the challenger does as follows.

Define yi,j = si ⊕ sj (the binary XOR operation). Given {yi,j}i,j , the challenger finds (α′, β′)
such that fα′,β′(si) = f{αj}j∈[n],β(s1, . . . , sn). This is possible to do without knowing the values
of the {si}, only {yi,j}: Consider the element sj,i′ (the i′th element of sj). We know that sj,i′ =
si,i′ ⊕ (yi,j)i′ . Therefore we know that if (yi,j)i′ = 0 then sj,i′ = si,i′ and if (yi,j)i′ = 1 then
sj,i′ = 1 − si,i′ . We can thus replace the α

sj,i′
j,i′ element in the description of the function f with

either α
si,i′
j,i′ or α

1−si,i′
j,i′ , depending on the (known) value of (yi,j)i′ . Doing this one variable at a

time, results in an affine function of only si. We again stress that we only used {yi,j}i,j for this
transformation.

The challenger in this hybrid answers with (c0, c) = (β′ · gr
0,i,α

′ · gr
i ) instead of (c0, c) =

(β′ ·∏j∈[`] α
′si,j

j · gr
0,i,g

r
i ).

It holds that
∣∣∣∣Pr
H1

[b′ = 1]− Pr
H0

[b′ = 1]
∣∣∣∣ ≤ 4nt` · SGAdv[B1] + O(nt`/T ) ,

since, as in the proof of Theorem B.2, the difference between the hybrids can be viewed as a t-round
interactive (n`)-vector game, considering (g1, . . . ,gn) as the first message, and now the simulated
adversary only needs a part of the answer for each query (the one that is respective to the user i
for which the query was made).
Hybrid H2. Following the proof outline of Theorem B.2, we change the distributions of g0,i for all
i ∈ [n], to U(GL). The challenger still needs to know {yi,j}i,j∈[n] in order to answer the queries so
we need to prove that even fixing {yi,j}i,j∈[n], hybrid H2 is close to H1. Intuitively speaking, this
will require us to “extract” n uniform elements of GL out of a single s (because once one of them is
specified, all others are determined by the values of yi,j). Therefore, for security to hold, we have
to require that ` is proportional to n.

We now wish to apply Lemma 2.2 to claim that the hybrids are statistically close. To do that,
we consider the following family of hash functions (defined for a fixed value of {yi,j})

zg1,...,gn(s1) =
(∏

g
s1,i

1,i ,
∏

g
s1,i⊕(y1,2)i

2,i , . . . ,
∏

g
s1,i⊕(y1,n)i

n,i

)
.

This family is 2-universal (by a similar argument to Lemma 2.4, using the fact that the vectors gi

are independent). The output describes the distribution of g0,i in the case where all yi,j are known,
but s1 is not. We can now apply Lemma 2.2 respective to this family and conclude that

∣∣∣∣Pr
H2

[b′ = 1]− Pr
H1

[b′ = 1]
∣∣∣∣ ≤

√
Ln

2`+2
=

1
2
· (L · 2−`/n)n/2 .

Hybrid H3. Note that at this point the public keys are distributed uniformly and independently
of yi,j ’s. We again change the way the challenger answers queries, along the lines of the proof of
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Theorem B.2. Instead of answering with (c0, c) = (β′ ·gr
0,i, α

′ ·gr
i ), the challenger now answers with

(c0, c) = (gr
0,i,g

r
i ). This can be viewed as a t-round interactive n(` + 1)-vector game (similarly to

the previous hybrid) and thus
∣∣∣∣Pr
H3

[b′ = 1]− Pr
H2

[b′ = 1]
∣∣∣∣ ≤ 4nt(` + 1) · SGAdv[B2] + O(nt`/T ) .

Hybrid H4. We revert the distributions of the g0,i’s to the original one. As in hybrid H2 we have
|PrH4 [b

′ = 1]− PrH3 [b
′ = 1]| ≤ 1

2 · (L · 2−`/n)n/2.
Hybrid H4 is identical to the KDM(n) game with b = 1 as all queries are answered by encryptions

of 0 and the claim follows.

B.3.4 Beyond Affine Functions

Two building blocks have been suggested in [BGK09, BHHI09] to obtain KDM-security w.r.t. a
larger family of functions. In this section we show that both of them can be based on the SG
assumption.

B.3.4.1 Entropy-κ Security. The notion of entropy-κ KDM-security was introduced in [BGK09]
as a way to extend KDM-security beyond affine functions. In their work [BGK09, Definitions 3.1,
3.2], an encryption scheme is called projective if the key-generation can be described as follows:
first the secret key is uniformly sampled from some set S, and then the public key is computed
as a (possibly randomized) efficient function of the secret key. For n ∈ N, a projective scheme
is entropy-κ KDM(n)-secure if for any distribution D with H∞(D) ≥ κ supported inside S, the
scheme obtained by sampling the secret key from D rather than from S is KDM(n)-secure.

We show that E [GU , `], which is clearly projective, is entropy-κ KDM(1)-secure for κ ≥ log L +
ω(log k).

Lemma B.4. Let D be a distribution on {0, 1}` with H∞(D) ≥ κ, let ED[GU , `] denote the encryp-
tion scheme that samples the secret key from D rather than U({0, 1}`).

Let A be a KDM(1)-adversary for ED[GU , `] that makes at most t queries, then there exists an
adversary B such that

KDM(1)Adv[A] ≤ t(2` + 1) · SGAdv[B] +
√

L · 2−κ + O(t`/T ) .

Proof. The proof is identical to that of Theorem B.2. The only difference is in the transitions from
hybrid H1 to H2 and from hybrid H3 to H4 (which are the same transition in reverse order). The
difference here is that now when we invoke Lemma 2.2, we have |X| = 2κ rather than 2`. The
result immediately follows.

The following corollary combines the above lemma with [BGK09, Theorem 1.1]. A set of
functions H = {h1, . . . , h` : hi : {0, 1}κ → {0, 1}} is entropy preserving if the function f(x) =
(h1(x)‖ · · · ‖h`(x)) is injective (the operator ‖ represents string concatenation).

Corollary B.5. Consider E [GU , `] and let κ be polynomial in the security parameter such that
κ ≥ log L + ω(log k). Then for any entropy preserving set H = {h1, . . . , h` : hi : {0, 1}κ → {0, 1}}

31



of efficiently computable functions with polynomial cardinality (in the security parameter), there
exists a KDM(1)-secure scheme under the SG-assumption w.r.t. the class of functions

F =
{

f(x) = β ·
∏

i∈[`]

α
hi(x)
i : (α, β) ∈ GM

` ×GM

}
.

B.3.4.2 Targeted Encryption. The notion of targeted encryption was introduced in [BHHI09]
as a building block towards extending KDM security beyond affine functions. A targeted encryption
scheme [BHHI09, Definition 3.1] consists of the following algorithms.

• Key generation. Takes the security parameter 1k as input and outputs a key-pair (pk, sk)
such that sk = s ∈ {0, 1}`.

• Targeted encryption. Takes a public key pk, an index i ∈ [`], a bit b ∈ {0, 1} and a message
m ∈M (for some message space M) as input. Outputs a ciphertext c.

• Targeted decryption. Takes a secret key sk and a ciphertext c and outputs m′ ∈M.

The following properties are required.

• Targeted decryption. For all m ∈M, i ∈ [`] it holds that when generating a key pair (pk, sk),
computing c by running the targeted encryption algorithm on (pk, i, si, m), where si is the ith

bit of the secret key, and then computing m′ by running the decryption algorithm on (sk, c),
it holds that m′ = m.

• Security against receiver. For all m1,m2 ∈ M, i ∈ [`], consider c1, c2 obtained by gener-
ating a key pair (pk, sk) and then running the targeted encryption algorithm on (pk, i, 1 −
si,m1), (pk, i, 1− si,m2), respectively. Then (sk, pk, c1) and (sk, pk, c2) are computationally
indistinguishable.14

• Security against outsiders. For all m ∈ M, i ∈ [`], b ∈ {0, 1}, consider c1, c2 obtained
by generating a key pair (pk, sk) and then running the targeted encryption algorithm on
(pk, i, b, m1), (pk, i, b, m2), respectively. Then (pk, c1) and (pk, c2) are computationally indis-
tinguishable.

An SG-based targeted encryption scheme. We now show how a slight modification of E [GU , `]
provides a targeted encryption scheme. Our construction follows the general outline provided in
[BHHI09] for converting KDM(1)-security w.r.t. affine functions into targeted encryption. Consider
the scheme T [GU , `] presented below.

• Parameters. The parameters GU , ` have the same meaning as in E [GU , `]. The message space
is GM .

• Key generation. Identical to the key-generation of E [GU , `].

• Targeted encryption. On input pk = (g0,g), i ∈ [`], b ∈ {0, 1}, m ∈ GM , the encryption
algorithm samples r

$← [T 2], u
$← GM and outputs (c0, c) = (m · u−b · gr

0, u
ei · gr).

14The definition in [BHHI09, Definition 3.1] is stricter and requires statistical indistinguishability, but as they
mention, the one we provide here is sufficient to imply all of their results.
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• Targeted decryption. On input sk = s and (c0, c), the decryption algorithm outputs m′ =
c0 ·

∏
i∈[`] c

si
i .

The targeted decryption (completeness) property of T [GU , `] follows immediately by definition.
The following two lemmas establish the security against receiver and security against outsiders
properties for ` ≥ log L + ω(log k), based on the SG assumption.

Lemma B.6 (security against receiver). Let i ∈ [`], m ∈M. Let pk = (g0,g), sk = s be a properly
generated key-pair for T [GU , `] and let r

$← [T 2], u
$← GM . Consider a distinguisher A between the

distributions

(s, (g0,g), (m · u−(1−si) · gr
0, u

ei · gr)) and (s, (g0,g), (u · gr
0,g

r)) ,

then there exists a SG adversary B such that

DistAdv[A] ≤ 4` · SGAdv[B] + O(`/T ) .

Security against receiver follows since the latter distribution does not depend on m.

Proof. We note that the latter distribution (s, (g0,g), (u · gr
0,g

r)) is identical to (s, (g0,g), (m ·
u−(1−2si) · gr

0,g
r)), since u−(1−2si) is uniformly distributed and independent of all other variables

(using the fact that si ∈ {0, 1}) and thus m · u−(1−2si) is uniform and independent of m. We thus
consider a distinguisher A between (s, (g0,g), (m ·u−(1−si) ·gr

0, u
ei ·gr)) and (s, (g0,g), (m ·u−(1−2si) ·

gr
0,g

r)).
Consider the (efficiently computable) function

f(s, m, u,g, c) = (s, (
∏

i∈[`]

g−si
i ,g), (m · u−(1−2si) ·

∏

i∈[`]

c−si
i , c)) ,

and note that

f(s,m, u,g,gr) = (s, (g0,g), (m · u−(1−2si) · gr
0,g

r))
f(s,m, u,g, uei · gr) = (s, (g0,g), (m · u−(1−si) · gr

0, u
ei · gr)) .

Thus the adversary A can be used to distinguish between (u,g, uei · gr) and (u,g,gr). It follows
that DistAdv[A] ≤ 4` ·SGAdv[B]+O(`/T ), since this is exactly a 1-round interactive `-vector game
(see Lemma B.1).

Lemma B.7 (security against outsiders). Let i ∈ [`], b ∈ {0, 1}, m ∈ M. Let pk = (g0,g), sk = s
be a properly generated key-pair for T [GU , `] and let r

$← [T 2], u
$← GM . Consider a distinguisher

A between the distributions

((g0,g), (m · u−b · gr
0, u

ei · gr)) and ((g0,g), (gr
0,g

r)) ,

then there exists an adversary B such that

DistAdv[A] ≤ 4(` + 1) · SGAdv[B] +
√

L · 2−` + O(`/T ) .

Security against outsiders follows since the latter distribution is independent of m.
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Proof. First we consider an adversary A′ that distinguishes the above distributions where g0 is
uniform in GL. In such case the above is a 1-round interactive (` + 1)-vector game and thus
DistAdv[A′] ≤ 4(` + 1) · SGAdv[B] + O(`/T ). Since the real distribution of g0 is

√
L·2−`

2 -uniform,
the result follows (see hybrid H3 in the proof of Theorem B.2 for a detailed explanation).

The following is a corollary of the above, combined with [BHHI09, Theorem 4.1].

Corollary B.8. Based on the SG assumption, for any polynomial p there exists a KDM(1)-secure
encryption scheme w.r.t. all functions computable by circuits of size p(k) (where k is the security
parameter).

Our scheme can also be used to obtain “augmented targeted encryption” and derive results for
KDM(n)-security, but since the details are very similar to the above, they are omitted.

B.4 Leakage Resiliency

We prove that the scheme E [GU , `] is resilient to a leakage of up of λ = `− log(ML)−ω(log k) bits.
The result is formally stated below, for overview see Section 7.

Theorem B.9. Let A be a λ-leakage adversary for E [GU , `]. Then there exists an adversary B
such that

LeakλAdv[A] ≤ 8` · SGAdv[B] +
√

ML · 2λ−` + O(`/T ) .

Proof. We prove by a series of hybrids (experiment). Each experiment represents a process with a
single binary value (one can think of 1 as a “success” in the experiment).

Hybrid H0. This hybrid describes the following experiment: a challenger flips a coin b
$← {0, 1}

and simulates the λ-leakage game with A. It returns 1 if and only if b′ = b, where b′ is the value
returned by A. By definition

∣∣∣ Pr[H0 = 1]− 1
2

∣∣∣ =
LeakλAdv[A]

2
.

Hybrid H1. We change the encryption algorithm. In this hybrid, we encrypt a message m by first
computing c = gr and then using s to produce c0 = mb ·

∏
i∈[`] c

−si
i . The ciphertext distribution

does not change and hence Pr[H1 = 1] = Pr[H0 = 1].

Hybrid H2. Again we change the encryption. This time the challenger samples σ
$← GM

` and
uses c = σ · gr instead of c = gr. Note that the difference between H1 and H2 is exactly a 1-round
interactive `-vector game and thus by Lemma B.1, there exists an adversary B such that

|Pr[H2 = 1]− Pr[H1 = 1]| ≤ 4` · SGAdv[B] + O(`/T ) .

Hybrid H3. We notice that in H2, the distribution of c0 is

c0 = mb ·
∏

i∈[`]

σ−si
i ·

( ∏

i∈[`]

g−si
i

)r
.

In hybrid H3 we change this distribution. The challenger samples u
$← GM and sets

c0 = mb · u−1 ·
( ∏

i∈[`]

g−si
i

)r
.
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To analyze this hybrid, we recall that
∏

i∈[`] g
−si
i ∈ GL and use Lemma 2.4 and Lemma 2.3 to

conclude that even for a given g it holds that (σ,
∏

i∈[`] σ
si
i ,

∏
i∈[`] g

−si
i , f(s)) is 1

2 ·
√

LM · 2λ−`-close
to (σ, u,

∏
i∈[`] g

−si
i , f(s)). It follows that

|Pr[H3 = 1]− Pr[H2 = 1]| ≤ 1
2
·
√

LM · 2λ−` .

Hybrid H4. We further change c0 and now set it to be

c0 = u ·
( ∏

i∈[`]

g−si
i

)r
.

Since u is uniform, it is distributed identically to mb ·u−1 and thus Pr[H4 = 1] = Pr[H3 = 1]. In H4,
however, the ciphertext distribution is independent of b. Therefore Pr[H4 = 1] = 1

2 . Combining all
of the above, the result follows.

B.5 Auxiliary-Input Resiliency

We present the general result, showing the auxiliary-input security of E [GU , `], following the same
line of proof as in Section 8. The main difference is that we use a generalized Goldreich-Levin
theorem (Theorem A.1) instead of the classic Theorem 2.5. Since the parameters of the generalized
version are slightly worse, this leads to slightly worse parameters in the auxiliary input resiliency.

The following lemma establishes weak auxiliary-input security.

Lemma B.10. Let ε(`) = M−ω(log `) and let f : {0, 1}` → {0, 1}∗ be any ε-weakly uninvertible
function (more precisely, family of functions). Let A be an f -auxiliary input adversary for E [GU , `].
Then there exists an adversary B such that

Auxweak
f Adv[A] ≤ 8` · SGAdv[B] + O(`/T ) + negl(k) .

We remark that when M is polynomial, as in the case of the QR-based scheme described
in Section 8, it is sufficient to require that ε is negligible, and thus any function that is weakly
uninvertible in polynomial time meets the requirement.

The proof (below) follows the same steps as the proof of Theorem B.9. The only change is that
we use the (generalized) Goldreich-Levin theorem instead of the leftover hash lemma.

Proof. We use the exact same hybrids as in the proof of Theorem B.9 (with the exception that
f is now an ε-weakly uninvertible function rather than a length bounded one). The exact same
arguments imply that

∣∣∣Pr[H0 = 1]− 1
2

∣∣∣ =
AuxfAdv[A]

2
Pr[H1 = 1] = Pr[H0 = 1]

|Pr[H2 = 1]− Pr[H1 = 1]| ≤ 4` · SGAdv[B] + O(`/T )
Pr[H4 = 1] = Pr[H3 = 1]

Pr[H4 = 1] =
1
2

.
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Therefore, it remains to prove a bound on |Pr[H3 = 1]− Pr[H2 = 1]|. Assume towards contradiction
that there exists a polynomial t(k) such that |Pr[H3 = 1]− Pr[H2 = 1]| ≥ 1/t(k).

Consider the function f ′ : {0, 1}` → {0, 1}∗ defined as follows: f ′(s) uses sk = s as a secret key
for E [GU , `] and computes a corresponding pk. It then computes y ← f(sk, pk) and outputs (y, pk).
Since f is ε-weak uninvertible, it follows that for any adversary C, Pr[C(f ′(s)) = s] < ε, where the
probability is over s and over the coin-tosses of f ′ and C.

We notice that the hybrids H2 and H3 can be represented as an efficient (randomized) function
of the distributions (f ′(s), τ , 〈τ , s〉) and (f ′(s), τ , v) respectively, where (τ , v) are the discrete loga-
rithms of (σ, u), respectively. Namely σi = hτi and u = hv. Note that τi, v are uniform in ZM . Our
assumption implies, therefore, that these distributions are distinguishable with advantage 1/t(k).
In this case, it follows from Theorem A.1 that there exists a C whose running time is at most
poly(`, t(k)) = poly(k), such that Pr[C(f ′(s)) = s] ≥ t(k) · M−(1+log(8`t2(k)))/8 = M−O(log k) > ε.
We reached a contradiction and the claim, therefore, follows.

An immediate corollary (see also [DGK+10, Lemma 4]) enables us to state that E [GU , `] is
(M−ω(log `)/L)-auxiliary input resilient. Note that in order for such functions to even exist it must
be that ` ≥ log L + (log M) · ω(log k), since any function on {0, 1}` is trivially invertible with
probability at least 2−`.

Corollary B.11. Let ε(`) = M−ω(log `)

L and let f be any ε-uninvertible function (more precisely,
family of functions). Let A be an f-auxiliary input adversary for E [GU , `]. Then there exists an
adversary B such that

AuxfAdv[A] ≤ 8` · SGAdv[B] + O(`/T ) + negl(k) .

Proof. Recall that the public key of E [GU , `] is (g0 =
∏

g−si
i ,g). Since g does not depend on the

secret key, it can be treated as a public parameter of the scheme and not as a part of the public
key. Since g0 ∈ GL, then any ε-uninvertible function is also (ε/L)-weakly uninvertible. The result
follows.

We can derive the following corollary, which is a restatement of Corollary 8.2.

Corollary B.12. Assuming that a subgroup indistinguishability assumption holds, then for any
constant δ > 0 there exists a 2−`δ

-auxiliary input resilient encryption scheme.

Proof. This follows immediately from Corollary B.11 by using E [GU , (t · ω(log k))1/δ], where t =
log T , with T being the upper bound on M · L (note that t ≤ poly(k)).
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