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Abstract. We present an efficient implementation of the Orlandi pro-
tocol which is the first implementation of a protocol for multiparty com-
putation on arithmetic circuits, which is secure against up to n−1 static,
active adversaries. An efficient implementation of an actively secure self-
trust protocol enables a number of multiparty computation where one
or more of the parties only trust himself. Examples includes auctions,
negotiations, and online gaming. The efficiency of the implementation
is largely obtained through an efficient implementation of the Paillier
cryptosystem, also described in this paper.
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1 Introduction

Secure multiparty computation is a cryptographic technique allowing n parties
to jointly compute the result of a function f(x1, x2, ..., xn) while ensuring that
the input xi of each party Pi is kept private, even with a number t of the parties
acting maliciously. The only information that is allowed to be revealed is the
result of the function.

In the 80s it was proved that secure multiparty computation could in fact be
applied to any computable function, making it an extremely general and useful
technique, at least in theory. This was first done by Yao [34] in the restricted
case of two parties, but soon followed similar results for the general case of n
parties [4, 13]. These results were, however, mostly of theoretical interest due to
the complexity of the protocols.

Since then a large number of results have been obtained using different
security- and adversary- models, underlying network assumptions, and improve-
ments of previously known results.



In recent years, the theory has advanced enough to allow practical implemen-
tations of secure multiparty computation. Examples of practical systems which
support evaluation of general multiparty computation are the FairPlay [22],
VIFF [32], ShareMind [7], and SIMAP [9] systems. However, many applications
are still infeasible in practice, especially those that rely on quick response times
like online auctions. Also, in order to be practical, the aforementioned systems
tend to either be restrited to a limited number of parties or to loosen up the se-
curity model. Some examples of the latter could be assuming that the corrupted
parties do not deviate from the protocol (the passive security model) or that at
most a certain threshold t of parties gets corrupted (threshold security model).
Especially the active security model have until recently been regarded as too
complex for practical implementations. However, recently Lindell, Pinkas, and
Smart showned that active security in the two-party case is indeed practical [21],
and Damg̊ard, Geisler, Krøigaard, and Nielsen showed that active security can
be practical if less than n/3 parties out of n are corrupted [14].

In this paper we go one step further and document an implementation of the
Orlandi protocol [27] for secure multiparty computation which is both actively
secure and tolerates up to n−1 corruptions. We further describe our benchmarks
of this implementation, compare it to benchmarks of related protocols and argue
that the protocol is indeed practical.

The rest of the paper is organized as follows. Section 2 gives an introduction to
the Orlandi protocol. Section 3 describes our implementation, and we introduce
our benchmarks, their setup, and discuss our results in Section 4. In Section 5 we
describe and discuss how we removed the main performance bottlenecks using
a high-performance implementation of the Paillier cryptosystem. A description
of related work is given in Section 6, and we conclude in Section 7 along with
discussing future work.

2 The Orlandi Protocol

The Orlandi protocol [27] is a protocol for secure multiparty computation on
arithmetic circuits, which is secure against up to n− 1 static, active adversaries.
We will introduce the protocol in this section by giving a high-level description of
the protocol and a detailed account of the parts of the protocol which have been
the target of our optimizations. The Orlandi protocol is based on a Verifiable
Secret Sharing (VSS) scheme, secure against a dishonest majority, augmented
with a protocol for generating random shared multiplicative triples, based on
a homomorphic cryptosystem. The Orlandi protocol needs a group G of some
prime order p which is specified by the generator g ∈ G. The order p and the
generator g are part of the public parameters. A secret x ∈ Zp is shared in the
Orlandi protocol using additive secret sharing. Every party of the computation
holds a share xi of the secret, two uniform randomly chosen additively secret
shared elements ρi,1 and ρi,2 in Zp and a public commitment C . The two random
elements ρi,1 and ρi,2 are needed in order to compute the commitment to the
secret, and the commitment is used when reconstructing the secret to check



that no party contributed a wrong share. The commitment is computed using
a double trapdoor Pedersen commitment scheme [30] based on the hardness
of the discrete logarithm in the group G. The commitment C is computed as
C = Com(x, ρi,1, ρi,2) = gxh

ρ1

1 h
ρ2

2 where hi = gti for i ∈ {1, 2} and ti is a
trapdoor. We denote h1, h2 as the public key of the commitment scheme. A share
in the Orlandi protocol is a four-tuple (Zp×Zp×Zp×C), consisting of the share
of the secret, xi ∈ Zp, two uniformly randomly chosen numbers ρ1, ρ2 ∈ Zp,
and a commitment C ∈ C to the secret. We write a share of the secret x as
[x]. The protocol is secure in the Common Reference String (CRS) Model [12],
and a proof of the security is sketched in Orlandi’s PhD progress report [27]
under the assumption of the hardness of the discrete logarithm problem in G,
the availability of a secure broadcast protocol, and the semantic security of
the homomorphic cryptosystem. The security of the protocol holds, up to the
security level 2−s if λ and d are chosen such that

s < d log2(M) + (d+ 1) log2(ln(1 + λ)) + 2 (1)

where M is the number of multiplicative triples needed for a given computation.
We refer the reader to Orlandi’s PhD progress report [27] for the intuition behind
the above expression. The parameters λ and d are used in the definition of the
commands below.

The protocol can be divided into two parts: a preprocessing part where mul-
tiplicative triples are generated and an online part where arithmetic expressions
are evaluated. The online part provides the commands one would usually ex-
pect from a VSS scheme such as commands for sharing a given value Input(x),
reconstructing a secret Open([x]), creating a random secret Rand(), addition,
subtraction, and multiplication (Mul([x], [y], [a], [b], [c])) of shared numbers. We
will not explain these commands further, except for the multiplication com-
mand. We instead refer the reader to Orlandi’s PhD progress report [27]. The
preprocessing part is divided into a number of building blocks (leak-tolerant mul-

tiplication, triple generation, and triple test), which are composed into the final
triple generating (random triple generation) functionality which produces a list
of triples. We will describe online multiplication, triple generation, and random
triple generation below.

Basic Multiplication We define the multiplication of the shares [x] and [y] as
[z] = Mul([x], [y], [a], [b], [c]) where we assume that the parties are given a
random triple ([a], [b], [c]) s.t. c = a · b from a honest dealer. The multiplica-
tion is realized as follows:
1. d = Open([x]− [a]) and e = Open([y]− [b])
2. [z] = e[x] + d[y]− de+ [c]

The basic multiplication is used both as a building block in the preprocessing
phase and also for performing online multiplications. This is the main reason why
multiplicative triples are generated in the preprocessing, so that they can be used
in online multiplications. It also indicates that one multiplication requires one
triple.



The leak-tolerant multiplication of shares [x] and [y] is defined as [z] =
LTMul([x ], [y],M) where M = {([ai], [bi], [ci])}i∈{1,...,2d+1} is a set of multiplica-
tive triples. Leak-tolerant multiplication is an extension of the basic multipli-
cation with the property that if d + 1 triples (ai, bi, ci) are uniformly random
in view of the adversary then the protocol leaks no information about x, y, and
x · y.

TripleGen() generates a triple by having each party first choose random
shares [a] and [b] including the needed randomness and the commitments. Sec-
ond, each party encrypts (Enceki

(ai)) his share ai using his public key eki and
a homomorphic cryptosystem. Then he broadcasts the encrypted share, the cor-
responding commitment, and the commitment for bj. The share of the product
[c] = [a] · [b] is computed by using the homomorphic property of the received en-
crypted values to multiply the shares [ai] and [bj ]. The product is then masked
with some randomness di,j and sent. The share ci is then computed by de-
crypting Decski

(γi,j) the product shares, adding them up and subtracting the
randomness. The private key of party i is ski.

Triple Generation The triple generation command TripleGen() creates a mul-
tiplicative triple which is shared among the parties. The triple generation is
realized as follows:
1. Every party Pi chooses ai, ri,1, ri,2 ∈R Zp × Zp × Zp, computes αi =

Enceki
(ai), Ai = Com(ai, ri,1, ri,2), and broadcasts them

2. Every party Pj does:
(a) choose bj, sj,1, sj,2 ∈R Zp×Zp×Zp, compute Bj = Com(bj , sj,1, sj,2)

and broadcast Bj

(b) Party Pj does, for every other party Pi: choose di,j ∈R Zp3 compute

and send γi,j = α
bj
i Enceki

(1; 1)di,j to Pi

3. Every party Pi does:
(a) compute ci =

∑

j Decski
(γi,j)−

∑

j di,j mod p
(b) pick ti,1, ti,2 ∈R Zp×Zp, compute and broadcastCi = Com(ci, ti,1, ti,2)

4. Everyone computes (A,B,C) = (
∏

i Ai,
∏

i Bi,
∏

i Ci)
5. Every party Pi outputs:

([a]i, [b]i, [c]i) = ((ai, ri,1, ri,2, Ai), (bi, si,1, si,2, Bi), (ci, ti,1, ti,2, Ci))

The computation inside encrypted values gives rise to the requirement that the
modulus of the cryptosystem N must be much larger than the modulus of the
shares and the commitment scheme p. This is not an issue in practice because
the key size of a factorization based cryptosystem is usually much bigger than
the order of the group of points on an elliptic curve, if the same level of security
is to be obtained.

The triple test command TripleTest() creates one multiplicative triple from
two. The first triple is used to check the correctness of the second triple. This
removes the risk of overflow in the encrypted computation in TripleGen() with
overwhelming probability. The overflow may occur due to the differrence in the
modulus of the cryptosystem and the shares and the commitment scheme.

Random triple generation RandomTriple() creates a set of multiplicative
triples M of size M , which we call the result set. The result set is created



by first generating a larger distillation set D of triples using TripleTest(). The
size of the distillation set depends on the security parameter and M . The result
set is distilled from the distillation set by first choosing a uniformly random
subset called the test set T ⊂ D of size λ(2d+ 1)M . The triples in the test set
are checked for correctness, and if any inconsistency is detected the protocol is
aborted. Second the remaining triples D\T are partitioned into M random sets
of size (2d+1). The result set is generated using these sets and the FPP(rand, . . .)
functionality.

Random Triple Generation The implementation of the random triple gen-
eration command RandomTriple() creates a set M of multiplicative triples
of size M which is shared among the parties. The random triple generation
is realized as follows:

1. D = ∅. For i = 1, . . . , (1 + λ)(2d+ 1)M do: D = D ∪ TripleTest()

2. Coin-flip a subset T ⊂ D of size λ(2d+ 1)M

3. For all i ∈ T the parties reveal the randomness used for TripleTest()

4. Check that the randomness is consistent with the view. Check that
ai, bi < p and di,j < p3. Abort otherwise.

5. Partition D\T in M random subsets Di of size (2d + 1)

6. For i = 1, . . . ,M do:

(a) [a] = FPP(rand, . . .), [b] = FPP(rand, . . .), [r] = FPP(rand, . . .)
(b) [c] = LTMul([a], [b],Di) and Open([c] + [r])
(c) Add ([a], [b], [c]) to M

The FPP(rand, . . .) functionality used in the random triple generation creates a
random share using the

∏

comm
protocol described in Chapter 4 of Orlandi’s PhD

progress report [27]. The difference between using the Rand() function and the
FPP functionality is twofold. First, they differ in the security model of the overall
protocol. If one uses the Rand() function then the protocol provides stand-alone
security [11] whereas if one uses the FPP functionality then it is secure in the
CRS model. Second, they differ in speed. The Rand() function is faster than the
FPP functionality because the latter generates random shares using Universal
Composable commitments whereas the first does not. In the implementation we
use the Rand() function and thus achieve stand-alone security.

In the original protocol it is assumed that the public key for the commitment
scheme is provided to the parties by a trusted third party (TTP), so that the
key is randomly chosen. However in a real world setting, where the parties don’t
trust each other, it might not be the case that there is a single TTP that all
parties trust. Other ways of generating the public key might include: measuring
some physical random quantity, running a coin-flip protocol, or modeling a hash
function with a random oracle (e.g. the first party can choose a random string r
and publish (r,H(r)) and everyone parses H(r) as the public key). The security
of the whole protocol will reflect the security of the method used to generate the
public key.



3 Implementation of the Orlandi Protocol

In this section we describe how we implemented the Orlandi protocol using
VIFF, the Virtual Ideal Functionality Framework [14, 32]. VIFF is an open
source framework implemented in Python for executing general multiparty com-
putations. It is possible to extend VIFF with new protocols for evaluation of
arithmetic circuits. Such protocols are called runtimes in VIFF lingo and are
materialized by the Runtime class, which new runtimes must subclass. A share
in VIFF is represented by instances of the Share class. A Share instance rep-
resents a value to be compute in the future, and one can attach callbacks which
will be executed once the share gets a concrete value. A share in the Orlandi pro-
tocol is represented using the OrlandiShare class which extends Share . The
concrete value held by an OrlandiShare form a tuple as described in Section 2.

The Orlandi protocol is implemented as the OrlandiRuntime , a subclass of
Runtime and as such overloading the usual addition, subtraction and multipli-
cation operators. It also provides some further methods largely corresponding to
the commands described in Section 2. The implementation of the various com-
mands follows the protocol closely, except that we combine steps and/or schedule
them in parallel whenever possible. An example where we combine steps is step
1, 2.a, and 2.b of TripleGen() where we save one broadcast operation. An exam-
ple of scheduling operations in parallel is the TripleTest() command where two
TripleGen() commands are scheduled in parallel with one Open() and a Rand()
command.

To speed-up the computation it can be observed that in step 2.c of the
TripleGen() function that Enceki(1; 1) will result in gN+1 when encrypting with
the Paillier system. Hence, γij can be computed by using a simultaneous multi-

exponentiation method as described in Section 5 i.e. γij = α
bj
i (gN+1)dij . In

addition, when using homomorphic properties of the Paillier cryptosystem, step
3.a can be rewritten to cij = Decsk(

∏

j γij mod N2)−
∑

j dij , which results in
just doing one exponentiation in total instead of one per party.

The security of the Orlandi protocol is based on the assumptions of the hard-
ness of the discrete logarithm of the group used and the presence of a broadcast
channel. We satisfy the hardness assumption of the discrete logarithm by com-
puting the commitments in a group defined by an elliptic curve over the field
Fp with prime p of 192-bits with the generator g and the public key h1, h2

which consists of points on the curve. The computation of a commitment can
be reformulated in terms of the corresponding operations on an elliptic curve.
Multiplication of two group elements becomes addition, division becomes sub-
traction, and exponentiation by a scalar becomes multiplication by a scalar. A
commitment is thus computed as xi · g + ρi,1 · h1 + ρi,2 · h2 and the result is a
point on the curve. We have implemented the commitment scheme as a Python
C extension using the industry strength PrimeInk ECC library v. 6.4.0 [1]. The
main obstacle was the conversion from integers in base 215, which is used as
the internal representation of arbitrary precision integers in Python, to base
232 which is the representation used by PrimeInk ECC. The broadcast channel
assumed by the Orlandi protocol is implemented using an instance of the weak-



crusader broadcast. The weak-crusader broadcast is a variant of the crusader

broadcast [16] where we allow a malicious adversary to make some honest parties
output a message while others abort. The crusader broadcast is not needed in the
Orlandi case since the protocol is already vulnerable to denial of service attacks,
e.g. an adversary can just refrain from sending messages at all. By relaxing the
requirements on the broadcast protocol we also get a more efficient implemen-
tation since we do not need a signature scheme. The protocol consists of two
rounds. In the first round the senders send a value to each of the receivers, who
then computes a collision resistant hash of the received value, and sends it to
the other receivers in the second round, who check the correctness. We generally
use the broadcast protocol in the implementation for broadcasting from a set of
parties to all parties, except for the share reconstruction command in the case
where only some subset of the parties should learn the output.

Broadcast ls = broadcast(value, senders , receivers), where the result ls is a list
of received values.

1. Each party Pj ∈ senders sends value to every party Pi ∈ receivers

2. Every party Pi in receivers computes a collision resistant hash on the
received value and sends the hash to every other party in receivers

3. Each party in receivers checks that the received hash is equal to the hash
computed by the party in the previous step, and returns value if true,
or aborts if not

4 Benchmarks

In this section we describe how we have benchmarked our implementation with
various levels of optimization, and discuss the results. We have chosen to bench-
mark the three commands Mult , TripleGen , and RandomTriple , because the
other commands are not much different than the commands in a standard addi-
tive secret sharing scheme. Mult and TripleGen are straightforward to bench-
mark since they do not depend on the security parameter. The execution of
RandomTriple on the other hand depends on the security parameter and the
needed number of triples.

The RandomTriple command generates a set of triples which is distilled
into a smaller set that is the result of the command. The total number of triples
generated is (1+λ)(2d+1)M where M is the size of the result set, and λ and d
have to satisfy Equation 1. The overhead of distilling M triples is (1 + λ)(2d+
1)−1, and it is clear from Equation 1 that the overhead increases as the security
parameter goes up, but also that it decreases as the number of needed triples M
increases. This gives two interesting dimensions along which to investigate the
execution time.

It is infeasible to benchmark every possible combination of security param-
eter and number of triples so we chose the security parameter values 1 (covert
security [2]), 16, and 21, and 5, 10, and 30 triples, because they are representa-
tive and feasible for the interval of interesting security parameters [1, 32]. They



are feasible in the sense that they can be computed in a reasonable amount of
time. We have chosen λ and d such that the overhead is minimal.

The benchmarks are created using the VIFFBench Framework [33], which
automates benchmarking of VIFF protocols. The benchmarks are defined as a
small program parametrized with the number of parties and the VIFF reposi-
tory revision. The results are automatically stored in a relational database. We
have chosen to hardwire to numbers t1, t2 into the implementation, in order
to avoid unnecessary complexity. The numbers are used to compute the public
keys (as gt1 , gt2) for the commitment scheme. This breaks the security of the
implementation if one is to use the implementation for practical applications.
It does, however, not influence the efficiency of the commands, because the key
can be computed in a setup phase, before the preprocessing phase. We have per-
formed three benchmarks which were executed for each of the VIFF revisions
containing significant improvements to the commands. Except for random triple
generation which is only benchmarked for revision 1435. The online multiplica-
tion benchmark consist of 100 multiplications run in parallel. If we only executed
one multiplication we would get too close to the resolution of the system clock
that it would affect the precision of our measurements. The triple generation
and the random triple generation benchmarks, on the other hand, only execute
one invocation of the corresponding commands, because the execution time is
much longer. For each revision we have repeated each benchmark 50, 50, and 1
times for online multiplication, triple generation, and random triple generation,
respectively, in order to eliminate random noise. Executing the random triple
generation 50 times for each revision would be prohibitively time consuming.
All the benchmarks are performed using 1024-bits key size for the Paillier cryp-
tosystem. We do not investigate how the implementation behaves as the latency
on the network changes. The benchmarks were performed by using up to 10
identical computers equipped with 1 GHz dual-core AMD Opteron 2216 proces-
sors with 2x1 Mb level 2 cache and 2 Gb RAM each. The hosts are running Red
Hat Enterprise Linux 5.2 on a 64-bit x86 architecture and were connected using
gigabit Ethernet with a round-trip latency of 0.104 ms. One of the machines was
chosen as the coordinator, whose responsibility it was to distribute and execute
the benchmarks on the needed subset of the nine other machines. VIFFBench
chooses the subset randomly.

4.1 Benchmark Results

The results of the basic multiplication benchmarks are shown in Table 1 where
the average execution time for one multiplication is presented for two to nine par-
ties along with the standard deviation. We clearly see that the implementation
is efficient and achieves 15.9 ms per multiplication for three parties. The Figure
also shows that the average execution time increases linearly as the number of
parties increases which is as expected due to the broadcast. A multiplication
basically consists of two Open() operations with execution time linear in the
number of parties. The execution time for two parties is not as expected. Based
on the protocol we would expect it to be faster than for three parties, but the



parties 2 3 4 5 6 7 8 9

time (ms) 27.4 15.9 19.7 22.8 25.6 26.7 28.2 35.9

stdvar (ms) 0.1 3.5 4.7 6.7 7.4 6.8 8.1 8.3

Table 1. The average execution time in ms. of selected Basic Multiplication bench-
marks as function of the number of parties.

measurements shows that it is slower than for three, four, five, six, and even
seven parties. We contemplate that the cause of this anomaly is that for two
parties the implementation is CPU bound and not network bound as we have
observed for three parties. The standard deviations are large compared to the
measurements, and indicates some variation in our measurements. However the
timings are meaningful and the basic multiplication is useful in practice even if
we take the standard deviation into account.

Table 2 shows the average execution time of triple generation for two, three,
and nine parties and the data is visualized as a graph in Figure 1. We only show a
subset of our measurements, please see Table 5 in the Appendix for the full set of
measurements. We have benchmarked different revisions of our implementation
corresponding to the various optimizations we have performed. Revision 1231 is
the initial unoptimized implementation which uses the implementation of Paillier
in VIFF, revision 1355 in-lined step 1, 2.a, and 2.b of TripleGen(), 1370 uses
our efficient implementation of the Paillier cryptosystem, 1393 moves step 2.c
into C, 1399 moves step 3.a into C, and 1400 is a minor technical optimization.

The performance of the final revision is below 200 ms for all but two and
four parties. This is encouraging for practical uses of the protocol. Based on the
definition of TripleGen() we would expect to see the execution time increase
linearly (O(n)) in the number of players n. This is also the case until revision
1393. One explanation is that random noise is more dominant when the measured
time is small. We again see that two parties are slower than even nine parties,
but it seems like the anomaly is introduced in revision 1370, where we use a more
efficient implementation of Paillier. This is consistent with our earlier observation
that the two party case is CPU bound and the other are network bound. It is

parties 1231 1355 1370 1393 1399 1400

2 time 3519.6 3519.6 894.6 243.8 226.5 224.2
2 stdvar 1.0 0.8 3.2 0.9 0.7 0.7

3 time 3972.7 4012.1 376.3 155.0 168.3 170.9
3 stdvar 94.8 157.4 72.1 59.2 35.9 38.2

9 time 8937.4 8849.7 846.9 237.0 188.9 188.4
9 stdvar 460.2 281.2 27.0 36.5 20.7 29.0

Table 2. The average execution time in ms. of triple generation as a function of number
of parties.
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clear from Figure 1 that the use of an efficient implementation of Paillier gives
a substantial improvement of the execution time and is the main contributor to
the efficiency of the Orlandi implementation. The Figure shows that rewriting
step 2.c in C gives a larger performance increase then rewriting step 3.a does,
which is as we would expect. Step 2.c is more computational intensive. The
improvements we have done in the Python code in revision 1355 and 1400 are
dwarfed by the other improvements.

Table 3 shows the average execution time of random triple generation defined
in revision 1435 for two, three, and nine parties. The full set of measurements can
be found in Table 6. One would expect the benchmarks to show that the execu-
tion time per triple increases as the security parameter increases (O(d log ln(λ)))
and decreases as the number of triples increases. The measurements shows that
the execution time increases as the security parameter increases. And, in most
cases the execution time also decreases as the number of triples increases. Ran-

s 1 1 1 16 16 16 21 21 21

t 5 10 30 5 10 30 5 10 30

2 1.872 1.511 1.370 15.879 15.157 11.641 20.959 16.560 16.453

3 1.598 0.952 1.059 11.796 11.883 10.944 16.931 15.981 15.269

9 2.238 1.799 1.794 25.931 24.444 25.638 31.901 32.572 37.545

Table 3. The average execution time in seconds of random triple generation as a
function of parties (2, 5, and 9), security parameter, and number of triples.



dom noise may explain the cases where we do not see the a decrease in execution
time. We have only run the benchmarks once for each combination of security
parameter and number of triples due to time considerations.

4.2 Performance Comparison

We are aware of two other implementations of secure multiparty computation
protocols with active security: A protocol by Damg̊ard, Geisler, Krøigaard, and
Nielsen (DGKN) which has been implemented in VIFF [14], and a protocol by
Lindell, Pinkas, and Smart (LPS) [21]. The performance of these implementa-
tions cannot be directly compared to the performance of the Orlandi protocol
since they rely on different security models and the benchmarks have been done
on different hardware. However, in this section we will try to elaborate on the
difference between the performance of the systems.

The DGKN protocol provides evaluation of arithmetic circuits and is secure
against an adaptive active adversary up to a threshold of n/3 corrupted parties.
An adversary may halt the computation up to a synchronization point, not after
- in which case termination is guaranteed. The LPS protocol is a 2-party pro-
tocol for evaluation of boolean circuits. The Orlandi protocol is a full-threshold
multiparty protocol. Both the Orlandi and the LPS protocol are secure against a
static active adversary, the security is based on cryptographic assumptions, and
they are “unfair” in the sense that a corrupt party can prevent honest parties
from getting any result while the corrupt party get results himself.

It is difficult to make a direct comparison between our results and those
reported for the LPS protocol, since they do not benchmark multiplications, but
rather comparisons of 16-bit integers.

Results have been reported for the DGKN protocol for 4, 7, 10, 13, 16, 19,
22, and 25 parties. If we compare the numbers for 4 and 7 parties, which is
the setups we have numbers for, then DGKN takes 4 and 6 ms which is only
a factor 5 (roughly) better than our results for the online case. Whereas in the
preprocessing case the DGKN uses 5 ms and 22 ms in the best case, which is
a factor 80-240 better then our implementation even with the smallest security
parameter. Based on these numbers our implementation may seem inferior, but
remember that the Orlandi protocol provides full threshold. And the benchmarks
show that it is possible to use the Orlandi protocol in practice.

5 High-performance Paillier

Various non-deterministic cryptosystems have been proposed based on random-
ized encryption schemes which encrypt a message m by raising a base g to the
power m and suitably randomizing this result [5, 15, 17, 25, 26, 28]. The security
of these systems is based on the intractability of various ”residuosity” problems.
As an important consequence of this encryption technique, those schemes have
homomorphic properties. These homomorphic properties enable computation on



– Key Generation: Let N be a RSA modulus N = pq, where p and q are large
prime integers. Let g ∈ Z

∗

N2 be chosen such that its order is a multiple of N . Let
λ(N) = lcm(p− 1, q − 1). The public key is (g,N), and the private key is λ(N)

– Encryption: To encrypt a message m ∈ ZN , randomly chose r ∈ Z
∗

N and compute
the ciphertext c = gmrN mod N2.

– Decryption: The decryption of c is defined by L(cλ mod N2)

L(gλ mod N2)
mod N Where the

L(µ) function is defined as µ−1
N

and takes inputs of SN = {u < N2 | u = 1
mod N}.

Fig. 2. The main variant.

– Key Generation: Let N be a RSA modulus N = pq, where p and q are large
prime integers. Let λ(N) = lcm(p−1, q−1) and choose α such that it divides λ(N).
Let h ∈ Z

∗

N2 such that is has maximal order of nλ(N), and g = hλ/α mod N2.
The public key is (g,N), and the private key is α

– Encryption: To encrypt a message m ∈ ZN , randomly chose r ∈ Z
∗

N and compute
the ciphertext c = gm+r·N mod N2.

– Decryption: The decryption of c is defined by m = L(cα mod N2)

L(gα mod N2)
mod N Where

the L(µ) function is defined as µ−1
N

and takes inputs of SN = {u < N2 | u = 1
mod N}.

Fig. 3. The subgroup variant.

ciphertexts without knowing the context. This allows for a wide spread of appli-
cations such as secure multiparty computations, like Orlandi’s protocol. In this
section we discuss the Paillier cryptographic system and its implementation and
optimization.

5.1 Description of the Paillier Schemes

Paillier has presented multiple closely related cryptosystems [28, 29]. We will
focus on the main- and subgroup variants of these cryptosystems shown in Fig-
ure 2 and 3, respectively. The subgroup variant is slightly different as it computes
residues in a subgroup of order λ(N).

5.2 Paillier Performance Evaluation

A common task in implementations of many public-key cryptosystems is multi-
exponentiation in commutative groups. This is also the case for the Paillier cryp-
tosystem, namely computing gmrN mod N2 for the main variant and gm(gN )r

mod N2 for the subgroup. Many algorithms have been proposed to speed-up the
computation a single exponentiation [10, 24, 35, 20, 23]. These algorithms can
be modified to compute a product over of multiple exponentiations in such a
way that it is faster then a product of single exponentiations. In the following



subsections we show how to reduce this overhead with different simultaneous
multi-exponentiation algorithms.

The simultaneous 2k-ary method was first introduced by Brauer [10], the
idea behind the method is slicing the binary representation of an exponent into
pieces using a windows of length k and processing the exponent in a larger basis.
For each evaluation of the exponent the intermediate results get raised by power
of 2k and multiplied by its base raised to the power of the evaluated bits in
the exponent. The powers {0, 1, 2, . . . , 2k − 1} of base g are precomputed in an
auxiliary table.

In order to make the 2k-ary method evaluate two powers at the same time
(i.e. ge11 ge22 mod n). Two separate auxiliary tables with there powers of g1 and
g2 are required. Each time both exponents get evaluated at the same time. First
the intermediate result is raised to 2k and is multiplied by each separate base
raised to the power of the evaluated bits from the corresponding exponent. This
saves a squaring for every bit that is evaluated.

Algorithm 1 2k-ary Method

Input: auxa, auxb, b = 2k − 1, e1, e2
Output: ge11 · g

e2
2 mod n

A← 1
for j = ⌊(b− 1)/w⌋w down to 0 do

A← A2k

if (e1[j +w − 1 . . . j])
A← A · auxg1 [e1,j+1, e1,j+2, . . . e1,j+w−1]

if (e1[j +w − 1 . . . j])
A← A · auxg2 [e2,j+1, e2,j+2, . . . e2,j+w−1]

The simultaneous 2k-ary matrix method is a slight modification of the simul-
taneous 2k-ary method. The main difference is the computation of the auxiliary
table which consists of a k × k table entries which holds for 0 < i, j < 2k − 1
the product of gi1g

j
2 in entry aux[i][j]. Building such a table requires more pre-

computation, but gives one less multiplication per evaluated window of length
k.

The simultaneous sliding window exponentiation method of Yen, Laih, and
Lenstra [35] is an improvement of the 2k-ary method. Just like the 2k-ary method
the sliding window method consists of slicing the binary representation of ei
into pieces using a window of length ω and processing the part one by one.
The addition of letting the window slide allows us to skip consecutive zeros in
ei while squaring the intermediate result. As a result, evaluation of two even
exponents are avoided, and computation of the entries of these entries in the
auxiliary table can be avoided. This results in a generally faster algorithm for
evaluating exponents.



To evaluate two exponents simultaneously we apply the same trick as for
simultaneous 2k-ary method. But with the change that we check if both evaluated
bits are zero. Additional bookkeeping is needed to keep track of the bits.

When comparing both decryption version of the Paillier scheme, the basic
computation consists of one fixed exponentiation and a multiplication in Z∗

N2

and a multiplication in Z∗
N . The subgroup variant requires the same operation,

except the size of the exponent α is smaller, which makes the subgroup variant
faster. Paillier has suggested an alternative decryption method by means of the
Chinese Remainder Theorem (CRT). By defining Lp = µ−1

p
and Lq = µ−1

q
we

can decrypt by separately computing the message modulo p and q and combining
mp and mq with CRT. First compute hp = Lp(g

p−1 mod p2) and hq = Lq(g
q−1

mod q2) then mp = Lp(c
p−1 mod p2)hp mod p and mq = Lq(c

q−1 mod q2)hq

mod q and finally recombine using CRT. Additional speed-up can be found by
computing L(µ) efficiently with as µ · n−1 mod 2|n|. This is just a multipli-
cation and a logical AND. Another way to make computations more efficient
is a careful choice of parameters. For instance if one chooses g = 1 + n then
the exponentiation gm can be executed using only one multiplication, namely
gm = (1 + n)m ≡ (1 +mn) mod n2. This only works for the encryption in the
main variant of the Paillier scheme. Such optimizations can provide substantial
speed-ups as we show in the next subsection.

5.3 Results

In this section we describe how we benchmarked our implementation with various
optimizations and discuss the results. We have chosen to benchmark the three
above simultaneous multi-exponentiation algorithms and their parameters for
key sizes N ranging from 1024-bit to 4096-bit with increments of 1024-bits.

To benchmark the speed of encryption of the Paillier cryptosystem we ran
the main variant with g = N + 1 and the subgroup variant with the 3 different
simultaneous multi-exponentiation algorithms, with window size k as parameter.
For windows size k we select 1 < k ≤ 5, as choosing k higher then 5 will result
in longer pre-computation for these bit sizes.

The benchmarks can be found in Figure 4. The speed of the algorithms
becomes clear as the key-sizes increases. As it is infeasible to test all combinations
of random element r and message m, we have chosen m and r to have the same
size as the sub-group length in bits this is approximately 1/4 of N . This is due to
the requirement of the Paillier cryptosystem. The benchmarks are taken without
creating of the auxiliary table, the timings for creating the auxiliary table can
be found in table 5.3.

It is clear that the main variant of the Paillier with optimized parame-
ters is slowest, this is mostly due to the computation of rN with N having
{1024, . . .4096}-bits. The simultaneous 2k-ary normal and matrix- variant as
well as simultaneous sliding window method perform better with a greater k if
the key length gets bigger. Also, we can see that 2k-ary matrix performs bet-
ter than 2k-ary method as the key size grows. This is 2k-ary matrix has larger
pre-computation but has one multiplication less for evaluating one bit of the
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Fig. 4. The execution time in CPU cycles with different keys sizes with simultaneous
sliding window method (ssw), simultaneous 2k-ary method (kary) and simultaneous
2k-ary method (karym) parameter k is the size of the window in bits and the main
variant (sc-main) with g = n+ 1.

exponent. The simultaneous sliding window method is in most cases the best
performing algorithm, this is due the fact that it skips consequent zeros.

The benchmarks were performed by using a 2 GHz Intel Pentium E2180 dual
core with 1024KB cache per core and 2 GB Ram. The system is running Fedora
release 8 with kernel 2.6.26.8-57.fc8 in 64-bit mode. For benchmarking we used
cpucycles with is part of eBACS [6] to measure the amount of CPU cycles used
by the execution.

6 Related Work

Several practical systems for general multiparty computation have been imple-
mented during the recent years. FairPlay [22] is the earliest implementation
that the authors are aware of. In the system one can specify computations in a
high-level, procedural programming language. Using the FairPlay compiler, the
high-level programs are then compiled to low-level representations of one-pass
boolean circuits. These circuits are then used for secure computation as described
by Yao [34]. The timings reported on FairPlay show that FairPlay is efficient, but



1024-bits(ms) 2048-bits(ms) 3072-bits(ms) 4096-bits(ms)

2k-ary, k = 2 0.04 0.11 0.24 0.41

2k-ary, k = 2 0.11 0.34 0.73 1.22

2k-ary, k = 2 0.27 0.80 1.72 2.85

2k-ary, k = 2 0.58 1.72 3.66 6.09

2k-ary m, k = 2 0.12 0.38 0.80 1.32

2k-ary m, k = 3 0.55 1.77 3.68 6.20

2k-ary m, k = 4 2.26 7.31 15.25 25.62

2k-ary m, k = 5 9.14 29.54 61.51 103.77

ssw k = 2 0.03 0.12 0.24 0.41

ssw k = 2 0.33 0.87 1.73 2.86

ssw k = 2 0.39 1.22 2.39 4.03

ssw k = 2 5.14 16.78 33.61 56.40

Table 4. The execution time in miliseconds with differnt keysizes for creation of the
auxiliary tables. With 2k-ary, 2k-ary (matrix) and ssw (simultaneous sliding window)

it should be noted that it only supports two-party computation in the passive
security model. FairPlay has later been supplemented by FairPlayMP [3] which
is capable of handling the case with more than two parties in the passive secu-
rity model assuming less than n/2 corrupted parties. A two-party protocol for
secure computation which is secure against a static active adversary has recently
been implemented [21]. A further optimized version is reported in [31] where it
is used for a practical implementation of two-party AES. Like the protocol used
in FairPlay, these protocols are also based on boolean circuits.

Another practical system for general multiparty computation was created
by Bogetoft et al. [9] in the SIMAP project. The system was used for the first
known large-scale commercial application of secure multiparty computation [8].
It supports general multiparty computation in a passive threshold security model
assuming less than n/2 corrupted parties. Like FairPlay it lets users express
programs in a high level language, but contrary to FairPlay, it evaluates the
programs as arithmetic rather than boolean circuits. The downside of this strat-
egy is that comparison of integers becomes more complex and time consuming.
The protocol used in the SIMAP system has also been implemented in the VIFF
framework [32]. In addition, VIFF contains a passively secure two-party protocol
based on the Paillier cryptosystem as well as an implementation of a multiparty
protocol described in Section 4. The ShareMind system [7] represents yet another
efficient approach to practical multiparty computation based on arithmetic cir-
cuits and additive sharing. It only supports three parties in the passive model
and assumes that at most one party gets corrupted. None of the above imple-
mentations, though, support the combination of active security and self-trust,
that is available with the implementation of the Orlandi protocol described in
this paper.



7 Conclusion and Future Work

In this paper we presented an implementation of the Orlandi protocol, which is
the first implementation of a MPC protocol based on arithmetic circuits, which is
secure against up to n−1 static, active adversaries. We showed that the protocol
can be implemented efficiently in the presence of an efficient implementation of
a double trapdoor Petersen commitment scheme and a homomorphic cryptosys-
tem. We also described an efficient implementation of the Paillier cryptosystem.

Practical uses is an interesting direction of future work e.g. auctions, bench-
marks, and online games. Also the implementation of a suitable setup phase is
interesting. Furthermore it would be interesting to implement and benchmark
the FPP(rand, . . .) functionality. This would also make the implementation se-
cure in the common reference string model.

A further direction of future work would be to implement and benchmark the
Lim/Lee [20] and the fractional window exponentiation [23] algorithms, which
we expect would provide further speed up.
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A Homomorphic properties of Paillier cryptosystem

The encryption of message m is denoted by E(m) and decryption ciphertext c
is denote by D(c).



∀m1,m2 ∈ ZN and k ∈ N

D(E(m1)E(m2) mod N2) = m1 +m2 mod N

D(E(m1)g
m2 mod N2) = m1 +m2 mod N

D(E(m1)
m2 mod N2)

D(E(m2)
m1 mod N2)

}

= m1m2 mod N

D(E(m)k mod N2) = km mod N



B Tables and Graphs

parties revision count time (ms) stdvar (ms)

2 1231 3519.6 1.0
1355 3519.6 0.8
1370 894.6 3.2
1393 243.8 0.9
1399 226.5 0.7
1400 224.2 0.7

3 1231 3972.7 94.8
1355 4012.1 157.4
1370 376.3 72.1
1393 155.0 59.2
1399 168.3 35.9
1400 170.9 38.2

4 1231 4607.8 416.4
1355 4399.1 2.3
1370 388.6 24.0
1393 131.0 40.4
1399 161.1 64.7
1400 206.1 30.9

5 1231 5288.6 49.6
1355 5279.0 2.4
1370 482.2 33.9
1393 166.4 42.6
1399 209.2 39.3
1400 165.1 43.3

6 1231 6166.2 40.5
1355 6143.7 134.8
1370 575.2 30.5
1393 297.2 71.2
1399 161.6 30.3
1400 155.6 31.2

7 1231 7034.0 55.3
1355 7086.1 184.8
1370 668.7 29.7
1393 244.1 51.7
1399 160.0 25.6
1400 167.0 33.7

8 1231 7678.9 183.9
1355 7802.3 125.0
1370 823.7 212.1
1393 234.6 29.5
1399 192.0 30.8
1400 173.6 23.8

9 1231 8937.4 460.2
1355 8849.7 281.2
1370 846.9 27.0
1393 237.0 36.5
1399 188.9 20.7
1400 188.4 29.0

Table 5. The average execution time in ms. of triple generation as a function of the
changes to the implementation.



s d λ t 2 3 4 5 6 7 8 9

1 0 1 5 1.872 1.598 1.211 1.280 1.464 1.568 1.767 2.238

1 0 1 10 1.511 0.952 1.230 1.356 1.169 1.165 1.606 1.799

1 0 1 30 1.370 1.059 1.019 1.472 1.211 1.510 1.826 1.794

16 9 1 5 15.879 11.796 13.289 16.460 17.108 21.643 18.677 25.931

16 9 1 10 15.157 11.883 12.203 15.156 15.998 17.023 22.755 24.444

16 9 1 30 11.641 10.944 11.999 13.138 14.963 18.271 22.319 25.638

21 8 2 5 20.959 16.931 16.960 19.712 20.838 28.218 31.572 31.901

21 8 2 10 16.560 15.981 15.334 18.856 22.848 25.139 26.847 32.572

21 8 2 30 16.453 15.269 16.869 19.211 21.400 25.469 30.479 37.545

Table 6. The average execution time in seconds of random triple generation as a
function of the security parameter and the number of triples.


