
Improved Differential Attacks
for ECHO and Grøstl ?

Thomas Peyrin

Ingenico, France
thomas.peyrin@ingenico.com

Abstract. We present improved cryptanalysis of two second-round SHA-3 candidates: the AES-
based hash functions ECHO and Grøstl. We explain methods for building better differential trails
for ECHO by increasing the granularity of the truncated differential paths previously considered. In
the case of Grøstl, we describe a new technique, the internal differential attack, which shows that
when using parallel computations designers should also consider the differential security between
the parallel branches. Then, we exploit the recently introduced Super-Sbox attacks, that proved
to be very efficient when attacking AES-like permutations, to achieve a very efficient utilization
of the available freedom degrees. Finally, we obtain the best known attacks so far for both ECHO

and Grøstl. In particular, we are able to mount a distinguishing attack for the full Grøstl-256
compression function or internal permutations.

Key words: hash function, cryptanalysis, ECHO, Grøstl, AES, internal differential attack.

1 Introduction

Cryptographic hash functions are very important tools in cryptography, used in many applications such
as digital signatures, authentication schemes or message integrity. Informally, a hash function H is a
function that takes an arbitrarily long message as input and outputs a fixed-length hash value of size
n bits. The classical security requirements for such a function are collision resistance and (second)-
preimage resistance. Namely, it should be impossible for an adversary to find a collision (two distinct
messages that lead to the same hash value) in less than 2n/2 hash computations, or a (second)-preimage
(a message hashing to a given challenge) in less than 2n hash computations. Moreover, those primitives
are traditionally used to simulate the behavior of a random oracle [2] and while the community is divided
on such a requirement, in the ideal case an attacker should not be able to distinguish a hash function
from a random oracle.

As many standardized hash functions [31, 41] have been broken a few years ago [44, 45], the NIST
launched in 2008 the SHA-3 competition [33] that will lead to the future hash function standard. 14 can-
didates among 51 have been selected for the second round and many of them (like ECHO [3], Grøstl [14]
or SHAvite-3 [5]) are actually using some parts of the standardized block cipher AES [10,32] as internal
primitives or mimicking the structure of this cipher. While AES-256 can no more be considered as secure
in the related-key model [7], the cryptography community has made important progresses concerning
the evaluation of AES-based hash functions security [15, 19, 23, 25–27, 35]. Those attacks make an ex-
tensive use of the freedom degrees that are available in a hash function and even provides the best
known distinguishing attack against AES-128 [15] in the known-key model [21,30]. Much recent analysis
of AES-based hash functions has helped to identify the limits of current techniques, but as we show in
this paper, it is possible to improve the differential path building methods used so far.

? This is the extended and corrected version of the article published at CRYPTO 2010. Concerning ECHO,
the differential paths have been corrected and the memory requirements improved. Concerning Grøstl, hash
function collision attack on reduced versions have been added together with a more general and improved
internal differential technique providing more freedom degrees for the compression function distinguishers.

Our contributions. In this paper, we improve the best known cryptanalysis results [1, 15, 18, 26, 27]
on two second round SHA-3 candidates: the hash functions ECHO [3] and Grøstl [14]. While we do not
provide advances regarding the freedom degrees optimization, we use the recently introduced Super-Sbox
techniques [15, 23] in order to find pairs of inputs verifying a given differential path. We then exploit
some specific properties of ECHO and Grøstl to derive very good differential paths. More precisely, we
improve the previously known truncated differential paths for ECHO by reducing the size of the truncated
words considered. This allows us to broaden the differential trail search space, therefore increasing
our probability to find a good path, but also augmenting the search complexity. We circumvent this
constraint by giving a heuristic method to prune the potential candidates. Concerning Grøstl, we
describe a novel yet simple cryptanalysis technique: the internal differential attack. It may be applied
for functions using parallel branches that are not sufficiently made distinct. In that case, the attacker
can find input instances (where a classical differential attack exhibits pairs of inputs) verifying non
random properties on the output.

ECHO

H M

P 8
E

H’

Grøstl

P

Q

H

M

H’

As a result, we improve the complexity for distinguishing the internal permutation of ECHO from a
random 2048-bit permutation for a number of rounds corresponding to the full 256-bit version. Because
of the folding phase after the permutation application at the end of the ECHO compression function, this
attack does not translate into a distinguishing attack for the full ECHO compression function, nor the
hash function itself. We provide also the first distinguishing attack on the full internal permutations for
the 256-bit version of Grøstl, which can be directly derived into a distinguisher on the full Grøstl-256
compression function. Structural distinguishers (independent of the number of rounds) were already
described in the original submission document [14]. For example, it was already identified that one can
find fixed points or build a distinguisher for the compression function with the generalized birthday
paradox [43]. However, our results also allow to distinguish the Grøstl compression function from the
same construction when assuming the two internal permutations P and Q as ideal. This is not the case
for the known structural distinguishers since they already consider the two internal permutations as
ideal. Our results are also interesting because they exploit the specificities of P and Q which is essential
in order to really evaluate the security margin of this hash function in terms of number of rounds.
Finally, this also shows that the permutations P and Q used in Grøstl-256 can not be considered as
ideal permutations. Because of its output function, this attack does not translate into a distinguishing
attack for the full Grøstl hash function.

All the results and the corresponding computation/memory complexities for ECHO, ECHO-SP (the
simple-pipe version of ECHO) and Grøstl are summarized in Table 1. The results concerning the internal
permutation of ECHO are given in Appendix. Note that none of the results described in this article seem
to endanger the security of the ECHO compression function or the Grøstl hash function.

2 Previous cryptanalysis

In this section, we recall the recent advances regarding cryptanalysis of AES-like permutations and their
specificities. In the rest of the paper, we will use the Super-Sbox attacks as basic tool for finding input
pairs verifying a given differential path.

Table 1. Summary of results for ECHO, ECHO-SP and Grøstl compression functions. ECHO-256, ECHO-SP-
256, ECHO-512 and ECHO-SP-512 compression functions have 8, 8, 10 and 10 rounds respectively, while
Grøstl-256 and Grøstl-512 compression functions have 10 and 14 rounds respectively.

target rounds
computational memory

type section
complexity requirements

ECHO-256

comp. function

3 264 232 free-start collision 5.2

3 296 232 semi-free-start collision1 5.2

4.5 296 232 distinguisher 5.1

ECHO-512

comp. function

3 296 232 (semi)-free-start collision1 5.2

6.5 296 232 distinguisher 5.1

ECHO-SP-256

comp. function

3 264 232 (semi)-free-start collision App. C

3 264 232 distinguisher App. C

ECHO-SP-512

comp. function

3 264 232 free-start collision App. C

3 296 232 semi-free-start collision1 App. C

4.5 296 232 distinguisher App. C

Grøstl-256

internal permutation

9 280 264 distinguisher 5.3

10 2192 264 distinguisher 5.3

Grøstl-512
11 2640 264 distinguisher 5.3

internal permutation

Grøstl-256

comp. function

8 2112 264 distinguisher see [15]

9 280 264 distinguisher2 5.3

10 2192 264 distinguisher2 5.3

Grøstl-512
11 2640 264 distinguisher2 5.3

comp. function

Grøstl-256 4 264 264 collision see [28]

hash function 5 279 264 collision 5.4

Grøstl-512 5 2176 264 collision see [28]

hash function 6 2177 264 collision 5.4

2.1 Building differential trails with truncated differences

Cryptanalysis of AES-based hash functions began with the hash family proposal Grindahl [20] for which
collision attacks have been found [19,35]. This showed that truncated differentials [20,22] are very useful
when cryptanalyzing a byte-oriented primitive such as the AES. Namely, instead of looking at the actual
difference value of a byte, one only checks if a byte contains a difference (active byte) or not (inactive
byte). In particular, this allows the attacker to handle the non-linear Sboxes quite nicely when building
differential trails. On the other hand, the differential transitions through the linear MixColumns layer
will now be verified probabilistically.

The matrix multiplication underlying the MixColumns transformation on a r-byte column for AES

or Grøstl presents the interesting property of being a Maximum-Distance Separable (MDS) mapping:
the number of active input and output bytes is always greater or equal to r+1 (unless there is no active
input and output byte at all). When picking random inputs, the probability of success of a differential
transition that meets the MDS constraints through a MixColumns layer is determined by the number
of active bytes in the output. More precisely, if such a differential transition contains k active bytes in
one column of the output, its probability of success will approximatively be equal to 2−8×(r−k). For
example, a 4 7→ 1 transition for one column of the AES MixColumns layer has success probability of
approximatively 2−24. Note that the same reasoning applies when dealing with the invert function of
the MixColumns layer as well.

1 Because of a lack of freedom degrees, these attacks requires some randomization on the salt or counter input.
Thus they are applicable in the chosen-salt or chosen-counter setting only.

2 For these distinguishers, the amount of available freedom degrees allows us to generate only one valid candidate
with good probability.

2.2 Rebound attacks

The rebound attack [27] is a new technique for using efficiently the available freedom degrees. The
authors utilize truncated differential paths in which most of the cost lies in the middle rounds. Then, by
using a local meet-in-the-middle-like technique, the freedom degrees are consumed in the middle part of
the differential path, right where they can improve at best the overall complexity. More precisely, some
rounds in the middle (the controlled rounds) will be verified with only a few operations on average,
while the rest of the path both in forward and backward direction (the uncontrolled rounds) is fulfilled
probabilistically. This cryptanalysis provides good results [23, 25] and can work without any special
constraint on the differential path. However, the controlled part is limited to two rounds.

2.3 Start-from-the-middle attacks

In [26], the start-from-the-middle attack for AES-like permutations is introduced. It can be seen as a
generalization of the previous technique in the sense that the idea is simply to use the freedom degrees
for AES-like permutations in the “most expensive” part of the differential trail, without setting any
constraint in the way this is handled. The “cheaper” parts are then covered in an inside-out manner in
both forward and backward directions. The authors describe a freedom degrees use example that can
control 3 rounds in the middle part, without increasing the complexity (i.e. with only a few operations).
However, the depicted technique only works for specific differential paths, in which the number of active
bytes in the controlled rounds is not too important. We refer to the original publication [26] for more
details.1

2.4 The Super-Sbox cryptanalysis technique

Finally, another example of start-from-the-middle attacks is the Super-Sbox cryptanalysis ([15] and
independently published in [23]). The idea is that one can view two rounds of an AES-like permutation
as the parallel application of a layer of big Sboxes, named Super-Sboxes, preceded and followed by
simple affine transformations. This technique can control 3-rounds in the middle of the differential trail
with only a few operations on average, but works especially when the number of active bytes in the
controlled rounds is important (this allowed to use longer differential paths which generally contain
more active bytes). Because of some local precomputation steps, the drawback of this technique is its
memory requirement when the size of the internal state of the scheme is too big. In the case of Grøstl
this remains acceptable with a 264 memory requirement, but in the case of ECHO as much as 2512 memory
is required, making this tool unsuitable for this hash proposal. We refer to the original article [15] for
more details.

3 Improved differential attack for ECHO

3.1 Description of ECHO

ECHO is a double-pipe hash function using HAIFA [4] as chaining iteration mode. The message to hash
is first padded and divided into fixed-length blocks Mi which are used to update iteratively the chaining
variable Hi (originally initialized with an initial vector H0 = IV) thanks to the compression function
h: Hi = h(Hi−1,Mi). Finally, the hash output is obtained by truncating the last chaining variable. The
compression function is built upon a 2048-bit AES-like permutation PR

E composed of R rounds and its
internal state can be viewed as a 4 × 4 matrix of 128-bit words (or cells). A cell will be denoted by
Ci,j , where i is its row position and j its column position in the matrix, starting the counting from 0.
One round of PR

E is composed of three layers: the “BIG SubBytes” layer (big Sbox or B.SB), the “BIG
ShiftRows” layer (B.ShR) and the “BIG MixColumns” layer (B.MC).

1 Unlike claimed in [26], it seems that this technique can not be applied to ECHO, because of the 128-bit size of
the AES-like cells.

The BIG SubBytes layer is a non-linear function defined by the application of a big Sbox S on each
128-bit cell and this big Sbox is made of 2 AES rounds. The classical AddRoundKey part from the AES

is not present in PR
E and in order to avoid trivial symmetric vulnerabilities that would occur, each big

Sbox in ECHO is distinct thanks to different subkey additions in each of the 2-round AES uses. The first
round subkey depends on the value of a 64-bit internal counter K that is different at each use, while
the second round subkey is set to the 128-bit salt value and thus always remains the same during the
whole ECHO computation. So, for each cell Ci,j of the internal state, we compute

C ′i,j = S[Ci,j] = AESsalt(AES0||K(Ci,j)).

where AESsk denotes the application of one AES round with the subkey sk. As for the AES, the BIG
ShiftRows transformation permutes the position of each cell in its own row: for each cell Ci,j of the
internal state, we compute C ′i,j = Ci,Subi(j) where Subi(j) = (j−i) mod 4. Finally, the BIG MixColumns
function is a linear function that mixes all the columns of the internal state separately. More precisely,
the 32-bit AES MixColumns function is reused: if Cb

i,j denotes the b-th byte of the cell Ci,j , then we
compute

(C ′
b
0,j , C

′b
1,j , C

′b
2,j , C

′b
3,j) = AESMixColumns(Cb

0,j , C
b
1,j , C

b
2,j , C

b
3,j)

for all 0 ≤ j ≤ 3 and 1 ≤ b ≤ 16. The round function on an internal state C can thus be defined as:

MixColumns ◦ ShiftRows ◦ SubBytes(C).

In the case of the ECHO-256 compression function, 8 rounds of the permutation are applied and a
folding phase is processed after the final feedforward. Namely, the folding phase (denoted fold256) xors
all the four 512-bit columns together. Finally, the compression function takes a 1536-bit message input
M (12 words) and a 512-bit chaining variable input H (4 words) and outputs a new 512-bit chaining
variable H ′ with

H ′ = fold256(P 8
E(H||M)⊕H||M)

H M

P 8
E

H’

In the case of the ECHO-512 compression function, 10 rounds of the permutation are applied in order
to turn a 1024-bit message input M (8 words) and a 1024-bit chaining variable input H (8 words) onto
a new 1024-bit chaining variable H ′. A different folding phase is processed after the final feedforward.
Namely, the folding phase (denoted fold512) xors the two first and the two last 512-bit columns together.

H ′ = fold512(P 10
E (H||M)⊕H||M)

H M

P 10
E

H’

Since ECHO is a nested design of AES-like permutations, we will always use the prefix “BIG” when
referring to one of the three layers of the 2048-bit permutation. When not using a prefix, we will refer
to the layers of the 2-round AES permutation in the big Sboxes of ECHO.

In the following, B.SBin
R (respectively B.SBout

R) will denote the whole internal state just before (re-
spectively just after) application of the BIG SubBytes layer during round R (starting the counting
from 0). Similarly, B.MCin

R and B.MCout
R will stand for the input and output internal states of the BIG

MixColumns layer during round R. Of course, we have B.SBin
R = B.MCout

R−1. We refer to [3] for the full
specifications.

3.2 Generic differential paths

In order to fully use the power of recent freedom degrees optimization techniques, the core of the
differential path we will mainly use will not differ from the ones described in [15,26,27]. The reason here
is that this core characteristic is perfectly fit for using the available freedom degrees in the middle: it is
computationally very costly in its middle part, but quite cheap on its side parts. This core truncated
differential path is 7 rounds long and is depicted in Figure 1. Of course, when attacking a smaller number
of rounds than 7, one can use this core to build a further reduced path by cutting off some of the first
and/or last rounds.

B.SB0

B.ShR0

B.MC0 B.SB1

B.ShR1

B.MC1 B.SB2

B.ShR2

B.MC2 B.SB3

B.ShR3

B.MC3

B.SB4

B.ShR4

B.MC4 B.SB5

B.ShR5

B.MC5 B.SB6

B.ShR6

B.MC6

Fig. 1. Core of the truncated differential paths for 7-round reduced ECHO internal permutation. Each
cell represents a 128-bit word and a gray cell stands for an active 128-bit word. The controlled rounds
are depicted with dashed lines.

One could then use the Super-Sbox technique [15,23] in order to find a pair verifying this differential
path. More precisely, one can find a pair of internal states verifying the 128-bit truncated differential
trail from the beginning of round 2 (B.SBin

2) up to the end of round 4 (B.MCout
4) with only one operation

on average (but with 2512 memory and a minimal cost of 2512 operations). Note that another view of
the attack is to say that with one operation the attacker can find a pair of internal states such that the
difference on B.SBout

2 and on B.MCout
4 are chosen (no more truncated differentials). Therefore, for ECHO

we consider that the controlled rounds go from B.SBout
2 up to B.MCout

4 .

One can easily check that the rest of the path (the uncontrolled rounds) is fulfilled with probability
one, except round 1. Indeed, in round 1, a 4 ⇒ 1 truncated differential transition is expected through
the backward computation of the BIG MixColumns layer B.MC1. When dealing with 128-bit truncated
differentials, this will happen with approximate probability 2−24×16 = 2−384 (i.e. a 4 ⇒ 1 byte-wise
truncated differential transition is expected through sixteen parallel AESMixColumns functions). Since
one can generate 2512 valid candidates for the controlled rounds with 2512 computations and memory,
the overall complexity is 2512 for finding at least one valid pair for the core path from Figure 1. We
will see that by looking at byte-wise truncated differentials (instead of word-wise), one can sharpen
the differential path and derive an improved Super-Sbox attack for ECHO that requires less memory and
minimal number of computations. Also, this allows to improve the success probability of this uncontrolled
BIG MixColumns layer. On the other side, in order to be able to use the byte-wise truncated differentials
at this stage and since he can control the difference only in B.SBout

2 (and not in B.SBin
2), the attacker

will have to handle the backward computation of the BIG SubBytes layer of round 2 (B.SB2) as well.
He then hopes that controlling both B.SB2 and B.MC1 with byte-wise truncated differentials will cost
less than 2384 operations. Not controlling B.SB2 would lead us back to the 128-bit truncated differential

cryptanalysis, as each active 128-bit word of B.SBin
2 will very likely contain 16 active bytes (i.e. fully

active word) since full diffusion is achieved with only two AES rounds.

3.3 Differential transitions for 2 AES rounds

Now that we introduced the core of the differential path, we need to study the word-wise differential
transitions. That is, instead of looking for 128-bit truncated differentials, we will look at byte-wise
truncated differentials. Of course, we still fully leverage the previous works on Super-Sbox attacks: the
attacker can find a valid candidate pair verifying the controlled rounds and fully control the differences
in B.SBout

2 and B.MCout
4 with one operation on average. Sharpening the differential path will improve

the results since our scope is now wider, but it will also greatly increase the number of potential trails
and complicate the analysis. For that reason, we need to heuristically filter them so that we place our
search into a good subspace. First, we restrict ourselves to four types of byte-wise truncated differential
words F, C, D and 1, all depicted in Figure 2. Secondly, we add the constraint that all the active 128-bit
words in an internal state will present the same byte-wise truncated differential (all words have the same
truncated differential types F, C, D or 1). This seems a sound constraint as the processing of the BIG
MixColumns layer on one word column of the internal state can be seen as the parallel application of
sixteen AESMixColumns functions (one for each byte position). Thus, for each word column, instead
of analyzing the behavior of sixteen parallel AESMixColumns functions one conceptually only handles
a single function that will do for all the 16. Those two filters will really simplify the analysis.

F C D 1

Fig. 2. Notations for byte-wise truncated differential states for one word of ECHO. Each cell represents
a byte and a gray cell stands for an active byte.

Since the attacker will have to control the behavior of BIG SubBytes layer B.SB2, we have to study
the success probability for each possible transition for 2 AES rounds between the four bit-wise truncated
differentials F, C, D and 1, especially in backward direction. First, we can compute the approximate
probability of success for a one-round transition between those four 128-bit differential states and this
is given in Table 2 for both forward and backward directions. Those probabilities are simply obtained
by studying the AESMixColumns transitions for one AES round (since we are dealing with byte-wise
truncated differentials, all the probabilities comes only from the AESMixColumns transitions, see [35]).

When computing backward through B.SB2, the AESMixColumns function from the second AES

round is the first function to invert. But since this layer is fully linear, one can verify the expected
backward transitions by carefully choosing the differences in B.SBout

2 beforehand. Since the Super-Sbox
attack allows us such a liberty, the second AES round in B.SB2 comes for free (one only has to check
that the transition is not impossible, i.e. the probability in Table 2 is not null). Finally, having set all
the constraints and the cost evaluation, we only have to pick the best backward differential transition
through B.SB2 in terms of probability and active byte weight: D ⇐ 1 ⇐ C. The transition D ⇐ 1 is
free as showed by Table 2, while the 2−24 probability for the transition 1 ⇐ C is not taken in account
since we can avoid it by carefully choosing the byte-wise truncated differences in B.SBout

2 beforehand.
Therefore, controlling B.SB2 is now completely free for the attacker.

Now that we controlled the differential behavior of B.SB2, what is the improvement obtained for the
BIG MixColumns layer B.MC1 ? Since we only have four active bytes in D, we can focus on controlling
4 parallel AESMixColumns transitions instead of 16. We are looking for 4 ⇒ 1 transitions, each

Table 2. Byte-wise truncated differential transition approximated probabilities for one round of AES.
The left table shows forward transitions, while the right one gives backward transitions.

Forward

in
out

F C D 1

F 1 0 2−96 0

C 1 0 0 0

D 0 1 0 2−24

1 0 1 0 0

Backward

in
out

F C D 1

F 1 2−96 0 0

C 0 0 1 2−24

D 1 0 0 0

1 0 0 1 0

happening with probability 2−24. Thus, for the whole BIG MixColumns layer, we get a probability of
2−24×4 = 2−96 and this has to be compared to the previous 2−24×16 = 2−384 probability.

3.4 Improved Super-Sbox method for ECHO

B.SB0

B.ShR0

B.MC0 B.SB1

B.ShR1

B.MC1 B.SB2

B.ShR2

B.MC2 B.SB3

B.ShR3

B.MC3

B.SB4

B.ShR4

B.MC4 B.SB5

B.ShR5

B.MC5 B.SB6

B.ShR6

B.MC6

F
F

F
F

F
F
F
F F D

D
D
D
D

C
C

C
C

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

D
D
D
D

D
D
D
D

D
D
D
D

D
D
D
D

D
D

D
D

F
F
F
F F F

F
F
F
F

F
F

F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

Fig. 3. 7-round differential path for the ECHO internal permutation. The controlled rounds are depicted
with dashed lines.

The whole 7-round differential path is depicted in Figure 3 and a valid candidate can be found with
complexity 296 operations. However, the Super-Sbox technique still forces us to a minimal complexity of
2512 computations and memory. We describe here an improved method that can find a valid candidate
for the controlled rounds with minimal cost of 232 computations and memory and with a average cost
per solution of 232. We start by fixing a random column difference for the only active word at the output
of B.MC4 (the very right side of the controlled rounds). One can directly obtain the difference on the
output of B.SB4 by inverting the linear process from the output of B.MC4. Note that when choosing a
random column value at the output of B.MC4, we do so that when inverting all the linear operations
(B.MC4 and the last MixColumns and ShiftRow layer of B.SB4) we eventually come to a single active
byte in all the four active words (or a single active column in all the four active words) on the output
of the second SubBytes layer of B.SB4. Identically, by fixing random column differences for the four
active words at the input of B.MC2 (the very left side of the controlled rounds), one directly obtains
the difference on the input of B.SB3. Note that as explained previously, this random difference must be
chosen so that it fulfills as well the differential transitions 1⇐ C through the backward computation of
the first AES round of B.SB2. At this point all we have to do is to find a pair of internal state mapping
the B.SB3 input difference to the B.SB4 output difference. It is easy to check that one can take care of
the four 512-bit columns of ECHO independently. Said in other words, we have to handle four independent
Super-Sboxes of size 512 bits each. We represent in Figure 4 the situation for a single 512-bit Super-Sbox.

We first do some precomputation work: for the 512-bit column considered, the B.SB3 layer can be
viewed as the parallel application of sixteen 32-bit Super-Sboxes. We already fixed the input differences
of those Super-Sboxes and for each one we compute the output difference according to each of the 232

B.SB3

SB

ShR
MC

SB

ShR
MC

B.MC3 B.SB4

SB

ShR
MC

SB

ShR
MC

Fig. 4. Improved Super-Sbox technique for ECHO.

possible input values. The output differences are sorted and stored in tables and this step costs us about
232 computations and memory. Later, these tables will allow us to directly find for each Super-Sbox a
valid 32-bit candidate value given an output difference.

One can see that in B.SB4 only a single 32-bit Super-Sbox is active. Moreover, we already fixed the
output difference δ of this Super-Sbox. Thus, for each possible 32-bit value v on its output, we compute
backward and immediately obtain the corresponding value v′ and difference δ′ on the input. From δ′

we can invert B.MC3, obtain the output difference on B.SB3 and we look in the precomputed tables the
values mapping to this difference through the sixteen parallel Super-Sboxes of B.SB3. At this point, it
is possible that no candidate exists for each Super-Sbox. However, as described in [15], when a solution
is found for each Super-Sbox, we immediately derive several ones by switching the ordering of the pairs.
Overall, we can hope for one solution on average.

Once a solution is found for B.SB3, all differences and values are fixed. However, there is a probability
of 2−32 that we retrieve the value v′ after the forward application of B.MC3. Thus, by testing all the
232 possible values v, we have a good chance to fulfill this condition and therefore a final solution for
the controlled rounds.

Overall, with a minimal cost of 232 computations and memory, one can find a solution for the con-
trolled rounds with 232 computations on average. A valid pair of internal states for the entire differential
path from Figure 3 can be obtained with 2128 computations and 232 memory.

Since the internal permutation of ECHO is much bigger than its hash output size, it should be easy
to distinguish it from a random 2048-bit permutation. Note that our solution pair has four active 128-
bit words in the input and four active 128-bit words in the output (the last BIG MixColumns call
is not taken in account since it is fully linear). A naive analysis would conclude that for a random
2048-bit permutation, finding such a pair with a birthday paradox technique should require at least
2(2048−512)/2 = 2768 operations. However, since the input and output amount of differences is low,
the attacker can not fully leverage the power of the birthday paradox. We conclude by reusing the
concept of limited birthday distinguishers [15] that for a random 2048-bit permutation, finding such a
pair should require at least 21024 operations.2 Finally, 7 rounds of the internal permutation of ECHO can
be distinguished from a random 2048-bit permutation with 2128 operations and 232 memory.

The amount of freedom degrees available during the attack is discussed in the Appendix A and a
costly distinguisher for 8 rounds of the ECHO internal permutation is given in Appendix B.

2 The generic attack complexity for mapping through a permutation a fixed difference on i bits on the input
and j bits on the output with i ≥ j is given by the formula max{2j/2, 2i+j−t}, where t is the size of the
permutation.

4 Internal differential attack: application to Grøstl

4.1 Description of Grøstl

We give in this section the description of Grøstl and refer to the submission document [14] for more
details. Grøstl is a double-pipe hash function that uses a chaining mode similar to the Merkle-
Damg̊ard [11, 29] iteration. More precisely, after having initialized the internal state H0 and padded
the input message string, the iteration i updates the 2n-bit chaining variable Hi with the 2n-bit in-
coming message block Mi by applying the compression function h: Hi = h(Hi−1,Mi). After having
processed all the t message blocks, an output function is applied to the last chaining variable to obtain
the n-bit hash result: hash = truncn(P (Ht) ⊕ Ht), where truncn is the truncation function of the n
first bits and P is an AES-based permutation. The double-pipe compression function h is built upon two
similar parallel AES-based permutations P and Q (that only differ by the constants addition layers) to
update chaining variable H with message block M :

H ′ = P (H ⊕M)⊕Q(M)⊕H

P

Q

H

M

H’

In the case of Grøstl-256, the 512-bit internal state of both permutations can be viewed as a 8× 8
matrix of bytes. A byte for permutation P is denoted by CPi,j (resp. CQi,j for permutation Q), where
i is its row position and j its column position in the matrix, starting the counting from 0. P and Q are
both 10-round long and each round is composed of 4 layers. The first layer (AddConstant or AC) is a
constant addition function. More precisely, for the round number i (starting the counting from 0), in P
the byte CP0,0 is xored with i and in Q the byte CQ7,0 is xored with i⊕0xff. Note that this layer is
the only difference between permutations P and Q. The second layer (SubBytes or SB) is a non-
linear function defined by the application of the AES Sbox S to each byte. The third layer (ShiftRows or
ShR) cyclically rotates to the left the position of each byte in its own row with the following constants:
(0, 1, 2, 3, 4, 5, 6, 7). Finally, the last layer (MixColumns or MC) is a linear function that mixes all the
columns of the internal state separately. As for AESMixColumns, the matrix multiplication underlying
this transformation is a Maximum-Distance Separable mapping. In order to avoid overweighting the
notations, we used the same notations for the ECHO and Grøstl subfunctions, but their meaning is
implicit depending on which scheme we are dealing with. The round function on an internal state C can
thus be defined as:

MixColumns ◦ ShiftRows ◦ SubBytes ◦AddConstant(C).

AddConstant

8 bytes

8 bytes

⊕

⊕
for P

for Q

SubBytes

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

ShiftRows MixColumns

In the case of Grøstl-512, the 1024-bit internal state of both permutations can be viewed as a 8×16
matrix of bytes. P and Q are both 14-round long and each round is composed of the 4 layers. The
round function is identical to the Grøstl-256 case, except the rotation constants in the third layer:
(0, 1, 2, 3, 4, 5, 6, 11).

4.2 The internal differential attack

In this section, we will show that very good differential trails can be found for Grøstl. Our new technique,
the internal differential attack , may apply when a function is built upon parallel computation
branches that are not distinct enough. The trick is to devise a differential path representing the
differences between the branches and not between two inputs of the function. Usually this
is avoided by a forcing strong separation between the two parallel branches. For example, for all steps
of the hash functions RIPEMD [39] or RIPEMD-160 [12], very distinct constants are used in the left and
right branches. However, in the case of Grøstl, this separation is thin between permutations P and Q,
and we will describe in the next sections how to exploit this property in order to mount for example a
distinguishing attack against the full Grøstl-256 compression function.

All the previous analysis of Grøstl studied the differential behavior of the permutations in a classic
way. That is, they derived differential trails by dealing with two different inputs for each of the permu-
tations P and Q (the two permutations were attacked separately). Those permutations mimicking the
AES block cipher, the best usable differential paths naturally reached 8 rounds [15], but we argue that
much more interesting trails can be built. We do not analyze the two permutations separately, but we
build a differential path between them: we keep track of the differences ongoing between branch P
and branch Q (see Figure 5). We compute two internal states A and B, such that A ⊕ B = ∆IN and
such that P (A)⊕Q(B) = ∆OUT .

∆
I
N

∆
O
U
T

attacked primitive

P

Q

H

M

H’

Fig. 5. The differential path keeps track of the differences between permutations P and Q.

This idea comes naturally after having noticed that permutations P and Q are really similar, since
their only distinction is the constant addition phase. Even in that step, the distinction is really thin: a
different constant is added on only two different bytes. Thus, we can hope that the amount of differences
will remain low when setting a differential trail.

Since using truncated differentials is very handy when attacking AES-like permutations, we will only
keep track of active and inactive bytes through the path. Also, preparing for the utilization of Super-
Sbox attacks, we aim for a differential path in which the costly part lies in the middle, and the cheap
parts on the sides. In Figure 16 and 17 from the Appendix D, we provide a differential path between
the permutations P and Q of the Grøstl-256 compression function for the 9-round and the 10-round
versions respectively. In Figure 18 from the Appendix D, we depict a differential path between the
permutations P and Q of the Grøstl-512 compression function reduced to 11 rounds. Note that only
one difference is incorporated during AC0 since the constant added in P is 0.

4.3 Deriving a distinguisher for the Grøstl compression function or internal
permutations

In the following, our goal is to distinguish the Grøstl compression function from an ideal primitive on
the same domain. As shown in Figure 5, once the differential path settled, we find a valid pair of internal
states (A,B) such that

A⊕B = ∆IN

P (A)⊕Q(B) = ∆OUT

where ∆IN and ∆OUT are respectively the input and output truncated differences. We then set H =
A⊕B and M = B and we obtain

h(H,M) = P (A)⊕Q(B)⊕A⊕B = ∆IN ⊕∆OUT .

We will show that ∆IN and ∆OUT are always maintained in a small subspace of x and y elements
respectively. As a consequence, ∆IN ⊕ ∆OUT will also belong to a small subspace of the full output
domain. Said in other words, we will be able to compute outputs of the 2n-bit compression function
that always belong to a predetermined set of at most k = x · y elements. In the ideal case, one such
input/output property should not be obtained with substantially less than 22n/k compression func-
tion calls. Unlike the previously known distinguishers that find partially colliding outputs for AES-like
permutations, the one we describe here is more “preimage” oriented.

One can go further and even try to distinguish the Grøstl compression function from its internal
construction

h(H,M) = P (H ⊕M)⊕Q(M)⊕H = (P (A)⊕A)⊕ (Q(B)⊕B)

assuming P and Q as ideal permutations. We will compute pairs (H,M) such that H belong to a small
subspace of x elements and H ′ to a small subspace of k = x · y elements. In the ideal case, one may
think that the best attack can obtain such a property this with min{

√
22n/x,

√
22n/y} computations

by performing a birthday method with the two branches. However, this is not the case here because
a strong constraint exists on the amount of differences between the two branches on the input and
the output (see the limited birthday distinguishers [15]) and the best known complexity to obtain the
input/output property with ideal permutations P and Q is 22n/(k · x) computations. It is important
to remark that this type of distinguisher is new since the already known ones are structural, i.e. they
already consider P and Q as ideal permutations.

Even simpler, one can distinguish the construction f(a, b) = P (a) ⊕ Q(b) when P and Q are ideal
permutations or the Grøstl internal permutations. The value of a⊕b is maintained in a subspace of x el-
ements and the output is maintained in a subspace of y elements. The limited birthday distinguisher [15]
implies that 22n/k computations are required to find such a candidate in the ideal permutations case.
This will show that permutations P and Q are not ideal.

While formally defining a distinguisher for a keyless primitive is difficult [40], we argue that the
property we exhibit here works for any choice of Sbox, MixColumns function or AddConstant positions
for example. Note that such keyless primitive distinguishers have already been utilized in [15,26].

Let Grøstl(a) denote the Grøstl hash function for which the constant addition in Q is i⊕a instead
of i⊕ 0xff. Clearly, when choosing a > 0x1a, we ensure that the constant values added in P and Q are
always distinct and each member of this family of Grøstl hash functions should have the same security
as Grøstl(0xff). Overall, for each member of the family, the attacker can exhibit with good probability
an output maintained in the set of k elements, while the input H belongs to the subspace of x elements.
Thus, if we are queried to distinguish the Grøstl compression function instantiated with permutations
corresponding to Grøstl(a) from the same construction with random permutations P and Q, we have
a very good probability to succeed. It shows a weakness in the Grøstl design philosophy.

4.4 Finding a collision for the hash function

One can use the internal differential attack in order to find a collision for the reduced Grøstl hash
function. Note that this is usually much harder than finding a collision for the compression function
only. We provide in Figure 6 a differential path for 5 rounds of Grøstl-256. Note that the very first state
is fully active and can be forced to any random difference value since located in the controlled rounds.

SB0 ShR0 MC0

SB1 ShR1 MC1

SB2 ShR2 MC2

SB3 ShR3 MC3

SB4 ShR4 MC4

AC0

AC1

AC2

AC3

AC4

Fig. 6. 5-round differential path between P and Q for Grøstl-256. Each cell represents a byte and a
gray cell stands for an active byte. The controlled rounds are depicted with dashed lines. The matrices
on the left represent the differences incorporated during the AC layers.

The idea of the attack is the following: by choosing a random message prefix Pre, we obtain a random
chaining variable value that we denote R and we have ∆IN = R. Then, we find two valid message block
candidates M1 and M2 for the differential path starting from R. We denote by ∆1

OUT and ∆2
OUT their

respective output differences. We have

h(R,M1) = R⊕∆1
OUT and h(R,M2) = R⊕∆2

OUT .

Thus, if ∆1
OUT = ∆2

OUT , then h(R,M1) = h(R,M2) and (Pre||M1, P re||M2) is a colliding message
pair for the hash function. Note that in this scenario, we have largely enough freedom degree in order
to find the collision since we can choose a large set of message prefix.

5 Results

In this section we present our results on the compression functions of ECHO and Grøstl. For completeness,
we give in the Appendix C the analysis for the single-pipe version ECHO-SP. Moreover, we also provide
in the Appendix A a study of the amount of freedom degrees available during the attacks.

5.1 Distinguishers for the ECHO compression function

ECHO-256. We use the 4-round differential path from Figure 7 which is derived from the 7-round core
path. The uncontrolled part requires 264 candidates (through the backward computation of B.MC0),
while the improved Super-Sbox method for ECHO generates one valid candidate for the controlled part
with 232 computations and 232 memory. Overall, we obtain a valid pair for the whole differential path
with 296 computations and 232 memory (232 such pairs can be generated by the attacker and 2160 if the
salt is controlled as well).

B.SB0

B.ShR0

B.MC0 B.SB1

B.ShR1

B.MC1 B.SB2

B.ShR2

B.MC2 B.SB3

B.ShR3

B.MC3

feed forward

fold

F
F

D
D

D
D
D
D

C
C

C
C

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

D
D
D
D

D
D
D
D

D
D
D
D

D
D
D
D

D
D

D
D

F
F
F
F

F
F

F
FF

F
F

Fig. 7. 4-round differential path for the ECHO-256 compression function distinguisher. The controlled
rounds are depicted with dashed lines.

ECHO-512. We use the 6-round differential path from Figure 8 also derived from the 7-round core path.
The uncontrolled part requires 264 candidates (through the backward computation of B.MC1), while the
improved Super-Sbox method for ECHO generates one valid candidate for the controlled part with 232

computations and 232 memory. Overall, we obtain a valid pair for the whole differential path with 296

computations and 232 memory (232 such pairs can be generated by the attacker and 2160 if the salt is
controlled as well).

B.SB0

B.ShR0

B.MC0 B.SB1

B.ShR1

B.MC1 B.SB2

B.ShR2

B.MC2 B.SB3

B.ShR3

B.MC3

B.SB4

B.ShR4

B.MC4 B.SB5

B.ShR5

B.MC5

feed forward

fold

F
F

F
F F

F
F

F F
F
F
F

F
F
F
F F

F

D

D
D
D
D
D

C
C

C
C

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

D
D
D
D

D
D
D
D

D
D
D
D

D
D
D
D

D
D

D
D

F
F
F
F F

F

F

F
F
F
F
F

F
F
F
F

F
F

F
F

F
F
F
F

F
F
F
FF

F
F

F F
F
F
F

F

F

Fig. 8. 6-round differential path for the ECHO-512 compression function distinguisher. The controlled
rounds are depicted with dashed lines.

In both cases, we obtain compression function outputs colliding on 2 predetermined words (i.e. 256
bits) and this should require 2128 computations in the ideal case. Note that since all active 128-bit words
in the end of the differential path are fully active, we could have added another B.SB layer and attacked
one more half-round.

5.2 Collisions for the ECHO compression function

ECHO-256. We use a special 3-round differential path depicted in Figure 9. In this trail, the improved
Super-Sbox technique for ECHO can be applied exactly as previously explained for the 7-round core path.
Thus, a valid candidate for the controlled rounds can be found with 232 computations and 232 memory,
while the uncontrolled part is verified with probability 1. Note that the column differences after B.MC2

can be chosen beforehand so that they xor to zero during the folding phase. Using the freedom degrees
counting method, one can check that only 232 valid pair can be obtained with this extra condition.
However, in order to get a collision on the output, we have to make the diagonal differences on the
input collide during the folding phase. Since we have 32 bit positions concerned, the attacker has to go
through those 232 candidates and finally the attack complexity is 264 computations and 232 memory in
order to find a free-start collision attack for the ECHO-256 compression function.

B.SB0

B.ShR0

B.MC0 B.SB1

B.ShR1

B.MC1 B.SB2

B.ShR2

B.MC2

feed forward

fold

DDDD CCCC

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

D
D
D
D

D
D
D
D

D
D
D
D

D
D
D
D DDDD CCCC

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

CCCC
CCCC
CCCC
VVVV

Fig. 9. 3-round differential path for the ECHO-256 compression function free-start collision attack. The
controlled rounds are depicted with dashed lines. We denote by V an AES word with one column and
one diagonal active.

Similarly, a chosen-salt semi-free-start collision attack could be obtained by using the differential path
from Figure 10. The situation is exactly the same as previously, except that one has 64 bit positions
to collide on and the salt will have to be randomized on 232 values in order to provide enough freedom
degrees. Thus, finding a chosen-salt semi-free-start collision attack for the ECHO-256 compression function
requires 296 computations and 232 memory.

B.SB0

B.ShR0

B.MC0 B.SB1

B.ShR1

B.MC1 B.SB2

B.ShR2

B.MC2

feed forward

fold

DD

DD CC

CC

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

D
D
D
D

D
D
D
D

D
D
D
D

D
D
D
D DDDD CCCC

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

CCCC
CCVV
CCCC
CCVV

Fig. 10. 3-round differential path for the ECHO-256 compression function chosen-salt semi-free-start
collision attack. The controlled rounds are depicted with dashed lines. We denote by V an AES word
with one column and one diagonal active.

ECHO-512. We use the 3-round differential path depicted in Figure 11. The situation is exactly the
same as for the path from Figure 10. Therefore, one can derive a chosen-salt semi-free-start collision
attack for the ECHO-512 compression function with 296 computations and 232 memory.

B.SB0

B.ShR0

B.MC0 B.SB1

B.ShR1

B.MC1 B.SB2

B.ShR2

B.MC2

feed forward

fold

DD

DD CC

CC

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

D
D
D
D

D
D
D
D

D
D
D
D

D
D
D
D DDDD CCCC

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

CCCC
CCVV
CCCC
CCVV

Fig. 11. 3-round differential path for the ECHO-512 compression function chosen-salt (semi)-free-start
collision attack. The controlled rounds are depicted with dashed lines. We denote by V an AES word
with one column and one diagonal active.

5.3 Distinguishers for the Grøstl compression function

Grøstl-256. We use the Super-Sbox technique to find two 512-bit internal states such that the 9-round
differential path from Figure 16 between permutations P and Q is verified. Namely, one can find internal
state values for P and Q verifying the truncated differential trail from the output of SB2 up to the input
of SB5 with one computation on average. However, the 8 7→ 2 MixColumns transition through MC5

during the uncontrolled rounds is verified with probability 2−48. Also, 2 byte differences must be erased
during both AddConstant functions AC2 and AC6 which adds another 2−4×8 = 2−32 factor. Overall, one
can find a valid candidate for the whole path with only 248+32 = 280 computations (an amount of 264

memory is required by the Super-Sbox technique).
Regarding the 10-round differential path from Figure 17, the controlled rounds go from the output

of SB3 up to the input of SB6. Then, the two 8 7→ 1 MixColumns transitions through MC2 and the
8 7→ 2 transition through MC6 during the uncontrolled rounds happen with probability 2−2×56 = 2−112

and 2−48 respectively. Also, 2 byte differences must be erased during both AddConstant functions AC2

and AC7 which adds another 2−4×8 = 2−32 factor. Overall, one can find a valid candidate for the whole
path with only 2112+48+32 = 2192 computations (again, an amount of 264 memory is required by the
utilization of the Super-Sbox technique).

The freedom degrees analysis from Appendix A shows that for both paths from Figure 16 and 17,
one can expect to obtain one solution with good probability. Indeed, for both paths, when the success
probability for a random input pair to verify the trail is 2−z, we have about 2z freedom degrees available.
We argue in the Appendix that it is sufficient for the attack to be considered as valid and we give in
Section 5.5 a method that provides some additional freedom degrees.

Grøstl-512. As for Grøstl-256, we use the Super-Sbox technique to find two 1024-bit internal states
such that the 11-round differential path from Figure 18 between permutations P and Q is verified.
Namely, one can find internal state values for P and Q from the output of SB3 up to the input of SB6 with
one computation on average. However, the MixColumns transition through MC6 during the uncontrolled
rounds happens with probability 2−(48+7×56) = 2−440: the first column is a 8 7→ 2 transition, while the
second, third, fourth, fifth, sixth, seventh and twelfth are 8 7→ 1 transitions. The next MixColumns
layer MC7 contains a 8 7→ 2 transition, adding another factor 2−48. Regarding MC2, the first and sixth
columns are 8 7→ 1 transitions, thus successfully verified with a total probability of 2−2×56 = 2−112.

Also, 2, 1 and 2 byte differences must be erased during AddConstant functions AC2, AC7 and AC8

respectively. This adds another 2−5×8 = 2−40 factor. Overall, one can find a valid candidate for the
whole path with 2440+48+112+40 = 2640 computations (an amount of 264 memory is required by the
Super-Sbox technique for Grøstl). Again, the freedom degrees analysis shows that we can expect one
solution with good probability.

The distinguisher for Grøstl compression function and internal permutations. In order to
mount the distinguisher for Grøstl, one has to analyze the amount k of reachable output difference
values. The situation is completely identical for the paths from Figures 16 and 17 in the Appendix, but
we will use the notations from the second one. We have 16 active bytes just before applying the very last
MixColumns layer MC9. Since the MixColumns layer is fully linear, the amounts of reachable difference
values on its input and on its output are equal. Thus, we can deduce that at most y = 216×8 = 2128

distinct output differences can be reached on the output of the differential trail. Regarding the input
of the path, the same reasoning gives us that at most x = 28×8 = 264 distinct input differences can
be reached. Note that the difference inserted during AC0 can be ignored since it is the last layer when
computing backward (the difference value on that byte will always be equal to the constant added, i.e.
0xff). Also, it is easy to verify that the differences on the output of SB0 are always the same (since
MixColumns is linear). Thus, since the inverse of the AES Sbox has the property that only 27 distinct
output differences can be reached when the input difference is fixed, we can conclude that ∆IN can go
through a maximum of x = 28×7 = 256 distinct values.

To summarize, the output chaining variable H ′ = h(H,M) = ∆IN ⊕∆OUT is limited to a set of at
most k = 2128+56 = 2184 values, with H being limited to a set of at most x = 256 values. For an ideal
512-bit compression function, reaching any element of this set should require 2512−184 = 2328 operations.
With 280 and 2192 computations respectively (and 264 memory), we finally conclude that our attack can
distinguish 9-round reduced or the full 10-round compression function of Grøstl-256 from a random
512-bit compression function. One can even distinguish h from the compression function construction
with P and Q assumed ideal since the best known attack requires 2512−184−56 = 2272 computations.
Moreover, the ideal case complexity to find such a candidate for the f(a, b) = P (a)⊕Q(b) construction
is 2512−184 = 2328 operations and this shows that permutations P and Q can not be considered ideal
functions.

In the case of Grøstl-512 (see Figure 18 in the Appendix D), the same reasoning tells us that ∆IN

can go through a maximum of x = 256 values and ∆OUT through a maximum of y = 2128 values.
Thus, the output chaining variable H ′ = h(H,M) = ∆IN ⊕ ∆OUT is limited to a set of at most
k = 2128+56 = 2184 values, with H being limited to a set of at most x = 256 values. For an ideal 1024-
bit compression function, reaching any element of this set should require 21024−184 = 2840 operations.
We conclude that our 2640 computations (and 264 memory) attack can distinguish a 11-round reduced
version of the Grøstl-512 compression function from a random 1024-bit compression function. Again,
one can even distinguish h from the compression function construction with P and Q assumed ideal
since the best known attack requires 21024−184−56 = 2784 computations. Also, the ideal case complexity
to find such a candidate for the f(a, b) = P (a)⊕Q(b) construction is 21024−184 = 2840 operations.

Note that structural distinguishers (i.e. working for randomly chosen permutations P and Q) already
exist for Grøstl. For example, just like in the Davies-Meyer construction, one can very easily find fixed
points for the compression function. Yet, as explained in Section 4.3, we believe that our distinguishers
are very interesting because they exploit the real differential properties of the internal permutations P
and Q, which is essential in order to appropriately evaluate the security margin in terms of number of
rounds. Moreover, such structural attacks can not distinguish h from the compression function construc-
tion with P and Q assumed ideal. Finally, we showed that full permutations P and Q for the 256-bit
case can not be considered as ideal permutations.

5.4 Collisions for the Grøstl hash function

Grøstl-256. We use the differential path from Figure 6. One can check that the output difference comes
from the AC5 layer that adds two fixed byte differences. On the output of the next SubBytes layer, this

leads to 214 distinct reachable difference values (this amount is not modified after the application of the
last linear MC layer). Thus, with two valid candidates M1 and M2, we have a probability 2−14 that they
will match on their output difference.

Now, we have to compute the complexity for finding one single candidate for the trail. The classical
application of the Super-Sbox technique gives us an average cost of one operation per solution for the
controlled rounds, with a minimal cost of 264 computations and memory. The uncontrolled rounds are
verified with probability 2−64 (2−48 for MC3 and 2−16 for AC4). Thus a colliding pair of messages for
the Grøstl-256 hash function reduced to 5 rounds can be found with 264+14+1 = 279 computations and
264 memory.

Grøstl-512. We use the 6-round differential path from Figure 19 in the Appendix D. One can check
that the output difference comes from the AC5 and AC6 layers that adds fixed byte differences. After
the application of AC6, we have 16 active bytes, which leads to 216∗7 = 2112 distinct reachable difference
values after the next SubBytes layer (this amount is not modified after the application of the last linear
MC layer). Thus, with two valid candidates M1 and M2, we have a probability 2−112 that they will
match on their output difference.

Now, we have to compute the complexity for finding one single candidate for the trail. The classical
application of the Super-Sbox technique gives us an average cost of one operation per solution for the
controlled rounds, with a minimal cost of 264 computations and memory. The uncontrolled rounds are
verified with probability 2−64 (2−48 for MC3 and 2−16 for AC4). Thus a colliding pair of messages for
the Grøstl-512 hash function reduced to 6 rounds can be found with 264+112+1 = 2177 computations
and 264 memory.

5.5 Generalizing the internal differential attack

One can further generalize the internal differential attack in order to obtain more freedom degrees. We
previously looked at the differences between permutations P and Q at the very same byte positions, i.e.
we looked a the difference between CPi,j and CQi,j . However, an observation on AES-like permutation
symmetries allows us to do else: if one only considers functions SB, ShR and MC, an input composed of
columns with the same value will always maintain this property though the round process. In general, this
symmetry issue is avoided with the key addition, or the AC layer in Grøstl. In the internal differential
attack, this layer is already directly composing our differential path, so we can leverage this property.

More precisely, we will now look at the differences between CPi,j and CQi,(j+r) mod c, where c is
the number of columns of the AES-like state (8 for Grøstl-256 and 16 for Grøstl-512) and 0 ≤ r < c
is a fixed parameter. Said in other words, we look at the difference between P and a column-rotated
variant of Q. One can easily check that this is not going to change anything to our differential paths in
regards to SB, ShR and MC because of this column symmetry consideration. However, during the AC
layer, the column position of the constant additions in Q will “virtually” change. For example, in the
case of Grøstl-256, if r = 1 the only effect on the differential path between P and Q will be that the
addition of the constant in Q will move to the last column in each round.

Therefore, one can see that we will deal with 8 or 16 distinct differential paths DPr, discriminated
only by the parameter r that changes the virtual column position of the constant addition in Q. For
example, in the previous sections or in Figure 16 and 17 from the Appendix D, we used only DP0 since
we had r = 0.

We explained in Section 5.3 that a valid candidate for the 10-round variant of the differential path
DP0 for Grøstl-256 can be found with 2192 computations and 264 memory (or 280 computations and
264 memory for the 9-round variant), and this will also be the case of DP1. However, the six other DPr

have one additional active column in the uncontrolled rounds, and an additional 264 complexity factor
is required. Moreover, the input/output subspaces are also different depending on the value of r and
this is summarized in Table 3, together with the Grøstl-512 case.

Note that each differential path DPr will have the same probability that a solution can be found.
This offers a chance to the attacker to perform the attack again in case a solution could not be found for

Table 3. Extending the internal differential attack for Grøstl. Depending on the differential path
considered, and the class DPr considered, we provide the complexity required in order to find a valid
candidate, as well as the input/output subspaces sizes in which the candidate is contained. The last
column shows the complexity to find such a candidate for the f(a, b) = P (a)⊕Q(b) construction in the
ideal case (22n/k).

differential differential path time/memory subspace size internal permutations

path class complexity input output ideal case complexity

Grøstl-256

9 rounds, Fig. 16

DP0 280/264 256 2128 2328

DP1 2144/264 2112 264 2336

DPr, r ≥ 2 2144/264 2112 2128 2272

10 rounds, Fig. 17

DP0 2192/264 256 2128 2328

DP1 2192/264 2112 264 2336

DPr, r ≥ 2 2256/264 2112 2128 2272

Grøstl-512 11 rounds, Fig. 18

DP0 2640/264 256 2128 2840

DP1 2768/264 2112 2128 2784

DP2 2832/264 2112 2128 2784

DP3 2896/264 2112 2128 2784

DP4 2960/264 2112 2128 2784

DP5 2832/264 2112 264 2848

DP6 2960/264 2112 2128 2784

DP7 21024/264 2112 2128 2784

DP8 21024/264 2112 2128 2784

DP9 21024/264 2112 2128 2784

DP10 2960/264 2112 2128 2784

DP11 2896/264 2112 2128 2784

DP12 2960/264 2112 2128 2784

DP13 2896/264 2112 2128 2784

DP14 2832/264 2112 2128 2784

DP15 2768/264 2112 2128 2784

a DPr. However, this will only help in the case we are trying to distinguish the permutations P and Q
from ideal permutations. Indeed, in the situation of a compression function distinguisher, the subspace
properties we will observe on the output when k 6= 0 are too restricted.

6 Conclusion

In this article, based on recent advances on AES-like permutations studies, we provided a new crypt-
analysis of ECHO and Grøstl, two second-round SHA-3 candidates. In particular, in the case of Grøstl,
we introduce a new cryptanalysis technique: the internal differential attack. Overall, we obtain the best
cryptanalysis results known so far for both ECHO and Grøstl. We are able to derive a distinguisher
for the full (10 rounds) 256-bit version of the Grøstl compression function or internal permutations.
This work also shows that designers must be careful when building a function with parallel branches
computations as the internal differential paths may lead to unexpected attacks.

Acknowledgments

The author would like to thank the Grøstl team, Henri Gilbert, Yannick Seurin and the CRYPTO
2010 committee for their helpful comments. Also, many thanks to Elmar Tischhauser, Jorge Nakahara
and Kota Ideguchi for pointing me an omission in the complexity computation for the full ECHO internal
permutation distinguisher and the inconsistency in the direct utilization of the start-from-the-middle
attack for ECHO in [26].

References

1. P.S.L.M. Barreto. An observation on Grøstl. Comment submitted to the NIST hash function mailing list,
hash-forum@nist.gov. http://www.larc.usp.br/~pbarreto/Grizzly.pdf.

2. Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols. In ACM Conference on Computer and Communications Security, pages 62–73, 1993.

3. Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles Macario-Rat, Thomas Peyrin, Matt Robshaw, and
Yannick Seurin. SHA-3 Proposal: ECHO. Submission to NIST, 2008. Available online at http://crypto.

rd.francetelecom.com/echo/.
4. Eli Biham and Orr Dunkelman. A Framework for Iterative Hash Functions: HAIFA. Second NIST Crypto-

graphic Hash Workshop, 2006.
5. Eli Biham and Orr Dunkelman. The SHAvite-3 Hash Function. Submission to NIST, 2008.
6. Alex Biryukov, editor. Fast Software Encryption, 14th International Workshop, FSE 2007, Luxembourg,

Luxembourg, March 26-28, 2007, Revised Selected Papers, volume 4593 of Lecture Notes in Computer Science.
Springer, 2007.

7. Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and Related-Key Attack on the Full
AES-256. In Halevi [16], pages 231–249.

8. Gilles Brassard, editor. Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings, volume 435 of Lecture Notes in
Computer Science. Springer, 1990.

9. Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005,
Proceedings, volume 3494 of Lecture Notes in Computer Science. Springer, 2005.

10. Joan Daemen and Vincent Rijmen. The Design of Rijndael. Information Security and Cryptography.
Springer, 2002. ISBN 3-540-42580-2.

11. Ivan Damg̊ard. A Design Principle for Hash Functions. In Brassard [8], pages 416–427.
12. H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160: A Strengthened Version of RIPEMD. In

D. Gollmann, editor, Fast Software Encryption – FSE 96, volume 1039 of Lecture Notes in Computer
Science, pages 71–82. Springer, 1996.

13. Orr Dunkelman, editor. Fast Software Encryption, 16th International Workshop, FSE 2009, Leuven, Bel-
gium, February 22-25, 2009, Revised Selected Papers, volume 5665 of Lecture Notes in Computer Science.
Springer, 2009.

14. Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian Rechberger, Mar-
tin Schläffer, and Søren S. Thomsen. Grøstl – a SHA-3 candidate. Submission to NIST, 2008. Available
online at http://www.groestl.info.

15. Henri Gilbert and Thomas Peyrin. Super-Sbox Cryptanalysis: Improved Attacks for AES-like Permutations.
In Fast Software Encryption – FSE 2010, volume 6147 of Lecture Notes in Computer Science, pages 365–383.
Springer, 2010. Available online at http://eprint.iacr.org/2009/531.

16. Shai Halevi, editor. Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, volume 5677 of Lecture Notes in Computer
Science. Springer, 2009.

17. Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors. Selected Areas in Cryptography,
16th Annual International Workshop, SAC 2009, Calgary, Alberta, Canada, August 13-14, 2009, Revised
Selected Papers, volume 5867 of Lecture Notes in Computer Science. Springer, 2009.

18. J. Kelsey. Some notes on Grøstl. Comment submitted to the NIST hash function mailing list, hash-
forum@nist.gov. http://ehash.iaik.tugraz.at/uploads/d/d0/Grostl-comment-april28.pdf.

19. Dmitry Khovratovich. Cryptanalysis of Hash Functions with Structures. In Jacobson Jr. et al. [17], pages
108–125.

http://www.larc.usp.br/~pbarreto/Grizzly.pdf
http://crypto.rd.francetelecom.com/echo/
http://crypto.rd.francetelecom.com/echo/
http://www.groestl.info
http://eprint.iacr.org/2009/531
http://ehash.iaik.tugraz.at/uploads/d/d0/Grostl-comment-april28.pdf

20. Lars R. Knudsen, Christian Rechberger, and Søren S. Thomsen. The Grindahl Hash Functions. In Biryukov
[6], pages 39–57.

21. Lars R. Knudsen and Vincent Rijmen. Known-Key Distinguishers for Some Block Ciphers. In K. Kurosawa,
editor, ASIACRYPT, volume 4833 of Lecture Notes in Computer Science, pages 315–324. Springer, 2007.

22. L.R. Knudsen. Truncated and Higher Order Differentials. In B. Preneel, editor, Fast Software Encryption
– FSE 1994, volume 1008 of Lecture Notes in Computer Science, pages 196–211. Springer, 1994.

23. Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and Martin Schläffer. Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. In Matsui [24], pages 126–143.

24. Mitsuru Matsui, editor. Advances in Cryptology - ASIACRYPT 2009, 15th International Conference on
the Theory and Application of Cryptology and Information Security, Tokyo, Japan, December 6-10, 2009.
Proceedings, volume 5912 of Lecture Notes in Computer Science. Springer, 2009.

25. Krystian Matusiewicz, Maŕıa Naya-Plasencia, Ivica Nikolic, Yu Sasaki, and Martin Schläffer. Rebound
Attack on the Full Lane Compression Function. In Matsui [24], pages 106–125.

26. Florian Mendel, Thomas Peyrin, Christian Rechberger, and Martin Schläffer. Improved Cryptanalysis of
the Reduced Grøstl Compression Function, ECHO Permutation and AES Block Cipher. In Jacobson Jr.
et al. [17], pages 16–35.

27. Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In Dunkelman [13], pages 260–276.

28. Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. Rebound Attacks on the
Reduced Grøstl Hash Function. In Pieprzyk [37], pages 350–365.

29. Ralph C. Merkle. One Way Hash Functions and DES. In Brassard [8], pages 428–446.
30. Marine Minier, Raphael C.-W. Phan, and Benjamin Pousse. Distinguishers for Ciphers and Known Key

Attack against Rijndael with Large Blocks. In Preneel [38], pages 60–76.
31. National Institute of Standards and Technology. FIPS 180-1: Secure Hash Standard. http://csrc.nist.gov,

April 1995.
32. National Institute of Standards and Technology. FIPS PUB 197, Advanced Encryption Standard (AES).

Federal Information Processing Standards Publication 197, U.S. Department of Commerce, November 2001.
33. National Institute of Standards and Technology. Announcing Request for Candidate Algorithm Nominations

for a New Cryptographic Hash Algorithm (SHA-3) Family. Federal Register, 27(212):62212–62220, November
2007. Available:http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf(2008/10/17).

34. Phong Q. Nguyen, editor. Progressin Cryptology - VIETCRYPT 2006, First International Conferenceon
Cryptology in Vietnam, Hanoi, Vietnam, September 25-28, 2006, Revised Selected Papers, volume 4341 of
Lecture Notes in Computer Science. Springer, 2006.

35. Thomas Peyrin. Cryptanalysis of Grindahl. In Kaoru Kurosawa, editor, ASIACRYPT, volume 4833 of
Lecture Notes in Computer Science, pages 551–567. Springer, 2007.

36. Thomas Peyrin. Improved Differential Attacks for ECHO and Grostl. Cryptology ePrint Archive, Report
2010/223, 2010. http://eprint.iacr.org/.

37. Josef Pieprzyk, editor. Topics in Cryptology - CT-RSA 2010, The Cryptographers’ Track at the RSA Con-
ference 2010, San Francisco, CA, USA, March 1-5, 2010. Proceedings, volume 5985 of Lecture Notes in
Computer Science. Springer, 2010.

38. Bart Preneel, editor. Progress in Cryptology - AFRICACRYPT 2009, Second International Conference on
Cryptology in Africa, Gammarth, Tunisia, June 21-25, 2009. Proceedings, volume 5580 of Lecture Notes in
Computer Science. Springer, 2009.

39. RIPE. Integrity Primitives for Secure Information Systems. In A. Bosselaers and B. Preneel, editors, Final
Report of RACE Integrity Primitives Evaluation (RIPE-RACE 1040), volume 1007 of Lecture Notes in
Computer Science. Springer, 1995.

40. Phillip Rogaway. Formalizing Human Ignorance. In Nguyen [34], pages 211–228.
41. Ronald L. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. http://www.ietf.org/rfc/rfc1321.

txt, April 1992.
42. Victor Shoup, editor. Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology

Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings, volume 3621 of Lecture
Notes in Computer Science. Springer, 2005.

43. David Wagner. A Generalized Birthday Problem. In Yung [46], pages 288–303.
44. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-1. In Shoup [42], pages

17–36.
45. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In Cramer [9], pages 19–35.
46. Moti Yung, editor. Advances in Cryptology - CRYPTO 2002, 22nd Annual International Cryptology Con-

ference, Santa Barbara, California, USA, August 18-22, 2002, Proceedings, volume 2442 of Lecture Notes in
Computer Science. Springer, 2002.

http://csrc.nist.gov
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://eprint.iacr.org/
http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1321.txt

A The amount of freedom degrees

Once a differential path settled, a point has to be clarified: the amount of freedom degrees available to
the attacker. Indeed, one has to evaluate how much valid pairs can be found for the whole differential
trail. We want to ensure that enough solutions for the controlled rounds exist so that we have a good
probability that at least one of them will fulfill the entire differential characteristic. Moreover, when
searching for semi-free-start collisions, we may even go further since we may require an important
amount of valid candidates for the entire differential path.

Freedom degrees for ECHO

We use the same counting reasoning than in [15], except that we have to precisely evaluate what is the
freedom degrees consumption for the various 2 AES-round differential transitions as well (in [15] it was
implicitly assumed that all the BIG SubBytes transitions were F→ F, thus happening with probability
very close to 1 and consuming no freedom degrees). For example, let us take the D→ 1 transition through
the BIG SubBytes in the forward direction: we require one AES MixColumns transition 4 → 1 which
happens with probability 2−24. Thus, if we have k valid candidates on the input, we obtain k×2−24 valid
candidates on the output of this layer and we consumed 224 freedom degrees. The amount of freedom
degrees consumed during a transition is the invert of the probability of success of this transition. Thus,
with Table 2, it is very easy to compute the freedom degrees consumption for all the AES round transitions
considered so far.

We illustrate the counting method by applying it to the example of the 7-round path from Figure 3.
First, note that the improved Super-Sbox attack for ECHO will find all the possible internal states such
that the controlled rounds are verified. We start from state B.MCin

3 (located between B.ShR3 and B.MC3).
This state is fully filled with column differences which means that we can start with 22048+32×16 = 22560

distinct pairs. When going forward, the B.MC3 transition happens with probability 2−24×16 = 2−384 and
the transition through B.MC4 happens with probability 2−24×4 = 2−96. All the other layers are verified
with probability one so the forward computation consumes 2384+96 = 2480 freedom degrees. Then, during
the backward computation, the sixteen C ← F ← D transitions through B.SB3 happen with probability
2−16×96 = 2−1536 according to Table 2 (C ← F with probability 2−96 and F ← D with probability 1).
Also, the four D← 1← C transitions through B.SB2 happen with probability 2−4×24 = 2−96 (D← 1 with
probability 1 and 1← C with probability 2−24). Then, the BIG MixColumns transitions through B.MC2

are verified with probability 2−4×4×24 = 2−384 and through B.MC1 with probability 2−4×24 = 2−96.
All the other layers in the backward direction are verified with probability one. Overall, the backward
computation consumes 21536+384+96+96 = 22112 freedom degrees. We can finally conclude that we started
with 22560 pairs from which only a factor 2−480−2112 = 2−2592 will be valid for the whole differential
path. Thus, used as is, one has to use the 128-bit salt input in order to generate 296 distinct valid pairs
for the 7-round path from Figure 3.

Finally, some additional freedom degrees can be obtained if one considers that the salt value can
be fully controlled by the attacker. While this scenario is not very relevant in practice, it is interesting
to see what the attacker is able to do in such a situation. In the case of ECHO, the salt value is 128-bit
long and it then directly adds 2128 supplementary freedom degrees. To conclude, if he controls the salt,
the attacker can generate 296 distinct valid pairs for the 7-round path depicted in Figure 3. The same
method is used for all the differential trails for ECHO considered in this article.

Note that the differential paths we use are just instances among a family of good differential trails.
For example, in the case of the 7-round path from Figure 3, instead of placing the active word on the
top left position of B.MCout

0 (between B.MC0 and B.SB1), one could place it in the 15 others locations.
Those new paths present the same properties than the original one and this reasoning also applies to the
active word located in B.MCout

4 (between B.MC4 and B.SB5). As a consequence, the attacker manages
162 = 28 different core paths which provides him 28 additional freedom degrees.

Freedom degrees for Grøstl

The case of Grøstl is easier to analyze since we don’t have to handle word-wise and byte-wise truncated
differentials at the same time. Yet, the same counting technique can be applied. Interestingly, for all
the paths we provided concerning Grøstl, an attacker can expect only one solution for the whole trail
with good probability. This explains why one can not really hope for a semi-free-start collision attack
on reduced versions of Grøstl (such as 7 or 8-round versions) with the paths given. Or, said in other
words, a semi-free-start collision attack may be mounted, but will only work with a low probability.

As an example, we provide here the freedom degrees analysis for the 10-round differential path from
Figure 17. By starting from the fully active internal state located at the output of MC4, we begin with
about 2512×2 = 21024 distinct pairs of internal state values. When going forward, the first freedom degrees
consuming operation is the MC5 transition which happens with probability 2−7×56−48 = 2−440. Then,
one byte is erased during AC6 while the transition through MC6 happens with probability 2−48 and in
total this round consumes 28+48 = 256 freedom degrees. Finally, the last consuming operation when
computing forward is AC7 for which two bytes have to be erased (216). When computing backward,
the MixColumns functions MC3 and MC2 requires 248×8 = 2384 and 22×56 = 2112 freedom degrees
respectively. Then, two bytes are erased through AC2 and all the other differential transitions consume
nothing since they are deterministic. Finally, we started with 21024 freedom degrees from which only
a fraction 2−440−8−48−16−384−112−16 = 2−1024 will verify the whole differential path. Thus, since this
reasoning is done on average, an attacker has a good probability to obtain one single solution for the
whole differential path.

Of course, one may argue that the attacker should have one more freedom degree to perform the
attack. Yet, note that until really performed, most hash function attacks only have a certain success
probability to actually find a solution. For example, in the case of SHA-1, even if very low, there is
a probability that the known collision attacks eventually provide no solution. Therefore, with only a
single freedom degree missing, we believe that the success probability is far sufficiently high in order to
consider the attack as valid. Finally, additional freedom degrees can be found by using a generalization
of the internal differential attack, as explained in Section 5.5.

B Distinguishing the full internal permutation of ECHO-256

A 8-round core truncated differential path is given in Figure 12. Its usability is limited only to distinguish
8 rounds of the internal ECHO permutation (the full number of rounds for ECHO-256) and not a smaller
number of rounds by cutting the beginning and/or the end of the trail. Indeed, the improved Super-Sbox
attack for ECHO can not be used anymore as too many active cells are present in the middle rounds.
One has to use the classical Super-Sbox method instead, which is inefficient in the case of ECHO since it
requires at least 2512 computations and memory.

From this core trail we derive the truncated differential path from Figure 13 for which one can obtain
a valid candidate with a complexity of 2512 computations and memory. Indeed, the uncontrolled rounds
are verified with probability 2−480 (because of the sixteen AES MixColumns transitions 4 → 1 through
B.MC5 and the four AES MixColumns transitions 4 → 1 through B.MC1), but the Super-Sbox forces a
minimal cost of 2512. Concerning the freedom degrees, the counting method from Appendix A shows
that the attacker can generate a total of 264 valid candidates for the whole differential path (and 2192

when the salt is controlled as well).
The solution pair has four active 128-bit words in the input and four active 128-bit words in the

output (the last BIG MixColumns call is not taken in account since it is fully linear). The situation is
exactly the same as for the 7-round distinguisher using path from Figure 3: by reusing the concept of
limited birthday distinguishers [15] we deduce that for a random 2048-bit permutation, finding such a
pair should require at least 21024 operations.

The 8-round path from Figure 14 (also derived from the full core path from Figure 12) seems to be
slightly better since the uncontrolled rounds are verified with probability 2−96−96 = 2−288 (because of
the four D ← 1 ← C transitions through B.SB5, the four AES MixColumns transitions 4 → 1 through

B.SB0

B.ShR0

B.MC0 B.SB1

B.ShR1

B.MC1 B.SB2

B.ShR2

B.MC2 B.SB3

B.ShR3

B.MC3

B.SB4

B.ShR4

B.MC4 B.SB5

B.ShR5

B.MC5 B.SB6

B.ShR6

B.MC6 B.SB7

B.ShR7

B.MC7

Fig. 12. Core truncated differential path for 8 rounds of the ECHO internal permutation. Each cell
represents a 128-bit word and a gray cell stands for an active word. The controlled rounds are depicted
with dashed lines.

B.SB0

B.ShR0

B.MC0 B.SB1

B.ShR1

B.MC1 B.SB2

B.ShR2

B.MC2 B.SB3

B.ShR3

B.MC3

B.SB4

B.ShR4

B.MC4 B.SB5

B.ShR5

B.MC5 B.SB6

B.ShR6

B.MC6 B.SB7

B.ShR7

B.MC7

F
F

F
F

F
F
F
F F D

D
D
D
D

C
C

C
C

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F

F
F

F
F
F
F F F

F
F
F
F

F
F

F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

Fig. 13. 8-round differential path for the ECHO internal permutation. The controlled rounds are depicted
with dashed lines.

B.MC5 and the four AES MixColumns transitions 4 → 1 through B.MC1). However, the amount of
freedom degrees is greatly reduced as the attacker has a very small probability 2−128 to actually find a
single valid candidate for the whole differential path. Thus, this path is acceptable only if the salt can
be controlled, which would lead to a single valid pair for the whole differential trail.

B.SB0

B.ShR0

B.MC0 B.SB1

B.ShR1

B.MC1 B.SB2

B.ShR2

B.MC2 B.SB3

B.ShR3

B.MC3

B.SB4

B.ShR4

B.MC4 B.SB5

B.ShR5

B.MC5 B.SB6

B.ShR6

B.MC6 B.SB7

B.ShR7

B.MC7

F
F

F
F

F
F
F
F F D

D
D
D
D

C
C

C
C

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

D
D
D
D

D
D
D
D

D
D
D
D

D
D
D
D

D
D

D
D

C
C
C
C C F

F
F
F
F

F
F

F
F

F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

Fig. 14. 8-round differential path for the ECHO internal permutation. The controlled rounds are depicted
with dashed lines.

The results concerning the internal permutation of ECHO are summarized in Table 4. Note that none
of those distinguishers apply to the ECHO compression function due to the extra protection provided
by the final shrinking stage of the compression function – namely its convolution effect on the output
distribution of the permutation.

Table 4. Summary of results for the internal permutation of ECHO.

target rounds
computational memory

type section
complexity requirements

ECHO internal

permutation

8 2768 2512 distinguisher see [15]

7 2128 232 distinguisher this paper

8 2512 2512 distinguisher this paper

C The ECHO-SP case

In the latest versions of the submission document [3], the authors propose a variant of ECHO, named
ECHO-SP (for simple pipe). The specifications are exactly the same, but the final phase at the end of
each compression function call outputs a n-bit chaining variable for a n-bit final hash value. Namely,
the compression function of ECHO-SP-256 is identical to the one from ECHO-256 except that the two
first words are xored with the two last words of the output column in order to obtain a 256-bit output
chaining variable.

H ′ = comp256sp(P 8
E(H||M)⊕H||M)

H M

P 8
E

H’

The compression function of ECHO-SP-512 is also identical to the one from ECHO-512 except that the
first words column is xored with the second words column in order to obtain a 512-bit output chaining
variable. Said in other words, ECHO-SP-512 and ECHO-256 compression functions are identical and the
results obtained on the latter directly apply to the former.

H ′ = comp512sp(P 10
E (H||M)⊕H||M)

H M

P 10
E

H’

Concerning ECHO-SP-256, we use the differential path from Figure 15 which is almost identical to
the one from Figure 9. The analysis is also identical and we obtain semi-free-start collisions with 264

computations and 232 memory. Note that one can not use the distinguishing attack from ECHO-256
anymore, because the generic complexity decreases with the output size.

B.SB0

B.ShR0

B.MC0 B.SB1

B.ShR1

B.MC1 B.SB2

B.ShR2

B.MC2

feed forward

fold

DDDD CCCC C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

D
D
D
D

D
D
D
D

D
D
D
D

D
D
D
D DDDD CCCC

C
C
C
C

C
C
C
C

C
C
C
C

C
C
C
C

CCCC
CCCC
CCCC
VVVV

Fig. 15. 3-round differential path for the ECHO-SP-256 compression function free-start collision attack.
The controlled rounds are depicted with dashed lines. We denote by V an AES word with one column
and one diagonal active.

D The truncated differential paths for Grøstl

SB0 ShR0 MC0

SB1 ShR1 MC1

SB2 ShR2 MC2

SB3 ShR3 MC3

SB4 ShR4 MC4

SB5 ShR5 MC5

SB6 ShR6 MC6

SB7 ShR7 MC7

SB8 ShR8 MC8

AC0

AC1

AC2

AC3

AC4

AC5

AC6

AC7

AC8

Fig. 16. 9-round differential path between P and Q for Grøstl-256. Each cell represents a byte and a
gray cell stands for an active byte. The controlled rounds are depicted with dashed lines. The matrices
on the left represent the differences incorporated during the AC layers.

SB0 ShR0 MC0

SB1 ShR1 MC1

SB2 ShR2 MC2

SB3 ShR3 MC3

SB4 ShR4 MC4

SB5 ShR5 MC5

SB6 ShR6 MC6

SB7 ShR7 MC7

SB8 ShR8 MC8

SB9 ShR9 MC9

AC0

AC1

AC2

AC3

AC4

AC5

AC6

AC7

AC8

AC9

Fig. 17. 10-round differential path between P and Q for Grøstl-256. Each cell represents a byte and a
gray cell stands for an active byte. The controlled rounds are depicted with dashed lines. The matrices
on the left represent the differences incorporated during the AC layers.

SB0 ShR0 MC0

SB1 ShR1 MC1

SB2 ShR2 MC2

SB3 ShR3 MC3

SB4 ShR4 MC4

SB5 ShR5 MC5

SB6 ShR6 MC6

SB7 ShR7 MC7

SB8 ShR8 MC8

SB9 ShR9 MC9

SB10 ShR10 MC10

AC0

AC1

AC2

AC3

AC4

AC5

AC6

AC7

AC8

AC9

AC10

Fig. 18. 11-round differential path between P and Q for Grøstl-512. Each cell represents a byte and a
gray cell stands for an active byte. The controlled rounds are depicted with dashed lines. The matrices
on the left represent the differences incorporated during the AC layers.

SB0 ShR0 MC0

SB1 ShR1 MC1

SB2 ShR2 MC2

SB3 ShR3 MC3

SB4 ShR4 MC4

SB5 ShR5 MC5

AC0

AC1

AC2

AC3

AC4

AC5

Fig. 19. 6-round differential path between P and Q for Grøstl-512. Each cell represents a byte and a
gray cell stands for an active byte. The controlled rounds are depicted with dashed lines. The matrices
on the left represent the differences incorporated during the AC layers.

	Introduction
	Previous cryptanalysis
	Building differential trails with truncated differences
	Rebound attacks
	Start-from-the-middle attacks
	The Super-Sbox cryptanalysis technique

	Improved differential attack for ECHO
	Description of ECHO
	Generic differential paths
	Differential transitions for 2 AES rounds
	Improved Super-Sbox method for ECHO

	Internal differential attack: application to Grøstl
	Description of Grøstl
	The internal differential attack
	Deriving a distinguisher for the Grøstl compression function or internal permutations
	Finding a collision for the hash function

	Results
	Distinguishers for the ECHO compression function
	Collisions for the ECHO compression function
	Distinguishers for the Grøstl compression function
	Collisions for the Grøstl hash function
	Generalizing the internal differential attack

	Conclusion
	The amount of freedom degrees
	Distinguishing the full internal permutation of ECHO-256
	The ECHO-SP case
	The truncated differential paths for Grøstl

