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Abstract. At Crypto 2005, Coron et al. introduced a formalism to study the presence or absence
of structural flaws in iterated hash functions: If one cannot differentiate a hash function using ideal
primitives from a random oracle, it is considered structurally sound, while the ability to differentiate it
from a random oracle indicates a structural weakness. This model was devised as a tool to see subtle real
world weaknesses while in the random oracle world. In this paper we take in a practical point of view.
We show, using well known examples like NMAC and the Mix-Compress-Mix (MCM) construction, how
we can prove a hash construction secure and insecure at the same time in the indifferentiability setting.
These constructions do not differ in their implementation but only on an abstract level. Naturally, this
gives rise to the question what to conclude for the implemented hash function.

Our results cast doubts about the notion of “indifferentiability from a random oracle” to be a mandatory,
practically relevant criterion (as e.g., proposed by Knudsen [16] for the SHA-3 competition) to separate
good hash structures from bad ones.
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1 Introduction

RANDOM ORACLE METHODOLOGY. A hash function H : {0,1}* — {0,1}" is used to compute an n-
bit fingerprint from an arbitrarily-sized input. Established security requirements for cryptographic
hash functions are collision resistance, preimage and 2nd preimage resistance. But, in an ideal
world, most cryptographers expect a good hash function to somehow behave like a random oracle
[4].

A random oracle is a mathematical abstraction used in cryptographic proofs, hiding away vir-

tually all real world and implementational details. They are typically used when no known imple-
mentable function provides the mathematical properties required for the proof — or when it gets too
tedious to formalize these properties. From a theoretical point of view, it is clear, that a security
proof in the random oracle model is only a heuristic indication of the security of the system when
instantiated with a particular hash function. In fact, many recent separation results [2, 7,10, 12,
19, 21] illustrated various cryptographic systems secure in the random oracle model but completely
insecure for any concrete instantiation of the random oracle. Nevertheless, these results do not
seem to directly attack any concrete cryptosystem. In the random oracle model, one proves that
the system is at least secure with and ”ideal” hash function H. Such formal proof is believed to
indicate that there are no structural flaws in the design of the system.
BuiLDING A RANDOM ORACLE. In practice, arbitrary length hash functions are built by first
heuristically constructing a fixed-length building block, such as a fixed-length compression function
or a block cipher, and then iterating this building block in some manner to extend the input domain
arbitrarily.



Current practical hash functions, as e.g., SHA-1, SHA-2 or MD5 [22,23,26], are all iterated

hash functions using a compression function with a fixed-length input, » : {0,1}"* — {0,1}",
and the Merkle-Damgard transformation [9,20] for the full hash function H with arbitrary input
sizes. The core idea is to split the message M into I-bit blocks M, ..., M,, € {0,1}' (with some
padding to ensure that all the blocks are of size [-bit), to define an initial value Hy and to apply
the recurrence H; = h(H;—1, M;). The final chaining variable H,, is used as the hash output, i.e.,
H(M) := Hy,. The main benefit of the M D-transformation is that it preserves collision resistance:
if the compression function h is collision resistant, then so is the hash function H.
STRCTURAL FLAWS IN THE HASH FUNCTION. Recent results on the security of the Merkle-Damgard
construction [1,13-15] indicate that there are some structural weaknesses in the design of the
iteration process itself. They can be exploited even if the compression function is ideal — i.e.,
a (fixed input length) random oracle. Motivated by the practical need to “say anything about
structural flaws in the design of H itself“ Coron et al. [8] presented a new notion of security for
cryptographic hash functions which is called indifferentiability.

In short, if one models the compression function(s) as random oracles with fixed-size inputs, then
the iterated hash function composed from these compression functions should be indifferentiable
from a random oracle with variably-sized inputs. They propose these as a practically relevant
criterion, e.g., to separate practical hash functions with a good structure from those which might
suffer from structural flaws, especially in the context of the search for new hash function standard
SHA-3 [16, 24]. The current paper discusses this issue.

Preliminaries

In this paper, we use notions such as “efficient”, “significant” and “negligible” as usual in theoretical
cryptography [29], e.g., an algorithm is efficient, if its running time is bounded from above by a
polynomial in the security parameters. In the following we will call a hash function secure if it
is indifferentiable from a random oracle (a formal definition will be given in Section 2) i.e., there
exists a simulator so that any efficient distinguisher has negligible advantage in distinguishing the
hash function from a random oracle. A hash function is called insecure if there exists an efficient
distinguisher that can distinguish the hash function for any simulator from a random oracle.
Remark: One purpose of this paper is to inspire a discussion about the practical relevance of the
notions secure and insecure. More precisely: Does insecure actually indicate a structural flaw in a
hash function whereas secure means the absence of them?

Our Contribution

Taking in a practical point of view, we will examine to what extent a structure of a hash function,
proven secure using the indifferentiability framework, relates with instantiations satisfying this
structure. This perspective is justified by the objective of Coron et. al. [8] to deliver a criteria for
the design of practical hash functions that can distinguish between good hash structures and bad
hash structures. On a merely abstract level — i.e., if one views a hash function as a sole random
oracle — the hash structure is trivially secure. Instantiated as one single collision resistant hash
function, it is trivially insecure. We will examine what happens in between these two poles. We
will show that one is able to prove one and the same practical hash function secure and insecure
at the same time. These hash functions do not differ in their implementations but only on an



abstract modeling level. Also, we will show how a slight modification to a secure hash function, e.g.,
concatenation a one way function, can drive it insecure whereas concatenating an easily invertible
function apparently preserves its security. We are able to derive some weird features that a secure
hash function must offer. Moreover, as we can prove different structures that correspond to one
and the same instantiated hash function secure and insecure, we are faced with an open problem
what to conclude for the security of the practical hash function.

Section 2 gives an detailed paper outline and further motivates this discussion. Taking the
practical point of view as a start, we show how one and the same implementation can be proven
secure and insecure in the indifferentiability model. Section 3 introduces the random oracle model
and the concept of “indifferentiability from a random oracle” as a security notion for hash functions
and compares it to other ideal world security models for hash functions. Sections 4, 5, and Appendix
C will give proofs for this.

In Section 6 we will derive some mandatory design principles for hash functions being secure in the
indifferentiability framework. In Section 7 we discuss and conclude.

2 (In)Security in the Indifferentiability World

In the following sections we will examine various constructions that are secure in the indifferen-
tiability framework (details on indifferentiability will follow in Section 3) involving one or more
random oracles and show how slight modifications to them (or partial instantiations) drive them
insecure (at least in this framework).

In this section we will motivate our research and summarize some of our results in Table 1.
Furthermore, we will give a short example in which way our results correlate and with the design
of practical hash functions.

Section Secure Insecure Insecure Secure
(partial instantiation (extension)
or modification)
4 RO X ROoX RO oW
X oRO W oRO
4 RO o RO ROo X ROoROo0X ROoRO oW
X oRO XoROoRO WoROoRO
5 ROOMDRO ROOMDZ ROOMDROOX ROOMDR@OW
(NMAC) XoMDro X oROoMDro WoROoMDro
App. C || RO; 0 X o RO; RO o0XoY RO, 0 XoRO;0Y RO 0 XoRO; 0 W
(MCM) YoXoRO, Y oRO; 0 X oRO; WoRO;o0X oRO;
XoRO,0Y

Table 1. RO denotes a random oracle (with fixed or variable length input), RO; an injective random ’oracle’, RO
a random oracle (RO, is a fixed or variable input length, injective or not, random oracle), X,Y and Z collision
resistant one-way functions (CROWF), W is an easily invertible function.

Our results are even stronger than indicated by Table 1.



Motivational, informal Example. Say we want to design a secure hash function and come up with
the idea to design our hash function as a concatenation of a preprocessing function modeled as a
random oracle RO and a collision resistant one way function (CROWF) X. Consequently, our hash
function H for a message M is

H(M) := (RO o X)(M).

So we try to proof its security in the indifferentiability framework and come to the conclusion that
this hash function is in fact insecure (refer to Theorem 1 (iii)). In the indifferentiability framework
we have at least three straightforward approaches to get H secure:

1. Remove the CROWF X: H;(M) = (RO)(M).
2. ”"Strengthen” X and make it a random oracle: Ho(M) = (RO o RO)(M).
3. "Weaken” X and make it an easily invertible function W: Hz(M) = (RO o W)(M).

The hash functions H1, Hs and Hs can be proven secure in the indifferentiability framework (see
Theorem 1 (i) and (ii)).

Indifferentiability was devised as a tool to see subtle real world weaknesses while in the random
oracle world. But we can prove H insecure and Hs secure. In the real world (i.e., comparing the
instantiated hash functions) #3 is (almost) sure to be substantially weaker than H. Additionally,
the hash functions ‘H and Hs could be implemented using exact the same lines of code but one is
proved to be insecure, the other one seems to be secure. What shall we conclude for the security of
our instantiated hash function in the real world?

How can we conclude that H has some real world weaknesses that Hs has not. Note that mixing
complexity-theoretic and ideal building blocks is common and can e.g., be found in [25].

3 Indifferentiability from a Random Oracle

For hash functions a random oracle serves as a reference model. It offers all the properties a hash
function should have. This section gives an overview on all ’known methods’ for comparing a hash
function with a random oracle: indifferentiability and three weaker models: preimage awarenes,
indifferentiability from a public-use random oracle and indistinguishability.

A random oracle, denoted RO, takes as input binary strings of any length and returns for each
input a random infinite string, i.e., it is a map RO : Z5 — Z3°, chosen by selecting each bit of
RO(z) uniformly and independently, for every z. As in [8] we will only consider random oracles
RO truncated to a fixed output length RO : Z5 — Z3.

Indifferentiability from a Random Oracle. The indifferentiability framework was introduced by
Maurer et al. in [19] and is an extension to the classical notion of indistinguishability. Coron et
al. [8] applied it to iterated hash function constructions and demonstrated for several iterated
hash function constructions that they are indifferentiable from a random oracle if the compression
function is a fixed input length (FIL) random oracle. Here, we give a brief introduction on these
topics. For a more in-depth treatment, we refer to the original papers. In the context of iterated
hashing, the adversary — called distinguisher D — shall distinguish between two systems as illustrated
in Figure 1.

The system at the left (Case ALGORITHM) is the hash algorithm # 4;, using some ideal compo-
nents (i.e., FIL random oracles) contained in the set G. The adversary can make queries to H ;4
as well as to the functions contained in G. The system at the right consists of a random oracle
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Figure 1. Defining H ;4 being indifferentiable from a random oracle Hgna := RO

(with truncated output) Hpnpg := RO providing the same interface as the system on the left. To
be indifferentiable to the system at the left, the system at the right (Case RANDOM) also needs a
subsystem offering the same interface to the adversary as the ideal compression functions contained
in G. A simulator S is needed and its task is to simulate the ideal compression functions so that
no distinguisher can tell whether it is interacting with the system at the left or with the one at
the right. The output of S should look consistent with what the distinguisher can obtain from the
random oracle Hpgpq. In order to achieve that, the simulator can query the random oracle Hgyq.
Note that the simulator does not see the distinguisher’s queries to the random oracle. Formally, the
indifferentiability of H 4;4 from a random oracle Hgyq is satisfied if:

Definition 1. [8/ A Turing machine H a1y with oracle access to a set of ideal primitives contained
in the set G is said to be (tp,ts,q,€) indifferentiable from an ideal primitive Hpnq, if there exists
a simulator S, such that for any distinguisher D it holds that:

|Pr[D"410:9 = 1] — Pr[DMrneS = 1)] < e.

The simulator has oracle access to Hprng and runs in time at most tg. The distinguisher runs in
time at most tp and makes at most q queries. Similarly, H iy is said to be indifferentiable from
Hrna if € is a negligible function of the security parameter k.

Now, it is shown in [19] that if H 4, is indifferentiable from a random oracle, then H 45, can
replace the random oracle in any cryptosystem, and the resulting cryptosystem is at least as secure
in the ideal compression function model (i.e., case ALGORITHM) as in the random oracle model
(i.e., case RANDOM).

"Non-Optimal’ Ideal World Models. At EUROCRYPT’09 Dodis et. al. [11] have presented two
ideal world security models that are strictly weaker than indifferentiability: preimage awareness
and indifferentiability from a public-use random oracle. But both model a hash function fairly
inadequate. A function that is preimage aware is not guaranteed to be secure against such trivial
attacks as, e.g., the Merkle-Damgard extension attack. And a function that is indifferentiability
from a public-use random oracle has to 'publish’ any oracle query and might be only of limited use
in the context of some signature schemes.

If a hash function is indistinguishable from a random oracle, an attacker that can query H ;4 —
but has no access to the compression functions contained in G — cannot distinguish it from a random



oracle. For hash function constructions, indistinguishability makes little sense as, for any concrete
hash function, the compression functions in G are public and hence accessible to the adversary. As
opposed to block cipher constructions, there is no secret key or any other information the attacker
has not. For them, indistinguishable from a random permutation seems to suffice (at least in the
ideal cipher model).

Therefore, we will focus in this work on ’indifferentiability from a random oracle’ since this
seems to be the only security model known that is applicable in all contexts of cryptographic hash
functions. The (open) challenge is to find an ideal world security model that is strong enough to
defeat all known attacks but it should not be so strong that it leads to real world ambiguities. As
we will show in this paper, the notion of indifferentiability has such ambiguities, namely we can
prove one and the same real world hash function secure and insecure at the same time.

Security definitions that are based on a random oracle. Note that by assuming ideal primitives even
in the ALGORITHM case, this definition is inherently based on the random oracle model. In the
standard model we cannot assume ideal primitives (at least not without allowing an exponentially-
sized memory to store a description of the function), so this notion of security only makes sense in
the random oracle model.

Nevertheless, as we understand [8], a part of their motivation was to introduce a formalism for
aiding the design of practical hash functions. Showing the above kind of “security” in the random
oracle model ought to indicate the absence of structural flaws in the hash function.

On the other hand, if one can efficiently differentiate a hash function (using ideal primitives)
from a random oracle, this appears to indicate a weakness in the hash function structure. With this
reasoning, we again follow the example of Coron et al., who debunk certain hash function structures
as insecure by pointing out efficient differentiation attacks [8, Sections 3.1 and 3.2].

4 Concatenation of Random Oracles: RO — RO

We start by investigating a fairly simple construction on what to conclude for the security of a hash
function where a pre/post-processing function is available.

Definition 2. Let

FUom) =m0 13 — {0,1}" and
F(n—)n),G(n—WL) . {0’ 1}n N {0’1}n

be random oracles. A Subindex i’ denotes an injective random oracle, a subindex 'z’ denotes a
random oracle where we explicitly don’t care whether it is injective or not. Let

PU=m) QU= 1 10,1} — {0,1}" and
P(n—)n),Q(n—WL) . {0’ 1}n N {0’1}n

be collision resistant one way functions. Let
we=n) 10,13 — {0,1}"

be a function that is easily invertible.



(i) The hash function Hrooro : {0,1}* — {0,1}" for a message M € {0,1}* is defined by
Hrooro(M) := G (FU=m (1)),

(ii) Modification/Partial instantiation I: The hash function Hroox : {0,1}* — {0,1}" for a mes-
sage M € {0,1}* is defined by

Hroox (M) := F=m (P2 (Ar)),

(iii) Modification/Partial instantiation II: The hash function Hxoro : {0,1}* — {0,1}" for a mes-
sage M € {0,1}* is defined by

Hxoro(M) = PU7" (FE=M (M),

(iv) Extension I: The hash function Hrooroox : {0,1}* — {0,1}" for a message M € {0,1}* is
defined by
Hrooroox (M) := FO7(GU=M (P21 (M))).

(v) Extension II: The hash function Hxorooro : {0,1} — {0,1}" for a message M € {0,1}* is
defined by
Hxorooro(M) := PU= (FU=0 (G20 (M),

Theorem 1. In the indifferentiability framework the following statements must hold:

(i) Hrooro is secure (i.e., indifferentiable from a random oracle),
(i) Hroox s insecure (i.e., differentiable from a random oracle),
(i11) Hxoro 1is insecure,

(v) HRooROoX 15 insecure,

(v) HxorOoRO 18 insecure.

Recall that for proving a hash function insecure we have to describe an efficient distinguisher which
can decide with non-negligible probability if the hash function is an algorithm utilizing random
oracles (the ALGORITHM case) or is a random oracle by itself (the RANDOM case).

Proof. Let H denote the hash oracle.

(i) The proof is easy and will be skipped here. It can be found in Appendix A.
Remark: The proof can be easily generalized to all functions Hro—...-.ro(M).

(ii) This result is essentially equivalent to the Coron et al. insecurity result regarding the composition
of a CROWF with a random oracle [8], but we state a version of it here for completeness. We
describe a distinguisher D to win this game, regardless of the simulator S:

Choose a random message M € {0,1}*.

Compute u = P(M).

Ask the F-oracle for v = F'(u).

Ask the hash-oracle for z = H(M).

If z = v output ALGORITHM, else output RANDOM.

Uk W=



(iii)

(iv)
(v)

Analysis: Clearly, D is efficient. In the ALGORITHM world we always have

so it always outputs ALGORITHM if it interacts with the algorithm and the ideal primitive F'.
A simulator trying to fool the distinguisher D does not know M as he receives the F'(u)-oracle
call. In order to answer correctly he has to come up with M = P~1(u) to ask the hash oracle
for H(M). As P is a CROWF this is not possible. Any such simulator can be used to invert P.
Furthermore it is information-theoretically impossible to recover M € {0,1}* from u.

Again, we describe a distinguisher D to win this game, regardless of the simulator S:

. Choose a random message M € {0, 1}*.

. Ask the hash-oracle for z = H(M).

. Ask the F-oracle for u = F(M).

. Compute v = P(u).

5. If z = v output ALGORITHM, else output RANDOM.

Analysis: Again, D is obviously efficient and always outputs ALGORITHM in the algorithm world
as we have

=W N

2= H(M) = P(F(M)) = P(u) = v.

In the random world, D learns a random target z and needs to find u with z = P(u) whereas
u = F(M). So any simulator able to answer the F-oracle correctly can be used to invert P
which is a CROWF.

The proof is essentially the same as in (ii).

The proof is essentially the same as in (iii).

0

Paradox. As we have proven in (i) and (iii) the hash functions Hroox and Hxogre are in fact
insecure, if X is a collision resistant one way function. What happens if we substitute that CROWF
with an easily invertible function? It turns out that both hash functions get secure again. Taking
preimage resistance as an example, we are not able to append an ’additional line of defense’ (namely
the function X)) for preimage attacks. without losing the property of being ’'indifferentiabity from
a random oracle’. Note that we do not point out any paradox in the indifferentiability framework
itself. But, indeed, we do show several ambiguities we inevitably have to face if we try to apply this
framework as a guide for designing secure and practical hash functions. This situations occur if we
try to decrease the size of the gap between a practical hash function and its ideal world mapping.

Theorem 2. Using the same notations as in Definition 2 it must hold in the indifferentiability
framework:

(i) The hash function

Hpoow (M) := FO=m) (W E=m) (),

is secure if W is an invertible function.

(i) The hash function

Hworo(M) := Wm=m(RE=m) (A1),

is secure if W is an invertible function.



Proof. Let H denote the hash oracle.

(i) Note, that the function W : {0,1}* — {0,1}" is unlikely to be uniquely invertible in practice
(normally, it will be information-theoretically impossible). But if we assume W’s invertibility
we can easily give a simulator S thus proving the hash function secure.

Description of Simulator S:
- F-oracle queries (parameter A): As we can invert W we can easily calculate M = W~!(A)
and ask the hash oracle v = H(M) and return v to the caller.

(ii) Now we have the function W : {0,1}" — {0,1}". Again, we can give a simple simulator S.
Description of Simulator S:

- F-oracle queries (parameter M): Ask the hash oracle z = H(M) and return W~1(2) to the
caller.

0

Recall the example of Section 2. Let us start with the hash function Hroox. For X being a CROWF
we have shown it to be insecure. If we strengthen X and let it be a random oracle our hash function
gets secure. If we weaken X, i.e., let X be an invertible function, our hash function gets secure
again. The same is true if we begin our discussion with Hxoro.

Furthermore, all the theoretical hash functions Hrooro, Hxoro and Hroox are a valid model
for the same practical hash function, employing two functions F' and G and defined by H(z) =
F(G(x)). Should we conclude that this construction is secure, since we can prove their security if we
model both F' and G as random oracles? Or should we conclude that this construction is insecure,
as we can disprove security in two other cases?

Insecurity by (partial) Instantiation. Another point of view of the problem is given here.
We start with the proven-to-be-secure hash function Hrporo. So one should assume that there
are no structural weaknesses found in our construction. In order to get a practical hash function
we have to instantiate the random oracle by efficient collision resistant one way functions. Instead
of instantiating both random oracles at the same time we choose to instantiate them one after
the other. Our intermediate result is either Hxoro or Hroox . Both of them were proved the be
insecure in Theorem 1 — but formally we still have not left the random oracle world. Informally, we
start now with an insecure hash function and instantiate the other random oracle. Thus, regarding
the structural soundness of our construction we get entirely contradicting messages again.

5 NMAC: MDro — RO
Definition 3 (NMAC-Hash). Let
cFm=n) L £0,13 x {0,13™ — {0,1}" and
D= 10,1} — {0,1}"

be oracles, M = (My, My ..., M) € ({0,1}™)L be a (padded) message and Hy € {0,1}" an arbi-
trary initial value. The Merkle-Damgdrd hash function M D¢ : {0,1}" x ({0,1}™)T — {0,1}" s
defined by

Hy, =C(Hy,My), ..., H, =C(Hp_1,Mp),



MDC(H07M17"'7ML) :HL

The hash function NMACe p : {0,1}" x ({0,1}™)" — {0,1}" is defined for fized Hy € {0,1}" as
follows:
NMACC,D(MD cee 7ML) = D(MDC(H07 My, ... 7ML))‘

Hy H, Hs Hr 1 oy O
C C C
’_> ’_> ’—> MDC NMACC,D(Mly...7ML)
| | |
M, Mo My,

Figure 2. The NMAC-Hash NM AC¢,p — an extension to the plain Merkle-Damgard hash function M D¢.

Definition 4. Let F,G, P,Q be as in Definition 2. Additionally, let
Ftm=n) . fo 13+m 0,1}
be a random oracle.

(i) The hash function HRooMDre : {0,1}™E — {0,1}" for a padded message M € {0,1}™1 is
defined by

H'ROOMDR@ (M) = NMAOF(n+m~>n) ’G(n%n) (M)
— q(n—=n) (MD pinsmsmy (M)).

(i) Modification/Partial instantiation I: The hash function Hroompy : 10,1} — {0,1}" for a
padded message M € {0,1}™1 is defined by

HRroompy (M) = NMACpnim-sn) g (M)
= FO2) (M D pinimsmy (M)).

(iii) Modification/Partial instantiation II: The hash function Hxopnpre : 10,1} — {0,1}" for a
padded message M € {0,1}™ is defined by

HxoMDro(M) = NMAC p(nim-—sn) pn-sn) (M)
— PO (M Dy (M)).
(iv) Extension I: Let
RG=mL) 10 1} — (0,1}

be a padding function. The hash function HRooMDreor : {0,1} — {0,1}" for an (unpadded)
message M € {0,1}* is defined by

HRrooMDroox (M) = NMAC pnsm-n) gin-sn) (RU=™E)(M)).
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(v) Extension II: The hash function HxorooMDre : {0,1}™% — {0,1}* for a padded message
M € {0,1}™L is defined by

HxorooMDro (M) = P (NMAC ponimosn) nsm (M)).
Theorem 3. Using the indifferentiability framework it must hold:

(i) HROoM Do is secure,

(1) HRooMDy 15 insecure,
(111) HxoMDro 1S insecure,
() HROoMDrooX 1S insecure.
(v) HxoROoMDgo 1S insecure,

In [8], the plain Merkle-Damgard hash function with ideal compression functions M Do was shown
to be insecure.

Proof. (i) Although this result was stated in [8], the proof seems to be missing in the published
version of the paper. A proof is provided in Appendix B.
(ii) This proof is essentially the same as the proof of Theorem 1 (ii). We only have to take care for
the Merkle-Damgard construction. Here, we only give the distinguisher D:
1. Choose a random message M € {0,1}*.
2. Compute u = M Dp(M).
3. Ask the F-oracle for v = F(u).
4. Ask the hash-oracle for z = H(M).
5. If z = v output ALGORITHM, else output RANDOM.
(iii) This proof is essentially the same as the proof of Theorem 1 (iii). We only have to take care for
the Merkle-Damgard construction. Here, we only give the distinguisher D:
1. Choose a random message M € {0,1}*.
2. Ask the hash-oracle for z = H(M).
3. Use the F-oracle to calculate w = M Dp(M).
4. Compute v = P(u).
5. If z = v output ALGORITHM, else output RANDOM.
(iv) The proof is essentially the same as in 1 (iv). So if this hash function is secure, we could use
our simulator to efficiently invert the padding function R.
(v) The proof is essentially the same as in 1 (iv). So if this hash function is secure, we could use
our simulator to efficiently invert the CROWF G.
O

Paradox. Again, as discussed in Section 4, we get a secure hash function if we substitute the
CROWF by an invertible function. For the hash functions (ii)-(v) similar results as were given in
theorem 2 can easily be stated.

Part (iv) of the theorem might be (at least in this form) somewhat surprising. Most of the
padding functions have the property of being easily invertible. But in the indifferentiability world
this is a must-have feature for secure hash functions. If the padding function R is not efficiently
invertible, NM AC" would be insecure.

11



In [8] the authors don’t care with the padding function. But this turns out to be somewhat
shortsighted in the case of indifferentiability secure hash functions. Even such a simple and (in the
analysis phase) easily to be forgotten function can drive a hash function insecure if it is added.

We have also analyzed the Mix-Compress-Mix (M CM) construction given by Ristenpart et al.
[25]. A short summary is given in the following theorem.

Theorem 4. (i) Hro,oxor0, is secure if X is a A—regular function (i.e., every image of H has
approzimately the same number of preimages, for details see [25]).
(it) Hro,oxoy 1S insecure.
(111) Hyoxoro, 15 insecure.
(iv) Hxorooy is insecure.
(v) HRo,0xoR0O0Y 15 insecure.
(vi) HyorO,;0XoR0O, 1S insecure.

A proof and formal definitions are given in Appendix C.

6 Design Principles for Secure Hash Functions

Definition 5. Let k € N. Let Sy : {0,1}* — {0,1}™, S; : {0,1}" — {0,1}", (1 < i < k),
Sk : {0,1}™ — {0,1}™, be functions. The hash function H for a message M is defined by

H(M)=(Spo0Sk_10...051)(M)

Here, we generally don’t care whether the functions S;, (1 < i < k) are ideal or not. Using the
technique applied above it is easy to show

Theorem 5. (Design Principles for Secure Hash Functions) Let H be defined as in Definition 5.
Let H be a secure (indifferentiable) hash function. Then it must hold:

(i) Sy is not a one way function.
(ii) Sk is not a one way function.

Proof. (i) If S; is a one way function we could use the simulator (as H is secure) to invert S;. The
proof is essentially the same as the proof of Theorem 1 (ii).

(ii) If S is a one way function we could use the simulator (as H is secure) to invert Si. The proof
is essentially the same as the proof of Theorem 1 (iii).

This simple design principle is mandatory to all (indifferentiable) secure hash functions. Note that
in the MCM construction, the one way function is in the middle of two random oracles. Applying
Theorem 5 we can conclude: It is possible to prove a structure secure only if the ’first’ and the
"last’ functions are random oracles or easily invertible functions, but we might be able — under some
circumstances — to choose some functions different to a random oracle. We do not see how this design
principle for indifferentiable secure hash function will account for more security if constructing a
practical hash function.
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7 Discussion and Conclusion

The random oracle model. All ideal world notions and their definitions are inherently based
on the random oracle model. Before going into details on indifferentiability itself in Section 7.1 let
us recall some results from the literature on the random oracle model. As discussed in Section 1,
there had been quite a few uninstantiability results, defining cryptosystems provably secure in the
random oracle model, but insecure when instantiated by any efficient function. On can argue that
all of these constructions are malicious. They are designed to be insecure. But either one relies on
heuristics and intuitions, or one relies on proofs. If one puts proofs above all other aspects, then
counter-examples do invalidate the proofs.

7.1 The Ambiguity of Indifferentiability in the Design of Practical Hash Functions

The ideas from Coron et al. [8] have been very influential and inspiring for a lot of researchers.
Namely, there have been quite a few proposals for hash function structures provably “indifferentiable
from a random oracle”, often in addition to other security requirements as, e.g., in [3, 5, 18].

But the current paper reveals a contradiction in the reasoning from [8]: The same formalism can
be used to indicate the structural soundness of an implementation, and the presence of structural
weaknesses.

The contradiction is not on the formal level — we do not claim any flaw in the theorems or
proofs of [8]. If all components (e.g., compression functions) of a hash function are ideal (i.e.,
random oracles) we don’t get ambiguous results. If all components are non-ideal we cannot use the
indifferentiability framework to prove anything. But if some of the primitives are ideal and some
are not (as for example in [3]) we can get ambiguous results for security proofs. Our research seems
to indicate that the indifferentiability model is of limited use for proving the security of

— mixed-model hash functions (using complexity theoretic and ideal components at the same
time) and
— practical hash functions (e.g. as the SHA-3 candidates).

One might conclude that if any possible description of a structure is insecure (as e.g., is the case for
Merkle-Damgard) in the indifferentiability framework then the hash structure is flawed. But it is
not clear what we shall conclude for a concrete instantiation if one modeling is secure but another
is not.

Taking a secure function (using only ideal components) we have shown in Section 4 and 5 how
slight modifications (i.e., adding a pre- or post-processing function) or partial instantiations (i.e.,
starting our way towards an instantiated hash function) might possibly drive them insecure.

But, in addition to an inherent theoretical motivation, the notion of security in [8] has also
been motivated by the need to decide if the structure of a hash function is sound or flawed. A
criterion for good hash function structures is very valuable for hash function designers, indeed. On
the strictly theoretical side, there is nothing wrong, and studying this kind of security remains an
interesting topic for theoretical cryptography.

7.2 Conclusions

The random oracle model makes it possible to design cryptographic functions secure only in the
ideal world. As discussed in Section 3, the notions of indistinguishability, preimage awareness and
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indifferentiability from a public-use random oracle seem to be too weak for designing a secure,
practical and general purpose hash structure.

THE RIGHT LEVEL OF ABSTRACTION. If we state the discussion of Section 7.1 somewhat different
we can come up with the following: For designing a hash function one might come up with a
model/structure that describes the hash function on an abstract level. Then one might try to find
a indifferentiability proof for this structure — given that some of the components are ideal. This
process usually involves some sort of tweaking of the structure in order to 'find’ the proof. Therefore
we state that this structure is secure. But if we start with an implementation (i.e. a practical hash
function) and want to assess its security in terms of indifferentiability, we are faced with the problem
of the right level of abstraction/kind of modeling. If we abstract all the details and come up with a
structure only consisting of a random oracle, all hash functions are trivially secure (again in terms
of indifferentiability). If we abstract nothing, the indistinguishability framework does not have an
answer to our question since we have no ideal components. But if we start abstracting some of the
components we might be faced with the problem of finding some abstractions that are secure, and
some that are not. And we might not know what to conclude for the security of the implementation.

OPEN PROBLEMS. It remains an open problem to derive an ideal world criterion to support
the design of general purpose practical hash functions — telling us if the internal structure of a
hash function is flawless or not. Certainly, a security proof (i.e., a proof of a hash function being
indifferentiable from a random oracle, when modeling some or all the internal functions as random
oracles) is comforting. But pursuing this kind of security property requires great care since authors
of a new hash function could be tempted to change, e.g., some one-way final transform of their hash
function into an easily invertible transformation. This could enable a theoretical security proof in
the first place, while, at the same time, practically weaken the hash function.

Designers of practical hash functions, who accept the indifferentiability framework at face value,
may be tempted to make poor design decisions. The indifferentiability framework suggests correc-
tions to structures which sometimes make only sense in the ideal world but that have no real-word
mapping. Even worse, the danger is that these very corrections drive the corresponding real-world
hash function less secure.

Authors of new hash functions are well advised to prove other security properties, such as the
established collision-, preimage-, and second-preimage-resistance under some reasonable standard-
model assumptions, perhaps in addition to proving theoretical security properties, such as the
indifferentiability from a random oracle.
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A Proof of Security for Hro_ro

Proof of Theorem 1

Proof. Let H := (RO2 0 RO1)(M) be the definition of the hash function. We have to describe an
efficient simulator S who is able to emulate the random oracles RO; and ROs. The simulator has
access to the hash oracle Hro.
Description of the Simulator S:

1. RO; oracle queries: For all queries we perform record keeping. If we have answered the same
query before we return the same value again. Else we choose a random value and add it to our

database DB &9 [query, random)].

2. RO, oracle queries: If [7, query] € DB, then use the first entry to ask the hash oracle Hgp

and return the answer. Else choose a random value and add it to our database DB ﬂ

[random, query]. Use the new chosen random value to ask the hash oracle Hrp and return
the answer.

Clearly, S is efficient and any distinguisher D cannot differentiate it from a random oracle.

B Proof of Security for the NMAC Construction

Proof. Our task is to describe an efficient simulator S which can emulate the oracles F' and G in
the RANDOM case. Namely, we we will

— give a description of S,

— show that S is efficient and

— show that the probability that an efficient distinguisher is successful (in differentiating this
RANDOM case from the ALGORITHM case) is negligible.

Description of the Simulator S.

1. F oracle queries: In order to simulate H' = F(H, M) we use the natural approach:
— If we have answered the same query before we return the same value H’' again.
— Else we choose the answer H' to the queries randomly.
But we have to take care that the randomly chosen answer must not be equal to an answer of

any prior query. If this does happen, we call this event BAD:

Definition 6. BAD represents the event that a previously used value is generated as the random
answer to a later query.

If BAD has happened, it follows that a message chain is indicated where, with overwhelming
probability, should be none. The probability for BAD is negligible as will be shown later on.
For all oracle queries we perform record keeping. There are two reasons for this: First to detect
when BAD happens and, second, we need to know the values to answer the G oracle queries.
As a result we have a record of numerous chains

[Ho,Mkl] — [Hk‘17Mk)2] = ... [Hka—]-

We call H, kj accessible if there exists a chain starting with an initial value Hy, H, kj # Hy,, that
contains H, kj

Remarks: All Hy, are different (or BAD would have occurred). Initially there does exist one
chain for the initialization value: [Hy, L].
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2. G oracle queries: For simulating oracle queries for H' = G(H) we consider two cases:
(a) H is not accessible: choose a random value H' € {0,1}". Add a new chain [H’, 1] into the
record and return H'.
(b) H is accessible: There exists one specific chain that contains H. Therefore we can extract the
related message M = (My,, ... My;) from the chain and forward it the the random oracle
HRna- We return H' = Hgpa(M).

Efficiency. The operations are clearly efficient. They all can be performed using standard tech-
niques.

Success probability of the distinguisher. We will now show that, if the event BAD does not occur,
our simulator fools the adversary by proving that the distribution of the adversary’s output in the
ALGORITHM case (without simulator S) is identical to the distribution of the adversary’s output
in the RANDOM case (with simulator S). Afterwards we will show that the probability of BAD is
negligible. This concludes the proof.

Lemma 1. The simulator S only aborts if BAD occurs.
Proof: This is directly implied by the description of the simulator S. (0O)

Lemma 2. If the simulator does not abort the adversary’s view of ALGORITHM and RANDOM is

identical.
Proof:

1. RANDOM: Only independent random values are returned. Either by a random oracle, the hash
function, or random values chosen by the simulator (simulating F' and G as being random
oracles). If we have answered the same query before we return the same value again.

2. ALGORITHM: Here F' and GG are random oracles and, consequently, also the hash function.

In either case the distinguisher can only see random values. (0O)

Lemma 3. The probability that BAD occurs is negligible.

Proof: 1If BAD has not happened after the first ¢ queries to the simulator (either for F' or G, then
the probability that it happens on the (¢ + 1)-st query is at most (¢+1)-27". This is because there
are at most (¢ + 1) answers including the initial value Hy. Therefore, if the distinguisher makes a
total of ¢ queries, the probability of the event BAD is at most (¢? + ¢) - 27". (0O)

This completes the proof. O

C Mix-Compress-Mix RO; — X — RO;

Note that there was given a more efficient instantiation at ASTACRYPT’09 by Lehmann and Tessaro
[17].
Definition 7. Fiz numbers n >0, 7 >0, L > 0 and a hash key K = (ky,k, ka). Let

e1(kr,-) : {0,135 — {0, 135547,

H(k,-): {0,1}=5F7 — {0,1}7,

ea(ka,-) + {0,1}7 — {0, 1}7*7,
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whereas €1 has stretch T, i.e., |e1(ki,M)| = |M| + 7. The functions €1 and ez are injective. The
hash function MC M., pe, : {0, 1}SE — {0,177 for a fived key K = (k1,k, ko) is computed by

MCMe, H.e,(M) = €a(ka, H(k, €1 (k1, M))).

_— El(klvM) - H(k7M/) - 62(k27M”) - MCMElvHvSZ(M)

Figure 3. The MCM construction MCMe, H,e,(M). H is a CROWF, €1, €2 are injective (”mizing”) functions, K =
(K1, k, k2) is the previously fixed hash key.

Definition 8. An indexi denotes an injective function/oracle, an index x denotes that we explicitly
don’t care whether the function/oracle is injective or not.

(i) The hash function Hro.oxoro; : 10,1}5F — {0,1}™7 for a message M € {0,1}=% is defined
by

HRo,oxor0;, (M) = MCM (<L<147) pycrirsm gntn (M)
i ’ "

whereas F' and G both have stretch T.
(i) Modification/Partial Instantiation I: The hash function Hro,oxoy : {0, 1} — {0,137 for
a message M € {0,1}=% is defined by

HRo,oxoy (M) = MCM j(stosi4m) f<pirm gi-ntn (M)

whereas F' and E both have stretch T.
(i4i) Modification/Partial Instantiation II: The hash function Hyoxoro, : {0,1}SF — {0,137 for
a message M € {0,1}=% is defined by

HYOXOROx(M) = MCME_(SLHSLJM) D(SL+7—1) G(mnﬁ)(M)
7 ) [y %

whereas E and G both have stretch T.
(iv) Modification III: The hash function Hxopooy : {0,1}5F — {0,1}™7 for a message M €
{0, 1}=F is defined by

Hxorooy (M) = MCMp(<ps<iin) p(sttron pin-sntn (M)

whereas D and E both have stretch T.
(v) Estension I: The hash function Hyoro,oxoro; : {0,1}5F — {0,1}1F7 for a message M €
{0,1}=F s defined by

Hy oro,0x0R0; (M) = EMFT=1+7) (MCMFI_(SLHSL+T),D(SL+7—H71),GE’IHWJrT) (M))

whereas F' and G both have stretch T.
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(vi) Extension II: The hash function Hro,oxoro0y : 10,1}51 — {0,1Y1F7 for a message M €
{0,1}=F s defined by

HRO,0x0R0;0v (M) = MC'MFl_(smsur)7D(SL+H,7>,GZ@%+T> (ESE7=D)(ar))
whereas F; and G; both have stretch T.

Proof. (i) This proof is given in [25, Theorem 3.2]. Note that the condition of injective random
oracles is only needed for their special conclusion (proving collision resistance in the standard
model) — it is not compulsory to prove the MCM construction secure in the indifferentiability
framework.

) The proof is essentially the same as in Theorem 1 (ii).

) The proof is essentially the same as in Theorem 1 (iii).

v) This can be proved either by the proof of Theorem 1 (ii) or (iii)

) The proof is essentially the same as in Theorem 1 (ii).

) The proof is essentially the same as in Theorem 1 (iii).

D Uninstantiability

As we are in the random oracle model we could easily give a hash function that is provably secure
in the random oracle world (i.e., indistinguishable and indifferentiable).

Definition 9. Let

RO, :{0,1}* — {0,1}", (1)
ROQ,ROg : {0, 1}” — {0, 1}", (2)

be random oracles and the function
Q@ :{0,1}" — {0,1}" (3)

be defined as follows:
Let m € {0,1}" be the parameter of the call. Check if RO is a random oracle (for details

see [7]):
yes: return m,
no: return 1.

The hash function H is defined by
H(M) = (RO30Q oRO1)(M) (4)

Theorem 6. Let H be as in Definition 9. H is a secure (indistinguishable and indifferentiable)
hash function.

Proof. In the random oracle model the hash function H simply reduces to the concatenation of
two random oracles. By Theorem 1 (i) we can easily prove our hash function secure. If ROj is
no random oracle, our hash function always outputs the same hash value and is consequently
completely insecure. O
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