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Abstract. This note is an exposition of reductions among the q-strong Diffie-Hellman problem and
related problems1.

1 The q-Strong Diffie-Hellman Problem

We discuss reductions among the q-strong Diffie-Hellman (q-sDH) problem [1, 3] and related prob-
lems. We use the following notation:

1. G1 and G2 are two cyclic groups of prime order p.
2. g1 is a generator of G1 and g2 is a generator of G2.
3. ψ is an isomorphism from G2 to G1, with ψ(g2) = g1.

1.1 The q-Strong Diffie-Hellman Problem over Two Groups

Boneh and Boyen defined the q-strong Diffie-Hellman (q-sDH) problem in the Eurocrypt 2004
paper [1] as follows:

Definition 1 (q-strong Diffie-Hellman Problem). Assume that ψ is efficiently computable. For
an randomly chosen element x ∈ Zp and a random generator g2 ∈ G2, the q-strong Diffie-Hellman
Problem is, given (g1, g2, gx

2 , g
x2

2 , . . . , gxq

2 ) ∈ G1 × Gq+1
2 , to compute a pair (g1/(x+c)

1 , c) ∈ G1 × Zp.

This q-sDH problem is defined based on two groups G1 and G2. We call this problem the Eurocrypt
2004 version q-sDH problem.

They defined a variant of the q-sDH problem in the Journal of Cryptology paper [2] as follows:

Definition 2 (q-strong Diffie-Hellman Problem (Journal of Cryptology version)). For
an randomly chosen element x ∈ Zp and random generators g1 ∈ G1, g2 ∈ G2, the q-strong Diffie-
Hellman Problem is, given (g1, gx

1 , g
x2

1 , . . . , gxq

1 , g2, g
x
2 ) ∈ Gq+1

1 ×G2
2, to compute a pair (g1/(x+c)

1 , c) ∈
G1 × Zp.

They said that this Journal of Cryptology version q-sDH problem is harder than the Eurocrypt
2004 version q-sDH problem, as ψ is the former no longer requires the existence of efficiently
computable isomorphism ψ. We easily see that the Eurocrypt 2004 version problem is reducible
to the Journal of Cryptology version problem as follows: for a given (g1, g2, gx

2 , g
x2

2 , . . . , gxq

2 ), we
compute gxi

1 = ψ(gxi

2 ) for i (1 ≤ i ≤ q) to obtain (g1, gx
1 , g

x2

1 , . . . , gxq

1 , g2, g
x
2 ), input it to the oracle

of the Journal of Cryptology version problem, and finally obtain (g1/(x+c)
1 , c).

They [2] also said that when G1 = G2, the pair (g2, gx
2 ) is redundant. Actually, in this case, the

Journal of Cryptology version q-sDH problem is equivalent to the following problem:

Definition 3 (one-generator q-strong Diffie-Hellman Problem). For an randomly chosen
element x ∈ Zp and a random generators g1 ∈ G1, the one-generator q-strong Diffie-Hellman
Problem is, given (g1, gx

1 , g
x2

1 , . . . , gxq

1 ) ∈ Gq+1
1 , to compute a pair (g1/(x+c)

1 , c) ∈ G1 × Zp.

We call this problem one-generator q-strong Diffie-Hellman (one-generator q-sDH) problem.
1 This note is based on the first author’s master thesis.



1.2 The q-Strong Diffie-Hellman Problem over Single Group

Here we assume that G1 = G2 and discuss reductions among the q-sDH problem over a single group
and its variants. Recall that the one-generator q-sDH problem is also defined over a single group.

As in the previous section, the original q-sDH (the Eurocrypt 2004 version q-sDH) problem
is also reducible to the Journal of Cryptology version q-sDH problem in the single group setting
G1 = G2, and then is reducible to the one-generator q-sDH problem.

[the original q-sDH problem (G1 = G2)] ≤ [the JoC version problem (G1 = G2)]
≡ [the one-generator q-sDH problem]

We review other two variants of q-sDH problem defined over a single group, q-weak Diffie-
Hellman problem and exponent q-strong Diffie-Hellman Problem. Mitsunari et al. [5] defined the
q-weak Diffie-Hellman (q-wDH) problem as follows:

Definition 4 (q-weak Diffie-Hellman Problem). For an randomly chosen element x ∈ Zp and
a random generators g1 ∈ G1, the q-weak Diffie-Hellman Problem is, given (g1, gx

1 , g
x2

1 , . . . , gxq

1 ) ∈
Gq+1

1 , to compute an element g1/x
1 ∈ G1.

Zhang et al. [7] defined the following variant problem:

Definition 5 (exponent q-strong Diffie-Hellman Problem). For an randomly chosen element
x ∈ Zp and a random generators g1 ∈ G1, the exponent q-strong Diffie-Hellman Problem is, given
(g1, gx

1 , g
x2

1 , . . . , gxq

1 ) ∈ Gq+1
1 , to compute an element gxq+1

1 ∈ G1.

This problem is deeply investigated by Cheon [4]. Zhang et al. [7] showed that the q-wDH problem
is equivalent to the exponent q-sDH problem.

[the q-wDH problem] ≡ [the exponent q-sDH problem]

Reardon [6] showed that the one-generator q-sDH problem is reducible to the q-wDH problem.

[the one-generator q-sDH problem] ≤ [the q-wDH problem]

We summarize the reductions that appears in the subsection:

[the original q-sDH problemm (G1 = G2)] ≤ [the JoC version problem (G1 = G2)]
≡ [the one-generator q-sDH problem]
≤ [the q-wDH problem]
≡ [the exponent q-sDH problem]
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A Reductions.

We review the reductions among the following problems and prove them based on the first author’s
master thesis.

– The one-generator q-sDH problem is to compute (g1/(α+c), c) for given (g, gα, gα2
, . . . , gαq

).
– The exponent q-sDH problem is to compute gαq+1

for given (g, gα, gα2
, . . . , gαq

).
– The q-wDH problem is to compute g1/α for given (g, gα, gα2

, . . . , gαq
).

[The one-generator q-sDH problem is reduced to the q-wDH problem.] Assume that
an instance of the q-sDH problem (g, gα, gα2

, . . . , gαq
) is given. For any c ∈ Zp, we compute

(g, gα+c, g(α+c)2 , . . . , g(α+c)q
), input it to the q-wDH problem oracle and obtain g1/(α+c). Thus we

obtain an answer (g1/(α+c), c) for the one-generator q-sDH problem.

We see that the exponent q-sDH problem is equivalent to the q-wDH problem.
[The exponent q-sDH problem is reduced to the q-wDH problem.] Assume that an instance
of the exponent q-sDH problem (g, gα, gα2

, . . . , gαq
) is given. We let β denote α−1 and let h =

gαq
, hβ = gαqβ = gα(q−1)

, hβ2
= gαqβ2

= gα(q−2)
, . . . , hβq

= gαqβq
= g. We input (h, hβ , hβ2

, . . . , hβq
)

to the q-wDH oracle and obtain h1/β , which is gαqβ−1
= gα(q+1)

. Thus we obtain an answer gα(q+1)

for the exponent q-sDH problem.

[The q-wDH problem is reduced to the exponent q-sDH problem.] Assume that an instance
of the q-wDH problem (g, gα, gα2

, . . . , gαq
) is given. We let β denote α−1 and let h = gαq

, hβ =
gαqβ = gα(q−1)

, hβ2
= gαqβ2

= gα(q−2)
, . . . , hβq

= gαqβq
= g. We input (h, hβ , hβ2

, . . . , hβq
) to the

exponent q-sDH oracle and obtain hβq+1
, which is equal to gαqβq+1

= gαqα−(q+1)
= gα−1

. Thus we
obtain an answer gα−1

for the q-WDH problem.

Consequently, we have

the one-generator q-sDH problem ≤ the q-wDH problem ≡ the exponent q-sDH problem.
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