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Abstract. We provide an analytical framework for basic integrity properties of file systems, namely
the binding of files to filenames and writing capabilities. A salient feature of our modeling and analysis
is that it is composable: In spite of the fact that we analyze the filesystem in isolation, security is
guaranteed even when the file system operates as a component within an arbitrary, and potentially
adversarial system.

Our results are obtained by adapting the Universally Composable (UC) security framework to the
analysis of software systems. Originally developed for cryptographic protocols, the UC framework allows
the analysis of simple components in isolation, and provides assurance that these components maintain
their behavior when combined in a large system, potentially under adversarial conditions.

1 Introduction

Contemporary software systems are complex, consisting of many millions of lines of code, spread across
a myriad of components and sub-components. A natural approach for analyzing such large systems is by
analyzing each component separately, and “hoping” to use the component-wise analysis to analyze the entire
system. Unfortunately, applying this approach to security analysis is problematic. Even if a component is
simple enough to analyze separately, its interaction with other components can yield unexpected results.
Often, a component will be used in environments different from what its designers initially had in mind,
alongside other components that perhaps did not even exist when the original component was analyzed,
potentially violating some assumptions that were made in the analysis.

Ideally, we would like to analyze the behavior of a component in isolation, and have the assurance that
this behavior remains intact even when that component is embedded in a new environment. Within the realm
of cryptography, the frameworks of Reactive Simulatability [19,1] and Universal Composability (UC) [4,
5] ensure just that. These frameworks are aimed at capturing the security of cryptographic primitives and
protocols, ranging from authentication and key exchange, to public-key encryption and signatures, zero-
knowledge, and more (see [5] for many examples.) However, many of the features of these frameworks appear
at first to be specific to the realm of cryptographic protocols. A natural question is whether the “composable
security” approach sketched above can be carried out in a meaningful way even outside the limited domain
of cryptography. In particular:

Can we obtain meaningful composable security in the context of general software systems?

A positive answer could significantly reduce the overhead in analyzing the security of large systems, while
at the same time provide better overall security guarantees.

In this work we demonstrate that this can indeed be done, in the context of guaranteeing some basic
integrity properties of filesystems. For this purpose we adapt the UC framework to software systems by
establishing new conventions for modeling process management and scheduling. The current work is one of
just a few attempts to apply the UC formalism to a large and complex software system, and we believe that
it will enable further application of the UC formalism to other software systems.
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Analysis in the UC framework proceeds by defining an idealized specification model and an implementa-
tion, and then proving that the implementation realizes the idealized specification. Our main contribution
is a very simple filesystem specification model, called SIMPF'S, that captures many integrity concerns in
contemporary filesystems, together with an implementation over existing POSIX filesystems [20] and a proof
that the implementation realizes the specification model.

The composability properties of our analysis imply that software systems that use our implementation
over POSIX behave essentially the same as if they were using the simple, idealized specification system
SIMPFES.

This is a very strong security guarantee. In particular, it allows analyzing software systems without
worrying about how the filesystem is implemented, and without worrying about potential bad interactions
between the analyzed system and the filesystem implementation.

Our filesystem model is geared toward ensuring integrity of files and their names, and in particular
preventing filename manipulation attacks. In such attacks, a victim program expects a particular filename
to have certain semantics. (E.g., a mail program may expect the file /var/mail/root to be the mail file for
the super-user.) In the attack, the adversary creates a link by the same name in the filesystem, pointing to
another file (e.g., /var/mail/root -> /etc/passwd), thereby “tricking” the victim program into accessing
an unexpected file. (In the mail example, such a link may cause a naive mail program to write incoming email
into the system’s password file.) Such attacks were quite common in UNIX systems of old. Since creating
links to files often takes lower permissions than accessing these files, this form of attack sometimes allows an
attacker to leverage the permissions of a privileged victim program to read or write files that the attacker
cannot access on its own.

Our implementation builds on the ideas presented in Chari et al. [7], who address the problem of privilege
escalation attacks via filename manipulation. To counter these attacks, Chari et al. present a “safe” name
resolution procedure, and deploy this system-wide on popular POSIX systems. The SIMPF'S interfaces are
designed to tightly bind files with their names: files can be accessed only via the names they were created
with, which means that filename manipulation attacks are impossible in our model. Our proof — showing
that implementation based on [7] realizes the model — implies in particular that it indeed eliminates these
filename manipulation attacks.

SIMPFS offers a simple interface that captures enough filesystem primitives for application developers
to build meaningful applications. The simplicity of SIMPF'S is due to its very narrow interface (only four
commands) and the fact that it does not have directories. We argue that the murky relation between files
and their names in plain POSIX systems stem to a large extent from the fact that pathnames consist of
many directories, each with its own permissions, which are combined in a non-obvious manner to yield
the effective permissions for the entire name. In contrast, a filename in SIMPFS is just a single entity
with explicitly specified permissions. Thus SIMPF'S provide applications with radically simplified semantics,
making it easier to use the filesystem without falling into traps. At the same time, we argue that the
vast majority of contemporary applications in POSIX systems do not really need directories, and can be
implemented over the simple SIMPF'S interface without loss of functionality.

1.1 Related Work

Triggered by Joshi and Holzmann’s mini-challenge [13], there is a lot of recent work on formalization and
verifications of file systems. Most notably, Freitas et al [10] specify and prove a POSIX file store in Z/Eves.
This body of work focuses mostly on the correctness aspects and does not address in depth the security
and access control aspects of filesystems. In the broader perspective of (secure) operating systems, there is
a long history of formalization and verification, from PSOS [16] to the recent seL4 [14]. While they make
considerable progress toward high-assurance OS, these works are not based on frameworks that allow easy
composition of components to form larger systems. Additionally, the focus in many of these works is on
mandatory access control whereas we cover a discretionary control. (We stress that although our model
addresses integrity concerns, these are very different from the Biba integrity model [3].)



An abstract model of another large standard systems, the browser, suitable for proofs of cryptographic
protocols exists in [12]. Tt includes a model of information-flow properties under attack. However, the
federated identity protocols built on top of it have only been proven secure with respect to specific security
properties, not in a real-world / ideal-world setting [12].

Protocol Composition Logic (PCL) [8] is a comparable general approach on reasoning about (crypto-
graphic) network protocols in a composable fashion. Recently, PCL was applied to analyze systems [9], more
specifically integrity properties provided by TPM. The symbolic and axiomatic nature of PCL leads to a more
axiomatic specification of security rather than the declarative form in UC. Furthermore, the composition
theorems in PCL are weaker than in the UC framework.

A noteworthy contribution to secure composition of large systems is the CHATS project [17], that iden-
tifies architectural principles to guide the structuring and decomposition of trustworthy systems. That work
is largely orthogonal to ours, as it does not focus on formal modeling or proofs.

There have been many more attempts to leverage well-established formalisms such as logic, typing or
process calculi to model composability of certain system security properties, e.g., McLean [15] for non-
interference properties or Bengtson et al [2] for cryptographic protocols and access control mechanisms.
Many of them provide tool support; but they do not provide the same composition guarantees as in the UC
framework.

2 The Universal Composability Framework

We briefly describe the relevant aspects of the framework of universally composable (UC) security. The
reader is referred to [4] for more details. The framework describes two probabilistic games: The real world
that captures the protocol flows and the capabilities of an attacker, and the ideal world that captures what
we think of as a secure system. The notion of security asserts that these two worlds are essentially equivalent.

THE REAL-WORLD MODEL. The players in the real-world model are all the entities of interest in the system
(e.g., the nodes in a network, the processes in a software system, etc.), as well as the adversary A and the
environment Z. All these players are modeled as efficient, probabilistic, message-driven programs (formally,
they are all interactive Turing machines).

The actions in this game should capture all the interfaces that the various participants can utilize in an
actual deployment of this component in the real world. In particular, the capabilities of A should capture all
the interfaces that a real-life attacker can utilize in an attack on the system. (For example, A can typically see
and modify network traffic.) The environment Z is responsible for providing all the inputs to the players and
getting all the outputs back from them. Also, Z is in general allowed to communicate with the adversary A.
(This captures potential interactions where higher-level protocols may leak things to the adversary, etc.)

THE IDEAL-WORLD MODEL. Security in the UC framework is specified via an “ideal functionality” (usually
denoted F), which is thought of as a piece of code to be run by a completely trusted entity in the ideal world.
The specification of F codifies the security properties of the component at hand. Formally, the ideal-world
model has the same environment as the real-world model, but we pretend that there is a completely trusted
party (called “the functionality” ), which is performing all the tasks that are required of the protocol. In the
ideal world, participants just give their inputs to the functionality F, which produces the correct outputs
(based on the specification) and hands them back to the participants. F may interact with an adversary,
but only to the extent that the intended security allows. (E.g., it can “leak” to the adversary things that
should be publicly available, such as public keys.) Specifying the code of F is typically a non-trivial task. It
is important that F satisfies all the desired security properties, but also that F does not impose unnecessary
constraints: It is only too easy to write a functionality that describes “what we intuitively want”, but is not
realizable by any implementation.? Another crucial concern is the simplicity of the functionality JF, since we
want F to capture the important security concerns, not the mundane implementation details.

3 For example, to realize an abstract time-synchronization functionality that always returns the exact time, one
needs to devise a protocol for perfect clock synchronization, which is impossible to achieve in our physical world
due to the Heisenberg uncertainty principle.



UC-SECURITY AND THE COMPOSITION THEOREM. An implementation 7 securely realizes an ideal func-
tionality F if no external environment can distinguish between running the protocol 7 in the real world
and interacting with the trusted entity running the ideal functionality F in the ideal world. That is, for
every adversary A in the real world, there should exist an adversary A’ in the ideal world, such that no
environment Z can distinguish between interacting with A and 7 in the real world and interacting with A’
and F in the ideal world.

The striking feature of the UC framework is its ability to handle composition. Specifically, the composition
theorem from [4] asserts the following: Let p be an arbitrary system that runs in the ideal world and uses
(perhaps multiple copies of) the functionality F. Next, consider the system p’ in the real world, that is the
same as p except that in p’ each call to the ideal functionality F is replaced by executing the implementation 7.
Then, if 7 securely realizes F it is guaranteed that system p’ behaves essentially the same as system p. In
particular, all the security properties of p are inherited by protocol p’. This guarantee is the basis for the
composable security guarantees provided by the UC framework.

2.1 Conventions for Software systems

We briefly describe some technicalities that must be resolved when attempting to apply the UC framework
to software system, and the conventions that we use to address them. The “entities of interest” in our work
are processes, which differ somewhat from the interactive Turing machines (ITMs) in common cryptographic
models. One aspect relates to side-channels: whereas an I'TM can only influence other ITMs by sending
messages, a process shares some physical resources with other processes on the same machine, so it could
influence them via side channels such as timing and concurrency. In this work we ignore that aspect, i.e. we
do not have any side channels in our formal model. (This does not matter for our current SIMPFS model,
since we do not model any secrecy requirements.) We thus just let the adversary learn “whatever it needs,”
so it has no use for side channels.

A more important difference is preemptive multitasking: common crypto models postulate a sequential
scheduling model, where an active ITM keeps the control until it sends a message, at which point the re-
cipient becomes active. On the other hand, processes in contemporary OSes can be made to yield control
involuntarily. Resolving this discrepancy is not as hard as it may seem, since (side-channels aside) an active
entity has no effect on its surroundings until it sends a message, which means that influencing the surround-
ings only comes with losing the control. We use the standard sequential scheduling of the UC framework,
but ensure that the adversary gets the control after every message is sent, and can decide when this message
will be delivered. (This is somewhat similar to the “buffer scheduler” from [1].) Hence the adversary in our
formal model is able to simulate the actions that would have happened in the actual deployed system, delay
delivery messages until the simulation arrives at the point where they were delivered. We thus argue that
the formal adversary in our model is able to induce any behavior that can happen in the actual deployed
system.

Another difference is that some processing in real systems is done not by the processes themselves, but by
the kernel on their behalf. Hence also in our model we postulate the existence of a “kernel component” that
can do things on behalf of processes. In our filesystem example, this kernel component is only responsible
for maintaining the process privileges: Whenever a process calls a filesystem function, the kernel adds the
process-id and roles of the calling process to the list of arguments, and forwards everything to the filesystem.
(The kernel component gets these roles from the environment.) We note that although we do not use it in
our filesystem example, in general we could have several such “kernel components” in a system, representing
several physical machines.

3 SimpFS: A Simple Idealized File-System

This section describes SIMPF'S, our simple filesystem model. SIMPF'S has a minimalistic interface with simple
semantics, having only basic primitives to create, read, write and delete files. Still, we believe that the this
file-system functionality is sufficient for most applications. (Other aspects — such as locking — can be



implemented on top of our interface.) The SIMPF'S model includes file write permissions, hence capturing
properties of filesystem integrity. We currently do not model read permissions, but we expect that this work
can be extended to include read permissions without too much change.

An important feature of SIMPF'S is that it does not have any directories, only files and their names.
As we mention in the introduction, we believe that directories have “inherently cumbersome semantics”,
hence decided to do away with them in order to keep the semantics as simple as possible. We stress that
the model supports names that include ¢/’ (so applications can still store their temporary data in files with
names that begin with “/tmp/”). But a name such as “/a/b/foo” is viewed as just one entity, and its
existence does not imply the existence of an object with name “/a/b.” Of course, our implementation over
POSIX still interprets ¢/’ as a directory separator, and name creation induces the right associations between
names and paths, in spite of symlinks, adversarial write permissions etc. While directories are a useful and
convenient way to manage and organize systems, we argue that directory permissions are very rarely needed
in applications (if ever), and most applications can therefore directly use the SIMPFS interface.

A key security property of SIMPFS is that it rules out filename manipulation attacks. Our focus on
this property is motivated by the large number of privilege escalation attacks due to unsafe pathname
resolution that were discovered in POSIX systems over the years. A classical example of this type of attacks
is local mail delivery, where /var/mail may be world-writable, allowing an adversary to create a link from
/var/mail/root to (say) /etc/passwd, thereby “tricking” a naive mail-delivery program (running as root)
to write the content of incoming mail into /etc/passwd. Such attacks arise due to the opaque mapping of
names to files in POSIX. SIMPF'S features a very tight binding between files and their names: a file can be
manipulated only with the names it was created with.

We describe an implementation of SIMPF'S over contemporary POSIX filesystems and rigorously prove
that this implementation realizes SIMPFS, using the UC framework. The proof implies that processes that
use our implementation will be protected against pathname manipulation attacks such as above even if
adversarial processes use the same POSIX filesystem in arbitrary ways.

3.1 A formal model of SimpFS

SIMPE'S consists of files and their names. A newly created file is given some names, and thereafter the file
can be accessed by any of these names. Existing names can be deleted, but one cannot add names to existing
files. When deleting names, a file can end up with zero names, in which case it is not reachable anymore so
we can consider it as deleted. We associate permissions with both the file names and the files themselves:

— Every file has a list of roles that can write in it, called the Writers list. A process can write to a file if it
holds a role in the Writers list of the file.
— File names have a set of Manipulators, listing all the roles that have permission to delete that name.

In the current version we do not have read permissions, which means that SIMPF'S allows every process to
read every file.

In more details, our ideal SIMPF'S maintains an array of files and an associative array of names: files[]
is an array of files (indexed by integers). Each entry is a file, consisting of an array of bytes (i.e., a data
blob) and a list of roles (specifying the Writers of this file). names[] is an associative array (indexed by
strings). We refer to the index of an entry as a file-name, and each entry consists of a pointer to a file (i.e.,
an integer) and a list of roles (specifying the Manipulators of this name). The interface below constrains the
Manipulator lists, making sure that all the names of the same file have the same set of Manipulators. (This
choice is not very important, it is done mostly to simplify the presentation.)

In the initial state, the file-system is empty, with no files and no names (i.e., both arrays are empty).
There are only four operations that are supported in SIMPFS: CreateFile creates a new file with some
names, DeleteName deletes an existing name, Read reads data from a file (specified by some name), and
Write writes data to a file (specified by some name).

The semantics of these operations is described by the pseudo-code in Figure 1. As is the case with
every formal UC functionality, the pseudo-code includes not only the intended functionality as seen by the



CreateFile(Writers, Manipulators, Names, pid, Roles)

{
// Allow the adversary to fail the operation and decide the error code
var retCode = AdversaryAction("CreateFile",Writers,Manipulators,Names,pid,Roles);
if (retCode !'= OKAY) return retCode;

var codes[] = empty; // a local list of return codes, one per name
var f = index of next available entry in the files[] array;
files[f].data=empty, files[f].Writers=Writers;

// Allow the adversary to decide whether to create each name
for each fName in Names {
var code = AdversaryAction("CreateOneName", fName);
if (code!=0KAY) codes[il=code;
else {
if (names[fName] already exists) codes[i] = FILE_EXISTS;
else {
names [fName] .file=f, names[fName].Manipulators=Manipulators;
codes [i]=0KAY;
}r}
call AdversaryAction("Done CreateFile") and then return codes;

}

DeleteName (fName, pid, Roles)

{
// Allow the adversary to fail the operation and decide the error code
var retCode = AdversaryAction("DeleteName",fName,pid,Roles);
if (retCode !'= OKAY) return retCode;

if (names[fName] does not exist) return FILE_DOESNT_EXIST;
if (Roles intersect names[fName].Manipulators = emptyset) return NO_PERMISSION;

delete names[fName]; // Note: no point deleting the file, even if not reachable
call AdversaryAction("Done DeleteName") and then return OKAY;

}

Write(fName, atAddr, data, pid, Roles)

{
// Allow the adversary to fail the operation
var retCode = AdversaryAction("OpenWrite",fName,pid,Roles);
if (retCode != 0KAY) return retCode;

if (names[fName] does not exist) return FILE_DOESNT_EXIST;
var f = names[fName].file; // £ serves as a "handle" to the file
if (Roles intersect files[f].Writers = emptyset) return NO_PERMISSION;

var numBytes = AdversaryAction("Write",fName,atAddr,data,pid,Roles);
if (numBytes < length(data)) truncate data to numBytes bytes; // only partial write

var nBytes = length(data);

if (atAddr < 0) atAddr = length(files[f].data); // append

else if (atAddr > length(files[f].data)) {
prepend (atAddr-length(files[f].data)) zero bytes to data;
atAddr = length(files[f].data);

}

write data to files[f].data starting at position atAddr;

call AdversaryAction("Done Write") and then return [OKAY,nBytes];

}

Read(fName, fromAddr, nBytes, pid, Roles)
{
// Allow the adversary to fail the operation or read less bytes
var [retCode,numBytes] = AdversaryAction("Read",fName,fromAddr,nBytes,pid,Roles);
if (retCode !'= O0KAY) return retCode;
if (numBytes < nBytes) nBytes = numBytes;

if (names[fName] does not exist) return FILE_DOESNT_EXIST;
var f = names[fName].file;

if (fromAddr < 0) fromAddr = 0;

else if (fromAddr > length(files[f].data)) {
fromAddr = length(files[f].data);
nBytes = 0;

}

if (nBytes < 0) // read to end-of-file
nBytes = length(files[f].data) - fromAddr;

data = content of files[f].data from fromAddr for nBytes;

call AdversaryAction("Done Read") and then return [OKAY,nBytes,data];

Fig. 1. The SH\%’FS commands.



legitimate users of the system, but also all the interfaces that an adversary can utilize to attack it. This is
codified by an AdversaryAction call, in which SIMPFS “leaks” to the adversary the details of its operation,
and also lets the adversary influence these operations.

A key feature of SIMPFS is that a file can be accessed only using one of the names that were specified
when the file was created, thus eliminating filename-manipulation attacks such as described above. Hence
proving that an implementation realizes SIMPF'S implies in particular that such attacks cannot be successfully
mounted against the implementation.

We make no liveness guarantees in SIMPF'S; so at the beginning of every operation the adversary is given
the option to abort the operation and determine the error code. (This does not mean that an implementation
of SIMPF'S cannot ensure some liveness properties, but it means that a proof that an implementation realizes
SIMPE'S carries no such guarantees within itself.)

The pseudo-code includes with every call also the process-id and permissions (Roles) of the caller, which
in our system model are filled by the kernel component, cf. Figure 2. (Formally there is also an implicit
“invocation id” for each call of one of the four main operations, allowing SIMPFS to handle messages
received from the ideal-world adversary for different invocations.) Note also that the AdversaryAction at
the beginning and end of every operation comply with our convention that the adversary gets the control
before any message is delivered. Finally, we note that all the variables in the code in Figure 1 are local to
that invocation, except for the global files[] and names[].

PROCESS CORRUPTION. Following the standard conventions of the UC framework, SIMPF'S has a special
procedure to handle the case where the adversary corrupts a process. For our purposes it is more convenient
to let the environment decide when a process is corrupted (as opposed to the adversary, which is the more
common convention in UC-model works). When the environment corrupts a process, this process makes a
call TamCorrupted(pid,Roles), to inform SIMPF'S that “it belongs to the adversary” now. SIMPF'S informs
the adversary of this call, and it remembers that this process and all its roles are now bad. Thereafter, the
adversary is allowed to make all the usual calls to SIMPF'S (CreateFile,DeleteName,Read, Write) on behalf
of that process. SIMPF'S will process these calls just as if it was the corrupted process that made the call,
but will return the result to the adversary rather than to the environment.

Every call from the corrupted process (not via the adversary) will be routed directly to the adversary,
and the adversary can always instruct SIMPF'S to send anything to the corrupted process (which will then be
forwarded to the environment). Also, if the roles of the corrupted players change then the kernel component
will notify SIMPF'S of this change. SIMPF'S will add any new role that a corrupted process acquires to its
list of bad roles, but it will not remove any roles from that list, even if the corrupted process loses some of
its roles. (This last aspect represents the fact that the corrupted process may already have used this role to
introduce artifacts into the filesystem, that will remain even after the process no longer has this role.)

ATOMICITY OF THE SIMPFS OPERATIONS. The operations DeleteName and Read are atomic, whereas
CreateFile and Write are not: In DeleteName and Read, once the adversary allows the operation to go
through (by returning 0KAY), SIMPF'S holds onto the control-flow throughout the name lookup and the
operation itself, and only then it yields control back to the adversary.

In Write, on the other hand, the control is returned to the adversary after the file lookup (via the call
AdversaryAction("Write", ...)), and only then is the operation carried out. Similarly in CreateFile,
the adversary gets the control before the creation of any name. This choice was made so that we would be
able to realize SIMPF'S over the POSIX interface that requires to open the file and then write in it. The
real-world read can be made atomic by checking after the fact that the file did not change since it was
opened, but for write such a check is meaningless since the file was already written. (See also the attack in
Section 4.5 for another reason for the check after read.)

MAPPING UNIX PERMISSIONS TO ROLES. The interfaces of SIMPF'S above are defined with “generic roles”
that encode permissions, with access control being a simple role inclusion. Our implementation over POSIX,
of course, uses userids and groups, which are particular types of roles. The mapping is quite straightfor-
ward, roughly there is a different role for each userid and group in the system, and a process gets the role
corresponding to its effective-uid and all the roles corresponding to its groups. There is also one role for
“others”, that every process has. Some care must be taken since POSIX permissions do not exactly follow



role inclusion. (For example, if a file is not owner-readable then the owner cannot read it, even if the file is
readable by “others”.) Adjusting the mapping to this technicality is quite straightforward, and is omitted
here.

4 Implementing SimpFS over POSIX

We describe simpfs, which is a concrete implementation of the SIMPF'S functionality over the POSIX filesys-
tem interface [20]. The presentation below focuses on a user-space implementation, where each simpfs op-
eration runs with the effective uid of its caller, but we point out that the same procedures can also be
implemented in the kernel. (See Figures 2 and 3 for illustrations of the system model in both cases.)

Our implementation relies on the “safe pathname resolution” procedure of Chari et al. [7], that protects
processes from opening adversarial links. While resolving paths this procedure ensures that an adversary can
not manipulate the resolution to result in opening unintended components. In simpfs, very roughly speaking,
each operation consists of first using that procedure to open the corresponding file and then performing the
actual operation.

Before describing this implementation, we first introduce concepts that are used in the rest of the paper
and describe some assumptions that we make on the POSIX filesystems underlying our implementation.
Then in Section 4.2 we describe the safeDirOpen procedure, which is the heart of our implementation and
builds on [7], and then in Section 4.3 we describe the rest of the implementation.

4.1 Concepts and Properties of POSIX

We assume that the reader is familiar with basic concepts of POSIX such as directories, pathnames, users
and groups, hardlinks and symlinks, etc.

Definition 1 (Pathname Manipulators). Let /dir1/.../dirn/foo be an absolute pathname. The ma-
nipulators of this pathname are all the roles (users and groups) that own, or have write permissions in, any
directory visited during the resolution of this pathname.

Note that the definition applies even when a pathname does not resolve, and that root is a manipulator
of every pathname.

Definition 2 (Safe Names). A pathname is system safe if its only manipulator is root. A pathname is
safe for U (where U is a user-id) if its only manipulators are root and U. Otherwise, the pathname is unsafe
for U.

For example, in a typical UNIX system the pathname /etc/passwd is system safe, the pathname
/home/joe/mbox is safe for user joe, and the pathname /var/spool/mail/jane is unsafe for everyone
(as /var/spool/mail may be world- or group-writable).

Definition 3 (Simple Pathnames). A pathname is simple if it is an absolute path that resolves to a

regular file, its elements are only hard links (i.e., not symbolic links), no elements are named *.” or *..’, and
the pathname contains no repeated slashes ‘//°.

AsSsSUMPTIONS. We now list some properties that we assume on the underlying POSIX system, and use in
our proof of security. Most of these assumptions are justified either by the fact that they are part of the
POSIX specification itself, or by the fact that many contemporary POSIX filesystems seem to satisfy them.

Assumption 1 The underlying filesystem does not contain multiple mount points to the same filesystem,
and each directory has only one parent (i.e., one hard link with a name other than ‘.’ or ‘..’).

Justification. Assumption 1 is justified by the fact that nearly all contemporary POSIX implementations
either do not allow processes to create additional hard links to directories (e.g., FreeBSD, Linux) or restrict
this operation to the super-user (e.g., Solaris, HP-UX). A notable exception is MacOS.

We observe that given Assumption 1, for every reachable hard link to a regular file there is a unique
simple name that ends with that hard link. Moreover a resolution of any absolute name that ends with that
hard link will visit all the directories in this unique simple pathname.



Assumption 2 (Permissions) 1. If an operation by a process affects the content of a file, then the process
must have write permission for that file. 2. Let P be an absolute pathname. If an operation by a process
affects the resolution of P or changes the permissions or ownership of any of the directories visited during
its resolution, then that process must have a role which is a manipulator of P.

Justification. The only operations that affect pathname resolution are creating, removing, or renaming path-
name components, and they all require write permission in the containing directory. Also, note that only the
owner of a directory (or root) can change the permissions of that directory, and in most systems only root
can change ownership.

Corollary 1. Let P be some pathname, denote by M(P) the set of manipulators for P (user-ids and groups),
and let B be a set of roles such that M(P) N B # 0. Then changing the manipulator set for P so that
M(P) N B =0 requires an operation by a process with some role outside of B.

Proof. The only operations that change the manipulator-set of a pathname are changing the permissions or
ownership of some visited directory, or moving, renaming, or removing some visited directory, symlink, or
the last hardlink.

Denote by op the first system call after which the manipulator-set of of P is disjoint from B. Denote
by M'(P), M"(P) the manipulator set of P just before and just after the system call op, respectively, so
M (P)YNB # M"(P)N B = (. Since op changes the manipulator set of P, it must have succeeded, hence
the calling process must have had some role R* with sufficient privileges for performing op.

Assume toward contradiction that the calling process has only roles in B, and thus R* € B. Since R* has
sufficient privileges for one of the manipulator-changing operations then by Assumption 2 R* € M’(P). We
now have three cases: either op is chown (so R* is root hence it remains a manipulator), or op is chmod (so
R* is the owner of the directory so it remains the owner), or op is any other manipulator-changing operation
so R* is a writer in the containing directory and it remains so after the operation. In each case R* remains
a manipulator, R* € M"”(P) N B, hence M"(P)NB # (.

Assumption 3 The hardlink to a directory in its parent directory can only be removed when the child
directory is empty. Moreover, after the hardlink is removed from the parent directory, no further entries can
be created in the child directory, even if some process still holds a handle to it.

Justification. The last part of Assumption 3 is justified by the fact that rmdir implementations remove the
entries ‘.” and ‘..’ from the child directory before removing the hard link in the parent directory, and no
new entries can be created in directories without ‘.” and ‘..’ .

Corollary 2. If a system call for creating an entry in a directory returns successfully, then the hard link for
this directory in its parent directory could mot have been removed before that system call, or removed after
the call but before the newly-created entry is removed.

4.2 The safeDirOpen procedure

Underlying our simpfs implementation is a procedure for safe name resolution, which is adapted from the
work of Chari et al. [7]. Our safeDirOpen procedure takes an absolute pathname, resolves it “in a safe manner”
and returns a handle to the directory containing the final hard link to the actual file, the name of that hard
link, and additional information as discussed below. The top-level operations of simpfs first call safeDirOpen
and then perform the requested operation on the final hard link.

safeDirOpen resolves a pathname one atom at a time, each time opening the next atom (or reading it, if it
is a symlink), while keeping track of the owners and writers of the visited directories. (Below we identify the
time that a directory was visited as the time when it was opened, and the time that a symlink was visited
with the time that it was read.)

The procedure can be in one of three states: system-safe, safe-for-uid, or unsafe. When invoked (by a
process with effective uid U), the procedure begins in a system-safe state, switching to safe-for-uid state upon



visiting a directory where U is an owner or writer, and switching to unsafe state upon visiting a directory
with any writer or owner other than root or U. Once in unsafe state it stays in that state for the duration
of the current name resolution. Likewise, there is no transition from safe-for-uid to the system-safe state.

When safeDirOpen enters the unsafe state, it does not follow symlinks for the remainder of the current
name resolution. Also, for technical reasons the procedure never accepts pathnames that contain multiple
slashes ‘//’ or have components named ‘.’ or ‘..’, and it refuses to visit any directory whose name begins
with the special prefix _SimpFS_ephemeral_. In any of these cases, the procedure returns an error code.

Once safeDirOpen arrives at the final atom (and verifies that it is indeed the final atom and not a symlink),
it ends successfully, returning a handle to the directory containing this last hard link, as well as the name
of the hard link. In addition, safeDirOpen returns its current state (system-safe, safe-for-uid, or unsafe), the
set of owners and writers of the directories that it visited, and an array of (handlename) pairs, containing
handles to all visited directories, and the names that were looked-up in those directories. (These names could
belong to either a directory, a symlink, or the final hard link.)

Upon failure, safeDirOpen returns an error code, a handle to the last directory pathname component
that was successfully resolved, the state (system-safe, etc.) and manipulators of that directory, and the
unresolved remainder of the pathname. For example, when called to resolve /a/b/c, if it encountered an
error after visiting /a but before visiting /a/b, then it will return a handle to directory /a, the state and
manipulators of /a, and the remainder of the pathname argument “b/c”. (Note that this will be the return
value even if /a/b happens to be a symlink and the procedure visited more directories after /a, but could
not completely resolve /a/b.)

4.3 Implementing the simpfs commands

createFile(Writers,Manipulators,Names). When called by a process with effective-uid U, the procedure
begins by checking that U belongs to the set of manipulators specified by the Manipulators parameter.
Then it creates a new file with an ephemeral name that begins with the special prefix _SimpFS_ephemeral. .
This ephemeral name is created so that it is safe for U, thus ensuring that no other users can remove or
rename it.*

Now createFile attempts to set the write permissions of the new file as specified in the Writers parameter.
If this is successful, it proceeds to create the names, one at a time, by calling the subroutine createOneName
for each name in Names. After all the calls to createOneName, the procedure createFile removes the ephemeral
name that it created for the new file, and returns the vector of return codes that it received from all the
calls to createOneName.

The subroutine createOneName(fName) begins by checking that the new name is an absolute name, and
that it does not contain ‘//’ or elements named ‘.’ or ‘. .’, or elements that begin with _SimpFS_ephemeral..
Then it calls safeDirOpen(£Name) thus obtaining a handle to the last successfully resolved directory on this
pathname and the corresponding set of manipulators. If all the directories were resolved successfully, then
createOneName checks that the set of manipulators equals the Manipulators parameter, and aborts if they
differ.

If some directories were not resolved, createOneName verifies that the manipulator set of the prefix
is not too large (i.e., it must be contained in the Manipulators parameter), aborting otherwise. Then
createOneName attempts to create the remaining directories, one at the time, initially creating each one so
that it is only writable by owner U with an ephemeral name that begins with _SimpFS_ephemeral_. Upon
success, it tries to set the write permissions of the last directory so that the resulting set of manipulators
will match the Manipulators parameter. Then it goes over all the newly created directories, top to bottom,
renaming each one to the name that it is supposed to have according to fName.

Once all the directories exist and have the right set of manipulators and the right names, the procedure
createOneName makes a linkat system call to create a hard link in the last directory, pointing to the new
file. createOneName then returns whatever code was returned from the linkat system call.

4 See Section 4.5 for a short discussion of this point.
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If any operation fails, then createOneName attempts to clean-up after itself, trying to remove all the
directories that still have names that begin with _SimpFS_ephemeral_. However, after a directory was renamed
to its “permanent name”, createOneName does not remove it.

In the proof of security in Section 5 we rely on the following properties of our implementation of createFile:

— The initial ephemeral name for the new file is safe for the effective-uid of the calling process.

— The procedure never creates symlinks, only directories and hard links.

— The procedure only changes permissions and/or removes pathname components if these components
begin with the special prefix _SimpFS_ephemeral .

— A name fName is created if and only if the 1linkat system call at the end of the subroutine createOne-
Name(fName) is successful.

deleteName(£fName). When called with effective-uid U, deleteName calls safeDirOpen(£fName) and aborts if that
function fails. Else deleteName has an array of pairs (handle,name), and the state with which safeDirOpen
arrived at the final directory (system-safe, safe-for-uid, or unsafe). If the state is not system-safe, then
deleteName checks that the final directory is either world-writable, or owner-writable and owned by U, and
it aborts otherwise.? Also, if the state is unsafe then deleteName checks that the file that the hard link points
to has only a single hard link, aborting otherwise.

Then deleteName attempts to delete the final hard link, followed by attempts to delete the directories
higher-up on the path. deleteName returns when any system call to remove a name fails, or when any of
these names resolves to a symlink, or when it is done deleting all the names in the array. The return code
from deleteName is whatever was returned from the first unlink system call (i.e., the one that deleted the
hard link at the end of fName).

We note that barring a race condition, this implementation of deleteName does not delete symlinks. In
the proof in Section 5 we show that the only cases where these race conditions are possible are when the
adversary already has permissions to delete these symlinks by itself.

read(fName,...). When called with effective-uid U, read calls safeDirOpen(fName) to get a handle for the final
directory, the name of the hard link pointing to the actual file, and the state at which it arrived in this last
directory: system-safe, safe-for-uid, or unsafe. Then read uses openat, 1statat and fstat to open the file
and verify that it is still the same file (and not a symlink). In addition, if the state is not system-safe, then
read checks that the file is either world-readable, or owner-readable and owned by U, and it aborts otherwise.
Also, if the state is unsafe then read checks that the file has only a single hard link, aborting otherwise.

Then the procedure uses the read system call to read the file, and before closing the file it makes yet
another 1statat system call to check that the hard link still points to the same inode as it did when it was
opened. (See Section 4.5 for the reason for this last test.) If all these checks pass, then read returns the result
from the read system call.

write(fName,...). The procedure write is almost identical to read except that it adds a write-permission check
on the actual file, and it does not do the final check after writing to verify that the hard link still points to
the same inode. (Indeed, such check is useless since the file was already written to.)

4.4 Consistency properties of the implementation

In the proof of security in Section 5, it is important to consider what changes may happen in the filesystem
between the time that the safeDirOpen pathname resolver visits some directory and the time that the proce-
dure that called safeDirOpen returns. An important technical observation is that if the procedure that called
safeDirOpen was successful then none of those visited directories could have been removed during this time.

Lemma 4. Consider an execution of one of the procedures createOneName, deleteName, read, or write on
argument fName, and assume that the procedure succeeds (i.e., does not return an error code). Assume further
that no symlink that was read during name resolution was later deleted or renamed during the execution of

5 This check is intended to protect against privilege-escalation attacks on setgid programs, cf. Section 4.5.
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this procedure, and no directory was renamed after it was opened by this procedure. Then also none of these
directories was deleted after it was opened and before the time that the procedure issued the system call
(respectively, linkat, unlinkat or openat) for the final hard link in fName.

Moreover, for the procedures createOneName, read, and write, as long as no symlinks are deleted or re-
named, no directories are renamed, and the final hard link in fName exists in its original containing directory,
then also none of these directories is deleted even after the operation returns.

Proof. Assume not, and consider the first directory that was deleted after it was opened. There are two
cases to consider: this directory was deleted either before or after name resolution visited the next pathname
component (i.e., symlink read, directory or file opened).

By Assumption 3, the directory could not have been deleted before the next component was accessed,
else the subsequent access would have failed. But it also could not have been deleted after the next pathname
component was visited, since the directory must have been non-empty: If the next pathname component is a
symlink then this follows from our assumption that symlinks were not removed or renamed, if it is a directory
then it follows from our assumption that directories were not renamed and the fact that we consider the first
directory to be removed, and if it is the final hard link then it follows from our assumption that it still exists
in its containing directory.

Jumping ahead, we use Lemma 4 in the proof by noting that our SIMPF'S implementation never renames
or removes symlinks, or renames directories, and hence no uncorrupted process will do any of these things.
If in addition we know that no corrupted process has write permissions in any of the directories visited
then also corrupted processes could not rename or remove symlinks or rename directories. Thus, we can
apply Lemma 4 and conclude that all the directories stay put throughout the execution of createOneName,
deleteName, read, or write.

4.5 Rationale and Discussion

Before proceeding to the formal proof of security, we discuss here some of the rationale for our implementation,
including some specific attacks that the implementation was designed to foil.

Privilege-escalation attacks on setgid programs Our implementation of safeDirOpen only considers
the effective-uid for the purpose of determining the safety of a directory, and thus we must consider the
possibility of privilege-escalation attacks between processes with the same effective-uid. In contemporary
UNIX systems, two processes with the same effective-uid can have different filesystem privileges only if one
of them has a group-privilege that the other does not,% as would happen when one of these processes runs a
setgid program.

To see the problem, consider two processes running with effective-uid of joe, one having the additional
group privilege of mail while the other is compromised by an attacker (e.g., due to a buffer-overflow vul-
nerability). Ideally, we would like to argue that files which have read/write permissions for the mail group
(but not user joe) are still protected against the compromised process.

Assume that the non-compromised process with mail group privileges needs to delete a file /home/joe/dir/foo.
The compromised process can create a symlink /home/joe/dir -> /var/mail, “tricking” the other process
into deleting /var/mail/foo (assuming that /var/mail/ is writable by group mail). Embedding this attack
in our formal model, we have a name /var/mail/foo for which joe is not a manipulator, and a good process
that attempts to delete an unrelated name /home/joe/dir/foo, and yet by some action of a compromised
process with joe privileges, this results in the deletion of /var/mail/foo.

We fix this problem by adding a check to the operations deleteName, read, and write, aborting if the
name is not system-safe and group privileges are needed to perform the operation. Very roughly, this defense
works because it prevents the use of group privileges after following symlinks that were created by non-root
processes. (We note that we do not need this extra precaution in createOneName. This is because the SIMPFS
functionality restricts deletion of existing names, but puts no restrictions on the creation of names that do
not exi
5 We ignore the fsuid of Linux here.
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An attack on open-then-read programs To understand the need for another check of the final hard
link after a read system call in a read operation, we describe the following potential attack: Consider the
three programs sshd that needs to read the file /etc/passwd, passwd that replaces the file /etc/passwd by
a new file upon successful edit, and the MTA local delivery that needs to write into /var/mail/root. The
passwd program runs with root privileges, because it is a setuid-root program, and the MTA local delivery
runs with root privileges in order to append to the /var/mail/root mailbox file. Also, assume that the
directory /var/mail is world writable and that initially /var/mail/root does not exist. The attack consists
of the following sequence of steps:

1. The attacker creates a hard link /var/mail/root, pointing to the same file as /etc/passwd.

2. The attacker opens a new ssh connection, causing sshd to open the file /etc/password for read. (Note
that since /etc/passwd is a system-safe name, the open will succeed even if there are multiple hard
links.) At this point the attack relies on the sshd process to be switched out and remain inactive until
Step 5 below.

3. The attacker then uses the passwd command to change its password, thereby causing the old /etc/passwd
file to be replaced by a new file. (Note that the hard link /var/mail/root is now the only hard link still
pointing to the old /etc/passwd file, and that the sshd process still holds a handle to that file.)

4. The attacker sends email to root@localhost, causing the MTA local delivery to append the content of
that message to /var/mail/root.

5. The sshd process is now switched in again and reads from its handle to the old /etc/passwd file, thereby
reading also the data that was written there by the MTA delivery agent.

To thwart this attack, we added the 1statat check between reading and closing the file, verifying that
the hard link still points to the same file. We stress that it is possible to switch the link back and forth to foil
this extra test, but it is sufficient for the purpose of our simpfs implementation. Non-adversarial processes
will never attempt such a back-and-forth switch, and adversarial processes either do not have the privileges
needed to foil the test, or else they have sufficient privileges to manipulate the file directly. (Our proof relies
on this extra test in the analysis of the read operation on Page 19.)

Our treatment of symbolic links Our proof of security in the full version Section 5 relies in places on the
assumption that good processes do not create symlinks. This is consistent with our simpfs implementation
(that indeed does not create symlinks), but it begs the question why we allow safeDirOpen to follow symlinks
at all.

The reason is that the implementation of simpfs is useful also in situations where the filesystem includes
non-adversarial symlinks. A close inspection of our proof shows that the arguments remain valid also in the
presence of non-adversarial symlinks, as long as the files that have non-adversarial symlinks in their names
remain static (i.e., they are not deleted, removed, or moved). It is even possible to modify the semantics of
SIMPFS to accommodate non-adversarial symlinks in a dynamic filesystem, but the new semantics will not
be as simple anymore.

Using the sticky bit Recall that the initial ephemeral name for a new file must be safe for the effective-uid
of the calling process (denoted U). Such a name can perhaps be created in U’s home directory, but not all
uid’s have one. A simple way of achieving the same result in contemporary UNIX systems is creating this
ephemeral name in /tmp, relying on the fact that /tmp is owned by root and has the sticky bit on. This does
not quite fit into our definition of “safe for U” (since /tmp is world-writable), but it suffices for the purpose
of our proof of security. Specifically, what we need is to ensure that as long as the calling process holds a
handle to the new file, only U or root can change the resolution of the ephemeral name.

5 Proof of Security

We next prove that our simpfs implementation realizes the SIMPFS functionality over POSIX, given our
assumptions from Section 4. The proof refers to a system model where simpfs is implemented in user-level code
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and relies on an incorruptible kernel component that handles process permissions; see Figure 2. Essentially
the same proof shows that the simpfs procedures realize the SIMPF'S functionality when implemented in the
kernel (in which case permissions are handled by the environment, cf. Figure 3).

Real world

kernel
I

POSIX

Ideal world

F“—

Fig. 2. The real and ideal worlds for a user-level implementation of simpfs. The kernel components that keep track
of privileges are formally considered to be parts of the implementation and the ideal functionality.

Real world Ideal world

Fig. 3. The real and ideal worlds for a kernel implementation of simpfs. In this setting, process privileges are handled
by the environment.

Theorem 1. Our simpfs implementation realizes the SIMPF'S functionality over the POSIX interface, pro-
vided that the underlying POSIX system satisfies Assumptions 1 through 3.

To prove Theorem 1 we show that there exists an ideal-world simulator S such that for every real-world
adversary A, no environment Z can distinguish the behavior of the real world with A from that of the ideal
world with § and A. We first define a few concepts that will be important in the proof, then define the
simulator &, and finally prove the indistinguishability.

5.1 Useful Concepts

THE SIMULATED REAL WORLD. As usual, our simulator S interacts with the adversary A, and it needs to
simulate a complete picture of the real world as would be seen by this A and the environment Z. Note that
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S knows all the calls made by A to the underlying POSIX system. Also, the simulator knows the details of
all the calls made by the legitimate players to the SIMPF'S functionality (by virtue of the AdversaryAction
calls made by SIMPF'S). Hence S can simulate the corresponding real-world implementation for these calls,
keeping a complete picture of the real-world POSIX system as it would exist in the real world at any point
in time. Below we call this POSIX system that the simulator keeps the simulated real world.

BAD ROLES. Recall that the association between processes and roles (such as userid and groups) is not
one-to-one. This raises the possibility that some roles are held by both corrupted and uncorrupted processes
at the same time, and similarly a process can have both “good” and “bad” roles.” To handle these cases we
introduce the following definition.

Definition 4 (Bad roles). At any point in a run of the system, the set B of bad roles contains all the roles
that were held by a corrupt process since the start of this run. The other roles are called good roles.

Clearly, the set B is monotonically growing throughout the run of the system. The simulator can make
calls to SIMPF'S using any role in B, as per our process corruption interface.
PROTECTED NAMES AND FILES. Throughout the simulation, some of the names in the simulated real world
also exist in the SIMPF'S functionality, while the others exist for the most part only “in the simulator’s
head.” Intuitively, the former are the protected names while the latter are unprotected. The formal notions
of protected names (and also files) are defined next.

Definition 5 (Protected Names). An absolute pathname fName that resolves to a regular file in the
simulated real world at a given point in time is protected if no bad role in B is a manipulator for fName.
Pathnames that resolve to reqular files but are not protected are called unprotected.

Definition 6 (Protected Files). A file that exists in the simulated real world is protected if no bad role
in B has permission to write in it. Otherwise it is unprotected.

Unprotected names and files can exist only after some processes were corrupted. Also, a system-safe
pathname is protected if and only if no root process was corrupted, and a pathname which is safe for U is
protected if and only if no root or U processes were corrupted.

Note also that protected names must be created by uncorrupted processes, since no corrupted process
has the permission to create them. This means that protected names can only be either the names that were
specified as arguments to createFile, or the temporary names with special prefix _SimpFS_ephemeral_ that
are used inside the procedure createFile. Below we refer to the latter as ephemeral:

Definition 7 (Ephemeral Names). A pathname in the simulated real world is called ephemeral if any of
the pathname components begins with the prefiz _SimpFS_ephemeral_.

5.2 The Simulator

The simulator’s strategy is to keep in the SIMPF'S functionality only protected names, while it simulates
the unprotected names internally. When a player tries to access such an unprotected name, the simulator
temporarily creates a file with that name in SIMPFS by making a CreateFile call on behalf of a corrupted
process. The simulator then allows the main operation to succeed and return an answer, and then deletes
that temporary name using a DeleteName call on behalf of the same corrupted process.

In a few more details, when the simulator is informed by SIMPFS that some process invoked an operation
(CreateFile, DeleteName, Read, Write), it simulates the corresponding procedure of the simpfs implemen-
tation (including any interleaving events). For DeleteName and Read it returns OKAY if the procedure
succeeds, for CreateFile it returns the first OKAY once the temporary file is created and set with right
permissions and then returns OKAY for each name for which the 1ink system call succeeded. For Write it

" For example, we could have a corrupted process with userid jack and group users and an uncorrupted process
with userid jane and group users, so the role corresponding to group users is held by both an corrupted process
and an uncorrupted one. Also the uncorrupted process holds both a “good” role (jane) and a “bad” role (users).
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returns the first OKAY when the procedure open’s the file, and then again when the procedure successfully
write’s to the file. In all cases, if the procedure in the simulated real world fails, the simulator returns the
same error code.

For DeleteName, Read, and Write, before returning OKAY the simulator ensures that a file with the
corresponding name exists in the SIMPFS functionality. If this name is an unprotected, the simulator first
creates a temporary file with this name in SIMPF'S and writes into it the content that it has in the simulated
real world. The simulator also puts these temporary names in a list of names to-be-deleted, and deletes them
from SIMPF'S as soon as it gets back the control. Similarly for CreateFile, if a successful createOneName
creates an unprotected name then the simulator puts that name on its to-be-deleted list and deletes it from
SIMPFS once it gets back the control.

When receiving a Done Write call from SIMPF'S, the simulator goes over all the protected file names,
looking for names for which the content of the corresponding file in the simulated real world differs from
that in the SIMPF'S functionality. If the file is unprotected (i.e., the simulator has permissions to write in it)
then the simulator makes a Write call to set the content of the file in the SIMPFS functionality to match
that of the simulated real world.

PROCESS CORRUPTION. When the simulator learns from SIMPES that a process is corrupted, it goes over
all the file names that exist in SIMPF'S, and deletes each name that the newly corrupted process can delete
from SIMPFS, using a call on behalf of that process. The simulator also remembers that this process is now
corrupted.

MODIFICATIONS OF FILES WITH PROTECTED NAMES. When a corrupted process modifies the content of a
file that has a protected name in the simulated real world, the simulator makes a Write call to the SIMPFS
functionality on behalf of the same process, setting the content of the corresponding file inside SIMPF'S to
match that of the simulated real world.

5.3 Proof of correctness

We show that with the simulator defined above, the view of the environment in the ideal and real worlds
is identical. As we noted above, it is sufficient to argue about the simulated real world vs. the SIMPFS
functionality. We now prove a sequence of lemmas relating the names that exist in the simulated real world
to those that exist in the SIMPF'S functionality.

Lemma 5. Fvery protected name that exists in the simulated real world is either ephemeral or also exists
in the SIMPF'S functionality.

Proof. Recall that protected names must be created by uncorrupted processes, since corrupted processes
do not have permission to write in the directories containing them. As per our implementation, the only
names of regular files that are created by uncorrupted processes are either the names that are specified as
parameter in createFile or ephemeral names. As to the former, they are created via a successful 1ink system
call in createOneName, at which point the simulator returns OKAY to the SIMPFS functionality, which in
turn then creates the name (if it does not already exist).

Below we say that the a particular link (hard or symbolic) that exists in the simulated real world remains
unchanged during some time interval if it is not removed or renamed in its containing directory, and its
permissions and ownership remained the same. A pathname remains unchanged if all the directories, links
and filenames that are accessed during resolution of this pathname remain unchanged.

Lemma 6. Every name fName that exists in the SIMPF'S functionality and no corrupted process has permis-
sion to delete it, also exists in the simulated real world and is protected. Moreover, fName remained unchanged
since it was last created in the simulated real world.

Proof. Fix any file name fName that satisfies the premise of the lemma. This cannot be temporary a name
on the to-be-deleted list, since those can be deleted by corrupted processes. Thus the last time when it was
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created in SIMPF'S was after a successful 1ink system call in createOneName, during a CreateFile call by
an uncorrupted process. (Also fName is not ephemeral, since our implementation of createOneName does not
create ephemeral names for regular files.)

Let M be the set of manipulators for fName in the SIMPF'S functionality, so by the premise of the lemma
MnNB = 0. Also, M was the manipulator-set specified in the CreateFile call to SIMPFS when fName
was created. Recall now that the subroutine createOneName keeps track of all the owners/writers in all
the directories that it visits, and only issues the final 1ink system call if that set equals M. Denote the
directories visited during name resolution (in order) by dir;,dirsg,...,dir, and the final filename by foo.
Since M N B = () then set of writers/owners in those directories at the time where createOneName visited
them was disjoint of B. We next show that all these directories (and also the final file) remained unchanged
since createOneName visited them, thus completing the proof.

First, we claim that at the time of creation, fName was a simple pathname. That fName does not include
“7or ‘..” or ‘// follows since createOneName does not create names that include any of them. Also,
uncorrupted processes in our implementation never create symbolic links, so symbolic links can only be
created in directories that are writable by some role in B. This means that none of the directories dir;
contained symbolic links when the name-resolution visited them during createOneName, so in particular
all the pathname components visited (or created) by createOneName (except the final foo) were directories.
Once these directories were visited, they were not moved (since only corrupted processes can move directories
but none of them had permission to do so), hence by Lemma 4 they also not removed before the hard link

foo was created. Hence also at the time that foo was created, the pathname fName was simple.

Next, assume toward contradiction that one of the directories dir; (or foo) was modified or erased since it
was visited by createOneName, and consider the first of them that was modified or erased. By Assumption 2,
the caller owned or had write permission in the parent directory at the time of the change. Since the set
of owners/manipulators is disjoint of B, it means that the process that first modified/erased that pathname
component must have been uncorrupted.

In our implementation, system calls that modify permissions are used by uncorrupted processes only on
ephemeral names, which fName is not. Therefore the first modification had to be a removal of a pathname
component (by an uncorrupted process). Invoking Lemma 4 again, we know that none of the directories can
be removed, thus the first pathname element to be deleted has to be the hard link foo itself. Note also that
hard links to files are only deleted by uncorrupted processes during a successful DeleteName call to SIMPF'S.

Denote the pathname argument to the successful DeleteName call that deleted foo by fName2, and we
argue that fName2 must be the same as fName. Clearly, fName2 cannot include ‘.” or ‘..’ or ‘//’ since
safeDirOpen does not allow these. Also, recall that the deleteName procedure was run by a process that
had permissions to delete the hard link foo, so it must have a different effective-uid from all the corrupted
processes. Since only the adversary creates symlinks, then symlinks must reside in directories that are
unsafe for the effective-uid of that process, hence safeDirOpen will not follow them. Therefore safeDirOpen
encountered only hard links (to directories) as it resolved the name fName?2.

We now argue that these directories must have been the same dir;,dirs,...,dir, as in fName, and
moreover at the time of deletion the hard-link must have been called foo (as in fName). For foo itself, we
already established above that the first modification to it since it was created was the time it was removed.
Hence at the time of deletion it must have been called foo and must have resided at deletion in the same
directory in which is was created.

As for the containing directories, at the time that foo was created none of them was writable or owned
by corrupted players, which implies that none of them was writable or owned by corrupted player any any
point since these directories themselves were created. (This follows from Corollary 2.) Thus these directories
could not have been moved to their containing directory at fName, they must have been created there with
ephemeral names and then renamed to their permanent name, which remained fixed at least as long as
foo existed. By induction on the pathname components of fName (starting from dir,, and going back), we
therefore conclude that the deleteName procedure must have opened each dir; using a handle to dir;_; and
the same name that dir; has in fName. Hence fName2 and fName are the same.
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Summing up, we had an uncorrupted player who made a successful call DeleteName (fName) to the
SIMPE'S functionality. But this means that fName no longer exists in SIMPF'S, which is a contradiction.

Lemma 7. At any point in time, two non-ephemeral protected names resolve to the same file in the simulated
real world if and only if they belong to the same file in the SIMPFS functionality.

Proof. Fix any two non-ephemeral protected names that exist at some point in time in the simulated real
world. By Lemma 5 they also exist in the SIMPF'S functionality. For each name, we look at the CreateFile
call when it was last created in the SIMPF'S functionality, which was after the 1ink system call returned
successfully in the respective simulated createOneName subroutine.

If both createOneName subroutines were part of the same createFile procedure then they were created
pointing to the same ephemeral filename, and since they are protected then also the ephemeral name was
protected, which means that it was not deleted between the two 1ink system calls. Hence they were created
pointing to the same file. On the other hand, if the two subroutines were part of two different runs of createFile
then they were created pointing to different files. By Lemma 6, the two pathnames remained unchanged since
they were created. Hence, they still resolve to the same file if they were created in the same CreateFile
call to the SIMPFS functionality (and hence belong to the same file in SIMPF'S), and they still resolve to
different files if they were created in two CreateFile calls (and hence belong to different files in SIMPFS).

Lemma 8. Consider a call Write(fName, ...) from an uncorrupted process that returns OKAY, and consider
the state of the simulated real world at the time when the open system call in the implementation returns
a handle to the final hard link. If at that time fName is unprotected, but there exists a protected name that
resolves to the same file, then the file itself is unprotected (i.e., there is some role in B with permission to
write in it).

Proof. 1If any root process is corrupted then all files and names are unprotected and we are done. Assume
from now on that no root process is corrupted. It follows that when the last open system call returned, the
name fName was not system-safe (else it would have been protected), so the Write procedure did not open
fName in a system-safe mode. Let U denote the effective-uid of the calling process. The same argument as
above shows that if no U process was corrupted (when the open system-call returned), the Write procedure
could not have opened fName in a safe-for-U mode. Hence the only two cases that we need to consider are
that some U process was corrupted, or that safe-open opened fName in unsafe mode.

In the former case, recall that fName was not opened in system-safe mode, so a Write could only succeed
when the file is either world-writable or owned by U (and writable by owner). Either way the file is not
protected (since it can be written by the corrupted U process). It is left to show that the latter case (where
the file was opened in unsafe mode and no U process is corrupted) cannot happen.

Since the file had a protected name it also had a simple protected name, which we denote fName2 =
/dir1l/.../dirn/foo. The hard link foo must also be the last hard link in fName, as opening a file in unsafe
mode would fail if the file has multiple hard links. Finally, the resolution of fName could not have encountered
directories unsafe for U before merging into the simple path fName2, else it would fail. But since no U or
root process is corrupted, all these directories were still safe for U when the open system call returned,
hence fName was protected, which is a contradiction.

Lemma 9. The view of the environment is identical in the real and ideal worlds.

Proof. We need to show that the answers that the environment sees when interacting with simpfs over POSIX
and the adversary A are identical to what it sees from the SIMPF'S functionality with the simulator S and
the same A. Below we will argue about the simulated real world, since it is an exact replica of the real world.

From the description of the simulator, it is clear than whenever the implementation of some call returns
an error code then the environment will see the same error code in the ideal world (since this is what the
simulator returns to SIMPF'S). Also, it is clear that the results of all the calls that have unprotected names
as arguments must be the same, since the simulator always creates the corresponding files in SIMPF'S on the
fly to ensure this.
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It is left to show that for operations that have protected names as argument, if they succeed in the real-
world implementation then SIMPFS will not return an error, and also that the content of successful Read
operations is the same. We begin with error codes: The cases where the call to AdversaryAction returns
OKAY but SIMPF'S returns an error are the following:

— In CreateFile when the filename already exists. By Lemma 6, if a protected filename exists in SIMPF'S
then it also exists in the simulated real world, hence the 1ink system call would fail and the simulator
would not return OKAY.

— In DeleteName/Read/Write where the name does not exist, or the calling process does not have permis-

sion to delete the name or read/write the file.
Recall that if a name does not exist but the operation in the real world succeeds, then the simulator
creates the corresponding name with the right permissions in the SIMPF'S functionality before returning
OKAY. So the only case that needs to be examined is when the name does exist (and does not have
corrupted manipulators) but the calling process does not have the permissions to delete, read, or write.
By Lemma 6, such names exist also in the simulated real world, and they remained unchanged since
they were created. Moreover the createFile procedure ensures that the name and file have the same sets
of manipulators/writers in the simulated real world as in the SIMPFS functionality. Hence, if the calling
process does not have permission to delete/read/write then the simulated procedure will also fail, and
the simulator will not return OKAY.

Next we consider the content of files with protected names. By Lemma 6 this name also exists in the
SIMPF'S functionality. We observe that the last time fName was created in the SIMPF'S functionality (prior to
the successful read system call) could not have been between the open and read system calls, since otherwise
the final 1stat check would have failed and the Read would not have been successful. Hence the name (and
the file) were created before the open system call.

We now examine the content of the file corresponding to fName since the last time it was created in the
simulated real world. (This was when the temporary name for this file was created.) For each successful
write system call for this file, we designate the beginning of the next successful read or write system call
(for the same file) as “the point where the write operation ended.” We prove by induction that at the time
each write ended, the content of the file in SIMPF'S was identical to its content in the simulated real world.

We have two cases to consider: either the file is unprotected (i.e., one of the bad roles in B belongs to
the Writers set), or it is protected. If the file is unprotected then the simulator would always make sure to
adjust its content in the SIMPFS functionality to whatever it would be in the simulated real world. We now
claim that the last remaining case — where the file is protected but the name that was used to write in it
is not — cannot happen.

If the open system call for the Write operation happened after the name fName was created in the
simulated real world then we meet the conditions of Lemma 8, namely a successful Write to an unprotected
name where the same file also has a protected name (the protected name is fName). If the open system call
happened before the name fName was created then the temporary name for that file must have still existed
at the time, which was itself protected, and again we meet the conditions of Lemma 8. In either case the file
cannot be protected.

We have shown that the content of the file is identical at the end of every write operation. Since the
open call for the Read happened after the file was created then the subsequent read system call returns
the content of this file (specifically, the content after the last write system call), which is the same as the
content that SIMPF'S has for that file. This completes the proof of Lemma 9 and also Theorem 1.

6 Conclusion

In this work we adapted the Universal Composability (UC) framework to the modeling of large software
systems. Focusing on filesystem interfaces, we described SIMPF'S, which is a simple filesystem abstraction
intended to capture filesystem integrity concerns. We describe an implementation of this abstraction over
real POSIX filesystems and prove that the implementation realizes the SIMPF'S abstraction in the UC
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sense. SIMPF'S is a simple but useful interface and with a few small enhancements is sufficient to build real
applications.

Our work demonstrates that formal security frameworks such as Universal Composability can be used

also beyond the niche of cryptographic protocols. Our modeling of POSIX-based file systems is the first
example of this scale.
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